1
|
Li B, Xiao J, Li Y, Zhang J, Zeng M. Gene transfer of human neuregulin-1 attenuates ventricular remodeling in diabetic cardiomyopathy rats. Exp Ther Med 2013; 6:1105-1112. [PMID: 24223630 PMCID: PMC3820667 DOI: 10.3892/etm.2013.1273] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 08/05/2013] [Indexed: 01/10/2023] Open
Abstract
Neuregulin-1 (NRG-1) is a cardioactive growth factor released from endothelial cells. However, the effect of NRG-1 on ventricular remodeling in diabetic cardiomyopathy (DCM) remains unclear. The aim of the present study was to investigate the pathophysiological role of NRG-1 in a rat model of DCM. Rat cardiac microvascular endothelial cells (CMECs) were transfected with human NRG-1 (hNRG-1) lentivirus. The hNRG-1 medium was utilized to culture rat cardiomyocytes. The cardiomyocytes were counted with a hemacytometer to determine the proliferation index and Annexin V/propidium iodide double staining was employed to examine the apoptotic rate. A rat model of DCM was induced by an intraperitoneal injection of streptozotocin. The hNRG-1 lentivirus was injected into the myocardium of the DCM model rats. Four weeks after the lentiviral injection, cardiac catheterization was performed to evaluate the cardiac function. Apoptotic cells were determined by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining. Left ventricular sections were stained with Masson’s trichrome to investigate the myocardial collagen content. The expression levels of related genes and proteins were analyzed. The results indicated that hNRG-1 conditioned medium stimulated the proliferation and counteracted the apoptosis of cardiomyocytes in vitro. In the rats with DCM, gene transfer of hNRG-1 to the myocardium improved heart function, as indicated by invasive hemodynamic measurements. In addition, hNRG-1 reduced the number of apoptotic cells, decreased the expression of bax and increased the expression of bcl-2 in the myocardium of the DCM model rats. Myocardial fibrosis and type I and III pro-collagen mRNA levels in the myocardium were significantly reduced by hNRG-1. hNRG-1 also increased the expression of phospho-Akt and phospho-eNOS in the myocardium. In conclusion, the gene transfer of hNRG-1 ameliorates cardiac dysfunction in diabetes. Although further studies are required, NRG-1 appears to protect cardiomyocytes against apoptosis and to reduce the extent of myocardial interstitial fibrosis.
Collapse
Affiliation(s)
- Bingong Li
- Department of Cardiology, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | | | | | | | | |
Collapse
|
2
|
Schnermann J, Briggs JP. Tubular control of renin synthesis and secretion. Pflugers Arch 2012; 465:39-51. [PMID: 22665048 DOI: 10.1007/s00424-012-1115-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/04/2012] [Accepted: 05/07/2012] [Indexed: 01/11/2023]
Abstract
The intratubular composition of fluid at the tubulovascular contact site of the juxtaglomerular apparatus serves as regulatory input for secretion and synthesis of renin. Experimental evidence, mostly from in vitro perfused preparations, indicates an inverse relation between luminal NaCl concentration and renin secretion. The cellular transduction mechanism is initiated by concentration-dependent NaCl uptake through the Na-K-2Cl cotransporter (NKCC2) with activation of NKCC2 causing inhibition and deactivation of NKCC2 causing stimulation of renin release. Changes in NKCC2 activity are coupled to alterations in the generation of paracrine factors that interact with granular cells. Among these factors, generation of PGE2 in a COX-2-dependent fashion appears to play a dominant role in the stimulatory arm of tubular control of renin release. [NaCl] is a determinant of local PG release over an appropriate concentration range, and blockade of COX-2 activity interferes with the NaCl dependency of renin secretion. The complex array of local paracrine controls also includes nNOS-mediated synthesis of nitric oxide, with NO playing the role of a modifier of the intracellular signaling pathway. A role of adenosine may be particularly important when [NaCl] is increased, and at least some of the available evidence is consistent with an important suppressive effect of adenosine at higher salt concentrations.
