1
|
Wu Y, Mo J, Wang Q, Li J, Wei J, Zhang N, Dong Y, Zhu X, Lu T, Huang S. Microbiome and metabolome explain the high-fat diet-induced diabetes development and diabetes resistance in Guizhou mini-pigs. Front Microbiol 2025; 16:1555069. [PMID: 40291804 PMCID: PMC12023756 DOI: 10.3389/fmicb.2025.1555069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/18/2025] [Indexed: 04/30/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is an obesity-related disease claiming substantial global mortality annually. Current animal models of T2DM remain limited, with low success rates in establishing porcine models of high-fat diet (HFD)-induced T2DM. Our experimental design employed 35 Guizhou mini-pigs to develop a T2DM model via HFD induction, aiming to identify microbial and metabolic signatures associated with disease pathogenesis and resistance. At month 10, five individuals from the control (CTR), T2DM (DM), and T2DM resistant (anti-DM) groups were slaughtered, samples were collected, and relevant indices were measured. Metagenomics, metabolomics, and 16S rRNA sequencing were performed to identify microbes and metabolites linked to T2DM progression and resistance. Key findings demonstrated anti-DM group parameters-including metabolic indices (fasting blood glucose, insulin levels, HbA1c, IVGTT), histopathology (HE-stained pancreatic/hepatic tissues), microbial profiles (structural, compositional, functional), and metabolomic signatures-occupied intermediate positions between CTR and DM groups. Network analyses revealed: (1) Lactobacillus, L. amylovorus, fingolimod, polyoxyethylene sorbitan monooleate, thiamine, and atrazine in HFD-associated networks; (2) Limosilactobacillus reuteri, N-oleoyl-L-serine, tolbutamide, tetradecanoyl carnitine, 3'-sulfogalactosylceramide, and guggulsterone in T2DM resistance networks; (3) Ruminococcaceae NK4A214 group, diethyl phthalate, zingerone, enalapril, 5-hydroxytryptophol, 2'-deoxyinosine, icariin, and emetine in T2DM progression networks. These results further clarify the role of the gut microbiota and serum metabolites in the development of T2DM in the Guizhou mini-pig model.
Collapse
Affiliation(s)
- Yanjun Wu
- The Provincial Key Miao Medicine Laboratory of Guizhou, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jiayuan Mo
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
- Anhui Engineering Technology Research Center of Pork Quality Control and Enhance, Anhui Science and Technology University, Chuzhou, China
| | - Qianguang Wang
- The Provincial Key Miao Medicine Laboratory of Guizhou, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jialong Li
- The Provincial Key Miao Medicine Laboratory of Guizhou, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jia Wei
- The Provincial Key Miao Medicine Laboratory of Guizhou, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Nuo Zhang
- The Provincial Key Miao Medicine Laboratory of Guizhou, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yuanqiu Dong
- The Provincial Key Miao Medicine Laboratory of Guizhou, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiang Zhu
- The Provincial Key Miao Medicine Laboratory of Guizhou, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Taofeng Lu
- The Provincial Key Miao Medicine Laboratory of Guizhou, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Sicheng Huang
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University/ Guizhou Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guiyang, China
- Department of Abdominal Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
2
|
McCall MA. Pig Models in Retinal Research and Retinal Disease. Cold Spring Harb Perspect Med 2024; 14:a041296. [PMID: 37553210 PMCID: PMC10982707 DOI: 10.1101/cshperspect.a041296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The pig has been used as a large animal model in biomedical research for many years and its use continues to increase because induced mutations phenocopy several inherited human diseases. In addition, they are continuous breeders, can be propagated by artificial insemination, have large litter sizes (on the order of mice), and can be genetically manipulated using all of the techniques that are currently available in mice. The pioneering work of Petters and colleagues set the stage for the use of the pig as a model of inherited retinal disease. In the last 10 years, the pig has become a model of choice where specific disease-causing mutations that are not phenocopied in rodents need to be studied and therapeutic approaches explored. The pig is not only used for retinal eye disease but also for the study of the cornea and lens. This review attempts to show how broad the use of the pig has become and how it has contributed to the assessment of treatments for eye disease. In the last 10 years, there have been several reviews that included the use of the pig in biomedical research (see body of the review) that included information about retinal disease. None directly discuss the use of the pig as an animal model for retinal diseases, including inherited diseases, where a single genetic mutation has been identified or for multifactorial diseases such as glaucoma and diabetic retinopathy. Although the pig is used to explore diseases of the cornea and lens, this review focuses on how and why the pig, as a large animal model, is useful for research in neural retinal disease and its treatment.
