1
|
Jägerback S, Gomez A, Parodis I. Predictors of renal flares in systemic lupus erythematosus: a post-hoc analysis of four phase III clinical trials of belimumab. Rheumatology (Oxford) 2025; 64:623-631. [PMID: 38216728 PMCID: PMC11781576 DOI: 10.1093/rheumatology/keae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 01/14/2024] Open
Abstract
OBJECTIVE The objective of this study was to identify predictors of renal flares in patients with SLE treated for active extra-renal disease. METHODS Data from four clinical trials of belimumab in SLE (BLISS-52, NCT00424476; BLISS-76, NCT00410384; BLISS-NEA, NCT01345253; BLISS-SC, NCT01484496) were used. Patients were assigned to belimumab or placebo on top of standard therapy. We investigated the performance of predictors of renal flares through weeks 52-76 using proportional hazards regression analysis. RESULTS Of 3225 participants, 192 developed at least one renal flare during follow-up, with the first occurring after a median time of 197 days. Current/former renal involvement [hazards ratio (HR): 15.4; 95% CI: 8.3-28.2; P < 0.001], low serum albumin levels (HR 0.9; 95% CI: 0.8-0.9; P < 0.001), proteinuria (HR: 1.6; 95% CI: 1.5-1.7; P < 0.001), and low C3 levels (HR: 2.9; 95% CI: 2.1-4.1; P < 0.001) at baseline appeared robust determinants of impending renal flares. Anti-dsDNA positivity yielded an increased hazard for renal flares (HR: 2.1; 95% CI: 1.4-3.2; P < 0.001), which attenuated after adjustments. Anti-Sm positivity was associated with renal flares in the placebo (HR: 3.7; 95% CI: 2.0-6.9; P < 0.001) but not in the belimumab subgroup, whereas anti-ribosomal P positivity was associated with renal flares in the belimumab subgroup only (HR: 2.8; 95% CI: 1.5-5.0; P = 0.001). CONCLUSION A history of renal involvement, high baseline proteinuria, hypoalbuminaemia, and C3 consumption were robust determinants of impending renal flares. In addition to anti-dsDNA, anti-Sm and anti-ribosomal P protein antibody positivity may have value in surveillance of renal SLE.
Collapse
Affiliation(s)
- Sandra Jägerback
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Division of Rheumatology, Department of Medicine, Danderyd University Hospital, Danderyd, Sweden
| | - Alvaro Gomez
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Ioannis Parodis
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Department of Rheumatology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
2
|
Li AH, Li Y, Li MS, Song ZR, Lv JC, Zhang H, Yu XJ, Zhou XJ. Repeated Kidney Biopsy in Membranoproliferative Glomerulonephritis. KIDNEY DISEASES (BASEL, SWITZERLAND) 2025; 11:258-269. [PMID: 40337160 PMCID: PMC12058111 DOI: 10.1159/000545727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/30/2025] [Indexed: 05/09/2025]
Abstract
Introduction Membranoproliferative glomerulonephritis (MPGN) is a heterogeneous pattern of glomerular injury. Repeated kidney biopsies may elucidate pathogenic mechanisms and guide diagnostic strategies. Methods We included 82 patients diagnosed with MPGN by kidney biopsy who underwent at least two biopsies between 1997 and 2023 at Peking University First Hospital. Clinical and pathological data were analyzed retrospectively. Results Of 342 MPGN patients, 95 (28%) had repeated biopsies (0.9-4.0 years apart). This incidence was higher than in other glomerulonephropathies under immunosuppression. Among the 82 patients analyzed (excluding kidney transplants and ≤3-month biopsy intervals), 42 were initially diagnosed with non-MPGN pathology. At the second biopsy, proteinuria increased (from 2.9 to 6.3 g/day), eGFR declined (from 76 to 47 mL/min/1.73 m2), and renal C3 deposition was stronger (p = 0.04). Thirty patients (37%) had etiological reclassification, mostly to monoclonal gammopathy of renal significance (MGRS). Compared to idiopathic MPGN, MGRS patients were older (53 vs. 35 years) and had worse renal function (eGFR 57 vs. 81 mL/min/1.73 m2) but slower eGFR decline (-7 vs. -12 mL/min/1.73 m2/year). Most MGRS patients (64%) remained negative for monoclonal protein in serum or urine immunofixation, necessitating repeat biopsy and clone-directed therapy. Conclusion In this study, about half and one-third of patients underwent morphological and etiological reclassification, respectively. Stronger complement deposition may drive morphological changes. Repeated kidney biopsies are crucial for diagnosing MGRS, especially in patients with negative immunofixation.
Collapse
Affiliation(s)
- Ai-Hui Li
- Renal Division, Peking University First Hospital, Beijing, China
- Kidney Genetics Center, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, National Health Commission, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Peking University, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Yang Li
- Renal Division, Peking University First Hospital, Beijing, China
- Kidney Genetics Center, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, National Health Commission, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Peking University, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Meng-Shi Li
- Renal Division, Peking University First Hospital, Beijing, China
- Kidney Genetics Center, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, National Health Commission, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Peking University, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Zhuo-Ran Song
- Renal Division, Peking University First Hospital, Beijing, China
- Kidney Genetics Center, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, National Health Commission, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Peking University, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Ji-Cheng Lv
- Renal Division, Peking University First Hospital, Beijing, China
- Kidney Genetics Center, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, National Health Commission, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Peking University, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Beijing, China
- Kidney Genetics Center, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, National Health Commission, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Peking University, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Xiao-Juan Yu
- Renal Division, Peking University First Hospital, Beijing, China
- Kidney Genetics Center, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, National Health Commission, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Peking University, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Xu-Jie Zhou
- Renal Division, Peking University First Hospital, Beijing, China
- Kidney Genetics Center, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, National Health Commission, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Peking University, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| |
Collapse
|
3
|
Tarchi SM, Salvatore M, Lichtenstein P, Sekar T, Capaccione K, Luk L, Shaish H, Makkar J, Desperito E, Leb J, Navot B, Goldstein J, Laifer S, Beylergil V, Ma H, Jambawalikar S, Aberle D, D'Souza B, Bentley-Hibbert S, Marin MP. Radiology of fibrosis part III: genitourinary system. J Transl Med 2024; 22:616. [PMID: 38961396 PMCID: PMC11223291 DOI: 10.1186/s12967-024-05333-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/20/2024] [Indexed: 07/05/2024] Open
Abstract
Fibrosis is a pathological process involving the abnormal deposition of connective tissue, resulting from improper tissue repair in response to sustained injury caused by hypoxia, infection, or physical damage. It can impact any organ, leading to their dysfunction and eventual failure. Additionally, tissue fibrosis plays an important role in carcinogenesis and the progression of cancer.Early and accurate diagnosis of organ fibrosis, coupled with regular surveillance, is essential for timely disease-modifying interventions, ultimately reducing mortality and enhancing quality of life. While extensive research has already been carried out on the topics of aberrant wound healing and fibrogenesis, we lack a thorough understanding of how their relationship reveals itself through modern imaging techniques.This paper focuses on fibrosis of the genito-urinary system, detailing relevant imaging technologies used for its detection and exploring future directions.
Collapse
Affiliation(s)
- Sofia Maria Tarchi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA.
| | - Mary Salvatore
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Philip Lichtenstein
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Thillai Sekar
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Kathleen Capaccione
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Lyndon Luk
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Hiram Shaish
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Jasnit Makkar
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Elise Desperito
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Jay Leb
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Benjamin Navot
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Jonathan Goldstein
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Sherelle Laifer
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Volkan Beylergil
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Hong Ma
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Sachin Jambawalikar
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Dwight Aberle
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Belinda D'Souza
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Stuart Bentley-Hibbert
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Monica Pernia Marin
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| |
Collapse
|
4
|
Lin P, Wu W, Chen C, Chen Y, Ouyang S, Song Z, Xia Y, An Y, Zhang N, Zhao P, Lin B, Tao J. Walking Dead Macrophage-Based Positive Enhancement MRI for Ultrahighly Efficient Diagnosis of Nephritis. Anal Chem 2024; 96:4933-4941. [PMID: 38483253 DOI: 10.1021/acs.analchem.3c05777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Nephritis is an inflammatory condition of the glomerulus, and the clinical gold standard for its diagnosis is a kidney biopsy. However, obtaining biopsy results can take several days, which does not meet the requirement of rapid diagnosis, especially for rapidly progressive types. To achieve an effective and noninvasive diagnosis, we propose a nephritis-specific, positive magnetic resonance imaging (MRI) contrast agent based on Gd3+ anchored walking dead macrophage Gd-RAW. Gd-RAW exhibits high selectivity for inflammatory renal parenchyma and provides comparable results to histopathology methods. The Gd-RAW-based MRI contrast agent reduces the diagnostic time of nephritis from 14 days of biopsy to 1 h. Furthermore, in a unilateral nephritis model constructed by increasing the glycerol concentration, the T1WI of renal parenchyma exhibits an increased signal-to-noise ratio, which is crucial for evaluating nephritic severity. This work promotes rapid diagnosis of nephritis and potentially provides sufficient evidence for clinicians to offer timely treatment to patients. The methodology of paramagnetic ion-anchored macrophage corpse also opens up new prospects for designing more specific and biosafe MRI contrast agents.
