1
|
Tang J, Kang Y, Zhou Y, Shang N, Li X, Wang H, Lan J, Wang S, Wu L, Peng Y. TIMP2 ameliorates blood-brain barrier disruption in traumatic brain injury by inhibiting Src-dependent VE-cadherin internalization. J Clin Invest 2023; 134:e164199. [PMID: 38015626 PMCID: PMC10849766 DOI: 10.1172/jci164199] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/21/2023] [Indexed: 11/30/2023] Open
Abstract
Blood-brain barrier (BBB) disruption is a serious pathological consequence of traumatic brain injury (TBI), for which there are limited therapeutic strategies. Tissue inhibitor of metalloproteinase-2 (TIMP2), a molecule with dual functions of inhibiting MMP activity and displaying cytokine-like activity through receptor binding, has been reported to inhibit VEGF-induced vascular hyperpermeability. Here, we investigate the ability of TIMP2 to ameliorate BBB disruption in TBI and the underlying molecular mechanisms. Both TIMP2 and AlaTIMP2, a TIMP2 mutant without MMP-inhibiting activity, attenuated neurological deficits and BBB leakage in TBI mice; they also inhibited junctional protein degradation and translocation to reduce paracellular permeability in human brain microvascular endothelial cells (ECs) exposed to hypoxic plus inflammatory insult. Mechanistic studies revealed that TIMP2 interacted with α3β1 integrin on ECs, inhibiting Src activation-dependent VE-cadherin phosphorylation, VE-cadherin/catenin complex destabilization, and subsequent VE-cadherin internalization. Notably, localization of VE-cadherin on the membrane was critical for TIMP2-mediated EC barrier integrity. Furthermore, TIMP2-mediated increased membrane localization of VE-cadherin enhanced the level of active Rac1, thereby inhibiting stress fiber formation. All together, our studies have identified an MMP-independent mechanism by which TIMP2 regulates EC barrier integrity after TBI. TIMP2 may be a therapeutic agent for TBI and other neurological disorders involving BBB breakdown.
Collapse
|
2
|
Iwasaki M, Zhao H, Hu C, Saito J, Wu L, Sherwin A, Ishikawa M, Sakamoto A, Buggy D, Ma D. The differential cancer growth associated with anaesthetics in a cancer xenograft model of mice: mechanisms and implications of postoperative cancer recurrence. Cell Biol Toxicol 2023; 39:1561-1575. [PMID: 35953652 PMCID: PMC10425502 DOI: 10.1007/s10565-022-09747-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/06/2022] [Indexed: 12/13/2022]
Abstract
Anaesthetics may modify colorectal cancer cell biology which potentially affects long-term survival. This study aims to compare propofol and sevoflurane regarding with the direct anaesthetic effects on cancer malignancy and the indirect effects on host immunity in a cancer xenograft mode of mice. Cultured colon cancer cell (Caco-2) was injected subcutaneously to nude mice (day 1). Mice were exposed to either 1.5% sevoflurane for 1.5 h or propofol (20 μg g-1; ip injection) with or without 4 μg g-1 lipopolysaccharide (LPS; ip) from days 15 to 17, compared with those without anaesthetic exposure as controls. The clinical endpoints including tumour volumes over 70 mm3 were closely monitored up to day 28. Tumour samples from the other cohorts were collected on day 18 for PCR array, qRT-PCR, western blotting and immunofluorescent assessment. Propofol treatment reduced tumour size (mean ± SD; 23.0 ± 6.2mm3) when compared to sevoflurane (36.0 ± 0.3mm3) (p = 0.008) or control (23.6 ± 4.7mm3). Propofol decreased hypoxia inducible factor 1α (HIF1α), interleukin 1β (IL1β), and hepatocyte growth factor (HGF) gene expressions and increased tissue inhibitor of metalloproteinases 2 (TIMP-2) gene and protein expression in comparison to sevoflurane in the tumour tissue. LPS suppressed tumour growth in any conditions whilst increased TIMP-2 and anti-cancer neutrophil marker expressions and decreased macrophage marker expressions compared to those in the LPS-untreated groups. Our data indicated that sevoflurane increased cancer development when compared with propofol in vivo under non-surgical condition. Anaesthetics tested in this study did not alter the effects of LPS as an immune modulator in changing immunocyte phenotype and suppressing cancer development.
Collapse
Affiliation(s)
- Masae Iwasaki
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, 369 Fulham Rd, Chelsea, London, SW10 9NH UK
- Department of Anaesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Hailin Zhao
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, 369 Fulham Rd, Chelsea, London, SW10 9NH UK
| | - Cong Hu
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, 369 Fulham Rd, Chelsea, London, SW10 9NH UK
| | - Junichi Saito
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, 369 Fulham Rd, Chelsea, London, SW10 9NH UK
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Lingzhi Wu
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, 369 Fulham Rd, Chelsea, London, SW10 9NH UK
| | - Aislinn Sherwin
- Anaesthesiology and Perioperative Medicine, Mater University Hospital, University College Dublin, Dublin, Ireland
| | - Masashi Ishikawa
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, 369 Fulham Rd, Chelsea, London, SW10 9NH UK
- Department of Anaesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Atsuhiro Sakamoto
- Department of Anaesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Donal Buggy
- Anaesthesiology and Perioperative Medicine, Mater University Hospital, University College Dublin, Dublin, Ireland
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, 369 Fulham Rd, Chelsea, London, SW10 9NH UK
| |
Collapse
|
3
|
