1
|
Geng W, Xia Q, He M, Wang Y, Zheng Z, Qin H, Wang Y, Feng J, Qian J. A Clinical Drug as the Three-Photon Fluorescence Probe for In Vivo Microscopic Imaging of Mouse Kidney. JOURNAL OF BIOPHOTONICS 2025; 18:e202400441. [PMID: 39840508 DOI: 10.1002/jbio.202400441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/05/2024] [Accepted: 01/06/2025] [Indexed: 01/23/2025]
Abstract
Three-photon fluorescence (3PF) microscopy encounters significant challenges in biological research and clinical applications, primarily due to the limited availability of high-performance probes. We took a shortcut by exploring the excellent 3PF property of berberine hydrochloride (BH), a clinically utilized drug derived from the traditional Chinese medicine, Coptis. Capitalizing on its renal metabolism characteristics, we employed BH for in vivo 3PF microscopic imaging of the mouse kidney. This approach enabled high-resolution structural observation of renal tubules and facilitated the diagnosis of drug-induced acute kidney injury (AKI) based on renal tubule morphology. The analytical capabilities of 3PF microscopy for renal physiology and pathological diagnosis suggest its potential for future clinical applications.
Collapse
Affiliation(s)
- Weihang Geng
- State Key Laboratory of Extreme Photonics and Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China
| | - Qiming Xia
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mubin He
- State Key Laboratory of Extreme Photonics and Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zheng Zheng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China
| | - Haiyan Qin
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Yalun Wang
- School of Information and Electronic Engineering, Zhejiang Gongshang University, Hangzhou, China
| | - Jian Feng
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jun Qian
- State Key Laboratory of Extreme Photonics and Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Faivre A, Bugarski M, Rinaldi A, Sakhi IB, Verissimo T, Legouis D, Rutkowski JM, Correia S, Kaminska M, Dalga D, Malpetti D, Cippa PE, de Seigneux S, Hall AM. Spatiotemporal Landscape of Kidney Tubular Responses to Glomerular Proteinuria. J Am Soc Nephrol 2024; 35:854-869. [PMID: 38652545 PMCID: PMC11230716 DOI: 10.1681/asn.0000000000000357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
Key Points Glomerular proteinuria induces large-scale changes in gene expression along the nephron. Increased protein uptake in the proximal tubule results in axial remodeling and injury. Increased protein delivery to the distal tubule causes dedifferentiation of the epithelium. Background Large increases in glomerular protein filtration induce major changes in body homeostasis and are associated with a higher risk of kidney functional decline and cardiovascular disease. We investigated how elevated protein exposure modifies the landscape of tubular function along the entire nephron, to understand the cellular changes that mediate these important clinical phenomena. Methods We conducted single-nucleus RNA sequencing, functional intravital imaging, and antibody staining to spatially map transport processes along the mouse kidney tubule. We then delineated how these were altered in a transgenic mouse model of inducible glomerular proteinuria (POD-ATTAC) at 7 and 28 days. Results Glomerular proteinuria activated large-scale and pleiotropic changes in gene expression in all major nephron sections. Extension of protein uptake from early (S1) to later (S2) parts of the proximal tubule initially triggered dramatic expansion of a hybrid S1/2 population, followed by injury and failed repair, with the cumulative effect of loss of canonical S2 functions. Proteinuria also induced acute injury in S3. Meanwhile, overflow of luminal proteins to the distal tubule caused transcriptional convergence between specialized regions and generalized dedifferentiation. Conclusions Proteinuria modulated cell signaling in tubular epithelia and caused distinct patterns of remodeling and injury in a segment-specific manner. Podcast This article contains a podcast at https://dts.podtrac.com/redirect.mp3/www.asn-online.org/media/podcast/JASN/2024_05_01_ASN0000000000000357.mp3
Collapse
Affiliation(s)
- Anna Faivre
- Department of Medicine and Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Milica Bugarski
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Anna Rinaldi
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Division of Nephrology, Department of Medicine, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Imene B. Sakhi
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Thomas Verissimo
- Department of Medicine and Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - David Legouis
- Department of Medicine and Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Division of Intensive Care, Department of Acute Medicine, University Hospital of Geneva, Geneva, Switzerland
| | | | - Sara Correia
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Monika Kaminska
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Delal Dalga
- Department of Medicine and Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Daniele Malpetti
- Istituto Dalle Molle di Studi sull'Intelligenza Artificiale (IDSIA), USI/SUPSI, Lugano, Switzerland
| | - Pietro E. Cippa
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Division of Nephrology, Department of Medicine, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Sophie de Seigneux
- Department of Medicine and Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Department of Medicine, Service of Nephrology, Geneva University Hospitals, Geneva, Switzerland
| | - Andrew M. Hall
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
- Department of Nephrology, University Hospital Zurich, Zurich, Switzerland
- Zurich Kidney Center, Zurich, Switzerland
| |
Collapse
|
3
|
Mohan G, Khan I, Diaz SM, Kamocka MM, Hulsman LA, Ahmed S, Neumann CR, Jorge MD, Gordillo GM, Sen CK, Sinha M, Hassanein AH. Quantification of Lymphangiogenesis in the Murine Lymphedema Tail Model Using Intravital Microscopy. Lymphat Res Biol 2024; 22:195-202. [PMID: 38699876 PMCID: PMC11310576 DOI: 10.1089/lrb.2023.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024] Open
Abstract
Background: Lymphedema is chronic limb swelling resulting from lymphatic dysfunction. It affects an estimated five million Americans. There is no cure for this disease. Assessing lymphatic growth is essential in developing novel therapeutics. Intravital microscopy (IVM) is a powerful imaging tool for investigating various biological processes in live animals. Tissue nanotransfection technology (TNT) facilitates a direct, transcutaneous nonviral vector gene delivery using a chip with nanochannel poration in a rapid (<100 ms) focused electric field. TNT was used in this study to deliver the genetic cargo in the murine tail lymphedema to assess the lymphangiogenesis. The purpose of this study is to experimentally evaluate the applicability of IVM to visualize and quantify lymphatics in the live mice model. Methods and Results: The murine tail model of lymphedema was utilized. TNT was applied to the murine tail (day 0) directly at the surgical site with genetic cargo loaded into the TNT reservoir: TNTpCMV6 group receives pCMV6 (expression vector backbone alone) (n = 6); TNTProx1 group receives pCMV6-Prox1 (n = 6). Lymphatic vessels (fluorescein isothiocyanate [FITC]-dextran stained) and lymphatic branch points (indicating lymphangiogenesis) were analyzed with the confocal/multiphoton microscope. The experimental group TNTProx1 exhibited reduced postsurgical tail lymphedema and increased lymphatic distribution compared to TNTpCMV6 group. More lymphatic branching points (>3-fold) were observed at the TNT site in TNTProx1 group. Conclusions: This study demonstrates a novel, powerful imaging tool for investigating lymphatic vessels in live murine tail model of lymphedema. IVM can be utilized for functional assessment of lymphatics and visualization of lymphangiogenesis following gene-based therapy.