Collapse
Affiliation(s)
- Peiru Lin
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Wanjia Wu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Chuyao Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Yuying Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, 510640 Guangzhou, China
| | - Sixue Ouyang
- School of Chemistry and Chemical Engineering, South China University of Technology, 510640 Guangzhou, China
| | - Zibin Song
- Department of Neurosurgery, Southern Medical University Nanfang Hospital, 510515 Guangzhou, China
| | - Yubin Xia
- Department of Nephrology, The First Affiliated Hospital of Shantou University Medical College, 515100 Shantou, China
| | - Yida An
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Nan Zhang
- Guangzhou National Laboratory, 510005 Guangzhou, China
| | - Peng Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Bingquan Lin
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Jia Tao
- School of Chemistry and Chemical Engineering, South China University of Technology, 510640 Guangzhou, China
| |
Collapse
|
5
|
Ba X, Ye T, Shang H, Tong Y, Huang Q, He Y, Wu J, Deng W, Zhong Z, Yang X, Wang K, Xie Y, Zhang Y, Guo X, Tang K. Recent Advances in Nanomaterials for the Treatment of Acute Kidney Injury. ACS APPLIED MATERIALS & INTERFACES 2024; 16:12117-12148. [PMID: 38421602 DOI: 10.1021/acsami.3c19308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Acute kidney injury (AKI) is a serious clinical syndrome with high morbidity, elevated mortality, and poor prognosis, commonly considered a "sword of Damocles" for hospitalized patients, especially those in intensive care units. Oxidative stress, inflammation, and apoptosis, caused by the excessive production of reactive oxygen species (ROS), play a key role in AKI progression. Hence, the investigation of effective and safe antioxidants and inflammatory regulators to scavenge overexpressed ROS and regulate excessive inflammation has become a promising therapeutic option. However, the unique physiological structure and complex pathological alterations in the kidneys render traditional therapies ineffective, impeding the residence and efficacy of most antioxidant and anti-inflammatory small molecule drugs within the renal milieu. Recently, nanotherapeutic interventions have emerged as a promising and prospective strategy for AKI, overcoming traditional treatment dilemmas through alterations in size, shape, charge, and surface modifications. This Review succinctly summarizes the latest advancements in nanotherapeutic approaches for AKI, encompassing nanozymes, ROS scavenger nanomaterials, MSC-EVs, and nanomaterials loaded with antioxidants and inflammatory regulator. Following this, strategies aimed at enhancing biocompatibility and kidney targeting are introduced. Furthermore, a brief discussion on the current challenges and future prospects in this research field is presented, providing a comprehensive overview of the evolving landscape of nanotherapeutic interventions for AKI.
Collapse
Affiliation(s)
- Xiaozhuo Ba
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Ye
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Haojie Shang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yonghua Tong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qiu Huang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu He
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wen Deng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zichen Zhong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoqi Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kangyang Wang
- Department of Urology, Wenchang People's Hospital, Wenchang 571300, Hainan Province, China
| | - Yabin Xie
- Department of Urology, Wenchang People's Hospital, Wenchang 571300, Hainan Province, China
| | - Yanlong Zhang
- GuiZhou University Medical College, Guiyang 550025, Guizhou Province, China
| | - Xiaolin Guo
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
6
|
Louis Sam Titus ASC, Tan Y, Tran P, Lindblom J, Ivbievbiokun M, Xu Y, Zheng J, Parodis I, Cai Q, Chang A, Chen SH, Zhao M, Mohan C. Molecular architecture of proliferative lupus nephritis as elucidated using 50-plex imaging mass cytometry proteomics. Clin Immunol 2023; 254:109713. [PMID: 37516396 DOI: 10.1016/j.clim.2023.109713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Due to unique advantages that allow high-dimensional tissue profiling, we postulated imaging mass cytometry (IMC) may shed novel insights on the molecular makeup of proliferative lupus nephritis (LN). This study interrogates the spatial expression profiles of 50 target proteins in LN and control kidneys. Proliferative LN glomeruli are marked by podocyte loss with immune infiltration dominated by CD45RO+, HLA-DR+ memory CD4 and CD8 T-cells, and CD163+ macrophages, with similar changes in tubulointerstitial regions. Macrophages are the predominant HLA-DR expressing antigen presenting cells with little expression elsewhere, while macrophages and T-cells predominate cellular crescents. End-stage sclerotic glomeruli are encircled by an acellular fibro-epithelial Bowman's space surrounded by immune infiltrates, all enmeshed in fibronectin. Proliferative LN also shows signs indicative of epithelial to mesenchymal plasticity of tubular cells and parietal epithelial cells. IMC enabled proteomics is a powerful tool to delineate the spatial architecture of LN at the protein level.
Collapse
Affiliation(s)
| | - Ying Tan
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, PR China
| | - Phuongthy Tran
- Department Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Julius Lindblom
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | - Yitian Xu
- ImmunoMonitoring Core, Houston Methodist Research Institute, Houston, TX, USA
| | - Junjun Zheng
- ImmunoMonitoring Core, Houston Methodist Research Institute, Houston, TX, USA
| | - Ioannis Parodis
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Qi Cai
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anthony Chang
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Shu-Hsia Chen
- ImmunoMonitoring Core, Houston Methodist Research Institute, Houston, TX, USA
| | - Minghui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, PR China
| | - Chandra Mohan
- Department Biomedical Engineering, University of Houston, Houston, TX, USA; Renal Division, Department of Medicine, Peking University First Hospital, Beijing, PR China.
| |
Collapse
|
7
|
Abstract
Uncontrolled alternative pathway activation is the primary driver of several diseases, and it contributes to the pathogenesis of many others. Consequently, diagnostic tests to monitor this arm of the complement system are increasingly important. Defects in alternative pathway regulation are strong risk factors for disease, and drugs that specifically block the alternative pathway are entering clinical use. A range of diagnostic tests have been developed to evaluate and monitor the alternative pathway, including assays to measure its function, expression of alternative pathway constituents, and activation fragments. Genetic studies have also revealed many disease-associated variants in alternative pathway genes that predict the risk of disease and prognosis. Newer imaging modalities offer the promise of non-invasively detecting and localizing pathologic complement activation. Together, these various tests help in the diagnosis of disease, provide important prognostic information, and can help guide therapy with complement inhibitory drugs.
Collapse
Affiliation(s)
- Joshua M. Thurman
- Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Veronique Fremeaux-Bacchi
- Assistance Publique-Hôpitaux de Paris, European Hospital Georges Pompidou, Department of Immunology Biology and INSERM UMRS1138, Centre de Recherche des Cordeliers, Team "Inflammation, Complement and Cancer", Paris, France
| |
Collapse
|
8
|
Thurman JM, Harrison RA. The susceptibility of the kidney to alternative pathway activation-A hypothesis. Immunol Rev 2023; 313:327-338. [PMID: 36369971 DOI: 10.1111/imr.13168] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The glomerulus is often the prime target of dysregulated alternative pathway (AP) activation. In particular, AP activation is the key driver of two severe kidney diseases: atypical hemolytic uremic syndrome and C3 glomerulopathy. Both conditions are associated with a variety of predisposing molecular defects in AP regulation, such as genetic variants in complement regulators, autoantibodies targeting AP proteins, or autoantibodies that stabilize the AP convertases (C3- and C5-activating enzymes). It is noteworthy that these are systemic AP defects, yet in both diseases pathologic complement activation primarily affects the kidneys. In particular, AP activation is often limited to the glomerular capillaries. This tropism of AP-mediated inflammation for the glomerulus points to a unique interaction between AP proteins in plasma and this particular anatomic structure. In this review, we discuss the pre-clinical and clinical data linking the molecular causes of aberrant control of the AP with activation in the glomerulus, and the possible causes of this tropism. Based on these data, we propose a model for why the kidney is so uniquely and frequently targeted in patients with AP defects. Finally, we discuss possible strategies for preventing pathologic AP activation in the kidney.
Collapse
Affiliation(s)
- Joshua M Thurman
- Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | | |
Collapse
|
9
|
Li M, Wang Y, Han X, Liu Y, Ma M, Zhang L. Multifunctional Polydopamine-Based Nanoparticles for Dual-Mode Imaging Guided Targeted Therapy of Lupus Nephritis. Pharmaceutics 2022; 14:pharmaceutics14101988. [PMID: 36297424 PMCID: PMC9611555 DOI: 10.3390/pharmaceutics14101988] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
Lupus nephritis (LN) is a common and refractory inflammation of the kidneys caused by systemic lupus erythematosus. Diagnosis and therapies at this stage are inefficient or have severe side effects. In recent years, nanomedicines show great potential for imaging diagnosis and controlled drug release. Herein, we developed a polydopamine (PDA)-based nanocarrier modified with Fe3O4 and Pt nanoparticles and loaded with necrostatin-1 (Nec-1) for the bimodal imaging and therapy of LN. Results demonstrate that Nec-1/PDA@Pt-Fe3O4 nanocarrier exhibits good biocompatibility. Nec-1, as an inhibitor of receptor-interacting protein 1 kinase, can be used to inhibit receptor-interacting protein 1 kinase activity and then reduces inflammation due to LN. Experiments in vitro and in the LN mouse model confirmed that the nanocarrier can reduce neutrophil extracellular traps (NETs) production by RIPK1 and alleviate the progression of inflammation. Previous studies proved that Pt nanoparticles can catalyze H2O2 to produce oxygen. A blood oxygen graph of mouse photoacoustic tomography confirmed that Nec-1/PDA@Pt-Fe3O4 can generate oxygen to fight against the hypoxic microenvironment of LN. PDA and Fe3O4 are used as photographic developers for photoacoustic or magnetic resonance imaging. The preliminary imaging results support Nec-1/PDA@Pt-Fe3O4 potential for photoacoustic/magnetic resonance dual-mode imaging, which can accurately and non-invasively monitor microscopic changes due to diseases. Nec-1/PDA@Pt-Fe3O4 combining these advantages exhibited outstanding performance in LN imaging and therapy. This work offers valuable insights into LN diagnosis and therapy.