Escalona RM, Chu S, Kadife E, Kelly JK, Kannourakis G, Findlay JK, Ahmed N. Knock down of TIMP-2 by siRNA and CRISPR/Cas9 mediates diverse cellular reprogramming of metastasis and chemosensitivity in ovarian cancer. Cancer Cell Int 2022; 22:422. [PMID: 36585738 PMCID: PMC9805260 DOI: 10.1186/s12935-022-02838-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The endogenous tissue inhibitor of metalloproteinase-2 (TIMP-2), through its homeostatic action on certain metalloproteinases, plays a vital role in remodelling extracellular matrix (ECM) to facilitate cancer progression. This study investigated the role of TIMP-2 in an ovarian cancer cell line in which the expression of TIMP-2 was reduced by either siRNA or CRISPR/Cas9. METHODS OVCAR5 cells were transiently and stably transfected with either single or pooled TIMP-2 siRNAs (T2-KD cells) or by CRISPR/Cas9 under the influence of two distinct guide RNAs (gRNA1 and gRNA2 cell lines). The expression of different genes was analysed at the mRNA level by quantitative real time PCR (qRT-PCR) and at the protein level by immunofluorescence (IF) and western blot. Proliferation of cells was investigated by 5-Ethynyl-2'-deoxyuridine (EdU) assay or staining with Ki67. Cell migration/invasion was determined by xCELLigence. Cell growth in vitro was determined by 3D spheroid cultures and in vivo by a mouse xenograft model. RESULTS Approximately 70-90% knock down of TIMP-2 expression were confirmed in T2-KD, gRNA1 and gRNA2 OVCAR5 ovarian cancer cells at the protein level. T2-KD, gRNA1 and gRNA2 cells exhibited a significant downregulation of MMP-2 expression, but concurrently a significant upregulation in the expression of membrane bound MMP-14 compared to control and parental cells. Enhanced proliferation and invasion were exhibited in all TIMP-2 knocked down cells but differences in sensitivity to paclitaxel (PTX) treatment were observed, with T2-KD cells and gRNA2 cell line being sensitive, while the gRNA1 cell line was resistant to PTX treatment. In addition, significant differences in the growth of gRNA1 and gRNA2 cell lines were observed in in vitro 3D cultures as well as in an in vivo mouse xenograft model. CONCLUSIONS Our results suggest that the inhibition of TIMP-2 by siRNA and CRISPR/Cas-9 modulate the expression of MMP-2 and MMP-14 and reprogram ovarian cancer cells to facilitate proliferation and invasion. Distinct disparities in in vitro chemosensitivity and growth in 3D culture, and differences in tumour burden and invasion to proximal organs in a mouse model imply that selective suppression of TIMP-2 expression by siRNA or CRISPR/Cas-9 alters important aspects of metastasis and chemosensitivity in ovarian cancer.
Collapse
Affiliation(s)
- Ruth M. Escalona
- grid.1008.90000 0001 2179 088XDepartment of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC 3052 Australia ,grid.1002.30000 0004 1936 7857Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Translational Medicine, Monash University, Clayton, VIC 3168 Australia ,Fiona Elsey Cancer Research Institute, Suites 23, 106-110 Lydiard Street South, Ballarat Technology Park Central, Ballarat, VIC 3350 Australia
| | - Simon Chu
- grid.1002.30000 0004 1936 7857Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research and Department of Translational Medicine, Monash University, Clayton, VIC 3168 Australia
| | - Elif Kadife
- Fiona Elsey Cancer Research Institute, Suites 23, 106-110 Lydiard Street South, Ballarat Technology Park Central, Ballarat, VIC 3350 Australia
| | - Jason K. Kelly
- Fiona Elsey Cancer Research Institute, Suites 23, 106-110 Lydiard Street South, Ballarat Technology Park Central, Ballarat, VIC 3350 Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Suites 23, 106-110 Lydiard Street South, Ballarat Technology Park Central, Ballarat, VIC 3350 Australia ,grid.1040.50000 0001 1091 4859School of Science, Psychology and Sport, Federation University, Mt Helen, VIC 3350 Australia
| | - Jock K. Findlay
- grid.1008.90000 0001 2179 088XDepartment of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC 3052 Australia ,grid.1002.30000 0004 1936 7857Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Translational Medicine, Monash University, Clayton, VIC 3168 Australia
| | - Nuzhat Ahmed
- grid.1008.90000 0001 2179 088XDepartment of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC 3052 Australia ,grid.1002.30000 0004 1936 7857Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Translational Medicine, Monash University, Clayton, VIC 3168 Australia ,Fiona Elsey Cancer Research Institute, Suites 23, 106-110 Lydiard Street South, Ballarat Technology Park Central, Ballarat, VIC 3350 Australia ,grid.1040.50000 0001 1091 4859School of Science, Psychology and Sport, Federation University, Mt Helen, VIC 3350 Australia
| |
Collapse
|
4
|
Wei B, Hao Z, Zheng H, Qin Y, Zhao F, Shi L. Brevilin A Inhibits VEGF-Induced Angiogenesis through ROS-Dependent Mitochondrial Dysfunction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5888636. [PMID: 36567856 PMCID: PMC9771652 DOI: 10.1155/2022/5888636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 12/16/2022]
Abstract
Brevilin A (BA), a sesquiterpene lactone isolated from Centipeda minima herb, has been identified to exhibit potent anticancer activity. However, the potential pharmacological effect and mechanism of BA in regulating endothelial cell (EC) angiogenesis, a key event in tumor growth, is poorly understood. In this study, BA was shown to significantly prevent vascular endothelial growth factor (VEGF) induced EC angiogenic capacities in vitro, ex vivo, and in vivo. Subsequent functional assays revealed that BA dose dependently inhibited VEGF-stimulated survival, proliferation, migration, and triggered apoptosis activity in human umbilical vein endothelial cells (HUVECs), as well as suppressed the expression of antiapoptotic protein Bcl-2, increased the expression of proapoptotic protein caspase-3 and Bax, and suppressed PI3K/AKT pathway. Meanwhile, BA was also able to depolarize mitochondrial membranal permeability (MMP), accelerate mitochondrial superoxide accumulation, induce intracellular reactive oxygen species (ROS) production, and decreased intracellular glutathione (GSH) in HUVECs. Furthermore, both mitochondria-specific superoxide scavenger Mito-TEMPOL and broad-spectrum antioxidant N-acetyl-cysteine (NAC) dramatically abolished BA-induced mitochondrial dysfunction and mitochondrial ROS production, causing the reversion of PI3K/AKT pathway and repression of apoptosis, eventually correcting the impaired endothelial behavior in survival, growth, migration, and angiogenesis. Collectively, our data for the first time identified a new mechanism for antiangiogenic effect of BA in vascular EC, one that is based on the regulation of mitochondrial-dependent ROS overproduction.
