1
|
Téllez Garcia JM, Steenvoorden T, Bemelman F, Hilhorst M, Tammaro A, Vogt L. Purinoreceptor P2X7 in Extracellular ATP-Mediated Inflammation through the Spectrum of Kidney Diseases and Kidney Transplantation. J Am Soc Nephrol 2025:00001751-990000000-00602. [PMID: 40152923 DOI: 10.1681/asn.0000000711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/24/2025] [Indexed: 03/30/2025] Open
Abstract
Extracellular purines not only play a critical role in maintaining a balanced inflammatory response but may also trigger disproportionate inflammation in various kidney pathologies. Extracellular ATP is the most well-characterized inflammatory purine, which serves as a potent extracellular danger-associated molecular pattern ( i.e ., danger-associated molecular pattern). It signals through the P2 purinoreceptors during both acute and chronic kidney damage. The purinoreceptor P2X7 (P2X7R) has been extensively studied in kidney disease because of its potent ability to enhance inflammation by activating the nucleotide-binding oligomerization domain, leucine rich repeat family pyrin domain containing 3 inflammasome in both immune and parenchymal tubular cells and potential role in immunometabolic reprogramming. We will explore how, following a primary insult to the kidney, disturbance of purinergic balance characterized by extracellular ATP-mediated P2X7R activation exacerbates AKI. Second, we will describe how persistent purinergic disbalance promotes a P2X7R-mediated protracted inflammatory reaction leading to the progression of CKD of different etiologies. Finally, we will also highlight the relevant and emerging role of P2X7R signaling in both antigen-presenting cells and adaptive immune cells to modulate cellular and humoral immune responses in kidney transplantation and hypertension. This review underscores that ATP-P2X7R axis is a key driver of pathologic purinergic signaling, representing a largely unexplored but highly promising clinical target against a wide spectrum of kidney diseases.
Collapse
Affiliation(s)
- Juan Miguel Téllez Garcia
- Department of Internal Medicine Nephrology Section, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, The Netherlands
| | - Thei Steenvoorden
- Department of Internal Medicine Nephrology Section, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Frederike Bemelman
- Department of Internal Medicine Nephrology Section, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Marc Hilhorst
- Department of Internal Medicine Nephrology Section, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Alessandra Tammaro
- Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Liffert Vogt
- Department of Internal Medicine Nephrology Section, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Genest M, Kinugasa S, Roger E, Boutin L, Placier S, Figueroa S, Dorison A, Hadjadj S, Baba I, Gautier EL, Kavvadas P, Chatziantoniou C, Chadjichristos CE. Endothelial-specific deletion of connexin 43 improves renal function and structure after acute kidney injury. Mol Med 2024; 30:261. [PMID: 39707203 DOI: 10.1186/s10020-024-01011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND We have previously reported that the gap junction protein connexin 43 (Cx43) was upregulated in chronic renal disease in humans and rodents and plays a crucial role in the progression of experimental nephropathy. In this study, we investigated its role after renal ischemia/reperfusion (rIR), which is a major mechanism of injury in acute renal injury (AKI) and renal transplant graft dysfunction. METHODS Wild-type mice (WT) and mice in which Cx43 expression was genetically reduced by half (Cx43 ±) were unilaterally nephrectomized. The left renal artery was subsequently clamped, with reperfusion of varying duration. Mice with tubular- or endothelial-specific deletion of Cx43 were also used to assess the effect of this connexin in each cell type after rIR. Kidneys were assessed for histological evaluation, immunohistochemistry, and RT-PCR. RESULTS Blood urea nitrogen and creatininemia were progressively elevated in WT mice and picked up 48 h after rIR. At the same time point, severe tubular necrosis and dilation occurred in the cortico-medullary junction of the injured kidneys with accompanying massive neutrophil infiltration. Interestingly, Cx43 expression was progressively increased within the tubulointerstitial compartment during kidney damage progression and was paralleled closely by that of markers of renal dysfunction. Cx43 ± mice showed fewer tubular lesions, less inflammation, and further improved renal function. Similar results were observed in mice where Cx43 was specifically deleted within the vascular endothelium. In contrast, Cx43 deletion in renal tubules did not significantly improve renal structure and function after rIR. CONCLUSION Our findings suggest that endothelial Cx43 plays a crucial role in AKI.
Collapse
Affiliation(s)
- Magali Genest
- Batiment Recherche, INSERM UMR S1155, Tenon Hospital, 4 rue de la Chine, 75020, Paris, France
- Cardiovascular Markers in Stress Condition, INSERM, UMR-942, MASCOT, University Paris Cité, 75010, Paris, France
- Faculty of Medicine, Sorbonne University, 75013, Paris, France
| | - Satoshi Kinugasa
- Batiment Recherche, INSERM UMR S1155, Tenon Hospital, 4 rue de la Chine, 75020, Paris, France
| | - Elena Roger
- Batiment Recherche, INSERM UMR S1155, Tenon Hospital, 4 rue de la Chine, 75020, Paris, France
- Faculty of Medicine, Sorbonne University, 75013, Paris, France
| | - Louis Boutin
- Batiment Recherche, INSERM UMR S1155, Tenon Hospital, 4 rue de la Chine, 75020, Paris, France
- Cardiovascular Markers in Stress Condition, INSERM, UMR-942, MASCOT, University Paris Cité, 75010, Paris, France
- Critical Care Medicine and Burn Unit, AP-HP, Department of Anesthesiology, FHU PROMICE AP-HP, Saint Louis and DMU Parabol, University Paris Cité, 75010, Paris, France
| | - Sandrine Placier
- Batiment Recherche, INSERM UMR S1155, Tenon Hospital, 4 rue de la Chine, 75020, Paris, France
- Faculty of Medicine, Sorbonne University, 75013, Paris, France
| | - Stefanny Figueroa
- Batiment Recherche, INSERM UMR S1155, Tenon Hospital, 4 rue de la Chine, 75020, Paris, France
| | - Aude Dorison
- Batiment Recherche, INSERM UMR S1155, Tenon Hospital, 4 rue de la Chine, 75020, Paris, France
- Faculty of Medicine, Sorbonne University, 75013, Paris, France
| | - Safia Hadjadj
- Batiment Recherche, INSERM UMR S1155, Tenon Hospital, 4 rue de la Chine, 75020, Paris, France
- Faculty of Medicine, Sorbonne University, 75013, Paris, France
| | - Ines Baba
- INSERM, UMR S1166, Sorbonne University, Pitié-Salpétrière Hospital, Paris, France
| | - Emmanuel L Gautier
- INSERM, UMR S1166, Sorbonne University, Pitié-Salpétrière Hospital, Paris, France
| | - Panagiotis Kavvadas
- Batiment Recherche, INSERM UMR S1155, Tenon Hospital, 4 rue de la Chine, 75020, Paris, France
- Faculty of Medicine, Sorbonne University, 75013, Paris, France
| | - Christos Chatziantoniou
- Batiment Recherche, INSERM UMR S1155, Tenon Hospital, 4 rue de la Chine, 75020, Paris, France
- Faculty of Medicine, Sorbonne University, 75013, Paris, France
| | - Christos E Chadjichristos
- Batiment Recherche, INSERM UMR S1155, Tenon Hospital, 4 rue de la Chine, 75020, Paris, France.
- Faculty of Medicine, Sorbonne University, 75013, Paris, France.
| |
Collapse
|
3
|
Bao N, Wang J, Yue Q, Cao F, Gu X, Wen K, Kong W, Gu M. Chrysophanol-mediated trx-1 activation attenuates renal fibrosis through inhibition of the JNK/Cx43 signaling pathway. Ren Fail 2024; 46:2398710. [PMID: 39238246 PMCID: PMC11382722 DOI: 10.1080/0886022x.2024.2398710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/07/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024] Open
Abstract
PURPOSE This study aimed to investigate the inhibitory effect of chrysophanol on renal fibrosis and its molecular mechanism. METHODS Initially, potential targets of chrysophanol were predicted through network pharmacology analysis, and a protein-protein interaction network of these targets was constructed using Venn diagrams and the STRING database. GO enrichment analysis predicted the biological process of chrysophanol in treating renal fibrosis. Subsequently, both in vivo and in vitro experiments were conducted using unilateral ureteral obstruction (UUO) induced CKD mouse model and HK-2 cell model, respectively. In the mouse model, different doses of chrysophanol were administered to assess its renal protective effects through biochemical indicators, histological examination, and immunofluorescence staining. In the cell model, the regulatory effect of chrysophanol on the Trx-1/JNK/Cx43 pathway was evaluated using western blotting and flow cytometry. RESULTS Chrysophanol treatment significantly ameliorated renal dysfunction and histopathological damage in the UUO mouse model, accompanied by a reduction in serum oxidative stress markers. Furthermore, chrysophanol markedly upregulated the expression of Trx-1 in renal tissues and inhibited the activation of the JNK/Cx43 signaling pathway. At the cellular level, chrysophanol enhanced the activity of Trx-1 and downregulated the JNK/Cx43 signaling pathway, thereby inhibiting TGF-β induced oxidative stress and cell apoptosis. CONCLUSION This study demonstrated a significant inhibitory effect of chrysophanol on renal fibrosis, mediated by the activation of Trx-1 to inhibit the JNK/Cx43 pathway. These findings provide experimental support for the potential use of chrysophanol as a therapeutic agent for renal fibrosis.
Collapse
Affiliation(s)
- Neng Bao
- Department of Nephrology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing city, Jiangsu, China
| | - Jin Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Qiyu Yue
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu, China
| | - Fang Cao
- Department of Nephrology, Changshu Hospital affiliated to Nanjing University of Chinese Medicine, Changshu city, Jiangsu, China
| | - Xuejing Gu
- Department of Nephrology, Changshu Hospital affiliated to Nanjing University of Chinese Medicine, Changshu city, Jiangsu, China
| | - Kejian Wen
- Department of Nephrology, Changshu Hospital affiliated to Nanjing University of Chinese Medicine, Changshu city, Jiangsu, China
| | - Wei Kong
- Department of Nephrology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing city, Jiangsu, China
| | - Mingjia Gu
- Department of Nephrology, Changshu Hospital affiliated to Nanjing University of Chinese Medicine, Changshu city, Jiangsu, China
| |
Collapse
|
4
|
Lucero CM, Navarro L, Barros-Osorio C, Cáceres-Conejeros P, Orellana JA, Gómez GI. Activation of Pannexin-1 channels causes cell dysfunction and damage in mesangial cells derived from angiotensin II-exposed mice. Front Cell Dev Biol 2024; 12:1387234. [PMID: 38660621 PMCID: PMC11041381 DOI: 10.3389/fcell.2024.1387234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Chronic kidney disease (CKD) is a prevalent health concern associated with various pathological conditions, including hypertensive nephropathy. Mesangial cells are crucial in maintaining glomerular function, yet their involvement in CKD pathogenesis remains poorly understood. Recent evidence indicates that overactivation of Pannexin-1 (Panx1) channels could contribute to the pathogenesis and progression of various diseases. Although Panx1 is expressed in the kidney, its contribution to the dysfunction of renal cells during pathological conditions remains to be elucidated. This study aimed to investigate the impact of Panx1 channels on mesangial cell function in the context of hypertensive nephropathy. Using an Ang II-infused mouse model and primary mesangial cell cultures, we demonstrated that in vivo exposure to Ang II sensitizes cultured mesangial cells to show increased alterations when they are subjected to subsequent in vitro exposure to Ang II. Particularly, mesangial cell cultures treated with Ang II showed elevated activity of Panx1 channels and increased release of ATP. The latter was associated with enhanced basal intracellular Ca2+ ([Ca2+]i) and increased ATP-mediated [Ca2+]i responses. These effects were accompanied by increased lipid peroxidation and reduced cell viability. Crucially, all the adverse impacts evoked by Ang II were prevented by the blockade of Panx1 channels, underscoring their critical role in mediating cellular dysfunction in mesangial cells. By elucidating the mechanisms by which Ang II negatively impacts mesangial cell function, this study provides valuable insights into the pathogenesis of renal damage in hypertensive nephropathy.
Collapse
Affiliation(s)
- Claudia M. Lucero
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Laura Navarro
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Cristián Barros-Osorio
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Patricio Cáceres-Conejeros
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Juan A. Orellana
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gonzalo I. Gómez
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
5
|
Xiang Y, Yuan Z, Deng Q, Xie L, Yu D, Shi J. Potential therapeutic medicines for renal fibrosis: Small-molecule compounds and natural products. Bioorg Chem 2024; 143:106999. [PMID: 38035515 DOI: 10.1016/j.bioorg.2023.106999] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
Renal fibrosis is the pathological change process of chronic kidney disease deteriorating continuously. When the renal organ is stimulated by external stimuli, it will trigger the damage and phenotypic changes of some intrinsic cells in the kidney. When the body's autoimmune regulation or external treatment is not prompted enough to restore the organ, the pathological process is gradually aggravating, inducing a large amount of intracellular collagen deposition, which leads to the appearance of fibrosis and scarring. The renal parenchyma (including glomeruli and tubules) begins to harden, making it difficult to repair the kidney lesions. In the process of gradual changes in the kidney tissue, the kidney units are severely damaged and the kidney function shows a progressive decline, eventually resulting in the clinical manifestation of end-stage renal failure, namely uremia. This review provides a brief description of the diagnosis, pathogenesis, and potential therapeutic inhibitors of renal fibrosis. Since renal fibrosis has not yet had a clear therapeutic target and related drugs, some potential targets and relevant inhibitors are discussed, especially pharmacological effects and interactions with targets. Some existing natural products have potential efficacy for renal fibrosis, which is also roughly summarized, hoping that this article would have reference significance for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Zhuo Yuan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qichuan Deng
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Linshen Xie
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| | - Dongke Yu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
6
|
Roger E, Chadjichristos CE, Kavvadas P, Price GW, Cliff CL, Hadjadj S, Renciot J, Squires PE, Hills CE. Connexin-43 hemichannels orchestrate NOD-like receptor protein-3 (NLRP3) inflammasome activation and sterile inflammation in tubular injury. Cell Commun Signal 2023; 21:263. [PMID: 37770948 PMCID: PMC10536814 DOI: 10.1186/s12964-023-01245-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/23/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Without a viable cure, chronic kidney disease is a global health concern. Inflammatory damage in and around the renal tubules dictates disease severity and is contributed to by multiple cell types. Activated in response to danger associated molecular patterns (DAMPs) including ATP, the NOD-like receptor protein-3 (NLRP3) inflammasome is integral to this inflammation. In vivo, we have previously observed that increased expression of Connexin 43 (Cx43) is linked to inflammation in chronic kidney disease (CKD) whilst in vitro studies in human proximal tubule cells highlight a role for aberrant Cx43 hemichannel mediated ATP release in tubule injury. A role for Cx43 hemichannels in priming and activation of the NLRP3 inflammasome in tubule epithelial cells remains to be determined. METHODS Using the Nephroseq database, analysis of unpublished transcriptomic data, examined gene expression and correlation in human CKD. The unilateral ureteral obstruction (UUO) mouse model was combined with genetic (tubule-specific Cx43 knockout) and specific pharmacological blockade of Cx43 (Peptide5), to explore a role for Cx43-hemichannels in tubule damage. Human primary tubule epithelial cells were used as an in vitro model of CKD. RESULTS Increased Cx43 and NLRP3 expression correlates with declining glomerular filtration rate and increased proteinuria in biopsies isolated from patients with CKD. Connexin 43-tubule deletion prior to UUO protected against tubular injury, increased expression of proinflammatory molecules, and significantly reduced NLRP3 expression and downstream signalling mediators. Accompanied by a reduction in F4/80 macrophages and fibroblast specific protein (FSP1+) fibroblasts, Cx43 specific hemichannel blocker Peptide5 conferred similar protection in UUO mice. In vitro, Peptide5 determined that increased Cx43-hemichannel activity primes and activates the NLRP3 inflammasome via ATP-P2X7 receptor signalling culminating in increased secretion of chemokines and cytokines, each of which are elevated in individuals with CKD. Inhibition of NLRP3 and caspase 1 similarly decreased markers of tubular injury, whilst preventing the perpetual increase in Cx43-hemichannel activity. CONCLUSION Aberrant Cx43-hemichannel activity in kidney tubule cells contributes to tubule inflammation via activation of the NLRP3 inflammasome and downstream paracrine mediated cell signalling. Use of hemichannel blockers in targeting Cx43-hemichannels is an attractive future therapeutic target to slow or prevent disease progression in CKD. Video Abstract.