Collapse
Affiliation(s)
- Mifang Li
- Department of Medical Imaging, Longgang Central Hospital of Shenzhen, 6082 Longgang Avenue, Longgang District, Shenzhen 518116, China
| | - Yeying Wang
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Xinai Han
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou 518048, China
| | - Yibiao Liu
- Department of Medical Imaging, Longgang Central Hospital of Shenzhen, 6082 Longgang Avenue, Longgang District, Shenzhen 518116, China
| | - Mingliang Ma
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
- Correspondence: (M.M.); (L.Z.); Tel.: +86-21-62233026 (M.M.); +86-188-1981-8005 (L.Z.)
| | - Lingyan Zhang
- Department of Medical Imaging, Longgang Central Hospital of Shenzhen, 6082 Longgang Avenue, Longgang District, Shenzhen 518116, China
- Correspondence: (M.M.); (L.Z.); Tel.: +86-21-62233026 (M.M.); +86-188-1981-8005 (L.Z.)
| |
Collapse
|
10
|
Wong CJ, Wang L, Holers VM, Frazer-Abel A, van der Maarel SM, Tawil R, Statland JM, Tapscott SJ. Elevated plasma complement components in facioscapulohumeral dystrophy. Hum Mol Genet 2022; 31:1821-1829. [PMID: 34919696 PMCID: PMC9169453 DOI: 10.1093/hmg/ddab364] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 11/12/2022] Open
Abstract
Advances in understanding the pathophysiology of facioscapulohumeral dystrophy (FSHD) have led to several therapeutic approaches entering clinical trials and an increased need to develop biomarkers of disease activity and progression. Multiple prior studies have shown early elevation of RNAs encoding components of the complement pathways and relatively widespread activated complement complexes by immunodetection in FSHD muscle. The current study tested plasma from two independent cohorts of FSHD and control subjects and found elevated complement components in both FSHD cohorts. Combining subjects from both cohorts identified complement factors that best distinguished FSHD and controls. Within the FSHD group, a subset of subjects showed elevation in multiple complement components. Together these findings suggest the need for future studies to determine whether measurements of complement activation can be used as a non-invasive measurement of FSHD disease activity, progression and/or response to therapies. In addition, with the ongoing expansion of complement therapeutic approaches, consideration for precision-based targeting of this pathway is appropriate.
Collapse
Affiliation(s)
- Chao-Jen Wong
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Leo Wang
- Department of Neurology, University of Washington, Seattle, WA 98105, USA
| | - V Michael Holers
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Ashley Frazer-Abel
- Exsera BioLabs, Division of Rheumatalogy, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | - Rabi Tawil
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jeffrey M Statland
- Department of Neurology, University of Kansas Medical Center, Kansas City, KA 66160, USA
| | - Stephen J Tapscott
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Neurology, University of Washington, Seattle, WA 98105, USA
| | | |
Collapse
|
11
|
Zhang Y, Li Z, Wu H, Wang J, Zhang S. Esculetin alleviates murine lupus nephritis by inhibiting complement activation and enhancing Nrf2 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 288:115004. [PMID: 35051603 DOI: 10.1016/j.jep.2022.115004] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/09/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Esculetin is a bioactive compound of medicinal herb Hydrangea paniculata, and has showed anti-oxidation and anti-inflammation bioactivities. Renal local oxidative stress and inflammation are import contributors for progression of lupus nephritis (LN). AIM OF THE STUDY In the present study, the renal protective effect of esculetin against LN was evaluated using MRL/lpr mice. MATERIALS AND METHODS MRL/lpr mice were orally administrated with esculetin (20 mg/kg and 40 mg/kg) from 10 to 20 weeks and then renal function and kidney pathology were analyzed. RESULTS Esculetin significantly attenuated renal impairment in MRL/lpr mice by reducing blood urea nitrogen (BUN), serum creatinine (Scr) and albuminuria, and ameliorated the glomerular hypertrophy, tubular interstitial fibrosis and mononuclear cell infiltration into interstitium. mRNA microarray suggested that esculetin could significantly down-regulate complement cascade, inflammation and fibrosis pathway, and up-regulate Nrf2-related anti-oxidation genes. Most surprising finding in the current study was that esculetin could inhibit the complement activation both in classical and alternative pathway using in vitro hemolysis assay, further enzyme assay suggested that esculetin blocked the C3 convertase (C4b2a) to exert this inhibitory capability. Molecular docking predicted that esculetin had four conventional hydrogen bonds interacting with C4b2a, and CDOCKER energy is relatively lower. Luciferase reporter gene demonstrated that esculetin could activate Nrf2 signaling pathway, and further flow cytometry confirmed that anti-oxidation bioactivity of esculetin was dependent on Nrf2 activation. On the other hand, esculetin could inhibit NFκB nuclear translocation and TGFβ-smad3 profibrosis pathway. CONCLUSION Esculetin shows beneficial effect on LN progression, and it may be a good natural leading compound for design of chemical compounds to treat LN.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Internal Medicine, University Hospital, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhaojun Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Haijie Wu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jing Wang
- Department of Radiotherapy, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Sen Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
12
|
Wu Y, Huang Q, Wang J, Dai Y, Xiao M, Li Y, Zhang H, Xiao W. The Feasibility of Targeted Magnetic Iron Oxide Nanoagent for Noninvasive IgA Nephropathy Diagnosis. Front Bioeng Biotechnol 2021; 9:755692. [PMID: 34900958 PMCID: PMC8656216 DOI: 10.3389/fbioe.2021.755692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/20/2021] [Indexed: 12/21/2022] Open
Abstract
IgA nephropathy is the most common glomerular disease in the world and has become a serious threat to human health. Accurate and non-invasive molecular imaging to detect and recognize the IgA nephropathy is critical for the subsequent timely treatment; otherwise, it may progress to end-stage renal disease and lead to glomerular dysfunction. In this study, we have developed a sensitive, specific, and biocompatible integrin αvβ3-targeted superparamagnetic Fe3O4 nanoparticles (NPs) for the noninvasive magnetic resonance imaging (MRI) of integrin αvβ3, which is overexpressed in glomerular mesangial region of IgA nephropathy. The rat model of IgA nephropathy was successfully established and verified by biochemical tests and histological staining. Meanwhile, the clinical 18F-AlF-NOTA-PRGD2 probe molecule was utilized to visualize and further confirmed the IgA nephropathy in vivo via positron emission computed tomography. Subsequently, the Fe3O4 NPs were conjugated with arginine–glycine–aspartic acid (RGD) molecules (Fe3O4-RGD), and their integrin αvβ3-targeted T2-weighted imaging (T2WI) potential has been carefully evaluated. The Fe3O4-RGD demonstrated great relaxation in vivo. The T2WI signal of renal layers in the targeted group at 3 h after intravenous injection of Fe3O4-RGD was distinctly lower than baseline, indicating MRI signal decreased in the established IgA nephropathy rat model. Moreover, the TEM characterization and Prussian blue staining confirmed that the Fe3O4-RGD was located at the region of glomerulus and tubular interstitium. Moreover, no obvious signal decreased was detected in the untargeted Fe3O4 treated and normal groups. Collectively, our results establish the possibility of Fe3O4-RGD serving as a feasible MRI agent for the noninvasive diagnosis of IgA nephropathy.
Collapse
Affiliation(s)
- Yaoyao Wu
- Department of Radiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiang Huang
- Department of Radiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junli Wang
- Department of Radiology, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuhua Dai
- Clinical Medical Research Center, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ming Xiao
- Department of Pathology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yangyang Li
- Zhejiang Provincial Key Laboratory for Precision Diagnosis and Treatment of Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku Bioscience Centre, University of Turku, Åbo Akademi University, Turku, Finland
| | - Wenbo Xiao
- Department of Radiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Oba R, Kanzaki G, Sasaki T, Okabayashi Y, Haruhara K, Okabe M, Yokote S, Koike K, Hirano K, Okonogi H, Tsuboi N, Yokoo T. Long-Term Renal Survival in Antineutrophil Cytoplasmic Antibody-Associated Glomerulonephritis With Complement C3 Deposition. Kidney Int Rep 2021; 6:2661-2670. [PMID: 34622105 PMCID: PMC8484117 DOI: 10.1016/j.ekir.2021.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/09/2021] [Accepted: 08/02/2021] [Indexed: 02/03/2023] Open
Abstract
Introduction Recent studies have revealed the pivotal role of complement activation in the pathogenesis of antineutrophil cytoplasmic antibody–associated glomerulonephritis (ANCA-GN). This study investigated the clinicopathologic and prognostic significance of glomerular C3 deposition in the renal histopathology of patients with ANCA-GN. Methods We retrospectively identified 142 patients with ANCA-GN from 6 hospitals in Japan (2004–2020). C3 deposition was defined as C3 staining ≥1+ on a scale of 0 to 2+ using direct immunofluorescence (IF). The primary composite end points included a 30% reduction in estimated glomerular filtration rate (eGFR), end-stage kidney disease (ESKD), and death. We compared clinicopathologic features and long-term outcomes between patients with and without C3 deposition. Results C3 deposition was observed in 56 of 142 kidney biopsy samples (39.4%). Patients with C3 deposition had a lower serum C3 level (P = 0.002). During a median follow-up of 2.9 (interquartile range: 0.2–5.7) years, 69 events occurred and the cumulative event-free survival rate at 5 years was significantly lower in the C3-positive group than in the C3-negative group (log-rank: P = 0.002). In multivariable analysis, C3 deposition was significantly associated with the composite end points after adjusting for age, sex, baseline eGFR, serum C3 level, treatment, and the percentage of normal glomerulus, cellular crescents, global sclerosis, and interstitial damage (adjusted hazard ratio [HR] = 2.02, 95% confidence interval: 1.20–3.40, P = 0.008). Conclusion This study revealed that ANCA-GN patients with glomerular C3 deposition on IF had worse renal and overall survival rates.