Collapse
Affiliation(s)
- Maureen A McCall
- Departments of Ophthalmology & Visual Sciences and Anatomical Sciences & Neurobiology, University of Louisville, Louisville, Kentucky 40202, USA
| |
Collapse
|
3
|
Zhao Y, Niu M, Jia Y, Yuan J, Xiang L, Dai X, Wang G, Chen H. Establishment of type 2 diabetes mellitus models using streptozotocin after 3 months high-fat diet in Bama minipigs. Anim Biotechnol 2023; 34:2295-2312. [PMID: 35749713 DOI: 10.1080/10495398.2022.2088548] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
In the past twenty years, the number of adults with diabetes has tripled. Most studies have been conducted using rodent models of type 2 diabetes mellitus (T2DM), and the developed drugs have low clinical conversion efficiency. Therefore, it is urgent to establish a more human-like large animal model to explore T2DM pathogenesis and formulate new disease prevention and control strategies. This study was designed to establish and validate a T2DM model using minipigs fed a high-fat or high-cholesterol/high-fat diet and injected with low-dose streptozotocin (STZ). We examined the influence of the STZ injection timing with a diet high in fat (HFD) compared with one high in cholesterol and fat (HCFD) on the atherosclerotic lesions accelerated by T2DM. Male Bama minipigs (n = 24) were randomly divided into five groups. The control group was fed a normal diet for 9 months. The STZ + HFD and STZ + HCFD groups were infused with 90 mg/kg STZ and then fed a high-fat diet or high-cholesterol and high-fat diet for 9 months, respectively. The HFD + STZ and HCFD + STZ groups were fed a high-fat diet or a high-cholesterol and high-fat diet, respectively, for 9 months (after 3 months, these pigs were injected intravenously with 90 mg/kg STZ). During the induction period, animal body weight, BMI, and serum GLU, INS, TG, TC, HDL-C, LDL-C, FFA, ALT, AST, CRE, and BUN were detected monthly intervals. IVGTT and insulin release tests were performed at 3-month intervals. At the end of the test, the coronary artery and abdominal aorta were examined by computed tomography and pathological observations, and the thickness of the basement membrane of the capillary of the retina and kidney glomerulus was measured under a transmission electron microscope. The serum glucose concentrations were normal in all groups except the HFD + STZ and HCFD + STZ groups. Animals fed an HFD for 9 months did not develop apparent atherosclerotic lesions, but atherosclerotic lesions were seen in the animals fed an HCFD. Hyperglycemia accelerated the formation of atherosclerotic lesions on the intimal surface of the abdominal aorta. Low-dose STZ after 3 months of HFD or HCFD successfully established a T2DM model in minipigs. The HFD did not induce apparent atherosclerotic lesions, but these were seen with the HCFD. Hyperglycemia accelerated atherosclerosis in the minipigs.
Collapse
Affiliation(s)
- Yuqiong Zhao
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, China
| | - Miaomiao Niu
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, China
| | - Yunxiao Jia
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, China
| | - Jifang Yuan
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, China
| | - Lei Xiang
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, China
| | - Xin Dai
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, China
| | - Guisheng Wang
- Radiology Department of No. 3 Clinical Center, Chinese PLA General Hospital, Beijing, China
| | - Hua Chen
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
4
|
Pandey S, Chmelir T, Chottova Dvorakova M. Animal Models in Diabetic Research-History, Presence, and Future Perspectives. Biomedicines 2023; 11:2852. [PMID: 37893225 PMCID: PMC10603837 DOI: 10.3390/biomedicines11102852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Diabetes mellitus (DM) is a very serious disease, the incidence of which has been increasing worldwide. The beginning of diabetic research can be traced back to the 17th century. Since then, animals have been experimented on for diabetic research. However, the greatest development of diabetes research occurred in the second half of the last century, along with the development of laboratory techniques. Information obtained by monitoring patients and animal models led to the finding that there are several types of DM that differ significantly from each other in the causes of the onset and course of the disease. Through different types of animal models, researchers have studied the pathophysiology of all types of diabetic conditions and discovered suitable methods for therapy. Interestingly, despite the unquestionable success in understanding DM through animal models, we did not fully succeed in transferring the data obtained from animal models to human clinical research. On the contrary, we have observed that the chances of drug failure in human clinical trials are very high. In this review, we will summarize the history and presence of animal models in the research of DM over the last hundred years. Furthermore, we have summarized the new methodological approaches, such as "organ-on-chip," that have the potential to screen the newly discovered drugs for human clinical trials and advance the level of knowledge about diabetes, as well as its therapy, towards a personalized approach.