Collapse
Affiliation(s)
- Elena Roger
- Batiment Recherche, INSERM, UMR-S1155, Tenon Hospital, 4 Rue de la Chine, Paris, 75020, France
- Faculty of Medicine, Sorbonne University, Paris, 75013, France
| | - Christos E Chadjichristos
- Batiment Recherche, INSERM, UMR-S1155, Tenon Hospital, 4 Rue de la Chine, Paris, 75020, France
- Faculty of Medicine, Sorbonne University, Paris, 75013, France
| | - Panagiotis Kavvadas
- Batiment Recherche, INSERM, UMR-S1155, Tenon Hospital, 4 Rue de la Chine, Paris, 75020, France
- Faculty of Medicine, Sorbonne University, Paris, 75013, France
| | - Gareth W Price
- Joseph Banks Laboratories, School of Life and Environmental Sciences, University of Lincoln, Lincoln, LN6 7DL, UK
| | - Chelsy L Cliff
- Joseph Banks Laboratories, School of Life and Environmental Sciences, University of Lincoln, Lincoln, LN6 7DL, UK
| | - Safia Hadjadj
- Batiment Recherche, INSERM, UMR-S1155, Tenon Hospital, 4 Rue de la Chine, Paris, 75020, France
- Faculty of Medicine, Sorbonne University, Paris, 75013, France
| | - Jessy Renciot
- Batiment Recherche, INSERM, UMR-S1155, Tenon Hospital, 4 Rue de la Chine, Paris, 75020, France
- Faculty of Medicine, Sorbonne University, Paris, 75013, France
| | - Paul E Squires
- Joseph Banks Laboratories, School of Life and Environmental Sciences, University of Lincoln, Lincoln, LN6 7DL, UK
| | - Claire E Hills
- Joseph Banks Laboratories, School of Life and Environmental Sciences, University of Lincoln, Lincoln, LN6 7DL, UK.
| |
Collapse
|
7
|
Zhiwen X, Yongqing Z, Wenlan S, Shan H, Bangmin H, Juntao J, Yingjian Z, Yifeng J. Dibutyl phthalate induces epithelial-mesenchymal transition of renal tubular epithelial cells via the Ang II/AMPKα2/Cx43 signaling pathway. Toxicology 2023:153584. [PMID: 37356649 DOI: 10.1016/j.tox.2023.153584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Maternal exposure to dibutyl phthalate (DBP) induces renal fibrosis in offspring. However, the specific roles of connexin 43 (Cx43) in DBP-induced renal fibrosis remain unknown. Therefore, in this study, we analysed the expression of Cx43 in renal tubular epithelial cells (RTECs) with or without DBP exposure using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting. A small interfering RNA against Cx43 was introduced to assess its role in epithelial-mesenchymal transition (EMT) of RTECs caused by 100 μmol/L DBP. Bioinformatics analysis was conducted with AMP-activated protein kinase (AMPK)-α2 and angiotensin (Ang) II inhibitors to determine the mechanisms involved in the expression of Cx43 in HK-2 cells. RT-qPCR and western blotting revealed that DBP increased the expression of Cx43 in vitro. Moreover, Cx43 knockdown significantly alleviated DBP-induced EMT caused by DBP in HK-2 cells. Bioinformatics analysis with AMPKα2 and Ang II inhibitors revealed that DBP upregulated Cx43 expression by activating the Ang II/AMPKα2 signaling pathway. Our findings indicate that DBP induces renal fibrosis by activating Ang II/AMPKα2/Cx43 signaling pathway and EMT in RETCs, suggesting a potential target for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Xie Zhiwen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zhang Yongqing
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Sun Wenlan
- Department of Geriatric, Shanghai General Hospital Affiliated to Nanjing Medical University, Shanghai 200080, China
| | - Hua Shan
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Han Bangmin
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jiang Juntao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zhu Yingjian
- Department of Urology, Jiading Branch of Shanghai General Hospital Affiliated to Nanjing Medical University, Shanghai 201803, China.
| | - Jing Yifeng
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
8
|
An X, Li G, Wang S, Xie T, Ren X, Zhao Y. Renoprotection by Inhibiting Connexin 43 Expression in a Mouse Model of Obesity-Related Renal Injury. Diabetes Metab Syndr Obes 2023; 16:1415-1424. [PMID: 37220614 PMCID: PMC10200121 DOI: 10.2147/dmso.s412546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/02/2023] [Indexed: 05/25/2023] Open
Abstract
Introduction Our previous study conducted in an obesity-related renal injury rat model have established a connection between increased connexin 43 (Cx43) expression and renal injury. In this study, we investigated whether inhibiting Cx43 expression could provide renoprotection in a mouse model of obesity-related renal injury. Methods Five-week-old C57BL/6J mice were fed with a high-fat diet for 12 weeks to establish an obesity-related renal injury model, then they were treated with Cx43 antisense oligodeoxynucleotide (AS) or scrambled oligodeoxynucleotide (SCR) by an implanted osmotic pump for 4 weeks. Finally, the glomerular filtration function, the histological change in the glomeruli, and the markers of podocyte injury (WT-1, Nephrin) and inflammatory infiltration of renal tissue (CD68, F4/80 and VCAM-1) were examined respectively. Results The results showed that inhibiting Cx43 expression by AS in this mouse model of obesity-related renal injury can effectively improve glomerular filtration function, alleviate glomerular expansion and podocyte injury, and attenuate the inflammatory infiltration of renal tissue. Conclusion Our results demonstrated that inhibiting Cx43 expression by AS could provide renoprotection for the mouse model of obesity-related renal injury.
Collapse
Affiliation(s)
- Xiaomin An
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, 116027, People’s Republic of China
- Department of Nephrology, Xi’an Children’s Hospital, Xi’an, 710003, People’s Republic of China
| | - Guohua Li
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, 116027, People’s Republic of China
| | - Shu Wang
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, 116027, People’s Republic of China
| | - Tianrun Xie
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, 116027, People’s Republic of China
| | - Xiaoxiao Ren
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, 116027, People’s Republic of China
| | - Yongli Zhao
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, 116027, People’s Republic of China
| |
Collapse
|
9
|
Zhang ZS, Liu YY, He SS, Bao DQ, Wang HC, Zhang J, Peng XY, Zang JT, Zhu Y, Wu Y, Li QH, Li T, Liu LM. Pericytes protect rats and mice from sepsis-induced injuries by maintaining vascular reactivity and barrier function: implication of miRNAs and microvesicles. Mil Med Res 2023; 10:13. [PMID: 36907884 PMCID: PMC10010010 DOI: 10.1186/s40779-023-00442-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 01/31/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Vascular hyporeactivity and leakage are key pathophysiologic features that produce multi-organ damage upon sepsis. We hypothesized that pericytes, a group of pluripotent cells that maintain vascular integrity and tension, are protective against sepsis via regulating vascular reactivity and permeability. METHODS We conducted a series of in vivo experiments using wild-type (WT), platelet-derived growth factor receptor beta (PDGFR-β)-Cre + mT/mG transgenic mice and Tie2-Cre + Cx43flox/flox mice to examine the relative contribution of pericytes in sepsis, either induced by cecal ligation and puncture (CLP) or lipopolysaccharide (LPS) challenge. In a separate set of experiments with Sprague-Dawley (SD) rats, pericytes were depleted using CP-673451, a selective PDGFR-β inhibitor, at a dosage of 40 mg/(kg·d) for 7 consecutive days. Cultured pericytes, vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs) were used for mechanistic investigations. The effects of pericytes and pericyte-derived microvesicles (PCMVs) and candidate miRNAs on vascular reactivity and barrier function were also examined. RESULTS CLP and LPS induced severe injury/loss of pericytes, vascular hyporeactivity and leakage (P < 0.05). Transplantation with exogenous pericytes protected vascular reactivity and barrier function via microvessel colonization (P < 0.05). Cx43 knockout in either pericytes or VECs reduced pericyte colonization in microvessels (P < 0.05). Additionally, PCMVs transferred miR-145 and miR-132 to VSMCs and VECs, respectively, exerting a protective effect on vascular reactivity and barrier function after sepsis (P < 0.05). miR-145 primarily improved the contractile response of VSMCs by activating the sphingosine kinase 2 (Sphk2)/sphingosine-1-phosphate receptor (S1PR)1/phosphorylation of myosin light chain 20 pathway, whereas miR-132 effectively improved the barrier function of VECs by activating the Sphk2/S1PR2/zonula occludens-1 and vascular endothelial-cadherin pathways. CONCLUSIONS Pericytes are protective against sepsis through regulating vascular reactivity and barrier function. Possible mechanisms include both direct colonization of microvasculature and secretion of PCMVs.
Collapse
Affiliation(s)
- Zi-Sen Zhang
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Department of Shock and Transfusion, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Yi-Yan Liu
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Department of Shock and Transfusion, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Shuang-Shuang He
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Department of Shock and Transfusion, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Dai-Qin Bao
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Department of Shock and Transfusion, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Hong-Chen Wang
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Department of Shock and Transfusion, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Jie Zhang
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Department of Shock and Transfusion, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Xiao-Yong Peng
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Department of Shock and Transfusion, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Jia-Tao Zang
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Department of Shock and Transfusion, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Yu Zhu
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Department of Shock and Transfusion, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Yue Wu
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Department of Shock and Transfusion, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Qing-Hui Li
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Department of Shock and Transfusion, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Tao Li
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Department of Shock and Transfusion, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Liang-Ming Liu
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Department of Shock and Transfusion, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042 China
| |
Collapse
|
10
|
de Souza RB, Lemes RB, Foresto-Neto O, Cassiano LL, Reinhardt DP, Meek KM, Koh IHJ, Lewis PN, Pereira LV. Extracellular matrix and vascular dynamics in the kidney of a murine model for Marfan syndrome. PLoS One 2023; 18:e0285418. [PMID: 37159453 PMCID: PMC10168582 DOI: 10.1371/journal.pone.0285418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/24/2023] [Indexed: 05/11/2023] Open
Abstract
Fibrillin-1 is a pivotal structural component of the kidney's glomerulus and peritubular tissue. Mutations in the fibrillin-1 gene result in Marfan syndrome (MFS), an autosomal dominant disease of the connective tissue. Although the kidney is not considered a classically affected organ in MFS, several case reports describe glomerular disease in patients. Therefore, this study aimed to characterize the kidney in the mgΔlpn-mouse model of MFS. Affected animals presented a significant reduction of glomerulus, glomerulus-capillary, and urinary space, and a significant reduction of fibrillin-1 and fibronectin in the glomerulus. Transmission electron microscopy and 3D-ultrastructure analysis revealed decreased amounts of microfibrils which also appeared fragmented in the MFS mice. Increased collagen fibers types I and III, MMP-9, and α-actin were also observed in affected animals, suggesting a tissue-remodeling process in the kidney. Video microscopy analysis showed an increase of microvessel distribution coupled with reduction of blood-flow velocity, while ultrasound flow analysis revealed significantly lower blood flow in the kidney artery and vein of the MFS mice. The structural and hemodynamic changes of the kidney indicate the presence of kidney remodeling and vascular resistance in this MFS model. Both processes are associated with hypertension which is expected to worsen the cardiovascular phenotype in MFS.
Collapse
Affiliation(s)
| | - Renan Barbosa Lemes
- Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, SP, Brazil
| | - Orestes Foresto-Neto
- Faculty of Medicine, Department of Clinical Medicine, Renal Division, University of São Paulo, São Paulo, Brazil
| | | | - Dieter P Reinhardt
- Department of Anatomy and Cell Biology Dentistry and Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Keith M Meek
- Structural Biophysics Research Group, School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Ivan Hong Jun Koh
- Department of Surgery, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Philip N Lewis
- Structural Biophysics Research Group, School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Lygia V Pereira
- Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
11
|
Hypertensive Nephropathy: Unveiling the Possible Involvement of Hemichannels and Pannexons. Int J Mol Sci 2022; 23:ijms232415936. [PMID: 36555574 PMCID: PMC9785367 DOI: 10.3390/ijms232415936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Hypertension is one of the most common risk factors for developing chronic cardiovascular diseases, including hypertensive nephropathy. Within the glomerulus, hypertension causes damage and activation of mesangial cells (MCs), eliciting the production of large amounts of vasoactive and proinflammatory agents. Accordingly, the activation of AT1 receptors by the vasoactive molecule angiotensin II (AngII) contributes to the pathogenesis of renal damage, which is mediated mostly by the dysfunction of intracellular Ca2+ ([Ca2+]i) signaling. Similarly, inflammation entails complex processes, where [Ca2+]i also play crucial roles. Deregulation of this second messenger increases cell damage and promotes fibrosis, reduces renal blood flow, and impairs the glomerular filtration barrier. In vertebrates, [Ca2+]i signaling depends, in part, on the activity of two families of large-pore channels: hemichannels and pannexons. Interestingly, the opening of these channels depends on [Ca2+]i signaling. In this review, we propose that the opening of channels formed by connexins and/or pannexins mediated by AngII induces the ATP release to the extracellular media, with the subsequent activation of purinergic receptors. This process could elicit Ca2+ overload and constitute a feed-forward mechanism, leading to kidney damage.
Collapse
|
12
|
Politis PK, Charonis AS. Calreticulin in renal fibrosis: A short review. J Cell Mol Med 2022; 26:5949-5954. [PMID: 36440574 PMCID: PMC9753439 DOI: 10.1111/jcmm.17627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 11/29/2022] Open
Abstract
Fibrosis is a common denominator of several pathological conditions. Over the last decade, Calreticulin has emerged as a critical player in the fibrotic processes in many tissues and organs. Here we review the recent advances in our understanding of the regulatory roles of Calreticulin in renal fibrosis. In particular, a proteomic screen that we performed more than 15 years ago, for the identification of novel components involved in the mechanisms of renal fibrosis, led to the observation that Calreticulin is associated with the initiation and progression of kidney fibrosis in a rodent model. We also showed that altered expression levels of Calreticulin in vitro and in vivo are significantly affecting the fibrotic phenotype in cellular systems and animal models, respectively. We also identified an upstream regulatory mechanism that mediates the transcriptional control of Calreticulin expression during the progression of renal fibrosis, by showing that the druggable orphan nuclear receptor NR5A2 and its SUMOylation is involved in this action. These data provide novel targets for future pharmacological interventions against fibrosis. In addition, further proteomic analysis uncovered a correlation between the up-regulation of Calreticulin and that of 14-3-3σ protein. Collectively, our previous observations suggest that Calreticulin is a central node in a regulatory axis that controls the initiation and progression of renal fibrosis.