Collapse
Affiliation(s)
- Rina Oba
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Go Kanzaki
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takaya Sasaki
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yusuke Okabayashi
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kotaro Haruhara
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Masahiro Okabe
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Shinya Yokote
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kentaro Koike
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Keita Hirano
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.,Division of Nephrology, Department of Internal Medicine, Ashikaga Red Cross Hospital, Tochigi, Japan
| | - Hideo Okonogi
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.,Division of Nephrology and Hypertension, Department of Internal Medicine, Atsugi City Hospital, Kanagawa, Japan
| | - Nobuo Tsuboi
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
14
|
Klinkhammer BM, Lammers T, Mottaghy FM, Kiessling F, Floege J, Boor P. Non-invasive molecular imaging of kidney diseases. Nat Rev Nephrol 2021; 17:688-703. [PMID: 34188207 PMCID: PMC7612034 DOI: 10.1038/s41581-021-00440-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 02/05/2023]
Abstract
In nephrology, differential diagnosis or assessment of disease activity largely relies on the analysis of glomerular filtration rate, urinary sediment, proteinuria and tissue obtained through invasive kidney biopsies. However, currently available non-invasive functional parameters, and most serum and urine biomarkers, cannot capture intrarenal molecular disease processes specifically. Moreover, although histopathological analyses of kidney biopsy samples enable the visualization of pathological morphological and molecular alterations, they only provide information about a small part of the kidney and do not allow longitudinal monitoring. These limitations not only hinder understanding of the dynamics of specific disease processes in the kidney, but also limit the targeting of treatments to active phases of disease and the development of novel targeted therapies. Molecular imaging enables non-invasive and quantitative assessment of physiological or pathological processes by combining imaging technologies with specific molecular probes. Here, we discuss current preclinical and clinical molecular imaging approaches in nephrology. Non-invasive visualization of the kidneys through molecular imaging can be used to detect and longitudinally monitor disease activity and can therefore provide companion diagnostics to guide clinical trials, as well as the safe and effective use of drugs.
Collapse
Affiliation(s)
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
- Department of Pharmaceutics, Utrecht University, Utrecht, Netherlands
- Department of Targeted Therapeutics, University of Twente, Enschede, Netherlands
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Hospital RWTH, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Jürgen Floege
- Department of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Peter Boor
- Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany.
- Department of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany.
- Electron Microscopy Facility, RWTH Aachen University Hospital, Aachen, Germany.
| |
Collapse
|
15
|
Wu J, Hu Z, Wang Y, Hu D, Yang Q, Li Y, Dai W, Zhu F, Yang J, Wang M, Zhu H, Liu L, He X, Han M, Yao Y, Pei G, Zeng R, Xu G. Severe glomerular C3 deposition indicates severe renal lesions and a poor prognosis in patients with immunoglobulin A nephropathy. Histopathology 2021; 78:882-895. [PMID: 33336446 DOI: 10.1111/his.14318] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/23/2020] [Accepted: 12/16/2020] [Indexed: 01/04/2023]
Abstract
AIMS Glomerular complement 3 (C3) deposition is often observed in renal biopsies of patients with IgA nephropathy (IgAN); however, the relationship between the intensity of C3 deposition and the long-term prognosis of IgAN has rarely been reported. In this retrospective study, we aimed to evaluate the prognostic value of glomerular C3 deposition for IgAN progression. METHODS AND RESULTS From June 2009 to June 2010, a total of 136 adult patients with IgAN were enrolled in the study. According to the intensity of glomerular C3 deposition, patients were divided into a glomerular C3high group (34 patients) and a glomerular C3low group (102 patients). The levels of clinical parameters, glomerular immune complexes, histopathological features, and serum cytokines of the two groups were compared. On the basis of an average of 105 months of follow-up, the predictive value of glomerular C3 deposition for IgAN progression was also investigated. Patients in the C3high group had more severe glomerular IgA, IgG, IgM, and complement factor H deposition, a higher percentage of mesangial hypercellularity (M1), and higher levels of segmental glomerulosclerosis (S1), tubular atrophy/interstitial fibrosis (T2), and crescents (C2) than those in the C3low group. Renal biopsies in the C3high group showed higher densities of interstitial inflammatory cells and higher levels of serum interferon-γ than those in the C3low group. Multivariate Cox regression analysis revealed that a higher intensity of glomerular C3 deposition remained as an independent predictor of serum creatinine doubling and end-stage renal disease. CONCLUSIONS A high intensity of glomerular C3 deposition is associated with the severity of renal lesions, and predicts long-term poor renal survival for IgAN patients.
Collapse
Affiliation(s)
- Jianliang Wu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhizhi Hu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuxi Wang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Danni Hu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qian Yang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yueqiang Li
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Dai
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fengming Zhu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Juan Yang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Wang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Han Zhu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liu Liu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaofeng He
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Han
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ying Yao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guangchang Pei
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rui Zeng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Gang Xu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
16
|
Zhou IY, Montesi SB, Akam EA, Caravan P. Molecular Imaging of Fibrosis. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
17
|
Aso K, Kono M, Kono M, Watanabe T, Shimizu Y, Ogata Y, Fujieda Y, Kato M, Oku K, Amengual O, Yasuda S, Atsumi T. Low C4 as a risk factor for severe neuropsychiatric flare in patients with systemic lupus erythematosus. Lupus 2020; 29:1238-1247. [PMID: 32635880 DOI: 10.1177/0961203320938453] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE This study aimed to explore the risk factors for 'severe' neuropsychiatric (NP) flare in patients with systemic lupus erythematosus (SLE). METHODS This retrospective study comprised newly diagnosed 184 adult SLE patients who visited Hokkaido University Hospital between 2006 and 2017. In this study, severe NP flare was defined as the occurrence of at least one newly developed British Isles Lupus Assessment Group A score in the neurological domain. Overall severe NP flare-free survival was estimated by Kaplan-Meier analysis. Clinical and demographic profiles at SLE diagnosis were assessed as potential risk items in the adjusted multivariate Cox regression model. RESULTS The median follow-up period was 7.9 years (interquartile range (IQR) 4.6-12.3) years. A total of 28 (15.2%) patients had one or more severe NP flares during the observation period. The median time from patient enrolment date to severe NP flare occurrence was 3.1 years (IQR 0.9-6.3 year). The 2- and 10-year severe NP flare-free survival rates were 92.7% and 86.0%, respectively. Among the manifestations of severe NP flare, psychosis was the most frequent (19.1%). In the multivariate model, low serum levels of C4 (hazard ratio (HR) = 3.67, p = 0.013) and severe NP manifestations at SLE diagnosis (HR = 7.11, p < 0.001) emerged as independent risk factors for developing severe NP flare. CONCLUSION The first severe NP flare presented early in the course of SLE. Low C4 level and severe NP manifestations at SLE diagnosis could predict the development of severe NP flare.
Collapse
Affiliation(s)
- Kuniyuki Aso
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Michihito Kono
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Michihiro Kono
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Toshiyuki Watanabe
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuka Shimizu
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yusuke Ogata
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuichiro Fujieda
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaru Kato
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kenji Oku
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Olga Amengual
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shinsuke Yasuda
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
18
|
Foss CA, Kulik L, Ordonez AA, Jain SK, Michael Holers V, Thurman JM, Pomper MG. SPECT/CT Imaging of Mycobacterium tuberculosis Infection with [ 125I]anti-C3d mAb. Mol Imaging Biol 2020; 21:473-481. [PMID: 29998399 DOI: 10.1007/s11307-018-1228-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Diagnosis and therapeutic monitoring of chronic bacterial infection requires methods to detect and localize sites of infection accurately. Complement C3 activation fragments are generated and covalently bound to selective bacterial pathogens during the immune response and can serve as biomarkers of ongoing bacterial infection. We have developed several probes for detecting tissue-bound C3 deposits, including a monoclonal antibody (mAb 3d29) that recognizes the tissue-bound terminal processing fragments iC3b and C3d but does not recognize native circulating C3 or tissue-bound C3b. PROCEDURES To determine whether mAb 3d29 could be used to detect chronic Mycobacterium tuberculosis infection non-invasively, aerosol-infected female C3HeB/FeJ mice were injected with [125I]3d29 mAb and either imaged using single-photon emission computed tomography (SPECT)/X-ray computed tomography (CT) imaging at 24 and 48 h after radiotracer injection or being subjected to biodistribution analysis. RESULTS Discrete lesions were detected by SPECT/CT imaging in the lungs and spleens of infected mice, consistent with the location of granulomas in the infected animals as detected by CT. Low-level signal was seen in the spleens of uninfected mice and no signal was seen in the lungs of healthy mice. Immunofluorescence microscopy revealed that 3d29 in the lungs of infected mice co-localized with aggregates of macrophages (detected with anti-CD68 antibodies). 3d29 was detected in the cytoplasm of macrophages, consistent with the location of internalized M. tuberculosis. 3d29 was also present within alveolar epithelial cells, indicating that it detected M. tuberculosis phagocytosed by other CD68-positive cells. Healthy controls showed very little retention of fluorescent or radiolabeled antibody across tissues. Radiolabeled 3d29 compared with radiolabeled isotype control showed a 3.5:1 ratio of increased uptake in infected lungs, indicating specific uptake by 3d29. CONCLUSION 3d29 can be used to detect and localize areas of infection with M. tuberculosis non-invasively by 24 h after radiotracer injection and with high contrast.