Collapse
Affiliation(s)
- Shashank Pandey
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic;
- Department of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Tomas Chmelir
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic;
| | - Magdalena Chottova Dvorakova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic;
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic;
| |
Collapse
|
5
|
Cluzel GL, Ryan PM, Herisson FM, Caplice NM. High-fidelity porcine models of metabolic syndrome: a contemporary synthesis. Am J Physiol Endocrinol Metab 2022; 322:E366-E381. [PMID: 35224983 DOI: 10.1152/ajpendo.00413.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review aims to describe and compare porcine models of metabolic syndrome. This syndrome and its associated secondary comorbidities are set to become the greatest challenge to healthcare providers and policy makers in the coming century. However, an incomplete understanding of the pathogenesis has left significant knowledge gaps in terms of efficacious therapeutics. To further our comprehension and, in turn, management of metabolic syndrome, appropriate high-fidelity models of the disease complex are of great importance. In this context, our review aims to assess the most promising porcine models of metabolic syndrome currently available for their similarity to the human phenotype. In addition, we aim to highlight the strengths and shortcomings of each model in an attempt to identify the most appropriate application of each. Although no porcine model perfectly recapitulates the human metabolic syndrome, several pose satisfactory approximations. The Ossabaw miniature swine in particular represents a highly translatable model that develops each of the core parameters of the syndrome with many of the associated secondary comorbidities. Future high-fidelity porcine models of metabolic syndrome need to focus on secondary sequelae replication, which may require extended induction period to reveal.
Collapse
Affiliation(s)
- Gaston L Cluzel
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul M Ryan
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Florence M Herisson
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Noel M Caplice
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
6
|
Zhang Y, Wang H, Tu W, Abbas Raza SH, Cao J, Huang J, Wu H, Fan C, Wang S, Zhao Y, Tan Y. Comparative Transcriptome Analysis Provides Insight into Spatio-Temporal Expression Characteristics and Genetic Regulatory Network in Postnatal Developing Subcutaneous and Visceral Fat of Bama Pig. Front Genet 2022; 13:844833. [PMID: 35432468 PMCID: PMC9008487 DOI: 10.3389/fgene.2022.844833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/04/2022] [Indexed: 12/23/2022] Open
Abstract
The depot differences between Subcutaneous Fat (SAF) and Visceral Fat (VAF) are critical for human well-being and disease processes in regard to energy metabolism and endocrine function. Miniature pigs (Sus scrofa) are ideal biomedical models for human energy metabolism and obesity due to the similarity of their lipid metabolism with that of humans. However, the regulation of differences in fat deposition and development remains unclear. In this study, the development of SAF and VAF was characterized and compared in Bama pig during postnatal development (infancy, puberty and adulthood), using RNA sequencing techniques (RNA-Seq). The transcriptome of SAF and VAF was profiled and isolated from 1-, 3- and 6 months-old pigs and identified 23,636 expressed genes, of which 1,165 genes were differentially expressed between the depots and/or developmental stages. Upregulated genes in SAF showed significant function and pathway enrichment in the central nervous system development, lipid metabolism, oxidation-reduction process and cell adhesion, whereas genes involved in the immune system, actin cytoskeleton organization, male gonad development and the hippo signaling pathway were preferentially expressed in VAF. Miner analysis of short time-series expression demonstrated that differentiation in gene expression patterns between the two depots corresponded to their distinct responses in sexual development, hormone signaling pathways, lipid metabolism and the hippo signaling pathway. Transcriptome analysis of SAF and VAF suggested that the depot differences in adipose tissue are not only related to lipid metabolism and endocrine function, but are closely associated with sexual development and organ size regulation.