Collapse
Affiliation(s)
- Panagiotis K. Politis
- Center for Basic ResearchBiomedical Research Foundation of the Academy of AthensAthensGreece
| | - Aristidis S. Charonis
- Center for Clinical, Experimental Surgery and Translational ResearchBiomedical Research Foundation of the Academy of AthensAthensGreece,University Research Institute of Maternal and Child Health and Precision MedicineAthensGreece
| |
Collapse
|
13
|
Williams BM, Cliff CL, Demirel I, Squires PE, Hills CE. Blocking connexin 43 hemichannel-mediated ATP release reduces communication within and between tubular epithelial cells and medullary fibroblasts in a model of diabetic nephropathy. Diabet Med 2022; 39:e14963. [PMID: 36256487 PMCID: PMC9828766 DOI: 10.1111/dme.14963] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Fibrosis of renal tubules is the final common pathway in diabetic nephropathy and develops in the face of tubular injury and fibroblast activation. Aberrant connexin 43 (Cx43) hemichannel activity has been linked to this damage under euglycaemic conditions, however, its role in glycaemic injury is unknown. This study investigated the effect of a Cx43 blocker (Tonabersat) on hemichannel activity and cell-cell interactions within and between tubular epithelial cells and fibroblasts in an in vitro model of diabetic nephropathy. METHODS Human kidney (HK2) proximal tubule epithelial cells and medullary fibroblasts (TK173) were treated in low (5 mM) or high (25 mM) glucose ± transforming growth factor beta-1 (TGFβ1) ± Tonabersat in high glucose. Carboxyfluorescein dye uptake and ATPlite luminescence assessed changes in hemichannel-mediated ATP release, while immunoblotting determined protein expression. Co-incubation with the ATP-diphosphohydrolase apyrase or a P2X7R inhibitor (A438079) assessed ATP-P2X7R signalling. Indirect co-culture with conditioned media from the alternate cell type evaluated paracrine-mediated heterotypic interactions. RESULTS Tonabersat partially negated glucose/TGFβ1-induced increases in Cx43 hemichannel-mediated ATP release and downstream changes in adherens junction and extracellular matrix (ECM) protein expression in HK2 and TK173 cells. Apyrase and A438079 highlighted the role for ATP-P2X7R in driving changes in protein expression in TK173 fibroblasts. Indirect co-culture studies suggest that epithelial cell secretome increases Tonabersat-sensitive hemichannel-mediated dye uptake in fibroblasts and downstream protein expression. CONCLUSION Tonabersat-sensitive hemichannel-mediated ATP release enhances TGFβ1-driven heterotypic cell-cell interaction and favours myofibroblast activation. The data supports the potential benefit of Cx43 inhibition in reducing tubulointerstitial fibrosis in late-stage diabetic nephropathy.
Collapse
Affiliation(s)
| | | | - Isak Demirel
- School of Medical SciencesÖrebro UniversityÖrebroSweden
| | | | | |
Collapse
|
14
|
Roger E, Boutin L, Chadjichristos CE. The Role of Connexin 43 in Renal Disease: Insights from In Vivo Models of Experimental Nephropathy. Int J Mol Sci 2022; 23:ijms232113090. [PMID: 36361888 PMCID: PMC9656944 DOI: 10.3390/ijms232113090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/25/2022] Open
Abstract
Renal disease is a major public health challenge since its prevalence has continuously increased over the last decades. At the end stage, extrarenal replacement therapy and transplantation remain the only treatments currently available. To understand how the disease progresses, further knowledge of its pathophysiology is needed. For this purpose, experimental models, using mainly rodents, have been developed to unravel the mechanisms involved in the initiation and progression of renal disease, as well as to identify potential targets for therapy. The gap junction protein connexin 43 has recently been identified as a novel player in the development of kidney disease. Its expression has been found to be altered in many types of human renal pathologies, as well as in different animal models, contributing to the activation of inflammatory and fibrotic processes that lead to renal damage. Furthermore, Cx43 genetic, pharmacogenetic, or pharmacological inhibition preserved renal function and structure. This review summarizes the existing advances on the role of this protein in renal diseases, based mainly on different in vivo animal models of acute and chronic renal diseases.
Collapse
Affiliation(s)
- Elena Roger
- INSERM, UMR-S1155, Bâtiment Recherche, Tenon Hospital, 75020 Paris, France
- Faculty of Medicine, Sorbonne University, 75013 Paris, France
| | - Louis Boutin
- INSERM, UMR-S1155, Bâtiment Recherche, Tenon Hospital, 75020 Paris, France
- Faculty of Medicine, Sorbonne University, 75013 Paris, France
- INSERM, UMR-942, MASCOT, Cardiovascular Markers in Stress Condition, Université de Paris, 75010 Paris, France
- FHU PROMICE AP-HP, Saint Louis and DMU Parabol, Critical Care Medicine and Burn Unit, AP-HP, Department of Anesthesiology, Université Paris Cité, 75010 Paris, France
| | - Christos E. Chadjichristos
- INSERM, UMR-S1155, Bâtiment Recherche, Tenon Hospital, 75020 Paris, France
- Faculty of Medicine, Sorbonne University, 75013 Paris, France
- Correspondence:
| |
Collapse
|
15
|
Chua JW, Thangaveloo M, Lim DXE, Madden LE, Phillips ARJ, Becker DL. Connexin43 in Post-Surgical Peritoneal Adhesion Formation. Life (Basel) 2022; 12:1734. [PMID: 36362888 PMCID: PMC9697983 DOI: 10.3390/life12111734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/15/2022] [Accepted: 10/26/2022] [Indexed: 09/10/2024] Open
Abstract
OBJECTIVE Post-surgical peritoneal adhesions are a serious problem for the quality of life and fertility. Yet there are no effective ways of preventing their occurrence. The gap junction protein Cx43 is known to be involved in fibrosis in several different organs and disease conditions often associated with inflammation. Here we examined the Cx43 dynamic expression in an ischemic button model of surgical adhesions. METHODS Using the mouse ischemic button model, Cx43 antisense was delivered in Pluronic gel to attenuate Cx43 expression. The severity of button formation and immunofluorescence analysis of Cx43 and TGF-β1 were performed. The concentration of tissue plasminogen activator via ELISA was also performed. RESULTS As early as 6 h after button formation, the Cx43 levels were elevated in and around the button and some weak adhesions were formed. By 24 h Cx43 levels had increased further and adhesions were more defined. At 7 days the adhesions were much more robust, opaque, and vascularized, requiring blunt or sharp dissection to break them. Cx43 antisense attenuated its upregulation and, reduced the number and severity of adhesions that formed. CONCLUSION Targeting Cx43 after surgical procedures may be a potential therapeutic strategy for preventing adhesion formation or at least reducing their severity.
Collapse
Affiliation(s)
- Jia Wang Chua
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232, Singapore
- Skin Research Institute Singapore, Singapore 308232, Singapore
| | - Moogaambikai Thangaveloo
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232, Singapore
- Skin Research Institute Singapore, Singapore 308232, Singapore
| | - Debbie Xiu En Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232, Singapore
- Skin Research Institute Singapore, Singapore 308232, Singapore
| | - Leigh E. Madden
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232, Singapore
- Skin Research Institute Singapore, Singapore 308232, Singapore
| | | | - David L. Becker
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232, Singapore
- Skin Research Institute Singapore, Singapore 308232, Singapore
| |
Collapse
|
16
|
Blocking connexin 43 and its promotion of ATP release from renal tubular epithelial cells ameliorates renal fibrosis. Cell Death Dis 2022; 13:511. [PMID: 35641484 PMCID: PMC9156700 DOI: 10.1038/s41419-022-04910-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 02/08/2023]
Abstract
Whether metabolites derived from injured renal tubular epithelial cells (TECs) participate in renal fibrosis is poorly explored. After TEC injury, various metabolites are released and among the most potent is adenosine triphosphate (ATP), which is released via ATP-permeable channels. In these hemichannels, connexin 43 (Cx43) is the most common member. However, its role in renal interstitial fibrosis (RIF) has not been fully examined. We analyzed renal samples from patients with obstructive nephropathy and mice with unilateral ureteral obstruction (UUO). Cx43-KSP mice were generated to deplete Cx43 in TECs. Through transcriptomics, metabolomics, and single-cell sequencing multi-omics analysis, the relationship among tubular Cx43, ATP, and macrophages in renal fibrosis was explored. The expression of Cx43 in TECs was upregulated in both patients and mice with obstructive nephropathy. Knockdown of Cx43 in TECs or using Cx43-specific inhibitors reduced UUO-induced inflammation and fibrosis in mice. Single-cell RNA sequencing showed that ATP specific receptors, including P2rx4 and P2rx7, were distributed mainly on macrophages. We found that P2rx4- or P2rx7-positive macrophages underwent pyroptosis after UUO, and in vitro ATP directly induced pyroptosis by macrophages. The administration of P2 receptor or P2X7 receptor blockers to UUO mice inhibited macrophage pyroptosis and demonstrated a similar degree of renoprotection as Cx43 genetic depletion. Further, we found that GAP 26 (a Cx43 hemichannel inhibitor) and A-839977 (an inhibitor of the pyroptosis receptor) alleviated UUO-induced fibrosis, while BzATP (the agonist of pyroptosis receptor) exacerbated fibrosis. Single-cell sequencing demonstrated that the pyroptotic macrophages upregulated the release of CXCL10, which activated intrarenal fibroblasts. Cx43 mediates the release of ATP from TECs during renal injury, inducing peritubular macrophage pyroptosis, which subsequently leads to the release of CXCL10 and activation of intrarenal fibroblasts and acceleration of renal fibrosis.
Collapse
|
17
|
Connexin 43 Expression in Cutaneous Biopsies of Lupus Erythematosus. Am J Dermatopathol 2022; 44:664-668. [PMID: 35503887 DOI: 10.1097/dad.0000000000002217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Gap junctions are channels between adjacent cells formed by connexins (Cxs). Cxs also form hemichannels that connect the cell with its extracellular milieu. These channels allow the transport of ions, metabolites, and small molecules; therefore, Cxs, and more specifically, connexin (Cx) 43 has been demonstrated to be in control of several crucial events such as inflammation and cell death. MATERIAL AND METHODS We examined the immunostaining of Cx43 in the endothelia of the cutaneous blood vessels of biopsies from 28 patients with several variants of lupus erythematosus. RESULTS In 19 cases (67.86%), staining of more than half of the dermal vessels including both vessels of the papillary and of the reticular dermis was identified. Only in 4 cases (14.28%), less than 25% of the vessels in the biopsy showed expression of the marker. CONCLUSIONS Our results suggest a role of Cx43 in regulating the endothelial activity in lupus erythematosus, which also opens a door for targeted therapeutic options.
Collapse
|
18
|
Cliff CL, Williams BM, Chadjichristos CE, Mouritzen U, Squires PE, Hills CE. Connexin 43: A Target for the Treatment of Inflammation in Secondary Complications of the Kidney and Eye in Diabetes. Int J Mol Sci 2022; 23:600. [PMID: 35054783 PMCID: PMC8776095 DOI: 10.3390/ijms23020600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
Of increasing prevalence, diabetes is characterised by elevated blood glucose and chronic inflammation that precedes the onset of multiple secondary complications, including those of the kidney and the eye. As the leading cause of end stage renal disease and blindness in the working population, more than ever is there a demand to develop clinical interventions which can both delay and prevent disease progression. Connexins are membrane bound proteins that can form pores (hemichannels) in the cell membrane. Gated by cellular stress and injury, they open under pathophysiological conditions and in doing so release 'danger signals' including adenosine triphosphate into the extracellular environment. Linked to sterile inflammation via activation of the nod-like receptor protein 3 inflammasome, targeting aberrant hemichannel activity and the release of these danger signals has met with favourable outcomes in multiple models of disease, including secondary complications of diabetes. In this review, we provide a comprehensive update on those studies which document a role for aberrant connexin hemichannel activity in the pathogenesis of both diabetic eye and kidney disease, ahead of evaluating the efficacy of blocking connexin-43 specific hemichannels in these target tissues on tissue health and function.
Collapse
Affiliation(s)
- Chelsy L. Cliff
- Joseph Banks Laboratories, School of Life, Sciences University of Lincoln, Lincoln LN6 7DL, UK; (C.L.C.); (B.M.W.); (P.E.S.)
| | - Bethany M. Williams
- Joseph Banks Laboratories, School of Life, Sciences University of Lincoln, Lincoln LN6 7DL, UK; (C.L.C.); (B.M.W.); (P.E.S.)
| | - Christos E. Chadjichristos
- National Institutes for Health and Medical Research, UMR-S1155, Batiment Recherche, Tenon Hospital, 4 Rue de la Chine, 75020 Paris, France;
| | - Ulrik Mouritzen
- Ciana Therapeutics, Ole Maaloes Vej 3, 2200 Copenhagen N, Denmark;
| | - Paul E. Squires
- Joseph Banks Laboratories, School of Life, Sciences University of Lincoln, Lincoln LN6 7DL, UK; (C.L.C.); (B.M.W.); (P.E.S.)
| | - Claire E. Hills
- Joseph Banks Laboratories, School of Life, Sciences University of Lincoln, Lincoln LN6 7DL, UK; (C.L.C.); (B.M.W.); (P.E.S.)
| |
Collapse
|
19
|
Geis L, Boudriot FF, Wagner C. Connexin mRNA distribution in adult mouse kidneys. Pflugers Arch 2021; 473:1737-1747. [PMID: 34365513 PMCID: PMC8528753 DOI: 10.1007/s00424-021-02608-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/18/2021] [Accepted: 07/22/2021] [Indexed: 11/25/2022]
Abstract
Kidneys are thought to express eight different connexin isoforms (i.e., Cx 26, 30, 32, 37, 40, 43, 45, and 46), which form either hemichannels or gap junctions serving to intercellular communication and functional synchronization. Proper function of connexins has already been shown to be crucial for regulation of renal hemodynamics and renin secretion, and there is also growing evidence for connexins to play a role in pathologic conditions such as renal fibrosis or diabetic nephropathy. Therefore, exact intrarenal localization of the different connexin isoforms gains particular interest. Until now intrarenal expression of connexins has mainly been examined by immunohistochemistry, which in part generated conflicting results depending on antibodies and fixation protocols used. In this work, we used fluorescent RNAscope as an alternative technical approach to localize renal connexin mRNAs in healthy mouse kidneys. Addition of RNAscope probes for cell type specific mRNAs was used to assign connexin mRNA signals to specific cell types. We hereby found Cx26 mRNA strongly expressed in proximal tubules, Cx30 mRNA was selectively detected in the urothelium, and Cx32 mRNA was found in proximal tubules and to a lesser extent also in collecting ducts. Cx37 mRNA was mainly associated with vascular endothelium, Cx40 mRNA was largely found in glomerular mesangial and less in vascular endothelial cells, Cx43 mRNA was sparsely expressed by interstitial cells of all kidney zones, and Cx45 mRNA was predominantly found in smooth muscle cell layers of both blood vessels and ureter as well as in mesangial and interstitial (fibroblastic) cells. Cx46 mRNA could not be detected. In summary our results essentially confirm previous data on connexin expression in the renal vasculature and in glomeruli. In addition, they demonstrate strong connexin gene expression in proximal tubules, and they suggest significant connexin expression in resident tubulointerstitial cells.