Collapse
Affiliation(s)
- Catherine A Foss
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, 1550 Orleans St. CRB2 493, Baltimore, MD, 21228, USA. .,Center for Infection and Inflammation Imaging Research, Department of Pediatrics, Johns Hopkins University, Baltimore, MD, 21228, USA.
| | - Liudmila Kulik
- Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Alvaro A Ordonez
- Center for Infection and Inflammation Imaging Research, Department of Pediatrics, Johns Hopkins University, Baltimore, MD, 21228, USA
| | - Sanjay K Jain
- Center for Infection and Inflammation Imaging Research, Department of Pediatrics, Johns Hopkins University, Baltimore, MD, 21228, USA
| | - V Michael Holers
- Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Joshua M Thurman
- Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Martin G Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, 1550 Orleans St. CRB2 493, Baltimore, MD, 21228, USA.,Center for Infection and Inflammation Imaging Research, Department of Pediatrics, Johns Hopkins University, Baltimore, MD, 21228, USA
| |
Collapse
|
19
|
Panzer SE, Joachim E, Parajuli S, Zhong W, Astor BC, Djamali A. Glomerular C3 Deposition Is an Independent Risk Factor for Allograft Failure in Kidney Transplant Recipients With Transplant Glomerulopathy. Kidney Int Rep 2019; 4:582-593. [PMID: 30993233 PMCID: PMC6451156 DOI: 10.1016/j.ekir.2019.01.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION Transplant glomerulopathy (TG) becomes increasingly prevalent in kidney transplant recipients over time, and it is strongly associated with allograft failure. To date, our prognostic biomarkers and understanding of the processes of immunologic injury in TG are limited. METHODS This is a retrospective cohort analysis of kidney transplant recipients with TG (double contours of the glomerular basement membrane as defined by the chronic glomerulopathy score). Glomerular deposition of the complement protein C3 was determined, and its association with allograft survival was analyzed by Cox regression analysis. RESULTS Of the 111 patients with TG, 72 (65%) had allograft failure, with a median follow-up time of 3 years from biopsy diagnosis of TG. C3-positive compared to C3-negative patients did not differ with respect to cause of end-stage renal disease, induction or maintenance immunosuppression, or sensitization. A greater proportion of patients with glomerular C3 deposition developed allograft failure compared to those with no C3 deposition (78% vs. 55%, P = 0.01). C3 deposition was independently associated with allograft failure in multivariate analyses (adjusted hazard ratio [HR] = 1.38, 95% confidence interval [CI] = 1.13-1.69, P = 0.002). There was no association between C4d or C1q deposition and allograft failure. Chronicity score was also associated with allograft failure in multivariate analysis (adjusted HR 1.26, 95% CI 1.12-1.41, P = 0.0001). CONCLUSION In this cohort of patients with TG, glomerular C3 deposition was independently associated with a higher risk of allograft failure. These findings identify glomerular C3 as a novel prognostic indicator in patients with TG.
Collapse
Affiliation(s)
- Sarah E. Panzer
- Department of Medicine, Division of Nephrology, University of Wisconsin, Madison, Wisconsin, USA
| | - Emily Joachim
- Department of Medicine, Division of Nephrology, University of Wisconsin, Madison, Wisconsin, USA
| | - Sandesh Parajuli
- Department of Medicine, Division of Nephrology, University of Wisconsin, Madison, Wisconsin, USA
| | - Weixiong Zhong
- Department of Pathology, University of Wisconsin, Madison, Wisconsin, USA
| | - Brad C. Astor
- Department of Medicine, Division of Nephrology, University of Wisconsin, Madison, Wisconsin, USA
- Department of Population Health Sciences, University of Wisconsin, Madison, Wisconsin, USA
| | - Arjang Djamali
- Department of Medicine, Division of Nephrology, University of Wisconsin, Madison, Wisconsin, USA
- Department of Surgery, Division of Transplant Surgery, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
20
|
Deng X, Zeng T, Li J, Huang C, Yu M, Wang X, Tan L, Zhang M, Li A, Hu J. Kidney-targeted triptolide-encapsulated mesoscale nanoparticles for high-efficiency treatment of kidney injury. Biomater Sci 2019; 7:5312-5323. [PMID: 31617509 DOI: 10.1039/c9bm01290g] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Insolubility and toxicity of TP restrict clinical applications in renal diseases. Here, TP-encapsulated mesoscale nanoparticles offer a new therapeutic strategy for renal diseases due to good biocompability, kidney targeting and slow release.
Collapse
|
21
|
Abstract
Kidney diseases can be caused by a wide range of genetic, hemodynamic, toxic, infectious, and autoimmune factors. The diagnosis of kidney disease usually involves the biochemical analysis of serum and blood, but these tests are often insufficiently sensitive or specific to make a definitive diagnosis. Although radiologic imaging currently has a limited role in the evaluation of most kidney diseases, several new imaging methods hold great promise for improving our ability to non-invasively detect structural, functional, and molecular changes within the kidney. New methods, such as dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and blood oxygen level-dependent (BOLD) MRI, allow functional imaging of the kidney. The use of novel contrast agents, such as microbubbles and nanoparticles, allows the detection of specific molecules in the kidney. These methods could greatly advance our ability to diagnose disease and also to safely monitor patients over time. This could improve the care of individual patients, and it could also facilitate the evaluation of new treatment strategies.
Collapse
Affiliation(s)
- Joshua Thurman
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Faikah Gueler
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
22
|
Tissue-targeted complement therapeutics. Mol Immunol 2018; 102:120-128. [PMID: 30220307 DOI: 10.1016/j.molimm.2018.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 02/07/2023]
Abstract
Complement activation contributes to the pathogenesis of numerous inflammatory and autoimmune diseases. Therapeutic complement inhibitors have proven effective in several of these diseases and have now entered clinical use. Complement activation has multiple different biologic effects, however, and the currently available drugs can have undesirable side-effects, such as an increased risk of infection. Several different complement inhibitors have been developed that bind to target molecules, thereby concentrating the drug at a specific anatomic site. This approach appears to be both more effective than untargeted drugs and to have fewer side effects. In this article we review different targeting strategies that have been developed and the evidence supporting the use and benefits of targeted drugs.
Collapse
|
23
|
Hsieh SC, Tsai CY, Yu CL. Potential serum and urine biomarkers in patients with lupus nephritis and the unsolved problems. Open Access Rheumatol 2016; 8:81-91. [PMID: 27843374 PMCID: PMC5098719 DOI: 10.2147/oarrr.s112829] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lupus nephritis (LN) is one of the most frequent and serious complications in the patients with systemic lupus erythematosus. Autoimmune-mediated inflammation in both renal glomerular and tubulointerstitial tissues is the major pathological finding of LN. In clinical practice, the elevated anti-dsDNA antibody titer concomitant with reduced complement C3 and C4 levels has become the predictive and disease-activity surrogate biomarkers in LN. However, more and more evidences suggest that autoantibodies other than anti-dsDNA antibodies, such as anti-nucleosome, anti-C1q, anti-C3b, anti-cardiolipin, anti-endothelial cell, anti-ribonuclear proteins, and anti-glomerular matrix (anti-actinin) antibodies, may also involve in LN. Researchers have demonstrated that the circulating preformed and in situ-formed immune complexes as well as the direct cytotoxic effects by those cross-reactive autoantibodies mediated kidney damage. On the other hand, many efforts had been made to find useful urine biomarkers for LN activity via measurement of immune-related mediators, surface-enhanced laser desorption/ionization time-of-flight mass spectrometry proteomic signature, and assessment of mRNA and exosomal-derived microRNA from urine sediment cell. Our group had also devoted to this field with some novel findings. In this review, we briefly discuss the possible mechanisms of LN and try to figure out the potential serum and urine biomarkers in LN. Finally, some of the unsolved problems in this field are discussed.
Collapse
Affiliation(s)
- Song-Chou Hsieh
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine
| | - Chang-Youh Tsai
- Section of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital
| | - Chia-Li Yu
- Department of Internal Medicine, Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
24
|
Montero RM, Sacks SH, Smith RA. Complement-here, there and everywhere, but what about the transplanted organ? Semin Immunol 2016; 28:250-9. [PMID: 27179705 DOI: 10.1016/j.smim.2016.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/20/2016] [Accepted: 04/26/2016] [Indexed: 12/15/2022]
Abstract
The part of the innate immune system that communicates and effectively primes the adaptive immune system was termed "complement" by Ehrlich to reflect its complementarity to antibodies having previously been described as "alexine" (i.e protective component of serum) by Buchner and Bordet. It has been established that complement is not solely produced systemically but may have origin in different tissues where it can influence organ specific functions that may affect the outcome of transplanted organs. This review looks at the role of complement in particular to kidney transplantation. We look at current literature to determine whether blockade of the peripheral or central compartments of complement production may prevent ischaemic reperfusion injury or rejection in the transplanted organ. We also review new therapeutics that have been developed to inhibit components of the complement cascade with varying degrees of success leading to an increase in our understanding of the multiple triggers of this complex system. In addition, we consider whether biomarkers in this field are effective markers of disease or treatment.