Collapse
Affiliation(s)
- Ganesh Mohan
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Imran Khan
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Stephanie M. Diaz
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Malgorzata M. Kamocka
- Indiana Center for Biological Microscopy, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Luci A. Hulsman
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Shahnur Ahmed
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Colby R. Neumann
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Miguel D. Jorge
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Gayle M. Gordillo
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
- McGowan Institute for Regenerative Medicine, Department of Plastic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Chandan K. Sen
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mithun Sinha
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Aladdin H. Hassanein
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
4
|
Kayhan M, Vouillamoz J, Rodriguez DG, Bugarski M, Mitamura Y, Gschwend J, Schneider C, Hall A, Legouis D, Akdis CA, Peter L, Rehrauer H, Gewin L, Wenger RH, Khodo SN. Intrinsic TGF-β signaling attenuates proximal tubule mitochondrial injury and inflammation in chronic kidney disease. Nat Commun 2023; 14:3236. [PMID: 37270534 PMCID: PMC10239443 DOI: 10.1038/s41467-023-39050-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 05/26/2023] [Indexed: 06/05/2023] Open
Abstract
Excessive TGF-β signaling and mitochondrial dysfunction fuel chronic kidney disease (CKD) progression. However, inhibiting TGF-β failed to impede CKD in humans. The proximal tubule (PT), the most vulnerable renal segment, is packed with giant mitochondria and injured PT is pivotal in CKD progression. How TGF-β signaling affects PT mitochondria in CKD remained unknown. Here, we combine spatial transcriptomics and bulk RNAseq with biochemical analyses to depict the role of TGF-β signaling on PT mitochondrial homeostasis and tubulo-interstitial interactions in CKD. Male mice carrying specific deletion of Tgfbr2 in the PT have increased mitochondrial injury and exacerbated Th1 immune response in the aristolochic acid model of CKD, partly, through impaired complex I expression and mitochondrial quality control associated with a metabolic rewiring toward aerobic glycolysis in the PT cells. Injured S3T2 PT cells are identified as the main mediators of the maladaptive macrophage/dendritic cell activation in the absence of Tgfbr2. snRNAseq database analyses confirm decreased TGF-β receptors and a metabolic deregulation in the PT of CKD patients. This study describes the role of TGF-β signaling in PT mitochondrial homeostasis and inflammation in CKD, suggesting potential therapeutic targets that might be used to mitigate CKD progression.
Collapse
Affiliation(s)
- Merve Kayhan
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | | | - Milica Bugarski
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research, University of Zurich, Zurich, Switzerland
| | - Julia Gschwend
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Andrew Hall
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - David Legouis
- Laboratory of Nephrology, Department of Medicine and Cell Physiology, Hospital and University of Geneva, Geneva, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research, University of Zurich, Zurich, Switzerland
| | - Leary Peter
- Functional Genomics Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Hubert Rehrauer
- Functional Genomics Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Leslie Gewin
- Department of Internal Medicine, Division of Nephrology, Washington University, St. Louis, USA
- Department of Medicine, St. Louis Veterans Affairs, St. Louis, USA
| | - Roland H Wenger
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
5
|
Valentino M, Bianco V, Miccio L, Memmolo P, Brancato V, Libretti P, Gambacorta M, Salvatore M, Ferraro P. Beyond conventional microscopy: Observing kidney tissues by means of fourier ptychography. Front Physiol 2023; 14:1120099. [PMID: 36860516 PMCID: PMC9968938 DOI: 10.3389/fphys.2023.1120099] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/01/2023] [Indexed: 02/17/2023] Open
Abstract
Kidney microscopy is a mainstay in studying the morphological structure, physiology and pathology of kidney tissues, as histology provides important results for a reliable diagnosis. A microscopy modality providing at same time high-resolution images and a wide field of view could be very useful for analyzing the whole architecture and the functioning of the renal tissue. Recently, Fourier Ptychography (FP) has been proofed to yield images of biology samples such as tissues and in vitro cells while providing high resolution and large field of view, thus making it a unique and attractive opportunity for histopathology. Moreover, FP offers tissue imaging with high contrast assuring visualization of small desirable features, although with a stain-free mode that avoids any chemical process in histopathology. Here we report an experimental measuring campaign for creating the first comprehensive and extensive collection of images of kidney tissues captured by this FP microscope. We show that FP microscopy unlocks a new opportunity for the physicians to observe and judge renal tissue slides through the novel FP quantitative phase-contrast microscopy. Phase-contrast images of kidney tissue are analyzed by comparing them with the corresponding renal images taken under a conventional bright-field microscope both for stained and unstained tissue samples of different thicknesses. In depth discussion on the advantages and limitations of this new stain-free microscopy modality is reported, showing its usefulness over the classical light microscopy and opening a potential route for using FP in clinical practice for histopathology of kidney.
Collapse
Affiliation(s)
- Marika Valentino
- National Research Council (CNR) of Italy, Institute of Applied Sciences and Intelligent Systems (ISASI), Pozzuoli, Italy,Department of Electric and Information Technologies Engineering, University of Naples “Federico II”, Naples, Italy
| | - Vittorio Bianco
- National Research Council (CNR) of Italy, Institute of Applied Sciences and Intelligent Systems (ISASI), Pozzuoli, Italy,*Correspondence: Vittorio Bianco, ; Marcello Gambacorta,
| | - Lisa Miccio
- National Research Council (CNR) of Italy, Institute of Applied Sciences and Intelligent Systems (ISASI), Pozzuoli, Italy
| | - Pasquale Memmolo
- National Research Council (CNR) of Italy, Institute of Applied Sciences and Intelligent Systems (ISASI), Pozzuoli, Italy
| | | | | | - Marcello Gambacorta
- IRCCS SYNLAB SDN, Naples, Italy,*Correspondence: Vittorio Bianco, ; Marcello Gambacorta,
| | | | - Pietro Ferraro
- National Research Council (CNR) of Italy, Institute of Applied Sciences and Intelligent Systems (ISASI), Pozzuoli, Italy
| |
Collapse
|
6
|
Intravital microscopy for real-time monitoring of drug delivery and nanobiological processes. Adv Drug Deliv Rev 2022; 189:114528. [PMID: 36067968 DOI: 10.1016/j.addr.2022.114528] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/10/2022] [Accepted: 08/30/2022] [Indexed: 01/24/2023]
Abstract
Intravital microscopy (IVM) expands our understanding of cellular and molecular processes, with applications ranging from fundamental biology to (patho)physiology and immunology, as well as from drug delivery to drug processing and drug efficacy testing. In this review, we highlight modalities, methods and model organisms that make up today's IVM landscape, and we present how IVM - via its high spatiotemporal resolution - enables analysis of metabolites, small molecules, nanoparticles, immune cells, and the (tumor) tissue microenvironment. We furthermore present examples of how IVM facilitates the elucidation of nanomedicine kinetics and targeting mechanisms, as well as of biological processes such as immune cell death, host-pathogen interactions, metabolic states, and disease progression. We conclude by discussing the prospects of IVM clinical translation and examining the integration of machine learning in future IVM practice.