Collapse
Affiliation(s)
- Jurgen Schnermann
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 10, Rm 4D50, NIDDK, NIH, 10 Center Drive MSC 1370, Bethesda, MD 20892, USA.
| | | |
Collapse
|
3
|
Kim SM, Briggs JP, Schnermann J. Convergence of major physiological stimuli for renin release on the Gs-alpha/cyclic adenosine monophosphate signaling pathway. Clin Exp Nephrol 2011; 16:17-24. [PMID: 22124804 DOI: 10.1007/s10157-011-0494-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 03/23/2011] [Indexed: 12/29/2022]
Abstract
Control of the renin system by physiological mechanisms such as the baroreceptor or the macula densa (MD) is characterized by asymmetry in that the capacity for renin secretion and expression to increase is much larger than the magnitude of the inhibitory response. The large stimulatory reserve of the renin-angiotensin system may be one of the causes for the remarkable salt-conserving power of the mammalian kidney. Physiological stimulation of renin secretion and expression relies on the activation of regulatory pathways that converge on the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) pathway. Mice with selective Gs-alpha (Gsα) deficiency in juxtaglomerular granular cells show a marked reduction of basal renin secretion, and an almost complete unresponsiveness of renin release to furosemide, hydralazine, or isoproterenol. Cyclooxygenase-2 generating prostaglandin E(2) (PGE(2)) and prostacyclin (PGI(2)) in MD and thick ascending limb cells is one of the main effector systems utilizing Gsα-coupled receptors to stimulate the renin-angiotensin system. In addition, β-adrenergic receptors are critical for the expression of high basal levels of renin and for its release response to lowering blood pressure or MD sodium chloride concentration. Nitric oxide generated by nitric oxide synthases in the MD and in endothelial cells enhances cAMP-dependent signaling by stabilizing cAMP through cyclic guanosine monophosphate-dependent inhibition of phosphodiesterase 3. The stimulation of renin secretion by drugs that inhibit angiotensin II formation or action results from the convergent activation of cAMP probably through indirect augmentation of the activity of PGE(2) and PGI(2) receptors, β-adrenergic receptors, and nitric oxide.
Collapse
Affiliation(s)
- Soo Mi Kim
- Department of Physiology, Chonbuk National University Medical School, Jeonju, 561-181, South Korea
| | | | | |
Collapse
|
4
|
Li B, Zheng Z, Wei Y, Wang M, Peng J, Kang T, Huang X, Xiao J, Li Y, Li Z. Therapeutic effects of neuregulin-1 in diabetic cardiomyopathy rats. Cardiovasc Diabetol 2011; 10:69. [PMID: 21798071 PMCID: PMC3170868 DOI: 10.1186/1475-2840-10-69] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 07/29/2011] [Indexed: 02/06/2023] Open
Abstract
Background Diabetic cardiomyopathy (DCM) is a disorder of the heart muscle in people with diabetes, which is characterized by both systolic and diastolic dysfunction. The effective treatment strategy for DCM has not been developed. Methods Rats were divided into 3 groups with different treatment. The control group was only injected with citrate buffer (n = 8). The diabetes group and diabetes treated group were injected with streptozotocin to induce diabetes. After success of diabetes induction, the rats with diabetes were treated with (diabetes treated group, n = 8) or without (diabetes group, n = 8) recombinant human Neuregulin-1 (rhNRG-1). All studies were carried out 16 weeks after induction of diabetes. Cardiac catheterization was performed to evaluate the cardiac function. Apoptotic cells were determined by TUNEL staining. Left ventricular (LV) sections were stained with Masson to investigate myocardial collagen contents. Related gene expressions were analyzed by quantitative real-time PCR (qRT-PCR). Results Diabetes impaired cardiac function manifested by reduced LV systolic pressure (LVSP), maximum rate of LV pressure rise and fall (+dp/dt max and -dp/dt max) and increased LV end-diastolic pressure (LVEDP). The rhNRG-1 treatment could significantly alleviate these symptoms and improve heart function. More TUNEL staining positive cells were observed in the diabetic group than that in the control group, and the rhNRG-1 treatment decreased apoptotic cells number. Furthermore, qRT-PCR assay demonstrated that rhNRG-1 treatment could decrease the expression of bax and caspase-3 and increase that of bcl-2. Collagen volume fraction was higher in the diabetic group than in the control group. Fibrotic and fibrotic related mRNA (type I and type III collagen) levels in the myocardium were significantly reduced by administration of rhNRG-1. Conclusion rhNRG-1 could significantly improve the heart function and reverse the cardiac remodeling of DCM rats with chronic heart failure. These results support the clinical possibility of applying rhNRG-1 as an optional therapeutic strategy for DCM treatment in the future.