Collapse
Affiliation(s)
- Yingying Zhang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Center of Breeding Pig, Shanghai, China
- *Correspondence: Yingying Zhang, ; Yongsong Tan,
| | - Hongyang Wang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Center of Breeding Pig, Shanghai, China
| | - Weilong Tu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Center of Breeding Pig, Shanghai, China
| | | | - Jianguo Cao
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Center of Breeding Pig, Shanghai, China
| | - Ji Huang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Center of Breeding Pig, Shanghai, China
| | - Huali Wu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Center of Breeding Pig, Shanghai, China
| | - Chun Fan
- Shanghai Laboratory Animal Research Center, Shanghai, China
| | | | - Ying Zhao
- Shanghai Laboratory Animal Research Center, Shanghai, China
| | - Yongsong Tan
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Center of Breeding Pig, Shanghai, China
- *Correspondence: Yingying Zhang, ; Yongsong Tan,
| |
Collapse
|
7
|
Zheng J, Zheng C, Song B, Guo Q, Zhong Y, Zhang S, Zhang L, Duan G, Li F, Duan Y. HMB Improves Lipid Metabolism of Bama Xiang Mini-Pigs via Modulating the Bacteroidetes-Acetic Acid-AMPKα Axis. Front Microbiol 2021; 12:736997. [PMID: 34484171 PMCID: PMC8415715 DOI: 10.3389/fmicb.2021.736997] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 07/28/2021] [Indexed: 12/29/2022] Open
Abstract
Here, we used Bama Xiang mini-pigs to explore the effects of different dietary β-hydroxy-β-methylbutyrate (HMB) levels (0, 0.13, 0.64 or 1.28%) on lipid metabolism of adipose tissue. Results showed that HMB decreased the fat percentage of pigs (linearly, P < 0.05), and the lowest value was observed in the 0.13% HMB group. Moreover, the colonic acetic acid concentration and the relative Bacteroidetes abundance were increased in response to HMB supplementation (P < 0.05). Correlation analysis identified a positive correlation between the relative Bacteroidetes abundance and acetic acid production, and a negative correlation between fat percentage and the relative Bacteroidetes abundance or acetic acid production. HMB also upregulated the phosphorylation (p) of AMPKα, Sirt1, and FoxO1, and downregulated the p-mTOR expression. Collectively, these findings indicate that reduced fat percentage in Bama Xiang mini-pigs could be induced by HMB supplementation and the mechanism might be associated with the Bacteroidetes-acetic acid-AMPKα axis.
Collapse
Affiliation(s)
- Jie Zheng
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Changbing Zheng
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Bo Song
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qiuping Guo
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yinzhao Zhong
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Shiyu Zhang
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Lingyu Zhang
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Geyan Duan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fengna Li
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yehui Duan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
8
|
Cai Z, Yu C, Fu D, Pan Y, Huang J, Rong Y, Deng L, Chen J, Chen M. Differential metabolic and hepatic transcriptome responses of two miniature pig breeds to high dietary cholesterol. Life Sci 2020; 250:117514. [PMID: 32145306 DOI: 10.1016/j.lfs.2020.117514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022]
Abstract
AIMS Pigs are increasingly used as human metabolic disease models; however, there is insufficient research on breed-related genetic background differences. This study aimed to investigate the differential metabolic responses to high-fat and high-cholesterol (HFC) diet-induced non-alcoholic fatty liver disease (NAFLD) of two miniature pig breeds and explore the molecular mechanisms involved. MAIN METHODS Male Wuzhishan (WZSP) and Tibetan pigs (TP) were randomly fed either a standard or an HFC diet for 24 weeks. Weight, serum lipids, bile acid, insulin resistance, liver function, liver histology, and hepatic lipid deposition were determined. RNA-Seq was used to detect the hepatic gene expression profiles. Western blot, immunohistochemistry, and qRT-PCR were used to detect the lipid and glucose metabolism-related gene expressions. KEY FINDINGS The HFC diet caused obesity, hypertension, severe hypercholesterolemia, liver injury, increased hepatocellular steatosis and inflammation, and significantly increased serum insulin levels in both pig breeds. This diet led to higher serum and hepatic cholesterol level concentrations in WZSP and elevated fasting glucose levels in TP. Transcriptome analysis revealed that the genes controlling hepatic cholesterol metabolism and the inflammatory response were consistently regulated; lipid metabolism and insulin signaling related genes were uniquely regulated by the HFC diet in the WZSP and TP, respectively. SIGNIFICANCE Our study demonstrated that the genetic background affects profoundly pigs' metabolic and hepatic responses to an HFC diet. These results deepened our understanding of the molecular mechanisms of HFC diet-induced NAFLD and provided a foundation for selecting the appropriate pig breeds for metabolic studies in the future.