Collapse
|
7
|
Molitoris BA, Sandoval RM, Wagner MC. Intravital Multiphoton Microscopy as a Tool for Studying Renal Physiology, Pathophysiology and Therapeutics. Front Physiol 2022; 13:827280. [PMID: 35399274 PMCID: PMC8988037 DOI: 10.3389/fphys.2022.827280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Intravital multiphoton microscopy has empowered investigators to study dynamic cell and subcellular processes in vivo within normal and disease organs. Advances in hardware, software, optics, transgenics and fluorescent probe design and development have enabled new quantitative approaches to create a disruptive technology pioneering advances in understanding of normal biology, disease pathophysiology and therapies. Offering superior spatial and temporal resolution with high sensitivity, investigators can follow multiple processes simultaneously and observe complex interactions between different cell types, intracellular organelles, proteins and track molecules for cellular uptake, intracellular trafficking, and metabolism in a cell specific fashion. The technique has been utilized in the kidney to quantify multiple dynamic processes including capillary flow, permeability, glomerular function, proximal tubule processes and determine the effects of diseases and therapeutic mechanisms. Limitations include the depth of tissue penetration with loss of sensitivity and resolution due to scattered emitted light. Tissue clearing technology has virtually eliminated penetration issues for fixed tissue studies. Use of multiphoton microscopy in preclinical animal models offers distinct advantages resulting in new insights into physiologic processes and the pathophysiology and treatment of diseases.
Collapse
|
8
|
Palma V, Gutiérrez MS, Vargas O, Parthasarathy R, Navarrete P. Methods to Evaluate Bacterial Motility and Its Role in Bacterial–Host Interactions. Microorganisms 2022; 10:microorganisms10030563. [PMID: 35336138 PMCID: PMC8953368 DOI: 10.3390/microorganisms10030563] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/02/2022] [Accepted: 02/06/2022] [Indexed: 11/16/2022] Open
Abstract
Bacterial motility is a widespread characteristic that can provide several advantages for the cell, allowing it to move towards more favorable conditions and enabling host-associated processes such as colonization. There are different bacterial motility types, and their expression is highly regulated by the environmental conditions. Because of this, methods for studying motility under realistic experimental conditions are required. A wide variety of approaches have been developed to study bacterial motility. Here, we present the most common techniques and recent advances and discuss their strengths as well as their limitations. We classify them as macroscopic or microscopic and highlight the advantages of three-dimensional imaging in microscopic approaches. Lastly, we discuss methods suited for studying motility in bacterial–host interactions, including the use of the zebrafish model.
Collapse
Affiliation(s)
- Victoria Palma
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Santiago 7830490, Chile; (V.P.); (M.S.G.); (O.V.)
| | - María Soledad Gutiérrez
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Santiago 7830490, Chile; (V.P.); (M.S.G.); (O.V.)
- Millennium Science Initiative Program, Milenium Nucleus in the Biology of the Intestinal Microbiota, National Agency for Research and Development (ANID), Moneda 1375, Santiago 8200000, Chile
| | - Orlando Vargas
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Santiago 7830490, Chile; (V.P.); (M.S.G.); (O.V.)
| | - Raghuveer Parthasarathy
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA;
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, OR 97403, USA
| | - Paola Navarrete
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Santiago 7830490, Chile; (V.P.); (M.S.G.); (O.V.)
- Millennium Science Initiative Program, Milenium Nucleus in the Biology of the Intestinal Microbiota, National Agency for Research and Development (ANID), Moneda 1375, Santiago 8200000, Chile
- Correspondence:
| |
Collapse
|
9
|
Bapst AM, Knöpfel T, Nolan KA, Imeri F, Schuh CD, Hall AM, Guo J, Katschinski DM, Wenger RH. Neurogenic and pericytic plasticity of conditionally immortalized cells derived from renal erythropoietin-producing cells. J Cell Physiol 2022; 237:2420-2433. [PMID: 35014036 PMCID: PMC9303970 DOI: 10.1002/jcp.30677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 12/19/2022]
Abstract
In adult mammals, the kidney is the main source of circulating erythropoietin (Epo), the master regulator of erythropoiesis. In vivo data in mice demonstrated multiple subtypes of interstitial renal Epo‐producing (REP) cells. To analyze the differentiation plasticity of fibroblastoid REP cells, we used a transgenic REP cell reporter mouse model to generate conditionally immortalized REP‐derived (REPD) cell lines. Under nonpermissive conditions, REPD cells ceased from proliferation and acquired a stem cell‐like state, with strongly enhanced hypoxia‐inducible factor 2 (HIF‐2α), stem cell antigen 1 (SCA‐1), and CD133 expression, but also enhanced alpha‐smooth muscle actin (αSMA) expression, indicating myofibroblastic signaling. These cells maintained the “on‐off” nature of Epo expression observed in REP cells in vivo, whereas other HIF target genes showed a more permanent regulation. Like REP cells in vivo, REPD cells cultured in vitro generated long tunneling nanotubes (TNTs) that aligned with endothelial vascular structures, were densely packed with mitochondria and became more numerous under hypoxic conditions. Although inhibition of mitochondrial oxygen consumption blunted HIF signaling, removal of the TNTs did not affect or even enhance the expression of HIF target genes. Apart from pericytes, REPD cells readily differentiated into neuroglia but not adipogenic, chondrogenic, or osteogenic lineages, consistent with a neuronal origin of at least a subpopulation of REP cells. In summary, these results suggest an unprecedented combination of differentiation features of this unique cell type.
Collapse
Affiliation(s)
- Andreas M Bapst
- Institute of Physiology, University of Zürich, Zürich, Switzerland
| | - Thomas Knöpfel
- Institute of Physiology, University of Zürich, Zürich, Switzerland
| | - Karen A Nolan
- Institute of Physiology, University of Zürich, Zürich, Switzerland.,National Centre of Competence in Research "Kidney.CH", University of Zürich, Zürich, Switzerland
| | - Faik Imeri
- Institute of Physiology, University of Zürich, Zürich, Switzerland.,National Centre of Competence in Research "Kidney.CH", University of Zürich, Zürich, Switzerland
| | - Claus D Schuh
- National Centre of Competence in Research "Kidney.CH", University of Zürich, Zürich, Switzerland.,Institute of Anatomy, University of Zürich, Zürich, Switzerland
| | - Andrew M Hall
- National Centre of Competence in Research "Kidney.CH", University of Zürich, Zürich, Switzerland.,Institute of Anatomy, University of Zürich, Zürich, Switzerland
| | - Jia Guo
- Institute for Cardiovascular Physiology, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Dörthe M Katschinski
- Institute for Cardiovascular Physiology, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Roland H Wenger
- Institute of Physiology, University of Zürich, Zürich, Switzerland.,National Centre of Competence in Research "Kidney.CH", University of Zürich, Zürich, Switzerland
| |
Collapse
|
10
|
Kitching AR, Hickey MJ. Immune cell behaviour and dynamics in the kidney - insights from in vivo imaging. Nat Rev Nephrol 2022; 18:22-37. [PMID: 34556836 DOI: 10.1038/s41581-021-00481-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2021] [Indexed: 02/08/2023]
Abstract
The actions of immune cells within the kidney are of fundamental importance in kidney homeostasis and disease. In disease settings such as acute kidney injury, anti-neutrophil cytoplasmic antibody-associated vasculitis, lupus nephritis and renal transplant rejection, immune cells resident within the kidney and those recruited from the circulation propagate inflammatory responses with deleterious effects on the kidney. As in most forms of inflammation, intravital imaging - particularly two-photon microscopy - has been critical to our understanding of immune cell responses in the renal microvasculature and interstitium, enabling visualization of immune cell dynamics over time rather than statically. These studies have demonstrated differences in the recruitment and function of these cells from those in more conventional vascular beds, and provided a wealth of information on the actions of blood-borne immune cells such as neutrophils, monocytes and T cells, as well as kidney-resident mononuclear phagocytes, in a range of diseases affecting different kidney compartments. In particular, in vivo imaging has furthered our understanding of leukocyte function within the glomerulus in acute glomerulonephritis, and in the tubulointerstitium and interstitial microvasculature during acute kidney injury and following transplantation, revealing mechanisms of immune surveillance, antigen presentation and inflammation in the kidney.