Collapse
Affiliation(s)
- Bingong Li
- Department of Cardiology, First Affiliated Hospital, Nanchang University, Nanchang 330006, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Castrop H, Höcherl K, Kurtz A, Schweda F, Todorov V, Wagner C. Physiology of Kidney Renin. Physiol Rev 2010; 90:607-73. [PMID: 20393195 DOI: 10.1152/physrev.00011.2009] [Citation(s) in RCA: 199] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The protease renin is the key enzyme of the renin-angiotensin-aldosterone cascade, which is relevant under both physiological and pathophysiological settings. The kidney is the only organ capable of releasing enzymatically active renin. Although the characteristic juxtaglomerular position is the best known site of renin generation, renin-producing cells in the kidney can vary in number and localization. (Pro)renin gene transcription in these cells is controlled by a number of transcription factors, among which CREB is the best characterized. Pro-renin is stored in vesicles, activated to renin, and then released upon demand. The release of renin is under the control of the cAMP (stimulatory) and Ca2+(inhibitory) signaling pathways. Meanwhile, a great number of intrarenally generated or systemically acting factors have been identified that control the renin secretion directly at the level of renin-producing cells, by activating either of the signaling pathways mentioned above. The broad spectrum of biological actions of (pro)renin is mediated by receptors for (pro)renin, angiotensin II and angiotensin-( 1 – 7 ).
Collapse
Affiliation(s)
- Hayo Castrop
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Klaus Höcherl
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Armin Kurtz
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Frank Schweda
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Vladimir Todorov
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Charlotte Wagner
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
6
|
Toda N, Ayajiki K, Okamura T. Interaction of endothelial nitric oxide and angiotensin in the circulation. Pharmacol Rev 2007; 59:54-87. [PMID: 17329548 DOI: 10.1124/pr.59.1.2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Discovery of the unexpected intercellular messenger and transmitter nitric oxide (NO) was the highlight of highly competitive investigations to identify the nature of endothelium-derived relaxing factor. This labile, gaseous molecule plays obligatory roles as one of the most promising physiological regulators in cardiovascular function. Its biological effects include vasodilatation, increased regional blood perfusion, lowering of systemic blood pressure, and antithrombosis and anti-atherosclerosis effects, which counteract the vascular actions of endogenous angiotensin (ANG) II. Interactions of these vasodilator and vasoconstrictor substances in the circulation have been a topic that has drawn the special interest of both cardiovascular researchers and clinicians. Therapeutic agents that inhibit the synthesis and action of ANG II are widely accepted to be essential in treating circulatory and metabolic dysfunctions, including hypertension and diabetes mellitus, and increased availability of NO is one of the most important pharmacological mechanisms underlying their beneficial actions. ANG II provokes vascular actions through various receptor subtypes (AT1, AT2, and AT4), which are differently involved in NO synthesis and actions. ANG II and its derivatives, ANG III, ANG IV, and ANG-(1-7), alter vascular contractility with different mechanisms of action in relation to NO. This review article summarizes information concerning advances in research on interactions between NO and ANG in reference to ANG receptor subtypes, radical oxygen species, particularly superoxide anions, ANG-converting enzyme inhibitors, and ANG receptor blockers in patients with cardiovascular disease, healthy individuals, and experimental animals. Interactions of ANG and endothelium-derived relaxing factor other than NO, such as prostaglandin I2 and endothelium-derived hyperpolarizing factor, are also described.
Collapse
Affiliation(s)
- Noboru Toda
- Department of Pharmacology, Shiga University of Medical Science, Seta, Otsu, Japan.
| | | | | |
Collapse
|
7
|
Pueyo ME, Challah M, Gauguier D, Louedec L, Philippe M, Gaertner R, Marre M, Michel JB, Jacob MP. Transforming growth factor-beta 1 production is correlated with genetically determined ACE expression in congenic rats: a possible link between ACE genotype and diabetic nephropathy. Diabetes 2004; 53:1111-8. [PMID: 15047629 DOI: 10.2337/diabetes.53.4.1111] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Genetic background appears to modulate the development of diabetic vascular complications. In particular, polymorphisms in the ACE gene have been associated with diabetic nephropathy and, in some studies, macrovascular complications. However, the links between ACE gene polymorphism and factors implicated in diabetes complications remain unknown. The aim of this study was to determine whether the ACE genotype could modify factors, such as transforming growth factor (TGF)-beta 1, involved in the complications of diabetes. For this purpose, congenic rats (L.BNAce10), differing from the LOU strain in only a small segment of chromosome 10 containing the ACE locus, were generated. These congenic rats have plasma ACE levels twice as high as the donor strain. Diabetes was induced in rats of both strains, and its effects on ACE and TGF-beta 1 expressions were evaluated in lungs and kidneys. In lung, the main source of ACE production, ACE mRNA levels and activity were higher in L.BNAce10 rats than in LOU rats. Diabetes increased ACE lung expression in rats of both strains in a similar manner. TGF-beta 1 expression was also higher in lungs of L.BNAce10 compared with LOU rats and was also increased by diabetes. Furthermore, a strong correlation was found between TGF-beta 1 and ACE expressions. In renal arterioles, ACE and TGF-beta mRNA expressions were higher in L.BNAce10 rats than LOU rats (both diabetic and nondiabetic). In these vessels, there was also a correlation between ACE and TGF-beta 1 expressions. Urine TGF-beta 1 concentration depended on the genotype and was further increased by diabetes. These results show that TGF-beta 1 expression is correlated with ACE expression and suggest that this growth factor could be a link between ACE gene polymorphism and diabetic vascular complications.