Collapse
Affiliation(s)
- Lisa Geis
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany.
| | | | - Charlotte Wagner
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
20
|
Kato M. Intercellular transmission of endoplasmic reticulum stress through gap junction targeted by microRNAs as a key step of diabetic kidney diseases? ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:827. [PMID: 34164461 PMCID: PMC8184452 DOI: 10.21037/atm-21-1280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Mitsuo Kato
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, USA
| |
Collapse
|
21
|
Camal Ruggieri IN, Cícero AM, Issa JPM, Feldman S. Bone fracture healing: perspectives according to molecular basis. J Bone Miner Metab 2021; 39:311-331. [PMID: 33151416 DOI: 10.1007/s00774-020-01168-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
Fractures have a great impact on health all around the world and with fracture healing optimization; this problem could be resolved partially. To make a practical contribution to this issue, the knowledge of bone tissue, cellularity, and metabolism is essential, especially cytoskeletal architecture and its transformations according to external pressures. Special physical and chemical characteristics of the extracellular matrix (ECM) allow the transmission of mechanical stimuli from outside the cell to the plasmatic membrane. The osteocyte cytoskeleton is conformed by a complex network of actin and microtubules combined with crosslinker proteins like vinculin and fimbrin, connecting and transmitting outside stimuli through EMC to cytoplasm. Herein, critical signaling pathways like Cx43-depending ones, MAPK/ERK, Wnt, YAP/TAZ, Rho-ROCK, and others are activated due to mechanical stimuli, resulting in osteocyte cytoskeletal changes and ECM remodeling, altering the tissue and, therefore, the bone. In recent years, the osteocyte has gained more interest and value in relation to bone homeostasis as a great coordinator of other cell populations, thanks to its unique functions. By integrating the latest advances in relation to intracellular signaling pathways, mechanotransmission system of the osteocyte and bone tissue engineering, there are promising experimental strategies, while some are ready for clinical trials. This work aims to show clearly and precisely the integration between cytoskeleton and main molecular pathways in relation to mechanotransmission mechanism in osteocytes, and the use of this theoretical knowledge in therapeutic tools for bone fracture healing.
Collapse
Affiliation(s)
- Iván Nadir Camal Ruggieri
- School of Medicine, LABOATEM (Osteoarticular Biology, Tissue Engineering and Emerging Therapies Laboratory), Biological Chemistry Cat, School of Medicine, Rosario National University, Rosario, Argentina.
| | - Andrés Mauricio Cícero
- School of Medicine, LABOATEM (Osteoarticular Biology, Tissue Engineering and Emerging Therapies Laboratory), Biological Chemistry Cat, School of Medicine, Rosario National University, Rosario, Argentina
| | | | - Sara Feldman
- School of Medicine, LABOATEM (Osteoarticular Biology, Tissue Engineering and Emerging Therapies Laboratory), Biological Chemistry Cat, School of Medicine, Rosario National University, Rosario, Argentina
- Research Council of the Rosario National University (CIUNR) and CONICET, Rosario, Argentina
| |
Collapse
|
22
|
Collagen I Modifies Connexin-43 Hemichannel Activity via Integrin α2β1 Binding in TGFβ1-Evoked Renal Tubular Epithelial Cells. Int J Mol Sci 2021; 22:ijms22073644. [PMID: 33807408 PMCID: PMC8038016 DOI: 10.3390/ijms22073644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic Kidney Disease (CKD) is associated with sustained inflammation and progressive fibrosis, changes that have been linked to altered connexin hemichannel-mediated release of adenosine triphosphate (ATP). Kidney fibrosis develops in response to increased deposition of extracellular matrix (ECM), and up-regulation of collagen I is an early marker of renal disease. With ECM remodeling known to promote a loss of epithelial stability, in the current study we used a clonal human kidney (HK2) model of proximal tubular epithelial cells to determine if collagen I modulates changes in cell function, via connexin-43 (Cx43) hemichannel ATP release. HK2 cells were cultured on collagen I and treated with the beta 1 isoform of the pro-fibrotic cytokine transforming growth factor (TGFβ1) ± the Cx43 mimetic Peptide 5 and/or an anti-integrin α2β1 neutralizing antibody. Phase microscopy and immunocytochemistry observed changes in cell morphology and cytoskeletal reorganization, whilst immunoblotting and ELISA identified changes in protein expression and secretion. Carboxyfluorescein dye uptake and biosensing measured hemichannel activity and ATP release. A Cytoselect extracellular matrix adhesion assay assessed changes in cell-substrate interactions. Collagen I and TGFβ1 synergistically evoked increased hemichannel activity and ATP release. This was paralleled by changes to markers of tubular injury, partly mediated by integrin α2β1/integrin-like kinase signaling. The co-incubation of the hemichannel blocker Peptide 5, reduced collagen I/TGFβ1 induced alterations and inhibited a positive feedforward loop between Cx43/ATP release/collagen I. This study highlights a role for collagen I in regulating connexin-mediated hemichannel activity through integrin α2β1 signaling, ahead of establishing Peptide 5 as a potential intervention.
Collapse
|
23
|
Squires PE, Price GW, Mouritzen U, Potter JA, Williams BM, Hills CE. Danegaptide Prevents TGFβ1-Induced Damage in Human Proximal Tubule Epithelial Cells of the Kidney. Int J Mol Sci 2021; 22:2809. [PMID: 33802083 PMCID: PMC7999212 DOI: 10.3390/ijms22062809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) is a global health problem associated with a number of comorbidities. Recent evidence implicates increased hemichannel-mediated release of adenosine triphosphate (ATP) in the progression of tubulointerstitial fibrosis, the main underlying pathology of CKD. Here, we evaluate the effect of danegaptide on blocking hemichannel-mediated changes in the expression and function of proteins associated with disease progression in tubular epithelial kidney cells. Primary human proximal tubule epithelial cells (hPTECs) were treated with the beta1 isoform of the pro-fibrotic cytokine transforming growth factor (TGFβ1) ± danegaptide. qRT-PCR and immunoblotting confirmed mRNA and protein expression, whilst a cytokine antibody array assessed the expression/secretion of proinflammatory and profibrotic cytokines. Carboxyfluorescein dye uptake and ATP biosensing measured hemichannel activity and ATP release, whilst transepithelial electrical resistance was used to assess paracellular permeability. Danegaptide negated carboxyfluorescein dye uptake and ATP release and protected against protein changes associated with tubular injury. Blocking Cx43-mediated ATP release was paralleled by partial restoration of the expression of cell cycle inhibitors, adherens and tight junction proteins and decreased paracellular permeability. Furthermore, danegaptide inhibited TGFβ1-induced changes in the expression and secretion of key adipokines, cytokines, chemokines, growth factors and interleukins. The data suggest that as a gap junction modulator and hemichannel blocker, danegaptide has potential in the future treatment of CKD.
Collapse
Affiliation(s)
- Paul E. Squires
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, UK; (P.E.S.); (G.W.P.); (J.A.P.); (B.M.W.)
| | - Gareth W. Price
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, UK; (P.E.S.); (G.W.P.); (J.A.P.); (B.M.W.)
| | - Ulrik Mouritzen
- Ciana Therapeutics, Ved Hegnet 2, 2960 Rungsted Kyst, Copenhagen, Denmark;
| | - Joe A. Potter
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, UK; (P.E.S.); (G.W.P.); (J.A.P.); (B.M.W.)
| | - Bethany M. Williams
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, UK; (P.E.S.); (G.W.P.); (J.A.P.); (B.M.W.)
| | - Claire E. Hills
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, UK; (P.E.S.); (G.W.P.); (J.A.P.); (B.M.W.)
| |
Collapse
|
24
|
Tirosh A, Tuncman G, Calay ES, Rathaus M, Ron I, Tirosh A, Yalcin A, Lee YG, Livne R, Ron S, Minsky N, Arruda AP, Hotamisligil GS. Intercellular Transmission of Hepatic ER Stress in Obesity Disrupts Systemic Metabolism. Cell Metab 2021; 33:319-333.e6. [PMID: 33340456 PMCID: PMC7858244 DOI: 10.1016/j.cmet.2020.11.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 07/30/2020] [Accepted: 11/12/2020] [Indexed: 12/22/2022]
Abstract
Endoplasmic reticulum stress (ERS) has a pathophysiological role in obesity-associated insulin resistance. Yet, the coordinated tissue response to ERS remains unclear. Increased connexin 43 (Cx43)-mediated intercellular communication has been implicated in tissue-adaptive and -maladaptive response to various chronic stresses. Here, we demonstrate that in hepatocytes, ERS results in increased Cx43 expression and cell-cell coupling. Co-culture of ER-stressed "donor" cells resulted in intercellular transmission of ERS and dysfunction to ERS-naive "recipient" cells ("bystander response"), which could be prevented by genetic or pharmacologic suppression of Cx43. Hepatocytes from obese mice were able to transmit ERS to hepatocytes from lean mice, and mice lacking liver Cx43 were protected from diet-induced ERS, insulin resistance, and hepatosteatosis. Taken together, our results indicate that in obesity, the increased Cx43-mediated cell-cell coupling allows intercellular propagation of ERS. This novel maladaptive response to over-nutrition exacerbates the tissue ERS burden, promoting hepatosteatosis and impairing whole-body glucose metabolism.
Collapse
Affiliation(s)
- Amir Tirosh
- Sabri Ülker Center for Metabolic Research, Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, 52621 Tel-HaShomer, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Harvard Medical School, Boston, MA 02115, USA.
| | - Gurol Tuncman
- Sabri Ülker Center for Metabolic Research, Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Ediz S Calay
- Sabri Ülker Center for Metabolic Research, Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Moran Rathaus
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, 52621 Tel-HaShomer, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Idit Ron
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, 52621 Tel-HaShomer, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amit Tirosh
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, 52621 Tel-HaShomer, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Abdullah Yalcin
- Sabri Ülker Center for Metabolic Research, Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Adnan Menderes Üniversitesi Medical School, Department of Medical Biology, 09100 Aydin, Turkey
| | - Yankun G Lee
- Sabri Ülker Center for Metabolic Research, Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Rinat Livne
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, 52621 Tel-HaShomer, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sophie Ron
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, 52621 Tel-HaShomer, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Neri Minsky
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, 52621 Tel-HaShomer, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ana Paula Arruda
- Sabri Ülker Center for Metabolic Research, Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Gökhan S Hotamisligil
- Sabri Ülker Center for Metabolic Research, Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
25
|
Xu Y, Hu J, Yilmaz DE, Bachmann S. Connexin43 is differentially distributed within renal vasculature and mediates profibrotic differentiation in medullary fibroblasts. Am J Physiol Renal Physiol 2021; 320:F17-F30. [PMID: 33196322 DOI: 10.1152/ajprenal.00453.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/16/2020] [Accepted: 11/03/2020] [Indexed: 11/22/2022] Open
Abstract
Connexins (Cxs) form gap junctions for intercellular exchange of inorganic ions and messenger molecules. In the kidney, Cxs play essential roles within its compartments, but data on the precise cellular localization and cell type-related function of their isoforms are scarce. We tested whether Cx43 distribution is restricted to vascular and interstitial cells and whether medullary fibroblasts express Cx43 to coordinate profibrotic signaling. Confocal immunofluorescence techniques, ultrastructural labeling, and functional experiments in cell culture were performed. Cx43 was chiefly expressed in the vasculature but was absent from tubular epithelia. All arterial, arteriolar, and lymphatic endothelia showed continuous Cx43 signal along their borders. In the inner medulla, only the interstitium showed Cx43 signals, which were assigned to fibroblasts and their processes. Cultured Cx43-expressing medullary fibroblasts served to study the role of gap junctions in a profibrotic context. In a dye spreading assay, Cx43-sensitive diffusion of Lucifer yellow was dependent on gap junctional passage. The addition of transforming growth factor-β1 (5 ng/mL for 48 h) activated Cx43 biosynthesis and caused Cx43-sensitive transformation of the fibroblasts into a myofibroblast phenotype. This suggested that Cx43 gap junctional channels enable the coordination of profibrotic signaling between cells of the medullary interstitium. In summary, we demonstrate the presence of Cx43-expressing gap junctions within the two major renal compartments, the vasculature and interstitium. Endothelial Cx43 likely provides functions of an earlier-defined "electrical syncytium" within the vascular wall. Additionally, Cx43 facilitates profibrotic signaling between medullary interstitial fibroblasts.
Collapse
Affiliation(s)
- Yan Xu
- Department of Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Junda Hu
- Department of Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Duygu Elif Yilmaz
- Department of Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Bachmann
- Department of Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
26
|
Yang Y, Li J, Zhang L, Lin Z, Xiao H, Sun X, Zhang M, Liu P, Huang H. CKIP-1 acts downstream to Cx43 on the activation of Nrf2 signaling pathway to protect from renal fibrosis in diabetes. Pharmacol Res 2021; 163:105333. [PMID: 33276097 DOI: 10.1016/j.phrs.2020.105333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
We previously reported that both Cx43 and CKIP-1 attenuated diabetic renal fibrosis via the activation of Nrf2 signaling pathway. However, whether CKIP-1, a scaffold protein, participates in regulating the activation of Nrf2 signaling pathway by Cx43 remains to be elucidated. In this study, the effect of adenovirus-mediated Cx43 overexpression on renal fibrosis in CKIP-1-/- diabetic mice was investigated. We found that overexpression of Cx43 could significantly alleviate renal fibrosis by activating the Nrf2 pathway in diabetic mice, but have no obvious effect in CKIP-1-/- diabetic mice. Cx43 overexpressed plasmid and CKIP-1 small interfering RNA were simultaneously transfected into glomerular mesangial cells and the result demonstrated that the effect of activation of Nrf2 signaling pathway by Cx43 was blocked by CKIP-1 depletion. The interaction between Cx43 and CKIP-1 was analyzed by immunofluorescence and immunoprecipitation assays. We found that Cx43 interacted with CKIP-1, and the interaction was weakened by high glucose treatment. Moreover, Cx43 regulated the expression of CKIP-1 and the interaction of CKIP-1 with Nrf2 via Cx43 carboxyl terminus (CT) domain, thereby activating Nrf2 signaling pathway. According to the results, we preliminary infer that CKIP-1 acts downstream to CX43 on the activation of Nrf2 signaling pathway to protect from renal fibrosis in diabetes, the mechanism of which might be related to the interaction of CKIP-1 with Nrf2 through Cx43 CT. Our study provides further experimental basis for targeting the Cx43-CKIP-1-Nrf2 axis to resist diabetic renal fibrosis.
Collapse
Affiliation(s)
- Yan Yang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jie Li
- Medical Research Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Lingqiang Zhang
- Skate Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing 100850, China
| | - Zeyuan Lin
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Haiming Xiao
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiaohong Sun
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Meng Zhang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Peiqing Liu
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Heqing Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
27
|
Xue J, Thomas L, Dominguez Rieg JA, Fenton RA, Rieg T. Genetic deletion of connexin 37 causes polyuria and polydipsia. PLoS One 2020; 15:e0244251. [PMID: 33332450 PMCID: PMC7746157 DOI: 10.1371/journal.pone.0244251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/07/2020] [Indexed: 11/19/2022] Open
Abstract
The connexin 37 (Cx37) channel is clustered at gap junctions between cells in the renal vasculature or the renal tubule where it is abundant in basolateral cell interdigitations and infoldings of epithelial cells in the proximal tubule, thick ascending limb, distal convoluted tubule and collecting duct; however, physiological data regarding its role are limited. In this study, we investigated the role of Cx37 in fluid homeostasis using mice with a global deletion of Cx37 (Cx37-/- mice). Under baseline conditions, Cx37-/- had ~40% higher fluid intake associated with ~40% lower urine osmolality compared to wild-type (WT) mice. No differences were observed between genotypes in urinary adenosine triphosphate or prostaglandin E2, paracrine factors that alter renal water handling. After 18-hours of water deprivation, plasma aldosterone and urine osmolality increased significantly in Cx37-/- and WT mice; however, the latter remained ~375 mmol/kg lower in Cx37-/- mice, an effect associated with a more pronounced body weight loss despite higher urinary AVP/creatinine ratios compared to WT mice. Consistent with this, fluid intake in the first 3 hours after water deprivation was 37% greater in Cx37-/- vs WT mice. Cx37-/- mice showed significantly lower renal AQP2 abundance and AQP2 phosphorylation at serine 256 than WT mice in response to vehicle or dDAVP, suggesting a partial contribution of the kidney to the lower urine osmolality. The abundance and responses of the vasopressin V2 receptor, AQP3, NHE3, NKCC2, NCC, H+-ATPase, αENaC, γENaC or Na+/K+-ATPase were not significantly different between genotypes. In summary, these results demonstrate that Cx37 is important for body water handling.