Collapse
Affiliation(s)
- R M Montero
- MRC Centre for Transplantation, Division of Transplant Immunology and Mucosal Biology, NIHR Comprehensive Biomedical Research Centre, King's College London, Guy's & St Thomas' NHS Foundation Trust, United Kingdom
| | - S H Sacks
- MRC Centre for Transplantation, Division of Transplant Immunology and Mucosal Biology, NIHR Comprehensive Biomedical Research Centre, King's College London, Guy's & St Thomas' NHS Foundation Trust, United Kingdom.
| | - R A Smith
- MRC Centre for Transplantation, Division of Transplant Immunology and Mucosal Biology, NIHR Comprehensive Biomedical Research Centre, King's College London, Guy's & St Thomas' NHS Foundation Trust, United Kingdom
| |
Collapse
|
25
|
Grenier N, Merville P, Combe C. Radiologic imaging of the renal parenchyma structure and function. Nat Rev Nephrol 2016; 12:348-59. [DOI: 10.1038/nrneph.2016.44] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Girardi G. MRI-based methods to detect placental and fetal brain abnormalities in utero. J Reprod Immunol 2016; 114:86-91. [DOI: 10.1016/j.jri.2015.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/21/2015] [Accepted: 05/29/2015] [Indexed: 11/29/2022]
|
27
|
Abstract
PURPOSE OF REVIEW Over the past decade, a variety of MRI methods have been developed and applied to many kidney diseases. These MRI techniques show great promise, enabling the noninvasive assessment of renal structure, function and injury in individuals. This review will highlight the current applications of functional MRI techniques for the assessment of renal disease and discuss future directions. RECENT FINDINGS Many pathological (functional and structural) changes or factors in renal disease can be assessed by advanced MRI techniques. These include renal vascular structure and function (contrast-enhanced MRI, arterial spin labelling), tissue oxygenation (blood oxygen level dependent MRI), renal tissue injury and fibrosis (diffusion or magnetization transfer imaging, magnetic resonance elastography), renal metabolism (chemical exchange saturation transfer, spectroscopic imaging), nephron endowment (cationic-contrast imaging), sodium concentration (23Na-MRI) and molecular events (targeted-contrast imaging). SUMMARY Current advances in MRI techniques have enabled the noninvasive investigation of renal disease. Further development, evaluation and application of the MRI techniques should facilitate better understanding and assessment of renal disease, and the development of new imaging biomarkers, enabling the intensified treatment of high-risk populations and a more rapid interrogation of novel therapeutic agents and protocols.
Collapse
|
28
|
Gorham RD, Nuñez V, Lin JH, Rooijakkers SHM, Vullev VI, Morikis D. Discovery of Small Molecules for Fluorescent Detection of Complement Activation Product C3d. J Med Chem 2015; 58:9535-45. [DOI: 10.1021/acs.jmedchem.5b01062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ronald D. Gorham
- Department
of Bioengineering, University of California, Riverside, California 92521, United States
- Department
of Medical Microbiology, University Medical Center, Utrecht, 3584 CX Utrecht, The Netherlands
| | - Vicente Nuñez
- Department
of Bioengineering, University of California, Riverside, California 92521, United States
| | - Jung-Hsin Lin
- Division
of Mechanics,
Research Center for Applied Sciences and Institute of Biomedical Sciences,
Academia Sinica, Taipei 115, Taiwan
- School
of Pharmacy, National Taiwan University, Taipei 100, Taiwan
| | - Suzan H. M. Rooijakkers
- Department
of Medical Microbiology, University Medical Center, Utrecht, 3584 CX Utrecht, The Netherlands
| | - Valentine I. Vullev
- Department
of Bioengineering, University of California, Riverside, California 92521, United States
| | - Dimitrios Morikis
- Department
of Bioengineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
29
|
Sharif‐Paghaleh E, Yap ML, Meader LL, Chuamsaamarkkee K, Kampmeier F, Badar A, Smith RA, Sacks S, Mullen GE. Noninvasive Imaging of Activated Complement in Ischemia-Reperfusion Injury Post-Cardiac Transplant. Am J Transplant 2015; 15:2483-90. [PMID: 25906673 PMCID: PMC4654255 DOI: 10.1111/ajt.13299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 02/24/2015] [Accepted: 02/28/2015] [Indexed: 01/25/2023]
Abstract
Ischemia-reperfusion injury (IRI) is inevitable in solid organ transplantation, due to the transplanted organ being ischemic for prolonged periods prior to transplantation followed by reperfusion. The complement molecule C3 is present in the circulation and is also synthesized by tissue parenchyma in early response to IRI and the final stable fragment of activated C3, C3d, can be detected on injured tissue for several days post-IRI. Complement activation post-IRI was monitored noninvasively by single photon emission computed tomography (SPECT) and CT using (99m) Tc-recombinant complement receptor 2 ((99m) Tc-rCR2) in murine models of cardiac transplantation following the induction of IRI and compared to (99m) Tc-rCR2 in C3(-/-) mice or with the irrelevant protein (99m) Tc-prostate-specific membrane antigen antibody fragment (PSMA). Significant uptake with (99m) Tc-rCR2 was observed as compared to C3(-/-) or (99m) Tc-PSMA. In addition, the transplanted heart to muscle ratio of (99m) Tc-rCR2 was significantly higher than (99m) Tc-PSMA or C3(-/-) . The results were confirmed by histology and autoradiography. (99m) Tc-rCR2 can be used for noninvasive detection of activated complement and in future may be used to quantify the severity of transplant damage due to complement activation postreperfusion.
Collapse
Affiliation(s)
- E. Sharif‐Paghaleh
- Division of Imaging and Biomedical EngineeringSchool of MedicineKing's College LondonLondonEngland,MRC Centre for TransplantationKing's College LondonLondonEngland,Department of ImmunologyFaculty of MedicineTehran University of Medical SciencesTehranIran
| | - M. L. Yap
- Division of Imaging and Biomedical EngineeringSchool of MedicineKing's College LondonLondonEngland
| | - L. L. Meader
- MRC Centre for TransplantationKing's College LondonLondonEngland
| | - K. Chuamsaamarkkee
- Division of Imaging and Biomedical EngineeringSchool of MedicineKing's College LondonLondonEngland
| | - F. Kampmeier
- Division of Imaging and Biomedical EngineeringSchool of MedicineKing's College LondonLondonEngland
| | - A. Badar
- Division of Imaging and Biomedical EngineeringSchool of MedicineKing's College LondonLondonEngland
| | - R. A. Smith
- MRC Centre for TransplantationKing's College LondonLondonEngland
| | - S. Sacks
- MRC Centre for TransplantationKing's College LondonLondonEngland
| | - G. E. Mullen
- Division of Imaging and Biomedical EngineeringSchool of MedicineKing's College LondonLondonEngland,MRC Centre for TransplantationKing's College LondonLondonEngland
| |
Collapse
|
30
|
Girardi G, Fraser J, Lennen R, Vontell R, Jansen M, Hutchison G. Imaging of activated complement using ultrasmall superparamagnetic iron oxide particles (USPIO)--conjugated vectors: an in vivo in utero non-invasive method to predict placental insufficiency and abnormal fetal brain development. Mol Psychiatry 2015; 20:1017-26. [PMID: 25245499 PMCID: PMC4288949 DOI: 10.1038/mp.2014.110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/14/2014] [Accepted: 07/21/2014] [Indexed: 01/02/2023]
Abstract
In the current study, we have developed a magnetic resonance imaging-based method for non-invasive detection of complement activation in placenta and foetal brain in vivo in utero. Using this method, we found that anti-complement C3-targeted ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles bind within the inflamed placenta and foetal brain cortical tissue, causing a shortening of the T2* relaxation time. We used two mouse models of pregnancy complications: a mouse model of obstetrics antiphospholipid syndrome (APS) and a mouse model of preterm birth (PTB). We found that detection of C3 deposition in the placenta in the APS model was associated with placental insufficiency characterised by increased oxidative stress, decreased vascular endothelial growth factor and placental growth factor levels and intrauterine growth restriction. We also found that foetal brain C3 deposition was associated with cortical axonal cytoarchitecture disruption and increased neurodegeneration in the mouse model of APS and in the PTB model. In the APS model, foetuses that showed increased C3 in their brains additionally expressed anxiety-related behaviour after birth. Importantly, USPIO did not affect pregnancy outcomes and liver function in the mother and the offspring, suggesting that this method may be useful for detecting complement activation in vivo in utero and predicting placental insufficiency and abnormal foetal neurodevelopment that leads to neuropsychiatric disorders.
Collapse
Affiliation(s)
- G Girardi
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK,Lupus Research Unit, The Rayne Institute, King's College London St Thomas' Hospital, London, UK,Women's Health, King's College London, St Thomas' Hospital, London SE1 7EH, UK
| | - J Fraser
- Centre for Nano Safety, Napier University Edinburgh, Edinburgh, UK
| | - R Lennen
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - R Vontell
- Centrer for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, The Rayne Institute, King's College London, St Thomas' Hospital, London, UK
| | - M Jansen
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - G Hutchison
- Centre for Nano Safety, Napier University Edinburgh, Edinburgh, UK
| |
Collapse
|
31
|
Bao L, Cunningham PN, Quigg RJ. Complement in Lupus Nephritis: New Perspectives. KIDNEY DISEASES 2015; 1:91-9. [PMID: 27536669 DOI: 10.1159/000431278] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 05/06/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is an autoimmune disorder caused by loss of tolerance to self-antigens, the production of autoantibodies and deposition of complement-fixing immune complexes (ICs) in injured tissues. SLE is characterized by a wide range of clinical manifestations and targeted organs, with lupus nephritis being one of the most serious complications. The complement system consists of three pathways and is tightly controlled by a set of regulatory proteins to prevent injudicious complement activation on host tissue. The involvement of the complement system in the pathogenesis of SLE is well accepted; yet, its exact role is still not clear. SUMMARY Complement plays dual roles in the pathogenesis of SLE. On the one hand, the complement system appears to have protective features in that hereditary homozygous deficiencies of classical pathway components, such as C1q and C4, are associated with an increased risk for SLE. On the other hand, IC-mediated activation of complement in affected tissues is clearly evident in both experimental and human SLE along with pathological features that are logical consequences of complement activation. Studies in genetically altered mice have shown that lack of complement inhibitors, such as complement factor H (CFH) or decay-accelerating factor (DAF) accelerates the development of experimental lupus nephritis, while treatment with recombinant protein inhibitors, such as Crry-Ig, CR2-Crry, CR2-DAF and CR2-CFH, ameliorates the disease development. Complement-targeted drugs, including soluble complement receptor 1 (TP10), C1 esterase inhibitor and a monoclonal anti-C5 antibody (eculizumab), have been shown to inhibit complement safely, and are now being investigated in a variety of clinical conditions. KEY MESSAGES SLE is an autoimmune disorder which targets multiple systems. Complement is centrally involved and plays dual roles in the pathogenesis of SLE. Studies from experimental lupus models and clinical trials support the use of complement-targeted therapy in the treatment of SLE.