Collapse
Affiliation(s)
- Maria E Pueyo
- INSERM U460,and Service de Diabetologie, CHU Bichat, Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Castrop H, Schweda F, Mizel D, Huang Y, Briggs J, Kurtz A, Schnermann J. Permissive role of nitric oxide in macula densa control of renin secretion. Am J Physiol Renal Physiol 2004; 286:F848-57. [PMID: 15075180 DOI: 10.1152/ajprenal.00272.2003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Experiments were performed in neuronal (nNOS)- and endothelial nitric oxide synthase (eNOS)-deficient mice to study the role of nitric oxide (NO) in macula densa control of renin secretion in vivo and in the isolated, perfused mouse kidney. Acute and chronic administration of loop diuretics was used as a method to stimulate macula densa-mediated renin secretion. Increases in plasma renin concentration (PRC) in response to a 3-day infusion of bumetanide (50 mg.kg(-1).day(-1)) or an acute injection of furosemide (50 mg/kg ip) were not markedly altered in nNOS-/- mice. Responses to furosemide were also maintained in eNOS-/- mice, but the administration of N(omega)-nitro-L-arginine methyl ester (L-NAME) markedly attenuated the PRC response to furosemide in these mice. In the isolated kidney preparation, bumetanide caused similar relative increases in renin secretion in kidneys of wild-type, nNOS-/-, and eNOS-/- mice. Bumetanide only marginally increased renin secretion in L-NAME-treated kidneys, but the bumetanide effect was normalized by S-nitroso-N-acetyl-penicillamine. Basal PRC was significantly reduced in male nNOS-/- mice compared with nNOS+/+ (189 +/- 28 vs. 355 +/- 57 ng ANG I.ml(-1).h(-1); P = 0.017). There was no significant difference in PRC between eNOS+/+ and eNOS-/- mice. Basal renin secretion rates in perfused kidneys isolated from nNOS-/- or eNOS-/- mice were markedly reduced compared with wild-type controls. Our data suggest that NO generated by macula densa nNOS does not play a specific mediator role in macula densa-dependent renin secretion. However, NO independent of its exact source permits the macula densa pathway of renin secretion to function normally.
Collapse
Affiliation(s)
- Hayo Castrop
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Lansang MC, Hollenberg NK. Renal perfusion and the renal hemodynamic response to blocking the renin system in diabetes: are the forces leading to vasodilation and vasoconstriction linked? Diabetes 2002; 51:2025-8. [PMID: 12086929 DOI: 10.2337/diabetes.51.7.2025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In three groups of subjects, those with type 2 diabetes and nephropathy, those with type 1 diabetes without nephropathy, and healthy volunteers subjected to short-term hyperglycemia, we observed a counterintuitive relationship. In all three groups, baseline renal plasma flow (RPF) was positively correlated with the RPF response to blocking the renin-angiotensin system (RAS). This seems paradoxical in that an opposite result would have been expected if angiotensin-dependent renal vasoconstriction was responsible for the renal vasodilator response to RAS blockade. This suggests a link between the renal vasodilator response, mediated by nitric oxide (NO), and the activation of the intrarenal RAS. The complex interrelationships between hyperglycemia, insulin, NO, and the RAS may result in phenotypes that indicate varying risk of diabetic nephropathy and underlying genetic polymorphisms.