Collapse
Affiliation(s)
- Bailing Wei
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, China
| | - Zhen Hao
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, China
| | - Hao Zheng
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, China
| | - Yuanhua Qin
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, China
| | - Feng Zhao
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, China
| | - Lei Shi
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, China
| |
Collapse
|
5
|
Wu PL, Ling XC, Kang EYC, Chen KJ, Wang NK, Liu L, Chen YP, Hwang YS, Lai CC, Yang SF, Wu WC. Effects of TIMP-2 Polymorphisms on Retinopathy of Prematurity Risk, Severity, Recurrence, and Treatment Response. Int J Mol Sci 2022; 23:14199. [PMID: 36430677 PMCID: PMC9694036 DOI: 10.3390/ijms232214199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/31/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) play a crucial role in endogenous angiogenesis besides the regulation of matrix metalloproteinase (MMP) activity. Associations between TIMP-2 gene polymorphisms and the risk of retinopathy of prematurity (ROP) were examined. Premature infants born between 2009 and 2018 were included. Five single-nucleotide polymorphisms (SNPs) of TIMP-2 were analyzed with real-time polymerase chain reaction (PCR). Multivariate logistic regression was applied to model associations between TIMP-2 polymorphisms and ROP susceptibility and severity. The GA+AA genotype in individuals with the TIMP-2 polymorphism of rs12600817 was associated with a higher risk of ROP (odds ratio [OR]: 1.518, 95% confidence interval [CI]: 1.028-2.242) compared with their wild-type genotypes. The AA genotype (OR: 1.962, 95% CI: 1.023-3.762) and the AA+GA genotype (OR: 1.686, 95% CI: 1.030-2.762) in individuals with the rs12600817 polymorphism had higher risks of severe, treatment-requiring ROP relative to their wild-type counterparts. In patients with treatment-requiring ROP, the AG+GG genotypes in the TIMP-2 polymorphism of rs2889529 were correlated with the treatment response (p = 0.035). The TIMP-2 polymorphism of rs12600817 help in predicting ROP risks in preterm infants, while the polymorphism of rs2889529 can serve as a genetic marker in evaluating the ROP treatment response.
Collapse
Affiliation(s)
- Pei-Liang Wu
- Department of Medicine, National Taiwan University, Taipei 106, Taiwan
| | - Xiao Chun Ling
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
| | - Eugene Yu-Chuan Kang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Kuan-Jen Chen
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Nan-Kai Wang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Laura Liu
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Yen-Po Chen
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Tucheng, New Taipei City 236, Taiwan
| | - Yih-Shiou Hwang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chi-Chun Lai
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Wei-Chi Wu
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
6
|
Breast Cancer Treatment Decreases Serum Levels of TGF-β1, VEGFR2, and TIMP-2 Compared to Healthy Volunteers: Significance for Therapeutic Outcomes? PATHOPHYSIOLOGY 2022; 29:537-554. [PMID: 36136069 PMCID: PMC9500649 DOI: 10.3390/pathophysiology29030042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/25/2022] Open
Abstract
Various complications from a breast cancer treatment, in the pathogenesis of which excessive tissue fibrosis plays a leading role, are a common pathology. In this study, the levels of TGF-β1, VEGFR-2, and TIMP-2 were determined by the immuno-enzyme serum analysis for patients during the long-term period after breast cancer treatment as potential markers of fibrosis. The single-center study enrolled 92 participants, which were divided into two age-matched groups: (1) 67 patients following breast cancer treatment, and (2) 25 healthy female volunteers. The intergroup analysis demonstrated that the patients after breast cancer treatment showed a decrease in the serum levels of TGF-β1 (U = 666, p < 0.001) and TIMP-2 (U = 637, p < 0.001) as compared to the group of healthy volunteers. The levels of VEGFR-2 in these groups were comparable (U = 1345, p = 0.082). It was also found that the type of treatment, the presence of lymphedema, shoulder joint contracture, and changes in lymphoscintigraphy did not affect the levels of TGF-β1, VEGFR-2, and TIMP-2 within the group of patients after breast cancer treatment. These results may indicate that these biomarkers do not play a leading role in the maintenance and progression of fibrosis in the long-term period after breast cancer treatment. The reduced levels of TGF-β1 and TIMP-2 may reflect endothelial dysfunction caused by the antitumor therapy.
Collapse
|
7
|
Yang GL, Wang S, Zhang S, Liu Y, Liu X, Wang D, Wei H, Xiong J, Zhang ZS, Wang Z, Li LY, Zhang J. A Protective Role of Tumor Necrosis Factor Superfamily-15 in Intracerebral Hemorrhage-Induced Secondary Brain Injury. ASN Neuro 2021; 13:17590914211038441. [PMID: 34596444 PMCID: PMC8642778 DOI: 10.1177/17590914211038441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Destabilization of blood vessels by the activities of vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs) following intracerebral hemorrhage (ICH) has been considered the main causes of aggravated secondary brain injury. Here, we show that tumor necrosis factor superfamily-15 (TNFSF15; also known as vascular endothelial growth inhibitor), an inhibitor of VEGF-induced vascular hyper-permeability, when overexpressed in transgenic mice, exhibits a neuroprotective function post-ICH. In this study, we set-up a collagenase-induced ICH model with TNFSF15-transgenic mice and their transgene-negative littermates. We observed less lesion volume and neural function perturbations, together with less severe secondary injuries in the acute phase that are associated with brain edema and inflammation, including vascular permeability, oxidative stress, microglia/macrophage activation and neutrophil infiltration, and neuron degeneration, in the TNFSF15 group compared with the littermate group. Additionally, we show that there is an inhibition of VEGF-induced elevation of MMP-9 in the perihematomal blood vessels of the TNFSF15 mice following ICH, concomitant with enhanced pericyte coverage of the perihematomal blood vessels. These findings are consistent with the view that TNFSF15 may have a potential as a therapeutic agent for the treatment of secondary injuries in the early phase of ICH.