Collapse
Affiliation(s)
- Jianxiang Xue
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Linto Thomas
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Jessica A. Dominguez Rieg
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | | | - Timo Rieg
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| |
Collapse
|
28
|
Kosovic I, Filipovic N, Benzon B, Bocina I, Glavina Durdov M, Vukojevic K, Saraga M, Saraga-Babic M. Connexin Signaling in the Juxtaglomerular Apparatus (JGA) of Developing, Postnatal Healthy and Nephrotic Human Kidneys. Int J Mol Sci 2020; 21:E8349. [PMID: 33172216 PMCID: PMC7664435 DOI: 10.3390/ijms21218349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/31/2022] Open
Abstract
Our study analyzed the expression pattern of different connexins (Cxs) and renin positive cells in the juxtaglomerular apparatus (JGA) of developing, postnatal healthy human kidneys and in nephrotic syndrome of the Finnish type (CNF), by using double immunofluorescence, electron microscopy and statistical measuring. The JGA contained several cell types connected by Cxs, and consisting of macula densa, extraglomerular mesangium (EM) and juxtaglomerular cells (JC), which release renin involved in renin-angiotensin- aldosteron system (RAS) of arterial blood pressure control. During JGA development, strong Cx40 expression gradually decreased, while expression of Cx37, Cx43 and Cx45 increased, postnatally showing more equalized expression patterning. In parallel, initially dispersed renin cells localized to JGA, and greatly increased expression in postnatal kidneys. In CNF kidneys, increased levels of Cx43, Cx37 and Cx45 co-localized with accumulations of renin cells in JGA. Additionally, they reappeared in extraglomerular mesangial cells, indicating association between return to embryonic Cxs patterning and pathologically changed kidney tissue. Based on the described Cxs and renin expression patterning, we suggest involvement of Cx40 primarily in the formation of JGA in developing kidneys, while Cx37, Cx43 and Cx45 might participate in JGA signal transfer important for postnatal maintenance of kidney function and blood pressure control.
Collapse
Affiliation(s)
- Ivona Kosovic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia; (I.K.); (N.F.); (B.B.); (K.V.)
| | - Natalija Filipovic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia; (I.K.); (N.F.); (B.B.); (K.V.)
| | - Benjamin Benzon
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia; (I.K.); (N.F.); (B.B.); (K.V.)
| | - Ivana Bocina
- Department of Biology, Faculty of Science, University of Split, 21000 Split, Croatia;
| | - Merica Glavina Durdov
- Department of Pathology, University Hospital in Split, School of Medicine, University of Split, 21000 Split, Croatia;
| | - Katarina Vukojevic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia; (I.K.); (N.F.); (B.B.); (K.V.)
| | - Marijan Saraga
- Department of Paediatrics, University Hospital in Split, School of Medicine, University of Split, 21000 Split, Croatia;
| | - Mirna Saraga-Babic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia; (I.K.); (N.F.); (B.B.); (K.V.)
| |
Collapse
|
29
|
Kosovic I, Filipovic N, Benzon B, Vukojevic K, Saraga M, Glavina Durdov M, Bocina I, Saraga-Babic M. Spatio-temporal patterning of different connexins in developing and postnatal human kidneys and in nephrotic syndrome of the Finnish type (CNF). Sci Rep 2020; 10:8756. [PMID: 32471989 PMCID: PMC7260365 DOI: 10.1038/s41598-020-65777-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/06/2020] [Indexed: 02/07/2023] Open
Abstract
Connexins (Cxs) are membrane-spanning proteins which enable flow of information important for kidney homeostasis. Changes in their spatiotemporal patterning characterize blood vessel abnormalities and chronic kidney diseases (CKD). We analysed spatiotemporal expression of Cx37, Cx40, Cx43 and Cx45 in nephron and glomerular cells of developing, postnatal kidneys, and nephrotic syndrome of the Finnish type (CNF) by using immunohistochemistry, statistical methods and electron microscopy. During kidney development, strong Cx45 expression in proximal tubules and decreasing expression in glomeruli was observed. In developing distal nephron, Cx37 and Cx40 showed moderate-to-strong expression, while weak Cx43 expression gradually increased. Cx45/Cx40 co-localized in mesangial and granular cells. Cx43 /Cx45 co-localized in podocytes, mesangial and parietal epithelial cells, and with podocyte markers (synaptopodin, nephrin). Different Cxs co-expressed with endothelial (CD31) and VSMC (α -SMA) markers in vascular walls. Peak signalling of Cx37, Cx43 and Cx40 accompanied kidney nephrogenesis, while strongest Cx45 signalling paralleled nephron maturation. Spatiotemporal Cxs patterning indicate participation of Cx45 in differentiation of proximal tubules, and Cx43, Cx37 and Cx40 in distal tubules differentiation. CNF characterized disorganized Cx45 expression in proximal tubules, increased Cx43 expression in distal tubules and overall elevation of Cx40 and Cx37, while Cx40 co-localized with increased number of interstitial myofibroblasts.
Collapse
Affiliation(s)
- Ivona Kosovic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Split, Croatia
| | - Natalija Filipovic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Split, Croatia
| | - Benjamin Benzon
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Split, Croatia
| | - Katarina Vukojevic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Split, Croatia.,Department of Histology and Embryology, School of Medicine, University of Mostar, Mostar, Bosnia and Herzegovina
| | - Marijan Saraga
- Department of Paediatrics, University Hospital in Split, School of Medicine, University of Split, Split, Croatia
| | - Merica Glavina Durdov
- Department of Pathology, University Hospital in Split, School of Medicine, University of Split, Split, Croatia
| | - Ivana Bocina
- Department of Biology, Faculty of Science, University of Split, Split, Croatia
| | - Mirna Saraga-Babic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Split, Croatia.
| |
Collapse
|
30
|
Price GW, Chadjichristos CE, Kavvadas P, Tang SCW, Yiu WH, Green CR, Potter JA, Siamantouras E, Squires PE, Hills CE. Blocking Connexin-43 mediated hemichannel activity protects against early tubular injury in experimental chronic kidney disease. Cell Commun Signal 2020; 18:79. [PMID: 32450899 PMCID: PMC7249671 DOI: 10.1186/s12964-020-00558-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/23/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Tubulointerstitial fibrosis represents the key underlying pathology of Chronic Kidney Disease (CKD), yet treatment options remain limited. In this study, we investigated the role of connexin43 (Cx43) hemichannel-mediated adenosine triphosphate (ATP) release in purinergic-mediated disassembly of adherens and tight junction complexes in early tubular injury. METHODS Human primary proximal tubule epithelial cells (hPTECs) and clonal tubular epithelial cells (HK2) were treated with Transforming Growth Factor Beta1 (TGF-β1) ± apyrase, or ATPγS for 48 h. For inhibitor studies, cells were co-incubated with Cx43 mimetic Peptide 5, or purinergic receptor antagonists Suramin, A438079 or A804598. Immunoblotting, single-cell force spectroscopy and trans-epithelial electrical resistance assessed protein expression, cell-cell adhesion and paracellular permeability. Carboxyfluorescein uptake and biosensing measured hemichannel activity and real-time ATP release, whilst a heterozygous Cx43+/- mouse model with unilateral ureteral obstruction (UUO) assessed the role of Cx43 in vivo. RESULTS Immunohistochemistry of biopsy material from patients with diabetic nephropathy confirmed increased expression of purinergic receptor P2X7. TGF-β1 increased Cx43 mediated hemichannel activity and ATP release in hPTECs and HK2 cells. The cytokine reduced maximum unbinding forces and reduced cell-cell adhesion, which translated to increased paracellular permeability. Changes were reversed when cells were co-incubated with either Peptide 5 or P2-purinoceptor inhibitors. Cx43+/- mice did not exhibit protein changes associated with early tubular injury in a UUO model of fibrosis. CONCLUSION Data suggest that Cx43 mediated ATP release represents an initial trigger in early tubular injury via its actions on the adherens and tight junction complex. Since Cx43 is highly expressed in nephropathy, it represents a novel target for intervention of tubulointerstitial fibrosis in CKD. Video Abstract In proximal tubular epithelial cells (PTECs), tight junction proteins, including zona occuludens-1 (ZO-1), contribute to epithelial integrity, whilst the adherens junction protein epithelial (E)-cadherin (ECAD) maintains cell-cell coupling, facilitating connexin 43 (Cx43) gap junction-mediated intercellular communication (GJIC) and the direct transfer of small molecules and ions between cells. In disease, such as diabetic nephropathy, the pro-fibrotic cytokine transforming growth factor beta1 (TGF-β1) binds to its receptor and recruits SMAD2/3 signalling ahead of changes in gene transcription and up-regulation of Cx43-mediated hemichannels (HC). Uncoupled hemichannels permit the release of adenosine triphosphate (ATP) in to the extracellular space (↑[ATP]e), where ATP binds to the P2X7 purinoreceptor and activates the nucleotide-binding domain and leucine-rich repeat containing (NLR) protein-3 (NLRP3) inflammasome. Inflammation results in epithelial-to-mesenchymal transition (EMT), fibrosis and tubular injury. A major consequence is further loss of ECAD and reduced stickiness between cells, which can be functionally measured as a decrease in the maximum unbinding force needed to uncouple two adherent cells (Fmax). Loss of ECAD feeds forward to further lessen cell-cell coupling exacerbating the switch from GJIC to HC-mediated release of ATP. Reduction in ZO-1 impedes tight junction effectiveness and decreases trans-epithelial resistance (↓TER), resulting in increased paracellular permeability.
Collapse
Affiliation(s)
- Gareth W. Price
- Joseph Banks Laboratories, School of Life Sciences, University of Lincoln, Green Lane, Lincoln, UK
| | - Christos E. Chadjichristos
- National Institutes for Health and Medical Research Unite Mixte de Recherche S1155, Batiment Recherche, Tenon Hospital, 4 rue de la Chine, 75020 Paris, France
| | - Panagiotis Kavvadas
- National Institutes for Health and Medical Research Unite Mixte de Recherche S1155, Batiment Recherche, Tenon Hospital, 4 rue de la Chine, 75020 Paris, France
| | - Sydney C. W. Tang
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Wai Han Yiu
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Colin R. Green
- Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Joe A. Potter
- Joseph Banks Laboratories, School of Life Sciences, University of Lincoln, Green Lane, Lincoln, UK
| | - Eleftherios Siamantouras
- Joseph Banks Laboratories, School of Life Sciences, University of Lincoln, Green Lane, Lincoln, UK
| | - Paul E. Squires
- Joseph Banks Laboratories, School of Life Sciences, University of Lincoln, Green Lane, Lincoln, UK
| | - Claire E. Hills
- Joseph Banks Laboratories, School of Life Sciences, University of Lincoln, Green Lane, Lincoln, UK
| |
Collapse
|
31
|
Pan LL, Liang W, Ren Z, Li C, Chen Y, Niu W, Fang X, Liu Y, Zhang M, Diana J, Agerberth B, Sun J. Cathelicidin-related antimicrobial peptide protects against ischaemia reperfusion-induced acute kidney injury in mice. Br J Pharmacol 2020; 177:2726-2742. [PMID: 31976546 DOI: 10.1111/bph.14998] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Despite recent advances in understanding its pathophysiology, treatment of acute kidney injury (AKI) remains a major unmet medical need, and novel therapeutic strategies are needed. Cathelicidin-related antimicrobial peptide (CRAMP) with immunomodulatory properties has an emerging role in various disease contexts. Here, we aimed to investigate the role of CRAMP and its underlying mechanisms in AKI. EXPERIMENTAL APPROACH The human homologue LL-37 and CRAMP were measured in blood samples of AKI patients and in experimental AKI mice respectively. Experimental AKI was induced in wild-type and CRAMP-deficient (Cnlp-/- ) mice by ischaemia/reperfusion (I/R). Therapeutic evaluation of CRAMP was performed with exogenous CRAMP (5 mg·kg-1 , i.p.) treatment. KEY RESULTS Cathelicidin expression was inversely related to clinical signs in patients and down-regulated in renal I/R-induced injury in mice. Cnlp-/- mice exhibited exacerbated I/R-induced renal dysfunction, aggravated inflammatory responses and apoptosis. Moreover, over-activation of the NLRP3 inflammasome in Cnlp-/- mice was associated with I/R-induced renal injury. Exogenous CRAMP treatment markedly attenuated I/R-induced renal dysfunction, inflammatory response and apoptosis, correlated with modulation of immune cell infiltration and phenotype. Consistent with Cnlp-/- mouse data, CRAMP administration suppressed renal I/R-induced NLRP3 inflammasome activation, and its renal protective effects were mimicked by a specific NLRP3 inhibitor CY-09. The reno-protective and NLRP3 inhibitory effects of CRAMP required the EGF receptor. CONCLUSION AND IMPLICATIONS Our results suggest that CRAMP acts as a novel immunomodulatory mediator of AKI and modulation of CRAMP may represent a potential therapeutic strategy.
Collapse
Affiliation(s)
- Li-Long Pan
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Wenjie Liang
- Laboratory of Nutritional Immunology and Translational Medicine, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhengnan Ren
- Laboratory of Nutritional Immunology and Translational Medicine, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Chunqing Li
- Department of Nephrology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yong Chen
- Department of Nephrology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Wenying Niu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xin Fang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yanyan Liu
- Laboratory of Nutritional Immunology and Translational Medicine, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ming Zhang
- Laboratory of Nutritional Immunology and Translational Medicine, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Julien Diana
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1151, Institute Necker-Enfants Malades (INEM), Centre National de la Recherche Scienctifique, Unité 8253, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Birgitta Agerberth
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, F68, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Jia Sun
- Laboratory of Nutritional Immunology and Translational Medicine, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
32
|
Changchien CY, Sung MH, Chang HH, Tsai WC, Peng YS, Chen Y. Uremic toxin indoxyl sulfate suppresses myocardial Cx43 assembly and expression via JNK activation. Chem Biol Interact 2020; 319:108979. [PMID: 32045570 DOI: 10.1016/j.cbi.2020.108979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/30/2020] [Accepted: 02/06/2020] [Indexed: 12/14/2022]
Abstract
Heart rhythm disturbances have been widely recognized as major triggers of cardiovascular (CV) mortality in chronic kidney disease (CKD) patients. Connexin 43 (Cx43)-composed gap junctions are essential in cardiomyocyte synchronization and may be involved in the pathological response to uremic toxins. Indoxyl sulfate (IS) is one of the most dominant uremic toxins that contribute to CKD-related cardiovascular diseases. In primary cultures of rat neonatal cardiomyocytes, we demonstrated that IS treatment decreased spontaneous contraction without impairing viability. In addition, there was disruption of gap junction intercellular communication (GJIC) between cardiomyocytes after 30 min of IS stimulation. IS caused time- and dose-dependent Cx43 redistribution, and the patterns of Cx43 immunostaining returned to baseline while IS stimulation was removed. Furthermore, IS exposure downregulated Cx43 protein and mRNA levels. Elevated JNK1 and JNK2 phosphorylation was further identified after IS exposure in both rat cardiomyocytes and H9c2 cells. The above changes as well as GJIC and Cx43 suppression were reversed by pretreatment with a JNK inhibitor (SP600125). Inhibition of p-JNK attenuated IS-mediated downward trends in Cx43 transcription and translation. In cardiac muscle from nephrectomy-induced CKD mice, an alteration in Cx43 level was identified at intercalated discs. Our findings disclosed that JNK activation might participate in the remodeling of gap junction and Cx43 expression by uremic toxin-IS both in vitro and in vivo.