Collapse
Affiliation(s)
- Lihua Bao
- Section of Nephrology, Department of Medicine, University of Chicago, Chicago, Ill., USA
| | - Patrick N Cunningham
- Section of Nephrology, Department of Medicine, University of Chicago, Chicago, Ill., USA
| | - Richard J Quigg
- Division of Nephrology, University at Buffalo School of Medicine, Buffalo, N.Y., USA
| |
Collapse
|
32
|
Thurman JM, Serkova NJ. Non-invasive imaging to monitor lupus nephritis and neuropsychiatric systemic lupus erythematosus. F1000Res 2015; 4:153. [PMID: 26309728 PMCID: PMC4536614 DOI: 10.12688/f1000research.6587.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2015] [Indexed: 01/18/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that can affect multiple different organs, including the kidneys and central nervous system (CNS). Conventional radiological examinations in SLE patients include volumetric/ anatomical computed tomography (CT), magnetic resonance imaging (MRI) and ultrasound (US). The utility of these modalities is limited, however, due to the complexity of the disease. Furthermore, standard CT and MRI contrast agents are contraindicated in patients with renal impairment. Various radiologic methods are currently being developed to improve disease characterization in patients with SLE beyond simple anatomical endpoints. Physiological non-contrast MRI protocols have been developed to assess tissue oxygenation, glomerular filtration, renal perfusion, interstitial diffusion, and inflammation-driven fibrosis in lupus nephritis (LN) patients. For neurological symptoms, vessel size imaging (VSI, an MRI approach utilizing T2-relaxing iron oxide nanoparticles) has shown promise as a diagnostic tool. Molecular imaging probes (mostly for MRI and nuclear medicine imaging) have also been developed for diagnosing SLE with high sensitivity, and for monitoring disease activity. This paper reviews the challenges in evaluating disease activity in patients with LN and neuropsychiatric systemic lupus erythematosus (NPSLE). We describe novel MRI and positron-emission tomography (PET) molecular imaging protocols using targeted iron oxide nanoparticles and radioactive ligands, respectively, for detection of SLE-associated inflammation.
Collapse
Affiliation(s)
- Joshua M Thurman
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Natalie J Serkova
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Over the past decade, a variety of MRI methods have been developed and applied to many kidney diseases. These MRI techniques show great promise, enabling the noninvasive assessment of renal structure, function and injury in individuals. This review will highlight the current applications of functional MRI techniques for the assessment of renal disease and discuss future directions. RECENT FINDINGS Many pathological (functional and structural) changes or factors in renal disease can be assessed by advanced MRI techniques. These include renal vascular structure and function (contrast-enhanced MRI, arterial spin labelling), tissue oxygenation (blood oxygen level dependent MRI), renal tissue injury and fibrosis (diffusion or magnetization transfer imaging, magnetic resonance elastography), renal metabolism (chemical exchange saturation transfer, spectroscopic imaging), nephron endowment (cationic-contrast imaging), sodium concentration (23Na-MRI) and molecular events (targeted-contrast imaging). SUMMARY Current advances in MRI techniques have enabled the noninvasive investigation of renal disease. Further development, evaluation and application of the MRI techniques should facilitate better understanding and assessment of renal disease, and the development of new imaging biomarkers, enabling the intensified treatment of high-risk populations and a more rapid interrogation of novel therapeutic agents and protocols.
Collapse
Affiliation(s)
- Takamune Takahashi
- aDivision of Nephrology and Hypertension bDepartment of Radiology and Radiological Sciences cVanderbilt University Institute of Imaging Science, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | |
Collapse
|
34
|
Huang Q, Wen S, Wang B, Wang Q, Guo C, Wu X, Zhang R, Yang R, Chen F, Xiao W. C5b-9-targeted molecular MR imaging in rats with Heymann nephritis: a new approach in the evaluation of nephrotic syndrome. PLoS One 2015; 10:e0121244. [PMID: 25774523 PMCID: PMC4361404 DOI: 10.1371/journal.pone.0121244] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 02/13/2015] [Indexed: 12/11/2022] Open
Abstract
Membranous nephropathy (MN) is the major cause of adult nephrotic syndrome, which severely affects patients’ quality of life. Currently, percutaneous renal biopsy is required to definitively diagnose MN. However, this technique is invasive and may cause severe complications. Therefore, an urgent clinical need exists for dynamic noninvasive monitoring of the renal state. In-depth molecular imaging studies could assist in finding a solution. Membrane attack complex C5b-9 is the key factor in the development of MN, and this protein primarily deposits in the glomerulus. The present study bound polyclonal antibodies to C5b-9 with ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles to obtain C5b-9-targeted magnetic resonance molecular imaging probes. The probes were injected intravenously into rats with Heymann nephritis, a classic disease model of MN. The signal intensity in the T2*-weighted imaging of kidneys in vivo using 7.0 Tesla magnetic resonance imaging decreased significantly 24 hours after injection compared to the untargeted and control groups. This signal change was consistent with the finding of nanoparticle deposits in pathological glomeruli. This study demonstrated a novel molecular imaging technique for the assessment of MN.
Collapse
Affiliation(s)
- Qiang Huang
- Department of Radiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Song Wen
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Medical School, Southeast University, Nanjing, China
| | - Bo Wang
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qidong Wang
- Department of Radiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chuangen Guo
- Department of Radiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinying Wu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Rui Zhang
- Department of Radiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Rong Yang
- Department of Radiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Chen
- Department of Radiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- * E-mail: (FC); (WX)
| | - Wenbo Xiao
- Department of Radiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- * E-mail: (FC); (WX)
| |
Collapse
|
35
|
Lupus nephritis: update on mechanisms of systemic autoimmunity and kidney immunopathology. Curr Opin Nephrol Hypertens 2014; 23:211-7. [PMID: 24662982 DOI: 10.1097/01.mnh.0000444816.57378.21] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Traditionally, lupus nephritis has been considered an autoimmune disorder of unknown origin and a complex pathophysiology, but in recent years, its pathogenesis has been unraveled. RECENT FINDINGS In individuals with unfortunate combinations of gene variants, environmental triggers such as certain drugs or viral infections allow autoimmunization against nuclear antigens, as evident by the presence of antinuclear antibodies. The expansion of autoreactive lymphocyte clones is driven by the nucleic acid component of nuclear particles from netting neutrophils and other dying cells as these activate immunity via viral nucleic acid-specific Toll-like receptors in dendritic cells and B cells. This process triggers interferon-α signaling-related antiviral immunity; hence, lupus symptoms are often indistinguishable from those of viral infections. Inside the kidney, lupus autoantibodies bind several autoantigens and trigger injury and inflammation, either in the mesangium (classes I/II), or along both sides of the glomerular basement membrane (classes III/IV/V). In addition, vascular and tubulointerstitial inflammation contribute to the immunopathology of lupus nephritis. SUMMARY Eventually, a better understanding of lupus nephritis pathogenesis will allow the identification of therapeutic targets that will prove effective not only in animal models but also in randomized clinical trials.
Collapse
|
36
|
Abstract
The complement system plays a major role in the autoimmune disease, systemic lupus erythematosus (SLE). However, the role of complement in SLE is complex since it may both prevent and exacerbate the disease. In this review, we explore the latest findings in complement-focused research in SLE. C1q deficiency is the strongest genetic risk factor for SLE, although such deficiency is very rare. Various recently discovered genetic associations include mutations in the complement receptors 2 and 3 as well as complement inhibitors, the latter related to earlier onset of nephritis. Further, autoantibodies are a distinct feature of SLE that are produced as the result of an adaptive immune response and how complement can affect that response is also being reviewed. SLE generates numerous disease manifestations involving contributions from complement such as glomerulonephritis and the increased risk of thrombosis. Furthermore, since most of the complement system is present in plasma, complement is very accessible and may be suitable as biomarker for diagnosis or monitoring of disease activity. This review highlights the many roles of complement for SLE pathogenesis and how research has progressed during recent years.
Collapse
Affiliation(s)
- Jonatan Leffler
- Division of Medical Protein Chemistry, Department of Laboratory Medicine Malmö, Lund University, Malmö, Sweden Division of Cell Biology and Immunology, Telethon Kids Institute, University of Western Australia, Subiaco, Australia
| | - Anders A Bengtsson
- Department of Clinical Sciences, Section of Rheumatology, Lund University, Skåne University Hospital Lund, Lund, Sweden
| | - Anna M Blom
- Division of Medical Protein Chemistry, Department of Laboratory Medicine Malmö, Lund University, Malmö, Sweden
| |
Collapse
|
37
|
Thurman JM, Serkova NJ. Nanosized contrast agents to noninvasively detect kidney inflammation by magnetic resonance imaging. Adv Chronic Kidney Dis 2013; 20:488-99. [PMID: 24206601 DOI: 10.1053/j.ackd.2013.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 06/02/2013] [Accepted: 06/03/2013] [Indexed: 12/15/2022]
Abstract
Several molecular imaging methods have been developed that use nanosized contrast agents to detect markers of inflammation within tissues. Kidney inflammation contributes to disease progression in a wide range of autoimmune and inflammatory diseases, and a biopsy is currently the only method of definitively diagnosing active kidney inflammation. However, the development of new molecular imaging methods that use contrast agents capable of detecting particular immune cells or protein biomarkers will allow clinicians to evaluate inflammation throughout the kidneys and to assess a patient's response to immunomodulatory drugs. These imaging tools will improve our ability to validate new therapies and to optimize the treatment of individual patients with existing therapies. This review describes the clinical need for new methods of monitoring kidney inflammation and recent advances in the development of nanosized contrast agents for the detection of inflammatory markers of kidney disease.