Collapse
Affiliation(s)
- Gui-Li Yang
- Department of Neurosurgery, 230967Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Shizhao Wang
- 128790North China University of Science and Technology Affiliated Hospital, Tangshan, HeBei Province, China
| | - Shu Zhang
- Department of Neurosurgery, 230967Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Ye Liu
- Department of Neurosurgery, 230967Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Xiao Liu
- Department of Neurosurgery, 230967Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Dong Wang
- Department of Neurosurgery, 230967Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Huijie Wei
- Department of Neurosurgery, 230967Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Jianhua Xiong
- Department of Neurosurgery, 230967Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Zhi-Song Zhang
- State Key Laboratory of Medicinal Chemical Biology, 12538Nankai University College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Tianjin, China
| | - Zengguang Wang
- Department of Neurosurgery, 230967Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Lu-Yuan Li
- State Key Laboratory of Medicinal Chemical Biology, 12538Nankai University College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Tianjin, China
| | - Jianning Zhang
- Department of Neurosurgery, 230967Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| |
Collapse
|
8
|
Gete YG, Koblan LW, Mao X, Trappio M, Mahadik B, Fisher JP, Liu DR, Cao K. Mechanisms of angiogenic incompetence in Hutchinson-Gilford progeria via downregulation of endothelial NOS. Aging Cell 2021; 20:e13388. [PMID: 34086398 PMCID: PMC8282277 DOI: 10.1111/acel.13388] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/12/2021] [Accepted: 05/08/2021] [Indexed: 12/22/2022] Open
Abstract
Hutchinson–Gilford progeria syndrome (HGPS) is a rare genetic disorder with features of accelerated aging. The majority of HGPS cases are caused by a de novo point mutation in the LMNA gene (c.1824C>T; p.G608G) resulting in progerin, a toxic lamin A protein variant. Children with HGPS typically die from coronary artery diseases or strokes at an average age of 14.6 years. Endothelial dysfunction is a known driver of cardiovascular pathogenesis; however, it is currently unknown how progerin antagonizes normal angiogenic function in HGPS. Here, we use human iPSC‐derived endothelial cell (iPSC‐EC) models to study angiogenesis in HGPS. We cultured normal and HGPS iPSC‐ECs under both static and fluidic culture conditions. HGPS iPSC‐ECs show reduced endothelial nitric oxide synthase (eNOS) expression and activity compared with normal controls and concomitant decreases in intracellular nitric oxide (NO) level, which result in deficits in capillary‐like microvascular network formation. Furthermore, the expression of matrix metalloproteinase 9 (MMP‐9) was reduced in HGPS iPSC‐ECs, while the expression of tissue inhibitor metalloproteinases 1 and 2 (TIMP1 and TIMP2) was upregulated relative to healthy controls. Finally, we used an adenine base editor (ABE7.10max‐VRQR) to correct the pathogenic c.1824C>T allele in HGPS iPSC‐ECs. Remarkably, ABE7.10max‐VRQR correction of the HGPS mutation significantly reduced progerin expression to a basal level, rescued nuclear blebbing, increased intracellular NO level, normalized the misregulated TIMPs, and restored angiogenic competence in HGPS iPSC‐ECs. Together, these results provide molecular insights of endothelial dysfunction in HGPS and suggest that ABE could be a promising therapeutic approach for correcting HGPS‐related cardiovascular phenotypes.
Collapse
Affiliation(s)
- Yantenew G. Gete
- Department of Cell Biology and Molecular Genetics University of Maryland College Park MD USA
| | - Luke W. Koblan
- Merkin Institute of Transformative Technologies in Healthcare Broad Institute of Harvard and MIT Cambridge MA USA
- Department of Chemistry and Chemical Biology Harvard University Cambridge MA USA
- Howard Hughes Medical Institute Harvard University Cambridge MA USA
| | - Xiaojing Mao
- Department of Cell Biology and Molecular Genetics University of Maryland College Park MD USA
| | - Mason Trappio
- Department of Cell Biology and Molecular Genetics University of Maryland College Park MD USA
| | - Bhushan Mahadik
- Fischell Department of Bioengineering University of Maryland College Park MD USA
| | - John P. Fisher
- Fischell Department of Bioengineering University of Maryland College Park MD USA
| | - David R. Liu
- Merkin Institute of Transformative Technologies in Healthcare Broad Institute of Harvard and MIT Cambridge MA USA
- Department of Chemistry and Chemical Biology Harvard University Cambridge MA USA
- Howard Hughes Medical Institute Harvard University Cambridge MA USA
| | - Kan Cao
- Department of Cell Biology and Molecular Genetics University of Maryland College Park MD USA
| |
Collapse
|
9
|
Peeney D, Jensen SM, Castro NP, Kumar S, Noonan S, Handler C, Kuznetsov A, Shih J, Tran AD, Salomon DS, Stetler-Stevenson WG. TIMP-2 suppresses tumor growth and metastasis in murine model of triple-negative breast cancer. Carcinogenesis 2020; 41:313-325. [PMID: 31621840 PMCID: PMC7221506 DOI: 10.1093/carcin/bgz172] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/12/2019] [Accepted: 10/11/2019] [Indexed: 12/30/2022] Open
Abstract
Metastasis is the primary cause of treatment failures and mortality in most cancers. Triple-negative breast cancer (TNBC) is refractory to treatment and rapidly progresses to disseminated disease. We utilized an orthotopic mouse model that molecularly and phenotypically resembles human TNBC to study the effects of exogenous, daily tissue inhibitor of metalloproteinase-2 (TIMP-2) treatment on tumor growth and metastasis. Our results demonstrated that TIMP-2 treatment maximally suppressed primary tumor growth by ~36-50% and pulmonary metastasis by >92%. Immunostaining assays confirmed disruption of the epithelial to mesenchymal transition (EMT) and promotion of vascular integrity in primary tumor tissues. Immunostaining and RNA sequencing analysis of lung tissue lysates from tumor-bearing mice identified significant changes associated with metastatic colony formation. Specifically, TIMP-2 treatment disrupts periostin localization and critical cell-signaling pathways, including canonical Wnt signaling involved in EMT, as well as PI3K signaling, which modulates proliferative and metastatic behavior through p27 phosphorylation/localization. In conclusion, our study provides evidence in support of a role for TIMP-2 in suppression of triple-negative breast cancer growth and metastasis through modulation of the epithelial to mesenchymal transition, vascular normalization, and signaling pathways associated with metastatic outgrowth. Our findings suggest that TIMP-2, a constituent of the extracellular matrix in normal tissues, may have both direct and systemic antitumor and metastasis suppressor effects, suggesting potential utility in the clinical management of breast cancer progression.