Collapse
Affiliation(s)
- Chih-Ying Changchien
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan; Department of General Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Meng-Ho Sung
- Department of Anatomy and Cell Biology, National Taiwan University, Taipei, Taiwan
| | - Hsin-Han Chang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Chiuan Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Sen Peng
- Division of Nephrology, Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan; College of Electrical and Communication Engineering, Yuan Ze University, Taoyuan City, Taiwan.
| | - Ying Chen
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
33
|
Price GW, Potter JA, Williams BM, Cliff CL, Squires PE, Hills CE. Connexin-mediated cell communication in the kidney: A potential therapeutic target for future intervention of diabetic kidney disease?: Joan Mott Prize Lecture. Exp Physiol 2020; 105:219-229. [PMID: 31785013 DOI: 10.1113/ep087770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/19/2019] [Indexed: 12/21/2022]
Abstract
The ability of cells to communicate and synchronise their activity is essential for the maintenance of tissue structure, integrity and function. A family of membrane-bound proteins called connexins are largely responsible for mediating the local transfer of information between cells. Assembled in the cell membrane as a hexameric connexon, they either function as a conduit for paracrine signalling, forming a transmembrane hemi-channel, or, if aligned with connexons on neighbouring cells, form a continuous aqueous pore or gap junction, which allows for the direct transmission of metabolic and electrical signals. Regulation of connexin synthesis and activity is critical to cellular function, and a number of diseases are attributed to changes in the expression and/or function of these important proteins. A link between hyperglycaemia, connexin expression, altered nucleotide concentrations and impaired function highlights a potential role for connexin-mediated cell communication in complications of diabetes. In the diabetic kidney, glycaemic injury is the leading cause of end-stage renal failure, reflecting multiple aetiologies including glomerular hyperfiltration, albuminuria, increased deposition of extracellular matrix and tubulointerstitial fibrosis. Loss of connexin-mediated cell-to-cell communication in diabetic nephropathy may represent an early sign of disease progression, but our understanding of the process remains severely limited. This review focuses on recent evidence demonstrating that glucose-evoked changes in connexin-mediated cell communication and associated purinergic signalling may contribute to the pathogenesis of kidney disease in diabetes, highlighting the tantalising potential of targeting these proteins as a novel therapeutic intervention.
Collapse
Affiliation(s)
- Gareth W Price
- Joseph Banks Laboratories, School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Joe A Potter
- Joseph Banks Laboratories, School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Bethany M Williams
- Joseph Banks Laboratories, School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Chelsy L Cliff
- Joseph Banks Laboratories, School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Paul E Squires
- Joseph Banks Laboratories, School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Claire E Hills
- Joseph Banks Laboratories, School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| |
Collapse
|
34
|
Huang Y, Mao Z, Zhang Z, Obata F, Yang X, Zhang X, Huang Y, Mitsui T, Fan J, Takeda M, Yao J. Connexin43 Contributes to Inflammasome Activation and Lipopolysaccharide-Initiated Acute Renal Injury via Modulation of Intracellular Oxidative Status. Antioxid Redox Signal 2019; 31:1194-1212. [PMID: 31319679 DOI: 10.1089/ars.2018.7636] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aims: Inflammasome activation plays a pivotal role in many inflammatory diseases. Given that connexin (Cx) channels regulate numerous cellular events leading to inflammasome activation, we determined whether and how connexin affected inflammasome activation and inflammatory cell injury. Results: Exposure of mouse peritoneal macrophages (PMs) to lipopolysaccharide (LPS) plus ATP caused NLRP3 inflammasome activation, together with an increased connexin43 (Cx43). Inhibition of Cx43 blunted inflammasome activation. Consistently, PMs from the Cx43 heterozygous mouse (Cx43+/-) exhibited weak inflammasome activation, in comparison with those from the Cx43+/+ mouse. Further analysis revealed that inflammasome activation was preceded by an increased reactive oxygen species (ROS) production, nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) oxidase 2 (NOX2), protein carbonylation, and mitogen-activated protein kinase (MAPK) activation. Suppression of ROS with antioxidant, downregulation of NOX2 with small interfering RNA (siRNA), or inhibition of NADPH oxidase or MAPKs with inhibitors blocked Cx43 elevation and inflammasome activation. Intriguingly, suppression of Cx43 also blunted NOX2 expression, protein carbonylation, p38 phosphorylation, and inflammasome activation. In a model of acute renal injury induced by LPS, the Cx43+/- mouse exhibited a significantly lower level of blood interleukin-1β (IL-1β), blood urea nitrogen, and urinary protein, together with milder renal pathological changes and renal expression of NLRP3 and NOX4, as compared with the Cx43+/+ mouse. Moreover, inhibition of gap junctions suppressed IL-1β- and tumor necrosis factor-α-induced expression of NOX4 in glomerular podocytes and tubular epithelial cells. Innovation and Conclusion: Our study indicates that Cx43 contributes to inflammasome activation and the progression of renal inflammatory cell injury through modulation of intracellular redox status. Cx43 could be a novel target for the treatment of certain inflammatory diseases.
Collapse
Affiliation(s)
- Yanru Huang
- Divison of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Zhimin Mao
- Divison of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Zhen Zhang
- Divison of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Fumiko Obata
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Xiawen Yang
- Divison of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Xiling Zhang
- Divison of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Yong Huang
- Divison of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Takahiko Mitsui
- Department of Urology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Jianglin Fan
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Masayuki Takeda
- Department of Urology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Jian Yao
- Divison of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| |
Collapse
|
35
|
Prakoura N, Hadchouel J, Chatziantoniou C. Novel Targets for Therapy of Renal Fibrosis. J Histochem Cytochem 2019; 67:701-715. [PMID: 31116064 PMCID: PMC6713972 DOI: 10.1369/0022155419849386] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/15/2019] [Indexed: 12/19/2022] Open
Abstract
Renal fibrosis is an important component of chronic kidney disease, an incurable pathology with increasing prevalence worldwide. With a lack of available therapeutic options, end-stage renal disease is currently treated with renal replacement therapy through dialysis or transplantation. In recent years, many efforts have been made to identify novel targets for therapy of renal diseases, with special focus on the characterization of unknown mediators and pathways participating in renal fibrosis development. Using experimental models of renal disease and patient biopsies, we identified four novel mediators of renal fibrosis with potential to constitute future therapeutic targets against kidney disease: discoidin domain receptor 1, periostin, connexin 43, and cannabinoid receptor 1. The four candidates were highly upregulated in different models of renal disease and were localized at the sites of injury. Subsequent studies showed that they are centrally involved in the underlying mechanisms of renal fibrosis progression. Interestingly, inhibition of either of these proteins by different strategies, including gene deletion, antisense administration, or specific blockers, delayed the progression of renal disease and preserved renal structure and function, even when the inhibition started after initiation of the disease. This review will summarize the current findings on these candidates emphasizing on their potential to constitute future targets of therapy.
Collapse
Affiliation(s)
- Niki Prakoura
- Institut National de la Santé Et de la Recherche Médicale (INSERM) UMRS 1155, Tenon Hospital, Paris, France
| | - Juliette Hadchouel
- Institut National de la Santé Et de la Recherche Médicale (INSERM) UMRS 1155, Tenon Hospital, Paris, France
- Sorbonne Université, Paris, France
| | - Christos Chatziantoniou
- Institut National de la Santé Et de la Recherche Médicale (INSERM) UMRS 1155, Tenon Hospital, Paris, France
- Sorbonne Université, Paris, France
| |
Collapse
|
36
|
Xiong G, Tang W, Zhang D, He D, Wei G, Atala A, Liang XJ, Bleyer AJ, Bleyer ME, Yu J, Aloi JA, Ma JX, Furdui CM, Zhang Y. Impaired Regeneration Potential in Urinary Stem Cells Diagnosed from the Patients with Diabetic Nephropathy. Theranostics 2019; 9:4221-4232. [PMID: 31281543 PMCID: PMC6592174 DOI: 10.7150/thno.34050] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/03/2019] [Indexed: 01/13/2023] Open
Abstract
Stem cells present in urine possess regenerative capacity to repair kidney injury. However, the unique characteristics of urinary stem cells (USC) from patients with diabetic nephropathy (d-USC) are unknown. The goal of this study was to investigate stemness properties in cell phenotype and regenerative potential of d-USC, compared to USC from healthy individuals. Methods: Thirty-six urine samples collected from patients (n=12, age range 60-75 years) with diabetic nephropathy (stages 3-4 stage chronic kidney disease [CKD]) were compared with 30 urine samples from healthy age-matched donors (n=10, age range 60-74 years). Results: There were approximately six times as many cells in urine samples from patients with diabetic nephropathy, including twice as many USC clones as healthy donors. However, approximately 70% of d-USC had weaker regenerative capacity as assessed by cell proliferation, less secretion of paracrine factors, weaker telomerase activity, and lower renal tubular epithelial differentiation potential compared to healthy controls. In addition, the levels of inflammatory factors (IL-1β and Cx43) and apoptotic markers (Caspase-3, and TUNEL) were significantly increased in d-USC compared to USC (p<0.01). Protein levels of autophagy marker (LC3-II) and mTOR signaling molecules (p-mTOR/mTOR, p-Raptor/Raptor and p-S6K1) were significantly lower in patient with diabetic nephropathy (p<0.01). Nevertheless, up to 30% of d-USC possessed similar regenerative capacity as USC from healthy donors. Conclusions: Regenerative performance of most d-USC was significantly lower than normal controls. Understanding the specific changes in d-USC regeneration capability will help elucidate the pathobiology of diabetic nephropathy and lead to prevent USC from diabetic insults, recover the stemness function and also identify novel biomarkers to predict progression of this chronic kidney disease.
Collapse
|
37
|
Gupta A, Leser JM, Gould NR, Buo AM, Moorer MC, Stains JP. Connexin43 regulates osteoprotegerin expression via ERK1/2 -dependent recruitment of Sp1. Biochem Biophys Res Commun 2019; 509:728-733. [PMID: 30626485 DOI: 10.1016/j.bbrc.2018.12.173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 12/27/2018] [Indexed: 02/08/2023]
Abstract
In bone, connexin43 expression in cells of the osteoblast lineage plays an important role in restraining osteoclastogenesis and bone resorption. While there is a consensus around the notion that the anti-osteoclastogenic factor, osteoprotegerin, is a driver of this effect, how connexin43 regulates osteoprotegerin gene expression is unclear. Here, we show that loss of connexin43 decreased osteoprotegerin gene expression and reduced ERK1/2 activation. Conversely, overexpression of connexin43 increased osteoprotegerin expression and enhanced ERK1/2 activation. This increase in phospho-ERK1/2 is required for connexin43 to induce transcription from the osteoprotegerin proximal promoter. Connexin43 increased promoter activity via a specific 200 base pair region of the osteoprotegerin promoter located at -1486 to -1286 with respect to the transcriptional start site, a region which includes four Sp1 binding elements. Further, activation of this promoter region required an intact functional connexin43, as hypomorphic or dominant negative connexin43 mutant constructs, including one with increased hemichannel activity, were unable to stimulate osteoprotegerin expression as strongly as wild type connexin43. Using chromatin immunoprecipitations, we show that connexin43 expression enhanced the recruitment of Sp1, but not Runx2, to the osteoprotegerin proximal promoter. In total, these data show that connexin43-dependent gap junctional communication among osteoblast cells permits efficient ERK1/2 activation. ERK1/2 signaling promotes the recruitment of the potent transcriptional activator, Sp1, to the osteoprotegerin proximal promoter, resulting in robust transcription of anti-osteoclastogenic factor, osteoprotegerin.
Collapse
Affiliation(s)
- Aditi Gupta
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States.
| | - Jenna M Leser
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States.
| | - Nicole R Gould
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States.
| | - Atum M Buo
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States.
| | - Megan C Moorer
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States.
| | - Joseph P Stains
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
38
|
Ni X, Li XZ, Fan ZR, Wang A, Zhang HC, Zhang L, LI L, Si JQ, Ma KT. Increased expression and functionality of the gap junction in peripheral blood lymphocytes is associated with hypertension-mediated inflammation in spontaneously hypertensive rats. Cell Mol Biol Lett 2018; 23:40. [PMID: 30151015 PMCID: PMC6102908 DOI: 10.1186/s11658-018-0106-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 08/06/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Imbalances in circulating T lymphocytes play critical roles in the pathogenesis of hypertension-mediated inflammation. Connexins (Cxs) in immune cells are involved in the maintenance of homeostasis of T lymphocytes. However, the association between Cxs in peripheral blood T lymphocytes and hypertension-mediated inflammation remains unknown. This study was designed to investigate the role of Cxs in T lymphocytes in hypertension-mediated inflammation in spontaneously hypertensive rats (SHRs). METHODS The systolic blood pressure (SBP) in Wistar-Kyoto (WKY) rats and SHRs was monitored using the tail-cuff method. The serum cytokine level was determined using ELISA. The proportions of different T-lymphocyte subtypes in the peripheral blood, the expressions of Cx40/Cx43 in the T-cell subtypes, and the gap junctional intracellular communication (GJIC) of peripheral blood lymphocytes were measured using flow cytometry (FC). The accumulations of Cx40/Cx43 at the plasma membrane and/or in the cytoplasm were determined using immunofluorescence staining. The in vitro mRNA levels of cytokines and GJIC in the peripheral blood lymphocytes were respectively examined using real-time PCR and FC after treatment with Gap27 and/or concanavalin A (Con A). RESULTS The percentage of CD4+ T cells and the CD4+/CD8+ ratio were high, and the accumulation or expressions of Cx40/Cx43 in the peripheral blood lymphocytes in SHRs were higher than in those of WKY rats. The percentage of CD8+ and CD4+CD25+ T cells was lower in SHRs. The serum levels of IL-2, IL-4 and IL-6 from SHRs were higher than those from WKY rats, and the serum levels of IL-2 and IL-6 positively correlated with the expression of Cx40/Cx43 in the peripheral blood T lymphocytes from SHRs. The peripheral blood lymphocytes of SHRs exhibited enhanced GJIC. Cx43-based channel inhibition, which was mediated by Gap27, remarkably reduced GJIC in lymphocytes, and suppressed IL-2 and IL-6 mRNA expressions in Con A stimulated peripheral blood lymphocytes. CONCLUSIONS Our data suggest that Cxs may be involved in the regulation of T-lymphocyte homeostasis and the production of cytokines. A clear association was found between alterations in Cxs expression or in Cx43-based GJIC and hypertension-mediated inflammation.