Collapse
Affiliation(s)
- A Richard Kitching
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia. .,Departments of Nephrology and Paediatric Nephrology, Monash Medical Centre, Clayton, Victoria, Australia.
| | - Michael J Hickey
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| |
Collapse
|
11
|
Gyarmati G, Jacob CO, Peti-Peterdi J. New Endothelial Mechanisms in Glomerular (Patho)biology and Proteinuria Development Captured by Intravital Multiphoton Imaging. Front Med (Lausanne) 2021; 8:765356. [PMID: 34722598 PMCID: PMC8548465 DOI: 10.3389/fmed.2021.765356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/17/2021] [Indexed: 11/23/2022] Open
Abstract
In the past two decades, intravital imaging using multiphoton microscopy has provided numerous new visual and mechanistic insights into glomerular biology and disease processes including the function of glomerular endothelial cells (GEnC), podocytes, and the development of proteinuria. Although glomerular endothelial injury is known to precede podocyte damage in several renal diseases, the primary role of GEnCs in proteinuria development received much less attention compared to the vast field of podocyte pathobiology. Consequently, our knowledge of GEnC mechanisms in glomerular diseases is still emerging. This review highlights new visual clues on molecular and cellular mechanisms of GEnCs and their crosstalk with podocytes and immune cells that were acquired recently by the application of multiphoton imaging of the intact glomerular microenvironment in various proteinuric disease models. New mechanisms of glomerular tissue remodeling and regeneration are discussed based on results of tracking the fate and function of individual GEnCs using serial intravital multiphoton imaging over several days and weeks. The three main topics of this review include (i) the role of endothelial injury and microthrombi in podocyte detachment and albumin leakage via hemodynamic and mechanical forces, (ii) the alterations of the endothelial surface layer (glycocalyx) and its interactions with circulating immune cells in lupus nephritis, and (iii) the structural and functional remodeling and regeneration of GEnCs in hypertension, diabetes, and other experimental injury conditions. By the comprehensive visual portrayal of GEnCs and the many other contributing glomerular cell types, this review emphasizes the complexity of pathogenic mechanisms that result in proteinuria development.
Collapse
Affiliation(s)
- Georgina Gyarmati
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
| | - Chaim O Jacob
- Division of Rheumatology and Immunology, Department of Medicine, University of Southern California, Los Angeles, CA, United States
| | - János Peti-Peterdi
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
12
|
Martins JR, Haenni D, Bugarski M, Polesel M, Schuh C, Hall AM. Intravital kidney microscopy: entering a new era. Kidney Int 2021; 100:527-535. [PMID: 34015315 DOI: 10.1016/j.kint.2021.02.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/01/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023]
Abstract
The development of intravital imaging with multiphoton microscopy has had a major impact on kidney research. It provides the unique opportunity to visualize dynamic behavior of cells and organelles in their native environment and to relate this to the complex 3-dimensional structure of the organ. Moreover, changes in cell/organelle function can be followed in real time in response to physiological interventions or disease-causing insults. However, realizing the enormous potential of this exciting approach has necessitated overcoming several substantial practical hurdles. In this article, we outline the nature of these challenges and how a variety of technical advances have provided effective solutions. In particular, improvements in laser/microscope technology, fluorescent probes, transgenic animals, and abdominal windows are collectively making previously opaque processes visible. Meanwhile, the rise of machine learning-based image analysis is facilitating the rapid generation of large amounts of quantitative data, amenable to deeper statistical interrogation. Taken together, the increased capabilities of multiphoton imaging are opening up huge new possibilities to study structure-function relationships in the kidney in unprecedented detail. In addition, they are yielding important new insights into cellular mechanisms of tissue damage, repair, and adaptive remodeling during disease states. Thus, intravital microscopy is truly entering an exciting new era in translational kidney research.
Collapse
Affiliation(s)
- Joana R Martins
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Dominik Haenni
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland; Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Milica Bugarski
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | | | - Claus Schuh
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Andrew M Hall
- Institute of Anatomy, University of Zurich, Zurich, Switzerland; Department of Nephrology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
13
|
Abstract
AbstractAcute kidney injury (AKI) is a common clinical symptom, which is mainly manifested by elevated serum creatinine and blood urea nitrogen levels. When AKI is not repaired in time, the patient is prone to develop chronic kidney disease (CKD). The kidney is composed of more than 30 different cells, and its structure is complex. It is extremely challenging to understand the lineage relationships and cell fate of these cells in the process of kidney injury and regeneration. Since the 20th century, lineage tracing technology has provided an important mean for studying organ development, tissue damage repair, and the differentiation and fate of single cells. However, traditional lineage tracing methods rely on sacrificing animals to make tissue slices and then take snapshots with conventional imaging tools to obtain interesting information. This method cannot achieve dynamic and continuous monitoring of cell actions on living animals. As a kind of intravital microscopy (IVM), two-photon microscopy (TPM) has successfully solved the above problems. Because TPM has the ability to penetrate deep tissues and can achieve imaging at the single cell level, lineage tracing technology with TPM is gradually becoming popular. In this review, we provided the key technical elements of lineage tracing, and how to use intravital imaging technology to visualize and quantify the fate of renal cells.
Collapse
|
14
|
Şen Ö, Emanet M, Ciofani G. Nanotechnology-Based Strategies to Evaluate and Counteract Cancer Metastasis and Neoangiogenesis. Adv Healthc Mater 2021; 10:e2002163. [PMID: 33763992 PMCID: PMC7610913 DOI: 10.1002/adhm.202002163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/11/2021] [Indexed: 12/15/2022]
Abstract
Cancer metastasis is the major cause of cancer-related morbidity and mortality. It represents one of the greatest challenges in cancer therapy, both because of the ability of metastatic cells to spread into different organs, and because of the consequent heterogeneity that characterizes primary and metastatic tumors. Nanomaterials can potentially be used as targeting or detection agents owing to unique chemical and physical features that allow tailored and tunable theranostic functions. This review highlights nanomaterial-based approaches in the detection and treatment of cancer metastasis, with a special focus on the evaluation of nanostructure effects on cell migration, invasion, and angiogenesis in the tumor microenvironment.