Collapse
Affiliation(s)
- David Peeney
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Sandra M Jensen
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Nadia P Castro
- Tumor Growth Factor Section, Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, USA
| | - Sarvesh Kumar
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Silvia Noonan
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Chenchen Handler
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Alex Kuznetsov
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Joanna Shih
- Biostatistics Branch, National Cancer Institute, Rockville, MD, USA
| | - Andy D Tran
- Confocal Core Facility, National Cancer Institute, Bethesda, MD, USA
| | - David S Salomon
- Tumor Growth Factor Section, Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, USA
| | - William G Stetler-Stevenson
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
10
|
Counterbalance: modulation of VEGF/VEGFR activities by TNFSF15. Signal Transduct Target Ther 2018; 3:21. [PMID: 30101034 PMCID: PMC6085396 DOI: 10.1038/s41392-018-0023-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/23/2018] [Accepted: 05/31/2018] [Indexed: 01/11/2023] Open
Abstract
Vascular hyperpermeability occurs in angiogenesis and several pathobiological conditions, producing elevated interstitial fluid pressure and lymphangiogenesis. How these closely related events are modulated is a fundamentally important question regarding the maintenance of vascular homeostasis and treatment of disease conditions such as cancer, stroke, and myocardial infarction. Signals mediated by vascular endothelial growth factor receptors, noticeably VEGFR-1, −2, and −3, are centrally involved in the promotion of both blood vessel and lymphatic vessel growth. These signaling pathways are counterbalanced or, in the case of VEGFR3, augmented by signals induced by tumor necrosis factor superfamily-15 (TNFSF15). TNFSF15 can simultaneously downregulate membrane-bound VEGFR1 and upregulate soluble VEGFR1, thus changing VEGF/VEGFR1 signals from pro-angiogenic to anti-angiogenic. In addition, TNFSF15 inhibits VEGF-induced VEGFR2 phosphorylation, thereby curbing VEGFR2-mediated enhancement of vascular permeability. Third, and perhaps more interestingly, TNFSF15 is capable of stimulating VEGFR3 gene expression in lymphatic endothelial cells, thus augmenting VEGF-C/D-VEGFR3-facilitated lymphangiogenesis. We discuss the intertwining relationship between the actions of TNFSF15 and VEGF in this review. The ability of tumor necrosis factor superfamily-15 (TNFSF15) protein to balance the actions of vascular endothelial growth factors (VEGFs) highlights new therapeutic strategies for the treatment of diseases that disrupt the circulatory system. Gui-Li Yang at the Tianjin Neurological Institute and Lu-Yuan Li at Nankai University describe the mechanisms through which TNFSF15 inhibits blood vessel growth mediated by VEGF receptor-1 (VEGFR1) and counterbalances the increase in vascular permeability mediated by VEGFR2. Interestingly, TNFSF15 enhances the effects of VEGFR3 on the formation of lymphatic vessels by promoting VEGFR3 gene expression in lymphatic endothelial cells. Further research will determine whether TNFSF15′s unique capacity to regulate the properties of both blood and lymph vessels can be harnessed to improve the treatment of conditions such as cancer, stroke, myocardial infarction and lymphoedema.
Collapse
|
11
|
Escalona RM, Chan E, Kannourakis G, Findlay JK, Ahmed N. The Many Facets of Metzincins and Their Endogenous Inhibitors: Perspectives on Ovarian Cancer Progression. Int J Mol Sci 2018; 19:E450. [PMID: 29393911 PMCID: PMC5855672 DOI: 10.3390/ijms19020450] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 02/07/2023] Open
Abstract
Approximately sixty per cent of ovarian cancer patients die within the first five years of diagnosis due to recurrence associated with chemoresistance. The metzincin family of metalloproteinases is enzymes involved in matrix remodeling in response to normal physiological changes and diseased states. Recently, there has been a mounting awareness of these proteinases and their endogenous inhibitors, the tissue inhibitors of metalloproteinases (TIMPs), as superb modulators of cellular communication and signaling regulating key biological processes in cancer progression. This review investigates the role of metzincins and their inhibitors in ovarian cancer. We propose that understanding the metzincins and TIMP biology in ovarian cancer may provide valuable insights in combating ovarian cancer progression and chemoresistance-mediated recurrence in patients.
Collapse
Affiliation(s)
- Ruth M Escalona
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC 3052, Australia.
- The Hudson Institute of Medical Research, Clayton, VIC 3168, Australia.
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia.
| | - Emily Chan
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC 3052, Australia.
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia.
- Federation University Australia, Ballarat, VIC 3010, Australia.
| | - Jock K Findlay
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC 3052, Australia.
- The Hudson Institute of Medical Research, Clayton, VIC 3168, Australia.
| | - Nuzhat Ahmed
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC 3052, Australia.
- The Hudson Institute of Medical Research, Clayton, VIC 3168, Australia.
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia.
- Federation University Australia, Ballarat, VIC 3010, Australia.
| |
Collapse
|
12
|
Masciantonio MG, Lee CKS, Arpino V, Mehta S, Gill SE. The Balance Between Metalloproteinases and TIMPs: Critical Regulator of Microvascular Endothelial Cell Function in Health and Disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 147:101-131. [PMID: 28413026 DOI: 10.1016/bs.pmbts.2017.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endothelial cells (EC), especially the microvascular EC (MVEC), have critical functions in health and disease. For example, healthy MVEC provide a barrier between the fluid and protein found within the blood, and the surrounding tissue. Following tissue injury or infection, the microvascular barrier is often disrupted due to activation and dysfunction of the MVEC. Multiple mechanisms promote MVEC activation and dysfunction, including stimulation by cytokines, mechanical interaction with activated leukocytes, and exposure to harmful leukocyte-derived molecules, which collectively result in a loss of MVEC barrier function. However, MVEC activation is also critical to facilitate recruitment of inflammatory cells, such as neutrophils (PMNs) and monocytes, into the injured or infected tissue. Metalloproteinases, including the matrix metalloproteinases (MMPs) and the closely related, a disintegrin and metalloproteinases (ADAMs), have been implicated in regulating both MVEC barrier function, through cleavage of adherens and tight junctions proteins between adjacent MVEC and through degradation of the extracellular matrix, as well as PMN-MVEC interaction, through shedding of cell surface PMN receptors. Moreover, the tissue inhibitors of metalloproteinases (TIMPs), which collectively inhibit most MMPs and ADAMs, are critical regulators of MVEC activation and dysfunction through their ability to inhibit metalloproteinases and thereby promote MVEC stability. However, TIMPs have been also found to modulate MVEC function through metalloproteinase-independent mechanisms, such as regulation of vascular endothelial growth factor signaling. This chapter is focused on examining the role of the metalloproteinases and TIMPs in regulation of MVEC function in both health and disease.