Collapse
Affiliation(s)
- Xin Ni
- Department of Physiology, Medical College of Shihezi University, 59 North 2nd Road, Shihezi, Xinjiang 832002 People’s Republic of China
- Key Laboratory of Xingjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang China
| | - Xin-zhi Li
- Department of Pathophysiology, Medical College of Shihezi University, Shihezi, Xinjiang China
| | - Zhi-ru Fan
- Department of Physiology, Medical College of Shihezi University, 59 North 2nd Road, Shihezi, Xinjiang 832002 People’s Republic of China
- Key Laboratory of Xingjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang China
| | - Ai Wang
- Department of Physiology, Medical College of Shihezi University, 59 North 2nd Road, Shihezi, Xinjiang 832002 People’s Republic of China
- Key Laboratory of Xingjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang China
| | - Hai-chao Zhang
- Department of Physiology, Medical College of Shihezi University, 59 North 2nd Road, Shihezi, Xinjiang 832002 People’s Republic of China
- Key Laboratory of Xingjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang China
| | - Liang Zhang
- Department of Physiology, Medical College of Shihezi University, 59 North 2nd Road, Shihezi, Xinjiang 832002 People’s Republic of China
- Key Laboratory of Xingjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang China
| | - Li LI
- Department of Physiology, Medical College of Shihezi University, 59 North 2nd Road, Shihezi, Xinjiang 832002 People’s Republic of China
- Key Laboratory of Xingjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang China
| | - Jun-qiang Si
- Department of Physiology, Medical College of Shihezi University, 59 North 2nd Road, Shihezi, Xinjiang 832002 People’s Republic of China
- Key Laboratory of Xingjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang China
| | - Ke-tao Ma
- Department of Physiology, Medical College of Shihezi University, 59 North 2nd Road, Shihezi, Xinjiang 832002 People’s Republic of China
- Key Laboratory of Xingjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang China
| |
Collapse
|
39
|
Ge Z, Diao H, Ji X, Liu Q, Zhang X, Wu Q. Gap junctional intercellular communication and endoplasmic reticulum stress regulate chronic cadmium exposure induced apoptosis in HK-2 cells. Toxicol Lett 2018; 288:35-43. [DOI: 10.1016/j.toxlet.2018.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/23/2018] [Accepted: 02/08/2018] [Indexed: 12/23/2022]
|
40
|
Zhao Y, Li G, Wang Y, Liu Z. Alteration of Connexin43 expression in a rat model of obesity-related glomerulopathy. Exp Mol Pathol 2017; 104:12-18. [PMID: 29246788 DOI: 10.1016/j.yexmp.2017.11.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/31/2017] [Accepted: 11/04/2017] [Indexed: 12/22/2022]
Abstract
It is accepted that alteration of connexin43 (Cx43) expression in glomeruli is a common pathological response in several forms of kidney diseases. To date, however the change of the Cx43 expression in obesity-related glomerulopathy (ORG) has not been reported. In this study, the alteration of Cx43 expression in the glomeruli of rat with ORG was defined. Five-week-old rats were fed with high-fat diet for 18weeks to establish the ORG model, then the histological change of glomeruli, the foot process effacement of podocyte, the markers for podocyte injury (nephrin,podocin and WT1) and Cx43 expression in glomeruli were examined respectively. The results demonstrated metabolic disorder, hyperinsulinemia, systemic inflammation and microalbuminuria in ORG rats. There was significant hypertrophy, glomerular expansion and inflammatory cell infiltration in the kidney of ORG rats compared to the control group. Significant foot process effacement of the podocyte in the glomeruli, nephrin loss and density reduction were shown in the ORG rats, and Cx43 expression was significant upregulated in glomeruli of ORG rats compared to the control group. The results indicate the correlation of overexpressed Cx43 with the obesity related renal inflammation and suggest that Cx43 might be a potential target in the development of obesity related glomerulopathy.
Collapse
Affiliation(s)
- Yongli Zhao
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Guohua Li
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yuchuan Wang
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Zhengjuan Liu
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
41
|
Kavvadas P, Abed A, Poulain C, Authier F, Labéjof LP, Calmont A, Afieri C, Prakoura N, Dussaule JC, Chatziantoniou C, Chadjichristos CE. Decreased Expression of Connexin 43 Blunts the Progression of Experimental GN. J Am Soc Nephrol 2017; 28:2915-2930. [PMID: 28667079 DOI: 10.1681/asn.2016111211] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 05/05/2017] [Indexed: 11/03/2022] Open
Abstract
GN refers to a variety of renal pathologies that often progress to ESRD, but the molecular mechanisms underlying this progression remain incompletely characterized. Here, we determined whether dysregulated expression of the gap junction protein connexin 43, which has been observed in the progression of renal disease, contributes to GN progression. Immunostaining revealed de novo expression of connexin 43 in damaged glomeruli in patients with glomerular diseases as well as in mice after induction of experimental GN. Notably, 2 weeks after the induction of GN with nephrotoxic serum, mice with a heterozygous deletion of the connexin 43 gene (connexin 43+/-) had proteinuria, BUN, and serum creatinine levels significantly lower than those of wild-type animals. Additionally, the connexin 43+/- mice showed less crescent formation, tubular dilation, monocyte infiltration, and interstitial renal fibrosis. Treatment of cultured podocytes with connexin 43-specific blocking peptides attenuated TGF-β-induced cytoskeletal and morphologic changes and apoptosis as did treatment with the purinergic blocker suramin. Finally, therapeutic treatment of GN mice with connexin 43-specific antisense oligodeoxynucleotide improved functional and structural renal parameters. These findings suggest that crosstalk between connexin 43 and purinergic signaling contributes to podocyte damage in GN. Given that this protein is highly induced in individuals with glomerular diseases, connexin 43 may be a novel target for therapeutic treatment of GN.
Collapse
Affiliation(s)
- Panagiotis Kavvadas
- National Institute for Health and Medical Research Unité Mixte de Recherche-S1155, Batiment Recherche, Tenon Hospital, Paris, France
| | - Ahmed Abed
- National Institute for Health and Medical Research Unité Mixte de Recherche-S1155, Batiment Recherche, Tenon Hospital, Paris, France.,Sorbonne Universites, University Pierre et Marie Curie University Paris 6, Paris, France
| | - Coralie Poulain
- National Institute for Health and Medical Research Unité Mixte de Recherche-S1155, Batiment Recherche, Tenon Hospital, Paris, France.,University René Descartes, Paris, France.,University Denis Diderot, Paris, France
| | - Florence Authier
- National Institute for Health and Medical Research Unité Mixte de Recherche-S1155, Batiment Recherche, Tenon Hospital, Paris, France
| | - Lise-Paule Labéjof
- National Institute for Health and Medical Research Unité Mixte de Recherche-S1155, Batiment Recherche, Tenon Hospital, Paris, France.,Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - Amelie Calmont
- National Institute for Health and Medical Research Unité Mixte de Recherche-S1155, Batiment Recherche, Tenon Hospital, Paris, France
| | - Carlo Afieri
- National Institute for Health and Medical Research Unité Mixte de Recherche-S1155, Batiment Recherche, Tenon Hospital, Paris, France.,Unit of Nephrology Dialysis and Kidney Transplantation, Fondazione Istituto Di Ricovero e Cura a Carattere Scientifico Ca Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy; and
| | - Niki Prakoura
- National Institute for Health and Medical Research Unité Mixte de Recherche-S1155, Batiment Recherche, Tenon Hospital, Paris, France
| | - Jean-Claude Dussaule
- National Institute for Health and Medical Research Unité Mixte de Recherche-S1155, Batiment Recherche, Tenon Hospital, Paris, France.,Sorbonne Universites, University Pierre et Marie Curie University Paris 6, Paris, France.,Department of Physiology, Saint Antoine Hospital, Paris, France
| | - Christos Chatziantoniou
- National Institute for Health and Medical Research Unité Mixte de Recherche-S1155, Batiment Recherche, Tenon Hospital, Paris, France.,Sorbonne Universites, University Pierre et Marie Curie University Paris 6, Paris, France
| | - Christos E Chadjichristos
- National Institute for Health and Medical Research Unité Mixte de Recherche-S1155, Batiment Recherche, Tenon Hospital, Paris, France; .,Sorbonne Universites, University Pierre et Marie Curie University Paris 6, Paris, France
| |
Collapse
|
42
|
Naus CC, Giaume C. Bridging the gap to therapeutic strategies based on connexin/pannexin biology. J Transl Med 2016; 14:330. [PMID: 27899102 PMCID: PMC5129631 DOI: 10.1186/s12967-016-1089-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/18/2016] [Indexed: 01/02/2023] Open
Abstract
A unique workshop was recently held focusing on enhancing collaborations leading to identify and update the development of therapeutic strategies targeting connexin/pannexin large pore channels. Basic scientists exploring the functions of these channels in various pathologies gathered together with leading pharma companies which are targeting gap junction proteins for specific therapeutic applications. This highlights how paths of discovery research can converge with therapeutic strategies in innovative ways to enhance target identification and validation.
Collapse
Affiliation(s)
- Christian C Naus
- Department of Cellular and Physiological Sciences, Faculty of Medicine, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| | - Christian Giaume
- ICIRB, CNRS UMR7241/INSERM U1050, Collège de France, Paris Cedex 05, France
| |
Collapse
|
43
|
Martinerie C, Garcia M, Do TTH, Antoine B, Moldes M, Dorothee G, Kazazian C, Auclair M, Buyse M, Ledent T, Marchal PO, Fesatidou M, Beisseiche A, Koseki H, Hiraoka S, Chadjichristos CE, Blondeau B, Denis RG, Luquet S, Fève B. NOV/CCN3: A New Adipocytokine Involved in Obesity-Associated Insulin Resistance. Diabetes 2016; 65:2502-15. [PMID: 27284105 DOI: 10.2337/db15-0617] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 05/23/2016] [Indexed: 11/13/2022]
Abstract
Identification of new adipokines that potentially link obesity to insulin resistance represents a major challenge. We recently showed that NOV/CCN3, a multifunctional matricellular protein, is synthesized and secreted by adipose tissue, with plasma levels highly correlated with BMI. NOV involvement in tissue repair, fibrotic and inflammatory diseases, and cancer has been previously reported. However, its role in energy homeostasis remains unknown. We investigated the metabolic phenotype of NOV(-/-) mice fed a standard or high-fat diet (HFD). Strikingly, the weight of NOV(-/-) mice was markedly lower than that of wild-type mice but only on an HFD. This was related to a significant decrease in fat mass associated with an increased proportion of smaller adipocytes and to a higher expression of genes involved in energy expenditure. NOV(-/-) mice fed an HFD displayed improved glucose tolerance and insulin sensitivity. Interestingly, the absence of NOV was associated with a change in macrophages profile (M1-like to M2-like), in a marked decrease in adipose tissue expression of several proinflammatory cytokines and chemokines, and in enhanced insulin signaling. Conversely, NOV treatment of adipocytes increased chemokine expression. Altogether, these results show that NOV is a new adipocytokine that could be involved in obesity-associated insulin-resistance.
Collapse
Affiliation(s)
- Cécile Martinerie
- Sorbonne Universities, Pierre and Marie Curie University Paris 06, INSERM, Saint-Antoine Research Center, Saint-Antoine Hospital, Paris, France Hospitalo-Universitary Institute, ICAN, Paris, France
| | - Marie Garcia
- Sorbonne Universities, Pierre and Marie Curie University Paris 06, INSERM, Saint-Antoine Research Center, Saint-Antoine Hospital, Paris, France Hospitalo-Universitary Institute, ICAN, Paris, France
| | - Thi Thu Huong Do
- Sorbonne Universities, Pierre and Marie Curie University Paris 06, INSERM, Saint-Antoine Research Center, Saint-Antoine Hospital, Paris, France Hospitalo-Universitary Institute, ICAN, Paris, France
| | - Bénédicte Antoine
- Sorbonne Universities, Pierre and Marie Curie University Paris 06, INSERM, Saint-Antoine Research Center, Saint-Antoine Hospital, Paris, France Hospitalo-Universitary Institute, ICAN, Paris, France
| | - Marthe Moldes
- Sorbonne Universities, Pierre and Marie Curie University Paris 06, INSERM, Saint-Antoine Research Center, Saint-Antoine Hospital, Paris, France Hospitalo-Universitary Institute, ICAN, Paris, France
| | - Guillaume Dorothee
- Sorbonne Universities, Pierre and Marie Curie University Paris 06, INSERM, Saint-Antoine Research Center, Saint-Antoine Hospital, Paris, France
| | - Chantal Kazazian
- Sorbonne Universities, Pierre and Marie Curie University Paris 06, INSERM, Saint-Antoine Research Center, Saint-Antoine Hospital, Paris, France Hospitalo-Universitary Institute, ICAN, Paris, France
| | - Martine Auclair
- Sorbonne Universities, Pierre and Marie Curie University Paris 06, INSERM, Saint-Antoine Research Center, Saint-Antoine Hospital, Paris, France Hospitalo-Universitary Institute, ICAN, Paris, France
| | - Marion Buyse
- Sorbonne Universities, Pierre and Marie Curie University Paris 06, INSERM, Saint-Antoine Research Center, Saint-Antoine Hospital, Paris, France Hospitalo-Universitary Institute, ICAN, Paris, France Department of Pharmacy, Assistance Publique-Hôpitaux de Paris, Saint-Antoine Hospital, Paris, France Paris-Sud University, EA 4123, Châtenay-Malabry, France
| | - Tatiana Ledent
- Sorbonne Universities, Pierre and Marie Curie University Paris 06, INSERM, Saint-Antoine Research Center, Saint-Antoine Hospital, Paris, France
| | - Pierre-Olivier Marchal
- Sorbonne Universities, Pierre and Marie Curie University Paris 06, INSERM, Saint-Antoine Research Center, Saint-Antoine Hospital, Paris, France Hospitalo-Universitary Institute, ICAN, Paris, France
| | - Maria Fesatidou
- Sorbonne Universities, Pierre and Marie Curie University Paris 06, INSERM, Saint-Antoine Research Center, Saint-Antoine Hospital, Paris, France Hospitalo-Universitary Institute, ICAN, Paris, France
| | - Adrien Beisseiche
- Sorbonne Universities, Pierre and Marie Curie University Paris 06, INSERM, Cordeliers Research Center, Paris, France
| | - Haruhiko Koseki
- RIKEN Research Center for Allergy and Immunology (RCAI), RIKEN Yokohama Institute, Yokohama, Japan
| | - Shuichi Hiraoka
- Department of Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
| | | | - Bertrand Blondeau
- Sorbonne Universities, Pierre and Marie Curie University Paris 06, INSERM, Cordeliers Research Center, Paris, France
| | | | - Serge Luquet
- Sorbonne Paris City University, Paris Diderot University, BFA, CNRS, Paris, France
| | - Bruno Fève
- Sorbonne Universities, Pierre and Marie Curie University Paris 06, INSERM, Saint-Antoine Research Center, Saint-Antoine Hospital, Paris, France Hospitalo-Universitary Institute, ICAN, Paris, France Department of Endocrinology, Paris, Assistance Publique-Hôpitaux de Paris, Saint-Antoine Hospital, Paris, France
| |
Collapse
|
44
|
Soon ASC, Chua JW, Becker DL. Connexins in endothelial barrier function - novel therapeutic targets countering vascular hyperpermeability. Thromb Haemost 2016; 116:852-867. [PMID: 27488046 DOI: 10.1160/th16-03-0210] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/15/2016] [Indexed: 12/14/2022]
Abstract
Prolonged vascular hyperpermeability is a common feature of many diseases. Vascular hyperpermeability is typically associated with changes in the expression patterns of adherens and tight junction proteins. Here, we focus on the less-appreciated contribution of gap junction proteins (connexins) to basal vascular permeability and endothelial dysfunction. First, we assess the association of connexins with endothelial barrier integrity by introducing tools used in connexin biology and relating the findings to customary readouts in vascular biology. Second, we explore potential mechanistic ties between connexins and junction regulation. Third, we review the role of connexins in microvascular organisation and development, focusing on interactions of the endothelium with mural cells and tissue-specific perivascular cells. Last, we see how connexins contribute to the interactions between the endothelium and components of the immune system, by using neutrophils as an example. Mounting evidence of crosstalk between connexins and other junction proteins suggests that we rethink the way in which different junction components contribute to endothelial barrier function. Given the multiple points of connexin-mediated communication arising from the endothelium, there is great potential for synergism between connexin-targeted inhibitors and existing immune-targeted therapeutics. As more drugs targeting connexins progress through clinical trials, it is hoped that some might prove effective at countering vascular hyperpermeability.
Collapse
Affiliation(s)
| | | | - David Laurence Becker
- David L. Becker, PhD, Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, 308232 Singapore, Tel: +65 6592 3961, Fax: +65 6515 0417, E-mail:
| |
Collapse
|
45
|
Willebrords J, Crespo Yanguas S, Maes M, Decrock E, Wang N, Leybaert L, Kwak BR, Green CR, Cogliati B, Vinken M. Connexins and their channels in inflammation. Crit Rev Biochem Mol Biol 2016; 51:413-439. [PMID: 27387655 PMCID: PMC5584657 DOI: 10.1080/10409238.2016.1204980] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Inflammation may be caused by a variety of factors and is a hallmark of a plethora of acute and chronic diseases. The purpose of inflammation is to eliminate the initial cell injury trigger, to clear out dead cells from damaged tissue and to initiate tissue regeneration. Despite the wealth of knowledge regarding the involvement of cellular communication in inflammation, studies on the role of connexin-based channels in this process have only begun to emerge in the last few years. In this paper, a state-of-the-art overview of the effects of inflammation on connexin signaling is provided. Vice versa, the involvement of connexins and their channels in inflammation will be discussed by relying on studies that use a variety of experimental tools, such as genetically modified animals, small interfering RNA and connexin-based channel blockers. A better understanding of the importance of connexin signaling in inflammation may open up towards clinical perspectives.