Collapse
Affiliation(s)
- M Cecilia Lansang
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | | |
Collapse
|
10
|
|
11
|
Kasuya A, Satoh S, Yoshida M, Hisa H, Suzuki-Kusaba M, Satoh S. Inhibitory effect of nitric oxide on the renin-angiotensin system in Dahl salt-sensitive rats. Clin Exp Pharmacol Physiol 1999; 26:914-9. [PMID: 10561814 DOI: 10.1046/j.1440-1681.1999.03160.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. To explore the role of nitric oxide (NO) in the regulation of the renin-angiotensin system (RAS) in Dahl salt-sensitive (DS) rats, the effects of NG-nitro-L-arginine methyl ester (L-NAME) on plasma renin activity (PRA), and concentrations of angiotensin (Ang)I and AngII in the plasma, aorta and kidney were investigated in DS and Dahl salt-resistant (DR) rats. 2. NG-Nitro-L-arginine methyl ester (12-18 mg/kg per day) administration for 1 week increased mean arterial pressure (MAP) in DS and DR rats fed a 0.3% NaCl diet and in DR rats fed an 8% NaCl diet compared with corresponding vehicle (water)-treated groups. However, L-NAME administration did not change MAP in DS rats fed an 8% NaCl diet. 3. NG-Nitro-L-arginine methyl ester administration increased PRA in DS rats fed an 8% NaCl diet, but not in DR rats fed an 8% NaCl diet. NG-Nitro-L-arginine methyl ester administration increased AngI and AngII concentrations in plasma, aorta and kidney only in DS rats fed an 8% NaCl diet. The ratio of AngI to AngII did not change following L-NAME administration in any rats. 4. These results suggest that NO has an inhibitory role on renin release in DS rats fed a high-salt diet.
Collapse
Affiliation(s)
- A Kasuya
- Department of Pharmacology, Tohoku University, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Giammattei CE, Strandhoy JW, Rose JC. Regulation of in vitro renin secretion by ANG II feedback manipulation in vivo in the ovine fetus. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:R1230-8. [PMID: 10516266 DOI: 10.1152/ajpregu.1999.277.4.r1230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The renin-angiotensin system is critically important to fetal cardiovascular function and organ development. The feedback regulation of renin secretion by ANG II develops early in gestation yet does not linearly progress from fetal life to adulthood. Renin secretion is elevated in late gestation compared with earlier or postnatal time periods, which suggests that some component of the negative feedback regulation of renin secretion is less sensitive in late gestation. We examined in fetal sheep the age-related consequence of chronic in vivo manipulation of ANG II on renal renin secretion measured in vitro. Immature (101-103 days of gestation) and mature (130-133 days of gestation) fetuses were treated for 72 h with enalaprilat, ANG II or vehicle. Content and basal and isoproterenol-stimulated secretion of prorenin (PR) and active renin (AR) from fetal kidney cortical slices were determined. Enalaprilat pretreatment in vivo increased renal renin content and basal and stimulated secretion of PR and AR in vitro even in immature animals. Immunohistochemical localization showed that enalaprilat treatment caused an age-related recruitment of renin-containing juxtaglomerular cells. Conversely, ANG II pretreatment decreased basal and stimulated PR and AR secretion from immature fetal kidneys, but only inhibited PR secretion from mature kidneys. It also caused an age-related decrease in the percentage of renin-containing juxtaglomerular cells. These results suggest that ANG II feedback modulates not only the synthesis and content of renin, but the sensitivity of the coupling between stimulus and secretion. A critical observation of our study is that the higher renal tissue concentrations of prorenin and active renin in late gestation may be a consequence of reduced sensitivity to ANG II feedback; this is consistent with the increased plasma concentrations of renin found in near-term mammals.
Collapse
Affiliation(s)
- C E Giammattei
- Perinatal Research Laboratories, Department of Physiology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | |
Collapse
|
13
|
|
14
|
Kurtz A, Wagner C. Role of nitric oxide in the control of renin secretion. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:F849-62. [PMID: 9843901 DOI: 10.1152/ajprenal.1998.275.6.f849] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Because of the significant constitutive expression of NO synthases in the juxtaglomerular apparatus, nitric oxide (NO) is considered as a likely modulator of renin secretion. In most instances, NO appears as a tonic enhancer of renin secretion, acting via inhibition of cAMP degradation through the action of cGMP. Depending on as yet unknown factors, the stimulatory effect of NO on renin secretion may also switch to an inhibitory one that is compatible with the inhibition of renin secretion by cGMP-dependent protein kinase activity. Whether NO plays a direct regulatory role or a more permissive role in the control of renin secretion remains to be answered.
Collapse
Affiliation(s)
- A Kurtz
- Institut für Physiologie, Universität Regensburg, Regensburg D-93040, Germany
| | | |
Collapse
|
15
|
Evans JP, Rogers GG. The absence of a triphasic renovascular response by the multicalyceal kidney of the primate in reaction to acute, complete, unilateral, ureteric obstruction. J Med Primatol 1998; 27:223-33. [PMID: 9926977 DOI: 10.1111/j.1600-0684.1998.tb00241.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The early renovascular response by the ipsilateral kidney to acute, total, unilateral, ureteric obstruction was investigated in the adult male chacma baboon (Papio ursinus). Complete occlusion was effected by ligating the ureter at the brim of the bony pelvis ("N"=10). Sham studies were enacted using the same method but the ureter was not obstructed ("N"=11). Haemodynamic reactions were monitored for 12 hours. Compared with the sham-occluded set, the renal pelvic pressures in the obstructed group were significantly increased (P<0.05) from the second hour of the inquiry. However, there were no significant differences in renal blood flow, either between or within the respective cohorts. In this study, the renovascular response to acute ureteric occlusion was similar to that displayed by the multicalyceal kidney of other species under identical conditions. This reaction was fundamentally different to that exhibited by the unicalyceal kidney under similar circumstances.