Collapse
Affiliation(s)
- Marcello G Masciantonio
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada; Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Christopher K S Lee
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada; Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Valerie Arpino
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada; Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Sanjay Mehta
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada
| | - Sean E Gill
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada; Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| |
Collapse
|
13
|
Yang GL, Zhao Z, Qin TT, Wang D, Chen L, Xiang R, Xi Z, Jiang R, Zhang ZS, Zhang J, Li LY. TNFSF15 inhibits VEGF-stimulated vascular hyperpermeability by inducing VEGFR2 dephosphorylation. FASEB J 2017; 31:2001-2012. [PMID: 28183800 DOI: 10.1096/fj.201600800r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 01/17/2017] [Indexed: 02/05/2023]
Abstract
Vascular hyperpermeability is critical in ischemic diseases, including stroke and myocardial infarction, as well as in inflammation and cancer. It is well known that the VEGF-VEGFR2 signaling pathways are pivotal in promoting vascular permeability; however, counterbalancing mechanisms that restrict vascular permeability to maintain the integrity of blood vessels are not yet fully understood. We report that TNF superfamily member 15 (TNFSF15), a cytokine largely produced by vascular endothelial cells and a specific inhibitor of the proliferation of these same cells, can inhibit VEGF-induced vascular permeability in vitro and in vivo, and that death receptor 3 (DR3), a cell surface receptor of TNFSF15, mediates TNFSF15-induced dephosphorylation of VEGFR2. Src homology region 2 domain-containing phosphatase-1 (SHP-1) becomes associated with DR3 upon TNFSF15 interaction with the latter. In addition, a protein complex consisting of VEGFR2, DR3, and SHP-1 is formed in response to the effects of TNFSF15 and VEGF on endothelial cells. It is plausible that this protein complex provides a structural basis for the molecular mechanism in which TNFSF15 induces the inhibition of VEGF-stimulated vascular hyperpermeability.-Yang, G.-L., Zhao, Z., Qin, T.-T., Wang, D., Chen, L., Xiang, R., Xi, Z., Jiang, R., Zhang, Z.-S., Zhang, J., Li. L.-Y. TNFSF15 inhibits VEGF-stimulated vascular hyperpermeability by inducing VEGFR2 dephosphorylation.
Collapse
Affiliation(s)
- Gui-Li Yang
- Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Collaborative Innovation Center for Biotherapy and Tianjin Key Laboratory of Molecular Drug Research.,Key Laboratory of Post-Neuroinjury Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China; and
| | - Zilong Zhao
- Key Laboratory of Post-Neuroinjury Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China; and
| | - Ting-Ting Qin
- Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Collaborative Innovation Center for Biotherapy and Tianjin Key Laboratory of Molecular Drug Research
| | - Dong Wang
- Key Laboratory of Post-Neuroinjury Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China; and
| | - Lijuan Chen
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Xiang
- Department of Immunology, Medical School of Nankai University, and
| | - Zhen Xi
- Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, China
| | - Rongcai Jiang
- Key Laboratory of Post-Neuroinjury Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China; and
| | - Zhi-Song Zhang
- Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Collaborative Innovation Center for Biotherapy and Tianjin Key Laboratory of Molecular Drug Research,
| | - Jianning Zhang
- Key Laboratory of Post-Neuroinjury Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China; and
| | - Lu-Yuan Li
- Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Collaborative Innovation Center for Biotherapy and Tianjin Key Laboratory of Molecular Drug Research,
| |
Collapse
|
14
|
Özcan S, Alessio N, Acar MB, Mert E, Omerli F, Peluso G, Galderisi U. Unbiased analysis of senescence associated secretory phenotype (SASP) to identify common components following different genotoxic stresses. Aging (Albany NY) 2016; 8:1316-1329. [PMID: 27288264 PMCID: PMC4993333 DOI: 10.18632/aging.100971] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/28/2016] [Indexed: 01/10/2023]
Abstract
Senescent cells secrete senescence-associated secretory phenotype (SASP) proteins to carry out several functions, such as sensitizing surrounding cells to senesce; immunomodulation; impairing or fostering cancer growth; and promoting tissue development. Identifying secreted factors that achieve such tasks is a challenging issue since the profile of secreted proteins depends on genotoxic stress and cell type. Currently, researchers are trying to identify common markers for SASP. The present investigation compared the secretome composition of five different senescent phenotypes in two different cell types: bone marrow and adipose mesenchymal stromal cells (MSC). We induced MSC senescence by oxidative stress, doxorubicin treatment, X-ray irradiation, and replicative exhaustion. We took advantage of LC-MS/MS proteome identification and subsequent gene ontology (GO) evaluation to perform an unbiased analysis (hypothesis free manner) of senescent secretomes. GO analysis allowed us to distribute SASP components into four classes: extracellular matrix/cytoskeleton/cell junctions; metabolic processes; ox-redox factors; and regulators of gene expression. We used Ingenuity Pathway Analysis (IPA) to determine common pathways among the different senescent phenotypes. This investigation, along with identification of eleven proteins that were exclusively expressed in all the analyzed senescent phenotypes, permitted the identification of three key signaling paths: MMP2 - TIMP2; IGFBP3 - PAI-1; and Peroxiredoxin 6 - ERP46 - PARK7 - Cathepsin D - Major vault protein. We suggest that these paths could be involved in the paracrine circuit that induces senescence in neighboring cells and may confer apoptosis resistance to senescent cells.