Collapse
Affiliation(s)
- Zhaowei Cai
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chen Yu
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Danting Fu
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yongming Pan
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Junjie Huang
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yili Rong
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Liqun Deng
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiaojiao Chen
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Minli Chen
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
9
|
Niu M, Liu Y, Xiang L, Zhao Y, Yuan J, Jia Y, Dai X, Chen H. Long-term case study of a Wuzhishan miniature pig with diabetes. Animal Model Exp Med 2020; 3:22-31. [PMID: 32318656 PMCID: PMC7167240 DOI: 10.1002/ame2.12098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/28/2019] [Accepted: 12/11/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Miniature pigs are attractive animal models for exploring diabetes because they are similar to humans in terms of physiological structure and metabolism. However, little is known about the complications of diabetes in pigs. METHODS In this study, a 28-month observation of a Wuzhishan miniature pig with streptozotocin (STZ)-induced (120 mg/kg) diabetes was conducted, to investigate diabetes-related complications and the possibility of self-recovery in miniature pigs. Blood glucose, serum and urinary biochemistry was measured, and histopathologic examinations of eyes, kidney and pancreas were made. RESULTS During the observation, diabetic complications of eyes and kidney were observed. The eye complications included bilateral cataracts in the 15th month and degeneration of inner retina and microaneurysm in the 28th month. Kidney complications included glomerular mesangial expansion, focal segmental glomerular sclerosis, and renal tubular epithelial degeneration, but no proteinuria was observed. By 28 months after the application of STZ, with no treatment given, blood glucose had recovered and the number of pancreatic islet beta-cells had increased significantly. CONCLUSIONS We showed that the STZ-induced diabetes model in miniature pigs could accurately mimic the pathological changes of human diabetes, and that pancreatic islet beta-cell regeneration did occur in an adult miniature pig, providing a new means for exploring diabetic complications and pancreatic islet beta-cell regeneration.
Collapse
Affiliation(s)
- Miaomiao Niu
- Laboratory Animal CenterChinese PLA General HospitalBeijingPR China
| | - Yaqian Liu
- Laboratory Animal CenterChinese PLA General HospitalBeijingPR China
| | - Lei Xiang
- Laboratory Animal CenterChinese PLA General HospitalBeijingPR China
| | - Yuqiong Zhao
- Laboratory Animal CenterChinese PLA General HospitalBeijingPR China
| | - Jifang Yuan
- Laboratory Animal CenterChinese PLA General HospitalBeijingPR China
| | - Yunxiao Jia
- Laboratory Animal CenterChinese PLA General HospitalBeijingPR China
| | - Xin Dai
- Laboratory Animal CenterChinese PLA General HospitalBeijingPR China
| | - Hua Chen
- Laboratory Animal CenterChinese PLA General HospitalBeijingPR China
- State Key Laboratory of Kidney DiseasesChinese PLA General HospitalBeijingPR China
| |
Collapse
|
10
|
Porcine models for studying complications and organ crosstalk in diabetes mellitus. Cell Tissue Res 2020; 380:341-378. [PMID: 31932949 DOI: 10.1007/s00441-019-03158-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/28/2019] [Indexed: 02/06/2023]
Abstract
The worldwide prevalence of diabetes mellitus and obesity is rapidly increasing not only in adults but also in children and adolescents. Diabetes is associated with macrovascular complications increasing the risk for cardiovascular disease and stroke, as well as microvascular complications leading to diabetic nephropathy, retinopathy and neuropathy. Animal models are essential for studying disease mechanisms and for developing and testing diagnostic procedures and therapeutic strategies. Rodent models are most widely used but have limitations in translational research. Porcine models have the potential to bridge the gap between basic studies and clinical trials in human patients. This article provides an overview of concepts for the development of porcine models for diabetes and obesity research, with a focus on genetically engineered models. Diabetes-associated ocular, cardiovascular and renal alterations observed in diabetic pig models are summarized and their similarities with complications in diabetic patients are discussed. Systematic multi-organ biobanking of porcine models of diabetes and obesity and molecular profiling of representative tissue samples on different levels, e.g., on the transcriptome, proteome, or metabolome level, is proposed as a strategy for discovering tissue-specific pathomechanisms and their molecular key drivers using systems biology tools. This is exemplified by a recent study providing multi-omics insights into functional changes of the liver in a transgenic pig model for insulin-deficient diabetes mellitus. Collectively, these approaches will provide a better understanding of organ crosstalk in diabetes mellitus and eventually reveal new molecular targets for the prevention, early diagnosis and treatment of diabetes mellitus and its associated complications.
Collapse
|
11
|
Liu Y, Yuan J, Xiang L, Zhao Y, Niu M, Dai X, Chen H. A high sucrose and high fat diet induced the development of insulin resistance in the skeletal muscle of Bama miniature pigs through the Akt/GLUT4 pathway. Exp Anim 2017; 66:387-395. [PMID: 28674285 PMCID: PMC5682351 DOI: 10.1538/expanim.17-0010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A high sucrose and high fat (HSHF) diet induces insulin resistance (IR) and increased susceptibility to type 2 diabetes mellitus (T2DM), but the underlying mechanisms are poorly characterized. This study aimed to investigate the molecular mechanisms by which the HSHF diet impairs insulin sensitivity in Bama miniature pigs (sus scrofa domesticus). Twelve Bama miniature pigs were randomly assigned to the control diet (CD) group (n=6) or the HSHF group (n=6) for 6 months. Biochemical parameters were measured. Western blot, RT-qPCR and immunohistochemistry were used to profile the changes of protein expression, mRNA expression and glucose transporter 4 (GLUT4) expression in skeletal muscle tissues, respectively. In comparison to the CD group, the homeostasis model assessment-insulin resistance (HOMA-IR) index of the HSHF group demonstrated a 2.9-fold increase, and the insulin sensitivity showed a 24.8% decrease. Compared with the CD group, p-Akt S473 decreased by approximately 59% and GLUT4 decreased by 43.8% in the skeletal muscle of the HSHF group. However, the expression of p-mTOR S2448 between the 2 groups was not significantly different (P=0.309). This study demonstrates that a 6-month HSHF diet caused IR, decreased insulin sensitivity, and reduced the expression of p-Akt S473 and GLUT4 in the skeletal muscle of Bama miniature pigs.