Collapse
Affiliation(s)
- J P Evans
- Department of Urology, University of The Witwatersrand Faculty of Health Sciences, Johannesburg, Republic of South Africa
| | | |
Collapse
|
16
|
Chatziantoniou C, Boffa JJ, Ardaillou R, Dussaule JC. Nitric oxide inhibition induces early activation of type I collagen gene in renal resistance vessels and glomeruli in transgenic mice. Role of endothelin. J Clin Invest 1998; 101:2780-9. [PMID: 9637712 PMCID: PMC508869 DOI: 10.1172/jci2132] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hypertension is often associated with the development of nephroangio- and glomerulo-sclerosis. This pathophysiological process is due to increased extracellular matrix protein, particularly type I collagen, accumulation. This study investigated whether nitric oxide (NO) synthesis is involved in the mechanism(s) regulating activation of the collagen I gene in afferent arterioles and glomeruli. Experiments were performed on transgenic mice harboring the luciferase gene under the control of the collagen I-alpha2 chain promoter [procolalpha2(I)]. Measurements of luciferase activity provide highly sensitive estimates of collagen I gene activation. NO synthesis was inhibited by NG-nitro-L-arginine methyl ester (L-NAME) (20 mg/kg per day) for a period of up to 14 wk. Systolic blood pressure was increased after 6 wk of treatment (117+/-2 versus 129+/-2 mmHg, P < 0.01) and reached a plateau after 10 wk (around 160 mmHg). Luciferase activity was increased in freshly isolated afferent arterioles and glomeruli as early as week 4 of L-NAME treatment (150 and 200% of baseline, P < 0.01, respectively). The activation of procolalpha2(I) became more pronounced with time, and at 14 wk increased four- and tenfold compared with controls in afferent arterioles and glomeruli, respectively (P < 0.001). In contrast, luciferase activity remained unchanged in aorta and heart up to 8 wk and was increased thereafter. Increased histochemical staining for extracellular matrix deposition, and particularly of collagen I, was detected in afferent arterioles and glomeruli after 10 wk of L-NAME treatment. This fibrogenic process was accompanied by an increased urinary excretion rate of endothelin. In separate experiments, the stimulatory effect of L-NAME on collagen I gene activation was abolished when animals were treated with bosentan, an endothelin receptor antagonist. Similarly, bosentan reduced the increased extracellular matrix deposition in afferent arterioles and glomeruli during NO inhibition. Interestingly, bosentan had no effect on the L-NAME- induced increase of systolic pressure. These data indicate that NO inhibition induces an early activation of the collagen I gene in afferent arterioles and glomeruli. This activation in the kidney precedes the increase in blood pressure and the procolalpha2(I) activation in heart and aorta, suggesting a specific renal effect of NO blockade on collagen I gene expression that is independent of increased blood pressure and, at least partly, mediated through stimulation of the endothelin receptor. Use of procolalpha2(I) transgenic mice provides a novel and efficient model to study the pathophysiological mechanism(s) regulating renal fibrosis.
Collapse
Affiliation(s)
- C Chatziantoniou
- Institut National de la Santé et de la Recherche Médicale U.489, Hôpital Tenon, Paris 75020, France
| | | | | | | |
Collapse
|
17
|
Schnermann J. Juxtaglomerular cell complex in the regulation of renal salt excretion. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:R263-79. [PMID: 9486281 DOI: 10.1152/ajpregu.1998.274.2.r263] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Luminal NaCl concentration at the macula densa (MD) has the two established effects of regulating glomerular arteriolar resistance and renin secretion. Tubuloglomerular feedback (TGF), the inverse relationship between MD NaCl concentration and glomerular filtration rate (GFR), stabilizes distal salt delivery and thereby NaCl excretion in response to random perturbations unrelated to changes in body salt balance. Control of vasomotor tone by TGF is exerted primarily by NaCl transport-dependent changes in local adenosine concentrations. During long-lasting perturbations of MD NaCl concentration, control of renin secretion becomes the dominant function of the MD. The potentially maladaptive effect of TGF under chronic conditions is prevented by TGF adaptations, permitting adjustments in GFR to occur. TGF adaptation is mechanistically coupled to the end point targeted by chronic deviations in MD NaCl, the rate of local and systemic angiotensin II generation. MD control of renin secretion is the result of the coordinated action of local mediators that include nitric oxide synthase (NOS) and cyclooxygenase (COX) products. Thus vascular smooth muscle cell activation during high MD transport and granular cell activation during low MD transport is achieved by different extracellular mediators. The coordinated regulation of NOS I and COX-2 expression in MD cells and of renin expression in granular cells suggests that control of juxtaglomerular regulation of gene transcription or mRNA metabolism may be another consequence of a chronic alteration in MD NaCl concentration.