Collapse
Affiliation(s)
- Özlem Şen
- Istituto Italiano di TecnologiaSmart Bio‐InterfacesViale Rinaldo Piaggio 34PontederaPisa56025Italy
| | - Melis Emanet
- Istituto Italiano di TecnologiaSmart Bio‐InterfacesViale Rinaldo Piaggio 34PontederaPisa56025Italy
- Sabanci University Nanotechnology Research and Application Center (SUNUM)Sabanci UniversityUniversite Caddesi 27‐1TuzlaIstanbul34956Turkey
| | - Gianni Ciofani
- Istituto Italiano di TecnologiaSmart Bio‐InterfacesViale Rinaldo Piaggio 34PontederaPisa56025Italy
| |
Collapse
|
15
|
Angelotti ML, Antonelli G, Conte C, Romagnani P. Imaging the kidney: from light to super-resolution microscopy. Nephrol Dial Transplant 2021; 36:19-28. [PMID: 31325314 PMCID: PMC7771978 DOI: 10.1093/ndt/gfz136] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Indexed: 12/13/2022] Open
Abstract
The important achievements in kidney physiological and pathophysiological mechanisms can largely be ascribed to progress in the technology of microscopy. Much of what we know about the architecture of the kidney is based on the fundamental descriptions of anatomic microscopists using light microscopy and later by ultrastructural analysis provided by electron microscopy. These two techniques were used for the first classification systems of kidney diseases and for their constant updates. More recently, a series of novel imaging techniques added the analysis in further dimensions of time and space. Confocal microscopy allowed us to sequentially visualize optical sections along the z-axis and the availability of specific analysis software provided a three-dimensional rendering of thicker tissue specimens. Multiphoton microscopy permitted us to simultaneously investigate kidney function and structure in real time. Fluorescence-lifetime imaging microscopy allowed to study the spatial distribution of metabolites. Super-resolution microscopy increased sensitivity and resolution up to nanoscale levels. With cryo-electron microscopy, researchers could visualize the individual biomolecules at atomic levels directly in the tissues and understand their interaction at subcellular levels. Finally, matrix-assisted laser desorption/ionization imaging mass spectrometry permitted the measuring of hundreds of different molecules at the same time on tissue sections at high resolution. This review provides an overview of available kidney imaging strategies, with a focus on the possible impact of the most recent technical improvements.
Collapse
Affiliation(s)
- Maria Lucia Angelotti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.,Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), Florence, Italy
| | - Giulia Antonelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.,Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), Florence, Italy
| | - Carolina Conte
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.,Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), Florence, Italy
| | - Paola Romagnani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.,Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), Florence, Italy
| |
Collapse
|
16
|
Bugarski M, Ghazi S, Polesel M, Martins JR, Hall AM. Changes in NAD and Lipid Metabolism Drive Acidosis-Induced Acute Kidney Injury. J Am Soc Nephrol 2021; 32:342-356. [PMID: 33478973 PMCID: PMC8054907 DOI: 10.1681/asn.2020071003] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/30/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The kidney plays an important role in maintaining normal blood pH. Metabolic acidosis (MA) upregulates the pathway that mitochondria in the proximal tubule (PT) use to produce ammonia and bicarbonate from glutamine, and is associated with AKI. However, the extent to which MA causes AKI, and thus whether treating MA would be beneficial, is unclear. METHODS Gavage with ammonium chloride induced acute MA. Multiphoton imaging of mitochondria (NADH/membrane potential) and transport function (dextran/albumin uptake), oxygen consumption rate (OCR) measurements in isolated tubules, histologic analysis, and electron microscopy in fixed tissue, and urinary biomarkers (KIM-1/clara cell 16) assessed tubular cell structure and function in mouse kidney cortex. RESULTS MA induces an acute change in NAD redox state (toward oxidation) in PT mitochondria, without changing the mitochondrial energization state. This change is associated with a switch toward complex I activity and decreased maximal OCR, and a major alteration in normal lipid metabolism, resulting in marked lipid accumulation in PTs and the formation of large multilamellar bodies. These changes, in turn, lead to acute tubular damage and a severe defect in solute uptake. Increasing blood pH with intravenous bicarbonate substantially improves tubular function, whereas preinjection with the NAD precursor nicotinamide (NAM) is highly protective. CONCLUSIONS MA induces AKI via changes in PT NAD and lipid metabolism, which can be reversed or prevented by treatment strategies that are viable in humans. These findings might also help to explain why MA accelerates decline in function in CKD.
Collapse
Affiliation(s)
- Milica Bugarski
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Susan Ghazi
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | | | - Joana R. Martins
- Institute of Anatomy, University of Zurich, Zurich, Switzerland,Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Andrew M. Hall
- Institute of Anatomy, University of Zurich, Zurich, Switzerland,Department of Nephrology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Ranjit S, Lanzanò L, Libby AE, Gratton E, Levi M. Advances in fluorescence microscopy techniques to study kidney function. Nat Rev Nephrol 2020; 17:128-144. [PMID: 32948857 DOI: 10.1038/s41581-020-00337-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
Abstract
Fluorescence microscopy, in particular immunofluorescence microscopy, has been used extensively for the assessment of kidney function and pathology for both research and diagnostic purposes. The development of confocal microscopy in the 1950s enabled imaging of live cells and intravital imaging of the kidney; however, confocal microscopy is limited by its maximal spatial resolution and depth. More recent advances in fluorescence microscopy techniques have enabled increasingly detailed assessment of kidney structure and provided extraordinary insights into kidney function. For example, nanoscale precise imaging by rapid beam oscillation (nSPIRO) is a super-resolution microscopy technique that was originally developed for functional imaging of kidney microvilli and enables detection of dynamic physiological events in the kidney. A variety of techniques such as fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS) and Förster resonance energy transfer (FRET) enable assessment of interaction between proteins. The emergence of other super-resolution techniques, including super-resolution stimulated emission depletion (STED), photoactivated localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM) and structured illumination microscopy (SIM), has enabled functional imaging of cellular and subcellular organelles at ≤50 nm resolution. The deep imaging via emission recovery (DIVER) detector allows deep, label-free and high-sensitivity imaging of second harmonics, enabling assessment of processes such as fibrosis, whereas fluorescence lifetime imaging microscopy (FLIM) enables assessment of metabolic processes.
Collapse
Affiliation(s)
- Suman Ranjit
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA. .,Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, CA, USA.
| | - Luca Lanzanò
- Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy.,Department of Physics and Astronomy "Ettore Majorana", University of Catania, Catania, Italy
| | - Andrew E Libby
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, CA, USA.
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA.
| |
Collapse
|
18
|
Martins JR, Haenni D, Bugarski M, Figurek A, Hall AM. Quantitative intravital Ca2+ imaging maps single cell behavior to kidney tubular structure. Am J Physiol Renal Physiol 2020; 319:F245-F255. [DOI: 10.1152/ajprenal.00052.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Ca2+ is an important second messenger that translates extracellular stimuli into intracellular responses. Although there has been significant progress in understanding Ca2+ dynamics in organs such as the brain, the nature of Ca2+ signals in the kidney is still poorly understood. Here, we show that by using a genetically expressed highly sensitive reporter (GCaMP6s), it is possible to perform imaging of Ca2+ signals at high resolution in the mouse kidney in vivo. Moreover, by applying machine learning-based automated analysis using a Ca2+-independent signal, quantitative data can be extracted in an unbiased manner. By projecting the resulting data onto the structure of the kidney, we show that different tubular segments display highly distinct spatiotemporal patterns of Ca2+ signals. Furthermore, we provide evidence that Ca2+ activity in the proximal tubule decreases with increasing distance from the glomerulus. Finally, we demonstrate that substantial changes in intracellular Ca2+ can be detected in proximal tubules in a cisplatin model of acute kidney injury, which can be linked to alterations in cell structure and transport function. In summary, we describe a powerful new tool to investigate how single cell behavior is integrated with whole organ structure and function and how it is altered in disease states relevant to humans.