Collapse
Affiliation(s)
- Joost Willebrords
- Department of In Vitro Toxicology and
Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels,
Belgium; Joost Willebrords: + Tel: 32 2 477 45 87, Michaël Maes: Tel: +32 2
477 45 87, Sara Crespo Yanguas: Tel: +32 2 477 45 87
| | - Sara Crespo Yanguas
- Department of In Vitro Toxicology and
Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels,
Belgium; Joost Willebrords: + Tel: 32 2 477 45 87, Michaël Maes: Tel: +32 2
477 45 87, Sara Crespo Yanguas: Tel: +32 2 477 45 87
| | - Michaël Maes
- Department of In Vitro Toxicology and
Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels,
Belgium; Joost Willebrords: + Tel: 32 2 477 45 87, Michaël Maes: Tel: +32 2
477 45 87, Sara Crespo Yanguas: Tel: +32 2 477 45 87
| | - Elke Decrock
- Department of Basic Medical Sciences, Physiology Group, Ghent
University, De Pintelaan 185, 9000 Ghent, Belgium; Elke Decrock: Tel: +32 9 332 39
73, Nan Wang: Tel: +32 9 332 39 38, Luc Leybaert: Tel: +32 9 332 33 66
| | - Nan Wang
- Department of Basic Medical Sciences, Physiology Group, Ghent
University, De Pintelaan 185, 9000 Ghent, Belgium; Elke Decrock: Tel: +32 9 332 39
73, Nan Wang: Tel: +32 9 332 39 38, Luc Leybaert: Tel: +32 9 332 33 66
| | - Luc Leybaert
- Department of Basic Medical Sciences, Physiology Group, Ghent
University, De Pintelaan 185, 9000 Ghent, Belgium; Elke Decrock: Tel: +32 9 332 39
73, Nan Wang: Tel: +32 9 332 39 38, Luc Leybaert: Tel: +32 9 332 33 66
| | - Brenda R. Kwak
- Department of Pathology and Immunology and Division of Cardiology,
University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland; Brenda R.
Kwak: Tel: +41 22 379 57 37
| | - Colin R. Green
- Department of Ophthalmology and New Zealand National Eye Centre,
University of Auckland, New Zealand; Colin R. Green: Tel: +64 9 923 61 35
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal
Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87,
05508-270 São Paulo, Brazil; Bruno Cogliati: Tel: +55 11 30 91 12 00
| | - Mathieu Vinken
- Department of In Vitro Toxicology and
Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels,
Belgium; Joost Willebrords: + Tel: 32 2 477 45 87, Michaël Maes: Tel: +32 2
477 45 87, Sara Crespo Yanguas: Tel: +32 2 477 45 87
| |
Collapse
|
46
|
Sala G, Badalamenti S, Ponticelli C. The Renal Connexome and Possible Roles of Connexins in Kidney Diseases. Am J Kidney Dis 2015; 67:677-87. [PMID: 26613807 DOI: 10.1053/j.ajkd.2015.09.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 09/30/2015] [Indexed: 12/21/2022]
Abstract
Connexins are membrane-spanning proteins that allow for the formation of cell-to-cell channels and cell-to-extracellular space hemichannels. Many connexin subtypes are expressed in kidney cells. Some mutations in connexin genes have been linked to various human pathologies, including cardiovascular, neurodegenerative, lung, and skin diseases, but the exact role of connexins in kidney disease remains unclear. Some hypotheses about a connection between genetic mutations, endoplasmic reticulum (ER) stress, and the unfolded protein response (UPR) in kidney pathology have been explored. The potential relationship of kidney disease to abnormal production of connexin proteins, mutations in their genes together with ER stress, or the UPR is still a matter of debate. In this scenario, it is tantalizing to speculate about a possible role of connexins in the setting of kidney pathologies that are thought to be caused by a deregulated podocyte protein expression, the so-called podocytopathies. In this article, we give examples of the roles of connexins in kidney (patho)physiology and propose avenues for further research concerning connexins, ER stress, and UPR in podocytopathies that may ultimately help refine drug treatment.
Collapse
Affiliation(s)
- Gabriele Sala
- Nephrology and Dialysis Unit, Humanitas Clinical Research Center, Rozzano (Milano), Italy.
| | - Salvatore Badalamenti
- Nephrology and Dialysis Unit, Humanitas Clinical Research Center, Rozzano (Milano), Italy
| | - Claudio Ponticelli
- Nephrology and Dialysis Unit, Humanitas Clinical Research Center, Rozzano (Milano), Italy
| |
Collapse
|
47
|
Marchal PO, Kavvadas P, Abed A, Kazazian C, Authier F, Koseki H, Hiraoka S, Boffa JJ, Martinerie C, Chadjichristos CE. Reduced NOV/CCN3 Expression Limits Inflammation and Interstitial Renal Fibrosis after Obstructive Nephropathy in Mice. PLoS One 2015; 10:e0137876. [PMID: 26367310 PMCID: PMC4569074 DOI: 10.1371/journal.pone.0137876] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 08/23/2015] [Indexed: 11/20/2022] Open
Abstract
The main hallmark of chronic kidney disease (CKD) is excessive inflammation leading to interstitial tissue fibrosis. It has been recently reported that NOV/CCN3 could be involved in kidney damage but its role in the progression of nephropathies is poorly known. NOV/CCN3 is a secreted multifunctional protein belonging to the CCN family involved in different physiological and pathological processes such as angiogenesis, inflammation and cancers. The purpose of our study was to determine the role of NOV/CCN3 in renal inflammation and fibrosis related to primitive tubulointerstitial injury. After unilateral ureteral obstruction (UUO), renal histology and real-time PCR were performed in NOV/CCN3-/- and wild type mice. NOV/CCN3 mRNA expression was increased in the obstructed kidneys in the early stages of the obstructive nephropathy. Interestingly, plasmatic levels of NOV/CCN3 were strongly induced after 7 days of UUO and the injection of recombinant NOV/CCN3 protein in healthy mice significantly increased CCL2 mRNA levels. Furthermore, after 7 days of UUO NOV/CCN3-/- mice displayed reduced proinflammatory cytokines and adhesion markers expression leading to restricted accumulation of interstitial monocytes, in comparison with their wild type littermates. Consequently, in NOV/CCN3-/- mice interstitial renal fibrosis was blunted after 15 days of UUO. In agreement with our experimental data, NOV/CCN3 expression was highly increased in biopsies of patients with tubulointerstitial nephritis. Thus, the inhibition of NOV/CCN3 may represent a novel target for the progression of renal diseases.
Collapse
Affiliation(s)
- Pierre-Olivier Marchal
- INSERM, UMR-S938, Centre de Recherche Saint-Antoine, Saint-Antoine Hospital, Paris, France
- INSERM UMR-S1155, Tenon Hospital, Paris, France
- Sorbonne Universités, UPMC Univ Paris 6, Paris, France
| | | | - Ahmed Abed
- INSERM UMR-S1155, Tenon Hospital, Paris, France
- Sorbonne Universités, UPMC Univ Paris 6, Paris, France
| | - Chantal Kazazian
- INSERM, UMR-S938, Centre de Recherche Saint-Antoine, Saint-Antoine Hospital, Paris, France
| | | | - Haruhiko Koseki
- RIKEN Research Center for Allergy and Immunology (RCAI), RIKEN Yokohama Institute, Yokohama, Japan
| | - Shuichi Hiraoka
- Department of Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Jean-Jacques Boffa
- INSERM UMR-S1155, Tenon Hospital, Paris, France
- Department of Nephrology, Tenon Hospital, Paris, France
| | - Cécile Martinerie
- INSERM, UMR-S938, Centre de Recherche Saint-Antoine, Saint-Antoine Hospital, Paris, France
- Sorbonne Universités, UPMC Univ Paris 6, Paris, France
| | - Christos E. Chadjichristos
- INSERM UMR-S1155, Tenon Hospital, Paris, France
- Sorbonne Universités, UPMC Univ Paris 6, Paris, France
- * E-mail:
| |
Collapse
|
48
|
Abed AB, Kavvadas P, Chadjichristos CE. Functional roles of connexins and pannexins in the kidney. Cell Mol Life Sci 2015; 72:2869-77. [PMID: 26082183 PMCID: PMC11113829 DOI: 10.1007/s00018-015-1964-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 06/11/2015] [Indexed: 12/22/2022]
Abstract
Kidneys are highly complex organs, playing a crucial role in human physiopathology, as they are implicated in vital processes, such as fluid filtration and vasomotor tone regulation. There is growing evidence that gap junctions are major determinants of renal physiopathology. It has been demonstrated that their expression or channel activity may vary depending on physiological and pathological situations within distinct renal compartments. While some studies have focused on the role of connexins in renal physiology, our knowledge regarding the functional relevance of pannexins is still very limited. In this paper, we provide an overview of the involvement of connexins, pannexins and their channels in various physiological processes related to different renal compartments.
Collapse
Affiliation(s)
- Ahmed B. Abed
- INSERM UMR-S1155, Batiment Recherche, Tenon Hospital, 4 rue de la Chine, 75020 Paris, France
- Sorbonne Universite´s, UPMC Univ Paris 6, Paris, France
| | - Panagiotis Kavvadas
- INSERM UMR-S1155, Batiment Recherche, Tenon Hospital, 4 rue de la Chine, 75020 Paris, France
| | | |
Collapse
|
49
|
Plotkin LI, Stains JP. Connexins and pannexins in the skeleton: gap junctions, hemichannels and more. Cell Mol Life Sci 2015; 72:2853-67. [PMID: 26091748 PMCID: PMC4503509 DOI: 10.1007/s00018-015-1963-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 06/11/2015] [Indexed: 10/23/2022]
Abstract
Regulation of bone homeostasis depends on the concerted actions of bone-forming osteoblasts and bone-resorbing osteoclasts, controlled by osteocytes, cells derived from osteoblasts surrounded by bone matrix. The control of differentiation, viability and function of bone cells relies on the presence of connexins. Connexin43 regulates the expression of genes required for osteoblast and osteoclast differentiation directly or by changing the levels of osteocytic genes, and connexin45 may oppose connexin43 actions in osteoblastic cells. Connexin37 is required for osteoclast differentiation and its deletion results in increased bone mass. Less is known on the role of connexins in cartilage, ligaments and tendons. Connexin43, connexin45, connexin32, connexin46 and connexin29 are expressed in chondrocytes, while connexin43 and connexin32 are expressed in ligaments and tendons. Similarly, although the expression of pannexin1, pannexin2 and pannexin3 has been demonstrated in bone and cartilage cells, their function in these tissues is not fully understood.
Collapse
Affiliation(s)
- Lilian I Plotkin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Dr., MS 5035, Indianapolis, IN, 46202, USA,
| | | |
Collapse
|
50
|
Maggiorani D, Dissard R, Belloy M, Saulnier-Blache JS, Casemayou A, Ducasse L, Grès S, Bellière J, Caubet C, Bascands JL, Schanstra JP, Buffin-Meyer B. Shear Stress-Induced Alteration of Epithelial Organization in Human Renal Tubular Cells. PLoS One 2015; 10:e0131416. [PMID: 26146837 PMCID: PMC4493045 DOI: 10.1371/journal.pone.0131416] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 06/02/2015] [Indexed: 12/14/2022] Open
Abstract
Tubular epithelial cells in the kidney are continuously exposed to urinary fluid shear stress (FSS) generated by urine movement and recent in vitro studies suggest that changes of FSS could contribute to kidney injury. However it is unclear whether FSS alters the epithelial characteristics of the renal tubule. Here, we evaluated in vitro and in vivo the influence of FSS on epithelial characteristics of renal proximal tubular cells taking the organization of junctional complexes and the presence of the primary cilium as markers of epithelial phenotype. Human tubular cells (HK-2) were subjected to FSS (0.5 Pa) for 48h. Control cells were maintained under static conditions. Markers of tight junctions (Claudin-2, ZO-1), Par polarity complex (Pard6), adherens junctions (E-Cadherin, β-Catenin) and the primary cilium (α-acetylated Tubulin) were analysed by quantitative PCR, Western blot or immunocytochemistry. In response to FSS, Claudin-2 disappeared and ZO-1 displayed punctuated and discontinuous staining in the plasma membrane. Expression of Pard6 was also decreased. Moreover, E-Cadherin abundance was decreased, while its major repressors Snail1 and Snail2 were overexpressed, and β-Catenin staining was disrupted along the cell periphery. Finally, FSS subjected-cells exhibited disappeared primary cilium. Results were confirmed in vivo in a uninephrectomy (8 months) mouse model where increased FSS induced by adaptive hyperfiltration in remnant kidney was accompanied by both decreased epithelial gene expression including ZO-1, E-cadherin and β-Catenin and disappearance of tubular cilia. In conclusion, these results show that proximal tubular cells lose an important number of their epithelial characteristics after long term exposure to FSS both in vitro and in vivo. Thus, the changes in urinary FSS associated with nephropathies should be considered as potential insults for tubular cells leading to disorganization of the tubular epithelium.
Collapse
Affiliation(s)
- Damien Maggiorani
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Toulouse, France
- Université Toulouse III Paul Sabatier, Institute of Metabolic and Cardiovascular Diseases - I2MC, Toulouse, France
| | - Romain Dissard
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Toulouse, France
- Université Toulouse III Paul Sabatier, Institute of Metabolic and Cardiovascular Diseases - I2MC, Toulouse, France
| | - Marcy Belloy
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Toulouse, France
- Université Toulouse III Paul Sabatier, Institute of Metabolic and Cardiovascular Diseases - I2MC, Toulouse, France
| | - Jean-Sébastien Saulnier-Blache
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Toulouse, France
- Université Toulouse III Paul Sabatier, Institute of Metabolic and Cardiovascular Diseases - I2MC, Toulouse, France
| | - Audrey Casemayou
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Toulouse, France
- Université Toulouse III Paul Sabatier, Institute of Metabolic and Cardiovascular Diseases - I2MC, Toulouse, France
| | - Laure Ducasse
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Toulouse, France
- Université Toulouse III Paul Sabatier, Institute of Metabolic and Cardiovascular Diseases - I2MC, Toulouse, France
| | - Sandra Grès
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Toulouse, France
- Université Toulouse III Paul Sabatier, Institute of Metabolic and Cardiovascular Diseases - I2MC, Toulouse, France
| | - Julie Bellière
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Toulouse, France
- Université Toulouse III Paul Sabatier, Institute of Metabolic and Cardiovascular Diseases - I2MC, Toulouse, France
| | - Cécile Caubet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Toulouse, France
- Université Toulouse III Paul Sabatier, Institute of Metabolic and Cardiovascular Diseases - I2MC, Toulouse, France
| | - Jean-Loup Bascands
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Toulouse, France
- Université Toulouse III Paul Sabatier, Institute of Metabolic and Cardiovascular Diseases - I2MC, Toulouse, France
| | - Joost P. Schanstra
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Toulouse, France
- Université Toulouse III Paul Sabatier, Institute of Metabolic and Cardiovascular Diseases - I2MC, Toulouse, France
| | - Bénédicte Buffin-Meyer
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Toulouse, France
- Université Toulouse III Paul Sabatier, Institute of Metabolic and Cardiovascular Diseases - I2MC, Toulouse, France
- * E-mail:
| |
Collapse
|