Collapse
Affiliation(s)
- J Schnermann
- Department of Physiology, University of Michigan, Ann Arbor 48109, USA
| |
Collapse
|
18
|
Abstract
Nitric oxide (NO) is a labile radical gas that is widely acclaimed as one of the most important molecules in biology. Through covalent modifications of target proteins and redox reactions with oxygen and superoxide radical and transition metal prosthetic groups, NO plays a critical role in many vital biological processes, including the control of vascular tone, neurotransmission, ventilation, hormone secretion, inflammation, and immunity. Moreover, NO has been shown to influence a host of fundamental cellular functions, such as RNA synthesis, mitochondrial respiration, glycolysis, and iron metabolism. NO is formed from L-arginine by NO synthases (NOSs), a family of related enzymes encoded by separate unlinked genes. The different NOS isozymes exhibit disparate tissue and intrarenal distributions and are governed by unique regulatory mechanisms. In the kidney, NO participates in several vital processes, including the regulation of glomerular and medullary hemodynamics, the tubuloglomerular feedback response, renin release, and the extracellular fluid volume. While NO serves beneficial roles as a messenger and host defense molecule, excessive NO production can be cytotoxic, the result of NO's reaction with reactive oxygen and nitrogen species, leading to peroxynitrite anion formation, protein tyrosine nitration, and hydroxyl radical production. Indeed, NO may contribute to the evolution of several commonly encountered renal diseases, including immune-mediated glomerulonephritis, postischemic renal failure, radiocontrast nephropathy, obstructive nephropathy, and acute and chronic renal allograft rejection. Moreover, impaired NO production has been implicated in the pathogenesis of volume-dependent hypertension. This duality of NO's beneficial and detrimental effects has created extraordinary interest in this molecule and the need for a detailed understanding of NO biosynthesis.
Collapse
Affiliation(s)
- B C Kone
- Department of Internal Medicine, The University of Texas Medical School at Houston, 77030, USA
| |
Collapse
|
19
|
Goonasekera CD, Rees DD, Woolard P, Frend A, Shah V, Dillon MJ. Nitric oxide synthase inhibitors and hypertension in children and adolescents. J Hypertens 1997; 15:901-9. [PMID: 9280214 DOI: 10.1097/00004872-199715080-00015] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To establish the role played by the circulating nitric oxide synthase inhibitors N(G)-monomethyl-L-arginine (L-NMMA), asymmetrical dimethyl arginine (ADMA) and symmetric dimethyl arginine (SDMA) and its association with hypertension of children and adolescents. DESIGN We measured plasma concentrations of L-NMMA, ADMA and SDMA in 38 hypertensives (median age 7.7 years) and in nine healthy normotensive controls (median age 8.2 years) using high-performance liquid chromatography. In addition, their plasma renin activity was determined. The subjects' glomerular filtration rates were calculated from plasma creatinine and height measurements. To determine the vasoactive potency of the arginine analogues, concentration-response curves were plotted for the responses in isolated endothelium-intact and endothelium-denuded mouse aortic rings that had been pre-contracted by administration of a threshold concentration of phenylephrine. RESULTS Plasma ADMA and SDMA concentrations in members of the hypertensive group [0.23 +/- 0.03 and 1.37 +/- 0.06 micromol/l, respectively (means +/- SEM)] were significantly higher than those in members of the control group (ADMA 0.10 +/- 0.01 micromol/l and SDMA 1.18 +/- 0.06 micromol/l). Plasma concentrations of L-NMMA were similar in members of the hypertensive (0.21 +/- 0.01 micromol/l) and control (0.18 +/- 0.02 micromol/l) groups. The glomerular filtration rate of the hypertensive group was below normal [70.4 +/- 5.4 ml/min per 1.73 m2 (mean +/- SEM)] and was significantly associated with elevated plasma concentrations of ADMA (r = -0.77, P < 0.001), SDMA (r = -0.38, P = 0.02) and L-NMMA (r = 0.35, P = 0.03). Higher plasma ADMA concentrations were associated with a lower plasma renin activity (r = -0.36, P = 0.04). The vasoactive potencies of ADMA (concentration for half-maximal effect with the endothelium intact 25.4 +/- 7.1 micromol/l) and L-NMMA (concentration for half-maximal effect with the endothelium intact 8.2 +/- 2.9 micromol/l) was significantly (P < 0.05) greater than that of SDMA. Both ADMA and L-NMMA (at 3 micromol/l concentrations) initiated a significant vasocontractile response from baseline (P = 0.03 and P < 0.001, respectively). These effects were absent after the endothelium had been removed. SDMA had no effect. CONCLUSIONS Plasma ADMA and SDMA levels are increased in hypertensive children. By inference from in-vitro data, ADMA appears to attain sufficient concentrations to produce a significant change in vascular tone and hence might play a role in the pathophysiology of childhood hypertension.