Collapse
Affiliation(s)
- Servet Özcan
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
- Department of Biology, Faculty of Sciences, Erciyes University, Kayseri, Turkey
| | - Nicola Alessio
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, Naples, Italy
| | - Mustafa B. Acar
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
- Department of Biology, Faculty of Sciences, Erciyes University, Kayseri, Turkey
| | - Eda Mert
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
- Department of Biology, Faculty of Sciences, Erciyes University, Kayseri, Turkey
| | - Fatih Omerli
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
- Department of Biology, Faculty of Sciences, Erciyes University, Kayseri, Turkey
| | | | - Umberto Galderisi
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, Naples, Italy
| |
Collapse
|
15
|
Lee C, An J, Kim JH, Kim ES, Kim SH, Cho YK, Cha DH, Han MY, Lee KH, Sheen YH. Low levels of tissue inhibitor of metalloproteinase-2 at birth may be associated with subsequent development of bronchopulmonary dysplasia in preterm infants. KOREAN JOURNAL OF PEDIATRICS 2015; 58:415-20. [PMID: 26692876 PMCID: PMC4675921 DOI: 10.3345/kjp.2015.58.11.415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 07/07/2015] [Accepted: 08/20/2015] [Indexed: 11/27/2022]
Abstract
Purpose Bronchopulmonary dysplasia (BPD) is characterized by inflammation with proteolytic damage to the lung extracellular matrix. The results from previous studies are inconsistent regarding the role of proteinases and antiproteinases in the development of BPD. The aim of the present study was to investigate whether matrix metalloproteinase (MMP)-8, MMP-9, tissue inhibitor of metalloproteinase (TIMP)-2, and TIMP-1 levels in the serum of preterm infants at birth are related to the development of BPD. Methods Serum was collected from 62 preterm infants at birth and analyzed for MMP-8, MMP-9, TIMP-2, and TIMP-1 by using enzyme-linked immunosorbent assay. MMPs and TIMPs were compared in BPD (n=24) and no BPD groups (n=38). Clinical predictors of BPD (sex, birth weight, gestational age, etc.) were assessed for both groups. The association between predictors and outcome, BPD, was assessed by using multivariate logistic regression. Results Sex, birth weight, and mean gestational age were similar between the groups. BPD preterm infants had significantly lower TIMP-2 levels at birth compared with no BPD preterm infants (138.1±23.0 ng/mL vs. 171.8±44.1 ng/mL, P=0.027). No significant difference was observed in MMP-8, MMP-9, and TIMP-1 levels between the two groups. Multivariate logistic regression analysis indicated that the TIMP-2 levels were predictive of BPD after adjusting for sex, birth weight, gestational age, proteinuric preeclampsia, and intraventricular hemorrhage (β=-0.063, P=0.041). Conclusion Low TIMP-2 serum levels at birth may be associated with the subsequent development of BPD in preterm infants.
Collapse
Affiliation(s)
- Choae Lee
- Graduate School, CHA University, Pocheon, Korea
| | - Jaewoo An
- Department of Pediatrics, CHA University Bundang Medical Center, Seongnam, Korea
| | - Ji Hee Kim
- Department of Pediatrics, CHA University Gangnam Medical Center, Seoul, Korea. ; CHA University School of Medicine, Pocheon, Korea
| | - Eun Sun Kim
- Department of Pediatrics, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Soo Hyun Kim
- CHA University School of Medicine, Pocheon, Korea. ; Department of Obstetrics and Gynecology, CHA University Gangnam Medical Center, Seoul, Korea
| | - Yeon Kyung Cho
- CHA University School of Medicine, Pocheon, Korea. ; Department of Obstetrics and Gynecology, CHA University Gangnam Medical Center, Seoul, Korea
| | - Dong Hyun Cha
- CHA University School of Medicine, Pocheon, Korea. ; Department of Obstetrics and Gynecology, CHA University Gangnam Medical Center, Seoul, Korea
| | - Man Yong Han
- Department of Pediatrics, CHA University Bundang Medical Center, Seongnam, Korea. ; CHA University School of Medicine, Pocheon, Korea
| | - Kyu Hyung Lee
- Department of Pediatrics, CHA University Bundang Medical Center, Seongnam, Korea. ; CHA University School of Medicine, Pocheon, Korea
| | - Youn Ho Sheen
- Department of Pediatrics, CHA University Gangnam Medical Center, Seoul, Korea. ; CHA University School of Medicine, Pocheon, Korea
| |
Collapse
|
16
|
Ngu JMC, Teng G, Meijndert HC, Mewhort HE, Turnbull JD, Stetler-Stevenson WG, Fedak PWM. Human cardiac fibroblast extracellular matrix remodeling: dual effects of tissue inhibitor of metalloproteinase-2. Cardiovasc Pathol 2014; 23:335-43. [PMID: 25060386 PMCID: PMC6295929 DOI: 10.1016/j.carpath.2014.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/07/2014] [Accepted: 06/16/2014] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Tissue inhibitor of metalloproteinase-2 (TIMP-2) is an endogenous inhibitor of matrix metalloproteinases (MMPs) that attenuates maladaptive cardiac remodeling in ischemic heart failure. We examined the effects of TIMP-2 on human cardiac fibroblast activation and extracellular matrix (ECM) remodeling. METHODS Human cardiac fibroblasts within a three-dimensional collagen matrix were assessed for phenotype conversion, ECM architecture and key molecular regulators of ECM remodeling after differential exposure to TIMP-2 and Ala+TIMP-2 (a modified TIMP-2 analogue devoid of MMP inhibitory activity). RESULTS TIMP-2 induced opposite effects on human cardiac fibroblast activation and ECM remodeling depending on concentration. TIMP-2 activated fibroblasts into contractile myofibroblasts that remodeled ECM. At higher concentrations (>10 nM), TIMP-2 inhibited fibroblast activation and prevented ECM remodeling. As compared to profibrotic cytokine transforming growth factor (TGF)-beta1, TIMP-2 activated fibroblasts and remodeled ECM without a net accumulation of matrix elements. TIMP-2 increased total protease activity as compared to TGF-beta1. Ala+TIMP-2 exposure revealed that the actions of TIMP-2 on cardiac fibroblast activation are independent of its effects on MMP inhibition. In the presence of GM6001, a broad-spectrum MMP inhibitor, TIMP-2-mediated ECM contraction was completely abolished, indicating that TIMP-2-mediated fibroblast activation is MMP dependent. CONCLUSION TIMP-2 functions in a contextual fashion such that the effect on cardiac fibroblasts depends on the tissue microenvironment. These observations highlight potential clinical challenges in using TIMP-2 as a therapeutic strategy to attenuate postinjury cardiac remodeling.