Collapse
Affiliation(s)
- Yaqian Liu
- Laboratory Animal Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, P.R. China
| | - Jifang Yuan
- Laboratory Animal Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, P.R. China
| | - Lei Xiang
- Laboratory Animal Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, P.R. China
| | - Yuqiong Zhao
- Laboratory Animal Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, P.R. China
| | - Miaomiao Niu
- Laboratory Animal Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, P.R. China
| | - Xin Dai
- Laboratory Animal Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, P.R. China
| | - Hua Chen
- Laboratory Animal Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, P.R. China.,State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, P.R. China
| |
Collapse
|
12
|
Niu M, Xiang L, Liu Y, Zhao Y, Yuan J, Dai X, Chen H. Adiponectin induced AMP-activated protein kinase impairment mediates insulin resistance in Bama mini-pig fed high-fat and high-sucrose diet. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 30:1190-1197. [PMID: 28423886 PMCID: PMC5494494 DOI: 10.5713/ajas.17.0006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/05/2017] [Accepted: 03/19/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Adipose tissue is no longer considered as an inert storage organ for lipid, but instead is thought to play an active role in regulating insulin effects via secretion adipokines. However, conflicting reports have emerged regarding the effects of adipokines. In this study, we investigated the role of adipokines in glucose metabolism and insulin sensitivity in obese Bama mini-pigs. METHODS An obesity model was established in Bama mini-pigs, by feeding with high-fat and high-sucrose diet for 30 weeks. Plasma glucose and blood biochemistry levels were measured, and intravenous glucose tolerance test was performed. Adipokines, including adiponectin, interleukin-6 (IL-6), resistin and tumor necrosis factor alpha (TNF-α), and glucose-induced insulin secretion were also examined by radioimmunoassay. AMP-activated protein kinase (AMPK) phosphorylation in skeletal muscle, which is a useful insulin resistance marker, was examined by immunoblotting. Additionally, associations of AMPK phosphorylation with plasma adipokines and homeostasis model assessment of insulin resistance (HOMA-IR) index were assessed by Pearce's correlation analysis. RESULTS Obese pigs showed hyperglycemia, high triglycerides, and insulin resistance. Adiponectin levels were significantly decreased (p<0.05) and IL-6 amounts dramatically increased (p<0.05) in obese pigs both in serum and adipose tissue, corroborating data from obese mice and humans. However, circulating resistin and TNF-α showed no difference, while the values of TNF-α in adipose tissue were significantly higher in obese pigs, also in agreement with data from obese humans but not rodent models. Moreover, strong associations of skeletal muscle AMPK phosphorylation with plasma adiponectin and HOMA-IR index were obtained. CONCLUSION AMPK impairment induced by adiponectin decrease mediates insulin resistance in high-fat and high-sucrose diet induction. In addition, Bama mini-pig has the possibility of a conformable model for human metabolic diseases.