Collapse
Affiliation(s)
| | - Dominik Haenni
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Milica Bugarski
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Andreja Figurek
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Andrew M. Hall
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
- Department of Nephrology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Gottwald EM, Schuh CD, Drücker P, Haenni D, Pearson A, Ghazi S, Bugarski M, Polesel M, Duss M, Landau EM, Kaech A, Ziegler U, Lundby AKM, Lundby C, Dittrich PS, Hall AM. The iron chelator Deferasirox causes severe mitochondrial swelling without depolarization due to a specific effect on inner membrane permeability. Sci Rep 2020; 10:1577. [PMID: 32005861 PMCID: PMC6994599 DOI: 10.1038/s41598-020-58386-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022] Open
Abstract
The iron chelator Deferasirox (DFX) causes severe toxicity in patients for reasons that were previously unexplained. Here, using the kidney as a clinically relevant in vivo model for toxicity together with a broad range of experimental techniques, including live cell imaging and in vitro biophysical models, we show that DFX causes partial uncoupling and dramatic swelling of mitochondria, but without depolarization or opening of the mitochondrial permeability transition pore. This effect is explained by an increase in inner mitochondrial membrane (IMM) permeability to protons, but not small molecules. The movement of water into mitochondria is prevented by altering intracellular osmotic gradients. Other clinically used iron chelators do not produce mitochondrial swelling. Thus, DFX causes organ toxicity due to an off-target effect on the IMM, which has major adverse consequences for mitochondrial volume regulation.
Collapse
Affiliation(s)
| | - Claus D Schuh
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Patrick Drücker
- Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland
| | - Dominik Haenni
- Institute of Anatomy, University of Zurich, Zurich, Switzerland.,Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Adam Pearson
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Susan Ghazi
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Milica Bugarski
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | | | - Michael Duss
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Ehud M Landau
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Andres Kaech
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Urs Ziegler
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Anne K M Lundby
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Carsten Lundby
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Petra S Dittrich
- Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland
| | - Andrew M Hall
- Institute of Anatomy, University of Zurich, Zurich, Switzerland. .,Department of Nephrology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
20
|
Polesel M, Hall AM. Axial differences in endocytosis along the kidney proximal tubule. Am J Physiol Renal Physiol 2019; 317:F1526-F1530. [DOI: 10.1152/ajprenal.00459.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The proximal tubule (PT) reabsorbs filtered proteins via receptor-mediated endocytosis to prevent energetically inefficient wasting in the urine. Recent intravital imaging studies have suggested that protein reabsorption occurs in early (S1) segments, which have a very high capacity. In contrast, uptake of fluid phase substrates also occurs in distal (S2) segments. In this article, we will review these findings and their implications for understanding integrated proximal tubular function, patterns of damage caused by endocytosed toxins, and the origins of proteinuria. We will also discuss whether compensatory downstream increases in protein uptake might occur in disease states, and the environmental factors that could drive these changes.
Collapse
Affiliation(s)
| | - Andrew M. Hall
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
- Department of Nephrology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Ghazi S, Polesel M, Hall AM. Targeting glycolysis in proliferative kidney diseases. Am J Physiol Renal Physiol 2019; 317:F1531-F1535. [DOI: 10.1152/ajprenal.00460.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glycolytic activity is increased in proliferating cells, leading to the concept that glycolysis could be a therapeutic target in cystic diseases and kidney cancer. Preclinical studies using the glucose analog 2-deoxy-d-glucose have shown promise; however, inhibiting glycolysis in humans is unlikely to be without risks. While proximal tubules are predominantly aerobic, later segments are more glycolytic. Understanding exactly where and why glycolysis is important in the physiology of the distal nephron is thus crucial in predicting potential adverse effects of glycolysis inhibitors. Live imaging techniques could play an important role in the process of characterizing cellular metabolism in the functioning kidney. The goal of this review is to briefly summarize recent findings on targeting glycolysis in proliferative kidney diseases and to highlight the necessity for future research focusing on glycolysis in the healthy kidney.
Collapse
Affiliation(s)
- Susan Ghazi
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | | | - Andrew M. Hall
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
- Department of Nephrology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Shroff UN, Schiessl IM, Gyarmati G, Riquier-Brison A, Peti-Peterdi J. Novel fluorescence techniques to quantitate renal cell biology. Methods Cell Biol 2019; 154:85-107. [PMID: 31493823 PMCID: PMC6748388 DOI: 10.1016/bs.mcb.2019.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fluorescence microscopy techniques are powerful tools to study tissue dynamics, cellular function and biology both in vivo and in vitro. These tools allow for functional assessment and quantification along with qualitative analysis, thus providing a comprehensive understanding of various cellular processes under normal physiological and disease conditions. The main focus of this chapter is the recently developed method of serial intravital multiphoton microscopy that has helped shed light on the dynamic alterations of the spatial distribution and fate of single renal cells or cell populations and their migration patterns in the same tissue region over several days in response to various stimuli within the living kidney. This technique is very useful for studying in vivo the molecular and cellular mechanisms of tissue remodeling and repair after injury. In addition, complementary in vitro imaging tools are also described and discussed, like tissue clearing techniques and protein synthesis measurement in tissues in situ that provide an in depth assessment of changes at the cellular level. Thus, these novel fluorescence techniques can be effectively leveraged for different tissue types, experimental conditions as well as disease models to improve our understanding of renal cell biology.
Collapse
Affiliation(s)
- Urvi Nikhil Shroff
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Ina Maria Schiessl
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Georgina Gyarmati
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Anne Riquier-Brison
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Janos Peti-Peterdi
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
23
|
Prange JA, Aleandri S, Komisarski M, Luciani A, Käch A, Schuh CD, Hall AM, Mezzenga R, Devuyst O, Landau EM. Overcoming Endocytosis Deficiency by Cubosome Nanocarriers. ACS APPLIED BIO MATERIALS 2019; 2:2490-2499. [DOI: 10.1021/acsabm.9b00187] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Jenny A. Prange
- Institute of Physiology, University of Zurich, Zurich 8057, Switzerland
| | - Simone Aleandri
- Department of Chemistry, University of Zurich, Zurich 8057, Switzerland
| | - Marek Komisarski
- Department of Chemistry, University of Zurich, Zurich 8057, Switzerland
| | | | - Andres Käch
- Center for Microscopy and Image Analysis, University of Zurich, Zurich 8057, Switzerland
| | | | - Andrew M. Hall
- Institute of Anatomy, University of Zurich, Zurich 8057, Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences & Technology, ETH Zurich, Zurich 8092, Switzerland
| | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich 8057, Switzerland
| | - Ehud M. Landau
- Department of Chemistry, University of Zurich, Zurich 8057, Switzerland
| |
Collapse
|
24
|
Toolbox for In Vivo Imaging of Host-Parasite Interactions at Multiple Scales. Trends Parasitol 2019; 35:193-212. [PMID: 30745251 DOI: 10.1016/j.pt.2019.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 12/19/2022]
Abstract
Animal models have for long been pivotal for parasitology research. Over the last few years, techniques such as intravital, optoacoustic and magnetic resonance imaging, optical projection tomography, and selective plane illumination microscopy developed promising potential for gaining insights into host-pathogen interactions by allowing different visualization forms in vivo and ex vivo. Advances including increased resolution, penetration depth, and acquisition speed, together with more complex image analysis methods, facilitate tackling biological problems previously impossible to study and/or quantify. Here we discuss advances and challenges in the in vivo imaging toolbox, which hold promising potential for the field of parasitology.