Collapse
Affiliation(s)
- C D Goonasekera
- Institute of Child Health and Great Ormond Street Children's Hospital NHS Trust, London, UK
| | | | | | | | | | | |
Collapse
|
20
|
Tharaux PL, Dussaule JC, Pauti MD, Vassitch Y, Ardaillou R, Chatziantoniou C. Activation of renin synthesis is dependent on intact nitric oxide production. Kidney Int 1997; 51:1780-7. [PMID: 9186867 DOI: 10.1038/ki.1997.245] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The present study investigated whether or not nitric oxide (NO) synthesis mediates mechanisms regulating activation of renin formation. Studies were performed on afferent arterioles freshly isolated from the rat kidney. We have shown previously that this preparation is a useful model to study regulation of renin synthesis and secretion. The expression of renin mRNA was assessed by ribonuclease protection assay, and total renin content and renin secretion by radioimmunoassay. In afferent arterioles isolated from rats treated with the angiotensin-converting enzyme inhibitor ramipril, renin mRNA levels, total renin content and renin secretion were increased threefold compared to untreated controls. Inhibition of NO-synthase by NG-nitro-L-arginine methyl ester (L-NAME) in the ramipril-treated rats, abolished the increase in renin mRNA levels, total renin content and renin secretion. In other animals furosemide, a diuretic acting on macula densa cells, activated renin synthesis to a level similar to that found in the ramipril-treated group. Addition of L-NAME to the furosemide-treated rats suppressed the increases in renin mRNA levels, total renin content and renin secretion, suggesting that NO acts on renin activation by a mechanism independent of angiotensin II. In separate experiments, the inhibitory effect of L-NAME on the activation of renin secretion was abolished when afferent arterioles were treated with nicardipine, an L-type Ca2+ channel blocker, suggesting that the suppression of renin activation during NO inhibition is due to increased Ca2+ entry. Since endothelin is a potent mediator of Ca2+ influx and an inhibitor of renin release, we tested whether or not endothelin could be involved in the inhibitory effect of L-NAME on renin secretion. Application of the endothelin receptor antagonist, bosentan, in vitro mimicked the effect of nicardipine. In addition, bosentan coadministered with L-NAME in vivo blunted the inhibitory effect of L-NAME and restored the increases in renin mRNA level, synthesis and secretion. These data indicate that the physiological mechanism(s) regulating activation of renin synthesis and secretion are impaired during NO inhibition, probably because of increased Ca2+ influx. This increase in calcium flux is mediated at least partially by the action of endothelin.
Collapse
|
21
|
Essig M, Ledoux S, Tharaux PL, Chatziantoniou C, Dussaule JC. Interest and limits of in vitro studies in renal vascular endocrinology. Cell Biol Toxicol 1996; 12:271-4. [PMID: 9034620 DOI: 10.1007/bf00438157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Various in vitro preparations have been utilized to study the cellular activity of vasoactive agents on renal cortical microvessels and on mesangial cells. The receptors and the transduction pathways of bradykinin and atrial natriuretic factor were characterized on cultured cortical vascular smooth muscle cells from the rabbit kidney. A preparation of afferent arterioles that had been freshly isolated from the rat kidney was used to study the NO-dependent regulation of renin release. The influence of endothelin and angiotensin II on mesangial cell proliferation was evaluated, using cocultures of human endothelial and mesangial cells. These appropriate in vitro preparations have provided new insights on renal vascular endocrinology. However, extrapolation of in vitro data to in vivo physiology must be cautious because the phenotype of vascular cells often changes in culture conditions.
Collapse
Affiliation(s)
- M Essig
- INSERM 426, Hôpital Bichat, Paris, France
| | | | | | | | | |
Collapse
|