Collapse
Affiliation(s)
- Miaomiao Niu
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Lei Xiang
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yaqian Liu
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yuqiong Zhao
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Jifang Yuan
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Xin Dai
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Hua Chen
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing 100853, China.,State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
13
|
Belkova J, Rozkot M, Danek P, Klein P, Matonohova J, Podhorna I. Sugar and nutritional extremism. Crit Rev Food Sci Nutr 2016; 57:933-936. [DOI: 10.1080/10408398.2014.940027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jaroslava Belkova
- Department of Pig Breeding, Institute of Animal Science Prague, Uhrineves, Komenskeho, Czech Republic
| | - Miroslav Rozkot
- Department of Pig Breeding, Institute of Animal Science Prague, Uhrineves, Komenskeho, Czech Republic
| | - Petr Danek
- Department of Pig Breeding, Institute of Animal Science Prague, Uhrineves, Komenskeho, Czech Republic
| | - Pavel Klein
- Department of Pig Breeding, Institute of Animal Science Prague, Uhrineves, Komenskeho, Czech Republic
| | - Jana Matonohova
- Department of Pig Breeding, Institute of Animal Science Prague, Uhrineves, Komenskeho, Czech Republic
| | - Iva Podhorna
- Contipro Pharma, A.S., Dolni Dobrouc, Czech Republic
- School of Agriculture Lanskroun, Lanskroun, Czech Republic
| |
Collapse
|
14
|
Li L, Zhao Z, Xia J, Xin L, Chen Y, Yang S, Li K. A Long-Term High-Fat/High-Sucrose Diet Promotes Kidney Lipid Deposition and Causes Apoptosis and Glomerular Hypertrophy in Bama Minipigs. PLoS One 2015; 10:e0142884. [PMID: 26571016 PMCID: PMC4646641 DOI: 10.1371/journal.pone.0142884] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/28/2015] [Indexed: 02/01/2023] Open
Abstract
Metabolic syndrome can induce chronic renal injury in humans. In the present study, Bama minipigs were fed a high-fat/high-sucrose diet (HFHSD) for 23 months, which caused them to develop the pathological characteristics of metabolic syndrome, including obesity, hyperinsulinemia, and hyperlipidemia, and resulted in kidney tissue damage. In the HFHSD group, the ratio of the glomus areas to the glomerulus area and the glomerular density inside the renal cortex both decreased. Lipid deposition in the renal tubules was detected in the HFHSD group, and up-regulated expression levels of SREBP-1, FABP3 and LEPR promoted lipid deposition. The decreased levels of SOD, T-AOC and GSH-PX indicated that the antioxidant capacity of the renal tissues was diminished in the HFHSD group compared with MDA, which increased. The renal tissue in the HFHSD group exhibited clear signs of inflammation as well as significantly elevated expression of key genes associated with inflammation, including tumor necrosis factor-α (TNF-α) and macrophage migration inhibitory factor (MIF), compared with the control group. The tubular epithelial cells in the HFHSD group displayed significantly greater numbers of apoptotic cells, and the expression of proliferating cell nuclear antigen (PCNA) in the renal tubules decreased. Caspase-3 expression increased significantly, and the transcription factor nuclear factor κB (NF-κB) was activated and translocated into the nucleus. In conclusion, long-term HFHSDs cause metabolic syndrome and chronic renal tissue injury in Bama minipigs. These findings provide a foundation for further studies investigating metabolic syndrome and nephropathy.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Farm Animal Genetic Resources and Germplasm, Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhanzhao Zhao
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jihan Xia
- Key Laboratory of Farm Animal Genetic Resources and Germplasm, Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Leilei Xin
- Key Laboratory of Farm Animal Genetic Resources and Germplasm, Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaoxing Chen
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shulin Yang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm, Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail:
| | - Kui Li
- Key Laboratory of Farm Animal Genetic Resources and Germplasm, Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Agricultural Genomes Institute at Shenzhen, CAAS, Shenzhen, P.R. China
| |
Collapse
|
15
|
Yang SL, Xia JH, Zhang YY, Fan JG, Wang H, Yuan J, Zhao ZZ, Pan Q, Mu YL, Xin LL, Chen YX, Li K. Hyperinsulinemia shifted energy supply from glucose to ketone bodies in early nonalcoholic steatohepatitis from high-fat high-sucrose diet induced Bama minipigs. Sci Rep 2015; 5:13980. [PMID: 26358367 PMCID: PMC4566077 DOI: 10.1038/srep13980] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 08/12/2015] [Indexed: 02/06/2023] Open
Abstract
The minipig can serve as a good pharmacological model for human subjects. However, the long-term pathogenesis of high-calorie diet-induced metabolic syndromes, including NASH, has not been well described in minipigs. We examined the development of metabolic syndromes in Bama minipigs that were fed a high-fat, high-sucrose diet (HFHSD) for 23 months, by using histology and serum biochemistry and by profiling the gene expression patterns in the livers of HFHSD pigs compared to controls. The pathology findings revealed microvesicular steatosis, iron overload, arachidonic acid synthesis, lipid peroxidation, reduced antioxidant capacity, increased cellular damage, and inflammation in the liver. RNA-seq analysis revealed that 164 genes were differentially expressed between the livers of the HFHSD and control groups. The pathogenesis of early-stage NASH was characterized by hyperinsulinemia and by de novo synthesis of fatty acids and nascent triglycerides, which were deposited as lipid droplets in hepatocytes. Hyperinsulinemia shifted the energy supply from glucose to ketone bodies, and the high ketone body concentration induced the overexpression of cytochrome P450 2E1 (CYP2E1). The iron overload, CYP2E1 and alcohol dehydrogenase 4 overexpression promoted reactive oxygen species (ROS) production, which resulted in arachidonic and linoleic acid peroxidation and, in turn, led to malondialdehyde production and a cellular response to ROS-mediated DNA damage.