Collapse
|
25
|
Gyarmati G, Kadoya H, Moon JY, Burford JL, Ahmadi N, Gill IS, Hong YK, Dér B, Peti-Peterdi J. Advances in Renal Cell Imaging. Semin Nephrol 2019; 38:52-62. [PMID: 29291762 DOI: 10.1016/j.semnephrol.2017.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A great variety of cell imaging technologies are used routinely every day for the investigation of kidney cell types in applications ranging from basic science research to drug development and pharmacology, clinical nephrology, and pathology. Quantitative visualization of the identity, density, and fate of both resident and nonresident cells in the kidney, and imaging-based analysis of their altered function, (patho)biology, metabolism, and signaling in disease conditions, can help to better define pathomechanism-based disease subgroups, identify critical cells and structures that play a role in the pathogenesis, critically needed biomarkers of disease progression, and cell and molecular pathways as targets for novel therapies. Overall, renal cell imaging has great potential for improving the precision of diagnostic and treatment paradigms for individual acute kidney injury or chronic kidney disease patients or patient populations. This review highlights and provides examples for some of the recently developed renal cell optical imaging approaches, mainly intravital multiphoton fluorescence microscopy, and the new knowledge they provide for our better understanding of renal pathologies.
Collapse
Affiliation(s)
- Georgina Gyarmati
- Department of Physiology and Neuroscience, Department of Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Hiroyuki Kadoya
- Department of Physiology and Neuroscience, Department of Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA; Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Ju-Young Moon
- Department of Physiology and Neuroscience, Department of Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA; Division of Nephrology, Department of Internal Medicine, Kyung Hee University, College of Medicine, Seoul, Korea
| | - James L Burford
- Department of Physiology and Neuroscience, Department of Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Nariman Ahmadi
- Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Inderbir S Gill
- Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Young-Kwon Hong
- Department of Surgery and Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Bálint Dér
- Department of Physiology and Neuroscience, Department of Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - János Peti-Peterdi
- Department of Physiology and Neuroscience, Department of Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA.
| |
Collapse
|
26
|
Schuh CD, Polesel M, Platonova E, Haenni D, Gassama A, Tokonami N, Ghazi S, Bugarski M, Devuyst O, Ziegler U, Hall AM. Combined Structural and Functional Imaging of the Kidney Reveals Major Axial Differences in Proximal Tubule Endocytosis. J Am Soc Nephrol 2018; 29:2696-2712. [PMID: 30301861 DOI: 10.1681/asn.2018050522] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/18/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The kidney proximal convoluted tubule (PCT) reabsorbs filtered macromolecules via receptor-mediated endocytosis (RME) or nonspecific fluid phase endocytosis (FPE); endocytosis is also an entry route for disease-causing toxins. PCT cells express the protein ligand receptor megalin and have a highly developed endolysosomal system (ELS). Two PCT segments (S1 and S2) display subtle differences in cellular ultrastructure; whether these translate into differences in endocytotic function has been unknown. METHODS To investigate potential differences in endocytic function in S1 and S2, we quantified ELS protein expression in mouse kidney PCTs using real-time quantitative polymerase chain reaction and immunostaining. We also used multiphoton microscopy to visualize uptake of fluorescently labeled ligands in both living animals and tissue cleared using a modified CLARITY approach. RESULTS Uptake of proteins by RME occurs almost exclusively in S1. In contrast, dextran uptake by FPE takes place in both S1 and S2, suggesting that RME and FPE are discrete processes. Expression of key ELS proteins, but not megalin, showed a bimodal distribution; levels were far higher in S1, where intracellular distribution was also more polarized. Tissue clearing permitted imaging of ligand uptake at single-organelle resolution in large sections of kidney cortex. Analysis of segmented tubules confirmed that, compared with protein uptake, dextran uptake occurred over a much greater length of the PCT, although individual PCTs show marked heterogeneity in solute uptake length and three-dimensional morphology. CONCLUSIONS Striking axial differences in ligand uptake and ELS function exist along the PCT, independent of megalin expression. These differences have important implications for understanding topographic patterns of kidney diseases and the origins of proteinuria.
Collapse
Affiliation(s)
| | | | | | - Dominik Haenni
- Institute of Anatomy.,Center for Microscopy and Image Analysis, and
| | - Alkaly Gassama
- Institute of Physiology, University of Zurich, Zurich, Switzerland; and
| | - Natsuko Tokonami
- Institute of Physiology, University of Zurich, Zurich, Switzerland; and
| | | | | | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland; and
| | - Urs Ziegler
- Center for Microscopy and Image Analysis, and
| | - Andrew M Hall
- Institute of Anatomy, .,Department of Nephrology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
Bugarski M, Martins JR, Haenni D, Hall AM. Multiphoton imaging reveals axial differences in metabolic autofluorescence signals along the kidney proximal tubule. Am J Physiol Renal Physiol 2018; 315:F1613-F1625. [PMID: 30132348 DOI: 10.1152/ajprenal.00165.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Kidney proximal tubules (PTs) are densely packed with mitochondria, and defects in mitochondrial function are implicated in many kidney diseases. However, little is known about intrinsic mitochondrial function within PT cells. Here, using intravital multiphoton microscopy and live slices of mouse kidney cortex, we show that autofluorescence signals provide important functional readouts of redox state and substrate metabolism and that there are striking axial differences in signals along the PT. Mitochondrial NAD(P)H intensity was similar in both PT segment (S)1 and S2 and was sensitive to changes in respiratory chain (RC) redox state, whereas cytosolic NAD(P)H intensity was significantly higher in S2. Mitochondrial NAD(P)H increased in response to lactate and butyrate but decreased in response to glutamine and glutamate. Cytosolic NAD(P)H was sensitive to lactate and pyruvate and decreased dramatically in S2 in response to inhibition of glucose metabolism. Mitochondrial flavoprotein (FP) intensity was markedly higher in S2 than in S1 but was insensitive to changes in RC redox state. Mitochondrial FP signal increased in response to palmitate but decreased in response to glutamine and glutamate. Fluorescence lifetime decays were similar in both S1 and S2, suggesting that intensity differences are explained by differences in abundance of the same molecular species. Expression levels of known fluorescent mitochondrial FPs were higher in S2 than S1. In summary, substantial metabolic information can be obtained in kidney tissue using a label-free live imaging approach, and our findings suggest that metabolism is tailored to the specialized functions of S1 and S2 PT segments.