Collapse
|
38
|
|
39
|
Thurman JM, Kulik L, Orth H, Wong M, Renner B, Sargsyan SA, Mitchell LM, Hourcade DE, Hannan JP, Kovacs JM, Coughlin B, Woodell AS, Pickering MC, Rohrer B, Holers VM. Detection of complement activation using monoclonal antibodies against C3d. J Clin Invest 2013; 123:2218-30. [PMID: 23619360 DOI: 10.1172/jci65861] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 02/21/2013] [Indexed: 12/21/2022] Open
Abstract
During complement activation the C3 protein is cleaved, and C3 activation fragments are covalently fixed to tissues. Tissue-bound C3 fragments are a durable biomarker of tissue inflammation, and these fragments have been exploited as addressable binding ligands for targeted therapeutics and diagnostic agents. We have generated cross-reactive murine monoclonal antibodies against human and mouse C3d, the final C3 degradation fragment generated during complement activation. We developed 3 monoclonal antibodies (3d8b, 3d9a, and 3d29) that preferentially bind to the iC3b, C3dg, and C3d fragments in solution, but do not bind to intact C3 or C3b. The same 3 clones also bind to tissue-bound C3 activation fragments when injected systemically. Using mouse models of renal and ocular disease, we confirmed that, following systemic injection, the antibodies accumulated at sites of C3 fragment deposition within the glomerulus, the renal tubulointerstitium, and the posterior pole of the eye. To detect antibodies bound within the eye, we used optical imaging and observed accumulation of the antibodies within retinal lesions in a model of choroidal neovascularization (CNV). Our results demonstrate that imaging methods that use these antibodies may provide a sensitive means of detecting and monitoring complement activation-associated tissue inflammation.
Collapse
Affiliation(s)
- Joshua M Thurman
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado 80045, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Novel roles of complement in renal diseases and their therapeutic consequences. Kidney Int 2013; 84:441-50. [PMID: 23615508 DOI: 10.1038/ki.2013.134] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 02/07/2013] [Accepted: 02/14/2013] [Indexed: 01/15/2023]
Abstract
The complement system functions as a part of the innate immune system. Inappropriate activation of the complement pathways has a deleterious effect on kidneys. Recent advances in complement research have provided new insights into the pathogenesis of glomerular and tubulointerstitial injury associated with complement activation. A new disease entity termed 'C3 glomerulopathy' has recently been proposed and is characterized by isolated C3 deposition in glomeruli without positive staining for immunoglobulins. Genetic and functional studies have demonstrated that several different mutations and disease variants, as well as the generation of autoantibodies, are potentially associated with its pathogenesis. The data from comprehensive analyses suggest that complement dysregulation can also be associated with hemolytic uremic syndrome and more common glomerular diseases, such as IgA nephropathy and diabetic kidney disease. In addition, animal studies utilizing genetically modified mice have begun to elucidate the molecular pathomechanisms associated with the complement system. From a diagnostic point of view, a noninvasive, MRI-based method for detecting C3 has recently been developed to serve as a novel tool for diagnosing complement-mediated kidney diseases. While novel therapeutic tools related to complement regulation are emerging, studies evaluating the precise roles of the complement system in kidney diseases will still be useful for developing new therapeutic approaches.
Collapse
|
41
|
Thurman JM, Rohrer B. Noninvasive detection of complement activation through radiologic imaging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 735:271-82. [PMID: 23402034 DOI: 10.1007/978-1-4614-4118-2_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
A wealth of experimental and clinical data demonstrates that the complement system is involved in the pathogenesis of numerous inflammatory diseases. Complement activation contributes to injury in disorders that involve nearly every tissue in the body. Concerted effort has been expended in recent years to develop therapeutic complement inhibitors. Eculizumab, an inhibitory antibody to C5, was recently approved for the treatment of several diseases, and many other complement inhibitors are in clinical development. As these drugs are developed, the need for improved methods of detecting and monitoring complement activation within particular tissues will be increasingly important. We have developed a magnetic resonance imaging (MRI)-based method for noninvasive detection of complement activation. This method utilizes iron-oxide nanoparticles that are targeted to sites of complement activation with a recombinant protein that contains the C3d-binding region of complement receptor (CR) 2. Iron-oxide nanoparticles darken (negatively enhance) images obtained by T2-weighted MRI. We have demonstrated that the CR2-targeted nanoparticles bind within the kidneys of mice with lupus-like kidney disease (MRL/1pr mice), causing a decrease in the T2 signal within the kidneys. This method discriminates diseased kidneys from healthy controls, and the magnitude of the negative enhancement in the cortex of MRL/lpr mice correlates with their disease severity. This method may be useful for identifying those patients most likely to benefit from complement inhibitors and for monitoring the response of these patients to treatment. These results may open up new avenues to develop tools for the monitoring of disease progression in complement-dependent diseases.
Collapse
Affiliation(s)
- Joshua M Thurman
- Department of Medicine, University of Colorado Denver School of Medicine, Denver, CO 80045, USA.
| | | |
Collapse
|
42
|
Strassheim D, Renner B, Panzer S, Fuquay R, Kulik L, Ljubanović D, Holers VM, Thurman JM. IgM contributes to glomerular injury in FSGS. J Am Soc Nephrol 2013; 24:393-406. [PMID: 23393315 DOI: 10.1681/asn.2012020187] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Glomerular IgM and C3 deposits frequently accompany idiopathic FSGS and secondary glomerulosclerosis, but it is unknown whether IgM activates complement, possibly contributing to the pathogenesis of these diseases. We hypothesized that IgM natural antibody binds to neoepitopes exposed in the glomerulus after nonimmune insults, triggering activation of the complement system and further injury. We examined the effects of depleting B cells, using three different strategies, on adriamycin-induced glomerulosclerosis. First, we treated wild-type mice with an anti-murine CD20 antibody, which depletes B cells, before disease induction. Second, we evaluated adriamycin-induced glomerulosclerosis in Jh mice, a strain that lacks mature B cells. Third, we locally depleted peritoneal B cells via hypotonic shock before disease induction. All three strategies reduced deposition of IgM in the glomerulus after administration of adriamycin and attenuated the development of albuminuria. Furthermore, we found that glomerular IgM and C3 were detectable in a subset of patients with FSGS; C3 was present as an activation fragment and colocalized with glomerular IgM, suggesting that glomerular IgM may have bound a cognate ligand. Taken together, these results suggest that IgM activates the complement system within the glomerulus in an animal model of glomerulosclerosis. Strategies that reduce IgM natural antibody or that prevent complement activation may slow the progression of glomerulosclerosis.
Collapse
Affiliation(s)
- Derek Strassheim
- Department of Medicine, School of Medicine, University of Colorado Denver, Aurora, Colorado 80045, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Current world literature. Curr Opin Organ Transplant 2013; 18:111-30. [PMID: 23299306 DOI: 10.1097/mot.0b013e32835daf68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Vithanarachchi SM, Allen MJ. Strategies for Target-Specific Contrast Agents for Magnetic Resonance Imaging. ACTA ACUST UNITED AC 2012; 1:12-25. [PMID: 23316452 DOI: 10.2174/2211555211201010012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review describes recent research efforts focused on increasing the specificity of contrast agents for proton magnetic resonance imaging (MRI). Contrast agents play an indispensable role in MRI by enhancing the inherent contrast of images; however, the non-specific nature of current clinical contrast agents limits their usefulness. This limitation can be addressed by conjugating contrast agents or contrast-agent-loaded carriers-including polymers, nanoparticles, dendrimers, and liposomes-to molecules that bind to biological sites of interest. An alternative approach to conjugation is synthetically mimicking biological structures with metal complexes that are also contrast agents. In this review, we describe the advantages and limitations of these two targeting strategies with respect to translation from in vitro to in vivo imaging while focusing on advances from the last ten years.
Collapse
|
45
|
Abstract
The complement system is a key element of the innate immune system, and the production of complement components can be divided into central (hepatic) and peripheral compartments. Essential complement components such as C3 are produced in both of these compartments, but until recently the functional relevance of the peripheral synthesis of complement was unclear. Here, we review recent findings showing that local peripheral synthesis of complement in a transplanted organ is required for the immediate response of the donor organ to tissue stress and for priming alloreactive T cells that can mediate transplant rejection. We also discuss recent insights into the role of complement in antibody-mediated rejection, and we examine how new treatment strategies that take into account the separation of central and peripheral production of complement are expected to make a difference to transplant outcome.
Collapse
|
46
|
Recipe for a new imaging biomarker: carefully combine target, reagent, and technology. Kidney Int 2011; 81:129-31. [PMID: 22205431 DOI: 10.1038/ki.2011.374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A careful combination of biological targeting moieties (C3 fragments), imaging reagents (a small particle of iron oxide), and appropriate technology (T2-weighted magnetic resonance imaging) is the key to the successful development of an imaging agent for glomerulonephritis. This recipe applies to virtually any molecular imaging probe for the kidney and throughout the body. However, each organ and disease requires a unique combination of these three components in order to achieve success.
Collapse
|
47
|
Noninvasive method to monitor disease activity in lupus nephritis. Nat Rev Nephrol 2011; 7:678. [DOI: 10.1038/nrneph.2011.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|