Collapse
Affiliation(s)
- Shu-lin Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Beijing, 100193, P.R. China
| | - Ji-han Xia
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Beijing, 100193, P.R. China
| | - Yuan-yuan Zhang
- College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, P.R. China
| | - Jian-gao Fan
- Department of Gastroenterology, Shanghai Key Laboratory of Children’s Digestion and Nutrition, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, P.R. China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, P.R. China
| | - Jing Yuan
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Beijing, 100193, P.R. China
- College of Animal Science, Yangtze University, Jinzhou, 434023, Hubei, P.R. China
| | - Zhan-zhao Zhao
- College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, P.R. China
| | - Qin Pan
- Department of Gastroenterology, Shanghai Key Laboratory of Children’s Digestion and Nutrition, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, P.R. China
| | - Yu-lian Mu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Beijing, 100193, P.R. China
| | - Lei-lei Xin
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Beijing, 100193, P.R. China
| | - Yao-xing Chen
- College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, P.R. China
| | - Kui Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Beijing, 100193, P.R. China
| |
Collapse
|
16
|
Long-term High-fat High-sucrose Diet Promotes Enlarged Islets and β-Cell Damage by Oxidative Stress in Bama Minipigs. Pancreas 2015; 44:888-95. [PMID: 25906446 DOI: 10.1097/mpa.0000000000000349] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES The effect of a long-term high-fat, high-caloric diet on the dysfunction of pancreas has not been clarified. We investigated the pancreatic histopathology and β-cell apoptosis in Bama minipigs after 23 months on a high-fat high-sucrose diet (HFHSD). METHODS Bama minipigs were randomly assigned to control (n = 6) and HFHSD groups (n = 6) for 23 months, and biochemical parameters were measured. Pancreata were subjected to histological analysis, followed by assessment with transmission electron microscopy. Lipid peroxidation was determined by the malondialdehyde concentration and antioxidant enzyme activity. Β-cell apoptosis was measured by an immunohistochemical method. RESULTS In the HFHSD group, the islets were enlarged, and the pancreatic tissue had observed significant fatty infiltration. Moreover, the feeding program damaged the normal pancreatic tissue structure. The level of lipid peroxidation was increased, and the activities of pancreatic antioxidant enzymes were significantly decreased. The expression levels of caspase-3, Bax, and insulin were significantly increased (P < 0.05), and the expression levels of proliferating cell nuclear antigen and Bcl-2 were decreased (P < 0.05). CONCLUSIONS The long-term HFHSD promotes pancreatic steatosis and oxidative stress, which increases β-cell apoptosis as indicated by the activation of caspase-3 through the mitochondrial pathway (Bcl-2/Bax).
Collapse
|
17
|
Shan L, Wu Q, Li Y, Shang H, Guo K, Wu J, Wei H, Zhao J, Yu J, Li MH. Transcriptome profiling identifies differentially expressed genes in postnatal developing pituitary gland of miniature pig. DNA Res 2013; 21:207-16. [PMID: 24282060 PMCID: PMC3989491 DOI: 10.1093/dnares/dst051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In recent years, Tibetan pig and Bama pig are popularly used as animal models for medical researches. However, little genomic information is available for the two breeds, particularly regarding gene expression pattern at the whole-transcriptome level. In this study, we characterized the pituitary transcriptome profile along their postnatal developmental stages within and between the two breeds in order to illustrate the differential dynamics and functions of differentially expressed genes. We obtained a total of ∼300 million 80-bp paired-end reads, detected 15 715 previously annotated genes. Most of the genes (90.33%) were shared between the two breeds with the main functions in metabolic process. Four hormone genes (GH, PRL, LHB, and FSHB) were detected in all samples with extremely high levels of expression. Functional differences between the three developmental stages (infancy, puberty and adulthood) in each breed were dominantly presented by the gene expressions at the first stage. That is, Bama pig was over-represented in the genes involved in the cellular process, while Tibetan pig was over-represented in the genes represented by the reproductive process. The identified SNPs indicated that the divergence between the miniature pig breeds and the large pig (Duroc) were greater than that between the two miniature pig breeds. This study substantially expands our knowledge concerning the genes transcribed in the pig pituitary gland and provides an overview of pituitary transcriptome dynamics throughout the period of postnatal development.
Collapse
Affiliation(s)
- Lei Shan
- 1Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|