Collapse
Affiliation(s)
- Milica Bugarski
- Institute of Anatomy, University of Zurich , Zurich , Switzerland
| | | | - Dominik Haenni
- Institute of Anatomy, University of Zurich , Zurich , Switzerland.,Center for Microscopy and Image Analysis, University of Zurich , Zurich , Switzerland
| | - Andrew M Hall
- Institute of Anatomy, University of Zurich , Zurich , Switzerland.,Department of Nephrology, University Hospital Zurich , Zurich , Switzerland
| |
Collapse
|
28
|
Ow CPC, Ngo JP, Ullah MM, Hilliard LM, Evans RG. Renal hypoxia in kidney disease: Cause or consequence? Acta Physiol (Oxf) 2018; 222:e12999. [PMID: 29159875 DOI: 10.1111/apha.12999] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/10/2017] [Accepted: 11/15/2017] [Indexed: 02/06/2023]
Abstract
Tissue hypoxia has been proposed as an important factor in the pathophysiology of both chronic kidney disease (CKD) and acute kidney injury (AKI), initiating and propagating a vicious cycle of tubular injury, vascular rarefaction, and fibrosis and thus exacerbation of hypoxia. Here, we critically evaluate this proposition by systematically reviewing the literature relevant to the following six questions: (i) Is kidney disease always associated with tissue hypoxia? (ii) Does tissue hypoxia drive signalling cascades that lead to tissue damage and dysfunction? (iii) Does tissue hypoxia per se lead to kidney disease? (iv) Does tissue hypoxia precede pathology? (v) Does tissue hypoxia colocalize with pathology? (vi) Does prevention of tissue hypoxia prevent kidney disease? We conclude that tissue hypoxia is a common feature of both AKI and CKD. Furthermore, at least under in vitro conditions, renal tissue hypoxia drives signalling cascades that lead to tissue damage and dysfunction. Tissue hypoxia itself can lead to renal pathology, independent of other known risk factors for kidney disease. There is also some evidence that tissue hypoxia precedes renal pathology, at least in some forms of kidney disease. However, we have made relatively little progress in determining the spatial relationships between tissue hypoxia and pathological processes (i.e. colocalization) or whether therapies targeted to reduce tissue hypoxia can prevent or delay the progression of renal disease. Thus, the hypothesis that tissue hypoxia is a "common pathway" to both AKI and CKD still remains to be adequately tested.
Collapse
Affiliation(s)
- C. P. C. Ow
- Cardiovascular Disease Program Biomedicine Discovery Institute and Department of Physiology Monash University Melbourne Vic. Australia
| | - J. P. Ngo
- Cardiovascular Disease Program Biomedicine Discovery Institute and Department of Physiology Monash University Melbourne Vic. Australia
| | - M. M. Ullah
- Cardiovascular Disease Program Biomedicine Discovery Institute and Department of Physiology Monash University Melbourne Vic. Australia
| | - L. M. Hilliard
- Cardiovascular Disease Program Biomedicine Discovery Institute and Department of Physiology Monash University Melbourne Vic. Australia
| | - R. G. Evans
- Cardiovascular Disease Program Biomedicine Discovery Institute and Department of Physiology Monash University Melbourne Vic. Australia
| |
Collapse
|
29
|
Zhang Y, Wang Y, Cao WW, Ma KT, Ji W, Han ZW, Si JQ, Li L. Spectral Characteristics of Autofluorescence in Renal Tissue and Methods for Reducing Fluorescence Background in Confocal Laser Scanning Microscopy. J Fluoresc 2018; 28:561-572. [DOI: 10.1007/s10895-018-2217-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/16/2018] [Indexed: 01/13/2023]
|
30
|
Abstract
Kidney cell death plays a key role in the progression of life-threatening renal diseases, such as acute kidney injury and chronic kidney disease. Injured and dying epithelial and endothelial cells take part in complex communication with the innate immune system, which drives the progression of cell death and the decrease in renal function. To improve our understanding of kidney cell death dynamics and its impact on renal disease, a study approach is needed that facilitates the visualization of renal function and morphology in real time. Intravital multiphoton microscopy of the kidney has been used for more than a decade and made substantial contributions to our understanding of kidney physiology and pathophysiology. It is a unique tool that relates renal structure and function in a time- and spatial-dependent manner. Basic renal function, such as microvascular blood flow regulation and glomerular filtration, can be determined in real time and homeostatic alterations, which are linked inevitably to cell death and can be depicted down to the subcellular level. This review provides an overview of the available techniques to study kidney dysfunction and inflammation in terms of cell death in vivo, and addresses how this novel approach can be used to improve our understanding of cell death dynamics in renal disease.
Collapse
|
31
|
Hall AM, Schuh CD, Haenni D. New frontiers in intravital microscopy of the kidney. Curr Opin Nephrol Hypertens 2017; 26:172-178. [DOI: 10.1097/mnh.0000000000000313] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Abstract
PURPOSE OF REVIEW The review aims to provide a brief summary and evaluation of the current state of research that uses multiphoton fluorescence microscopy for intravital kidney imaging. RECENT FINDINGS Direct visualization of the glomerular filter, proximal and distal tubule segments, and the renal vasculature in the living, intact kidney in zebrafish, mouse, and rat models with high temporal and spatial resolution provided new insights into the function of the normal and diseased kidney. New technical developments in fluorescence excitation and detection, in combination with transgenic animal models for cell function and fate mapping, and serial imaging of the same glomerulus in the same animal over several days further advanced the field of nephrology research, and the understanding of disease mechanisms. SUMMARY Intravital multiphoton imaging has solved many critical technical barriers in kidney research and allowed the dynamic portrayal of the structure and function of various renal cell types in vivo. It has become a widely used research technique, with significant past achievements, and tremendous potential for future development and applications for the study and better understanding of kidney diseases.
Collapse
|
33
|
Schießl IM, Castrop H. Deep insights: intravital imaging with two-photon microscopy. Pflugers Arch 2016; 468:1505-16. [PMID: 27352273 DOI: 10.1007/s00424-016-1832-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 04/26/2016] [Indexed: 01/03/2023]
Abstract
Intravital multiphoton microscopy is widely used to assess the structure and function of organs in live animals. Although different tissues vary in their accessibility for intravital multiphoton imaging, considerable progress has been made in the imaging quality of all tissues due to substantial technical improvements in the relevant imaging components, such as optics, excitation laser, detectors, and signal analysis software. In this review, we provide an overview of the technical background of intravital multiphoton microscopy. Then, we note a few seminal findings that were made through the use of multiphoton microscopy. Finally, we address the technical limitations of the method and provide an outlook for how these limitations may be overcome through future technical developments.
Collapse
Affiliation(s)
- Ina Maria Schießl
- Institute of Physiology, University of Regensburg, Universitätsstr. 31, 93040, Regensburg, Germany.
| | - Hayo Castrop
- Institute of Physiology, University of Regensburg, Universitätsstr. 31, 93040, Regensburg, Germany
| |
Collapse
|
34
|
Abstract
This article summarizes the past, present, and future promise of multiphoton excitation fluorescence microscopy for intravital kidney imaging. During the past 15years, several high-power visual research approaches have been developed using multiphoton imaging to study the normal functions of the healthy, intact, living kidney, and the various molecular and cellular mechanisms of the development of kidney diseases. In this review, the main focus will be on intravital multiphoton imaging of the glomerulus, the structure and function of the glomerular filtration barrier, especially the podocyte. Examples will be given for the combination of two powerful research tools, in vivo multiphoton imaging and mouse genetics using commercially available whole animal models for the detailed characterization of glomerular cell types, their function and fate, and for the better understanding of the molecular mechanisms of glomerular pathologies. One of the new modalities of multiphoton imaging, serial imaging of the same glomerulus in the same animal over several days will be emphasized for its potential for further advancing the field of nephrology research.
Collapse
Affiliation(s)
- János Peti-Peterdi
- Departments of Physiology and Biophysics, and Medicine, Zilkha Neurogenetic Institute, ZNI355, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033, USA.
| |
Collapse
|