Collapse
Affiliation(s)
- Janet M C Ngu
- Section of Cardiac Surgery, Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, Calgary, Alberta, Canada
| | - Guoqi Teng
- Section of Cardiac Surgery, Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, Calgary, Alberta, Canada
| | - Hans Christopher Meijndert
- Section of Cardiac Surgery, Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, Calgary, Alberta, Canada
| | - Holly E Mewhort
- Section of Cardiac Surgery, Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, Calgary, Alberta, Canada
| | - Jeannine D Turnbull
- Section of Cardiac Surgery, Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, Calgary, Alberta, Canada
| | | | - Paul W M Fedak
- Section of Cardiac Surgery, Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, Calgary, Alberta, Canada.
| |
Collapse
|
17
|
McCollum CW, Hans C, Shah S, Merchant FA, Gustafsson JÅ, Bondesson M. Embryonic exposure to sodium arsenite perturbs vascular development in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 152:152-163. [PMID: 24768856 DOI: 10.1016/j.aquatox.2014.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/02/2014] [Accepted: 04/05/2014] [Indexed: 06/03/2023]
Abstract
Exposure to arsenic in its inorganic form, arsenite, causes adverse effects to many different organs and tissues. Here, we have investigated arsenite-induced adverse effects on vascular tissues in the model organism zebrafish, Danio rerio. Zebrafish embryos were exposed to arsenite at different exposure windows and the susceptibility to vascular tissue damage was recorded at 72hours post fertilization (hpf). Intersegmental vessel sprouting and growth was most perturbed by exposure to arsenite during the 24-48hpf window, while disruption in the condensation of the caudal vein plexus was more often observed at the 48-72hpf exposure window, reflecting when these structures develop during normal embryogenesis. The vascular growth rate was decreased by arsenite exposure, and deviated from that of control embryos at around 24-26.5hpf. We further mapped changes in expression of key regulators of angiogenesis and vasculogenesis. Downregulation of vascular endothelial growth factor receptor 1/fms-related tyrosine kinase 1 (vegfr1/flt1) expression was evident already at 24hpf, coinciding with the decreased vascular growth rate. At later time points, matrix metalloproteinase 9 (mmp9) expression was upregulated, suggesting that arsenite affects the composition of the extracellular matrix. In total, the expression of eight key factors involved in different aspects of vascularization was significantly altered by arsenic exposure. In conclusion, our results show that arsenite is a potent vascular disruptor in the developing zebrafish embryo, a finding that calls for an evaluation of arsenite as a developmental vascular toxicant in mammalian model systems.
Collapse
Affiliation(s)
- Catherine W McCollum
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA.
| | - Charu Hans
- Department of Computer Science, University of Houston, Houston, TX 77204, USA
| | - Shishir Shah
- Department of Computer Science, University of Houston, Houston, TX 77204, USA
| | - Fatima A Merchant
- Department of Computer Science, University of Houston, Houston, TX 77204, USA; Department of Engineering Technology, University of Houston, Houston, TX 77204, USA
| | - Jan-Åke Gustafsson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Maria Bondesson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
18
|
Joo HJ, Seo HR, Jeong HE, Choi SC, Park JH, Yu CW, Hong SJ, Chung S, Lim DS. Smooth muscle progenitor cells from peripheral blood promote the neovascularization of endothelial colony-forming cells. Biochem Biophys Res Commun 2014; 449:405-11. [PMID: 24858689 DOI: 10.1016/j.bbrc.2014.05.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 05/15/2014] [Indexed: 11/24/2022]
Abstract
Proangiogenic cell therapy using autologous progenitors is a promising strategy for treating ischemic disease. Considering that neovascularization is a harmonized cellular process that involves both endothelial cells and vascular smooth muscle cells, peripheral blood-originating endothelial colony-forming cells (ECFCs) and smooth muscle progenitor cells (SMPCs), which are similar to mature endothelial cells and vascular smooth muscle cells, could be attractive cellular candidates to achieve therapeutic neovascularization. We successfully induced populations of two different vascular progenitor cells (ECFCs and SMPCs) from adult peripheral blood. Both progenitor cell types expressed endothelial-specific or smooth muscle-specific genes and markers, respectively. In a protein array focused on angiogenic cytokines, SMPCs demonstrated significantly higher expression of bFGF, EGF, TIMP2, ENA78, and TIMP1 compared to ECFCs. Conditioned medium from SMPCs and co-culture with SMPCs revealed that SMPCs promoted cell proliferation, migration, and the in vitro angiogenesis of ECFCs. Finally, co-transplantation of ECFCs and SMPCs induced robust in vivo neovascularization, as well as improved blood perfusion and tissue repair, in a mouse ischemic hindlimb model. Taken together, we have provided the first evidence of a cell therapy strategy for therapeutic neovascularization using two different types of autologous progenitors (ECFCs and SMPCs) derived from adult peripheral blood.
Collapse
Affiliation(s)
- Hyung Joon Joo
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Ha-Rim Seo
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Hyo Eun Jeong
- Department of Mechanical Engineering, Korea University, Seoul, Republic of Korea
| | - Seung-Cheol Choi
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jae Hyung Park
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Cheol Woong Yu
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Soon Jun Hong
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Seok Chung
- Department of Mechanical Engineering, Korea University, Seoul, Republic of Korea
| | - Do-Sun Lim
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Stetler-Stevenson WG, Gavil NV. Normalization of the tumor microenvironment: evidence for tissue inhibitor of metalloproteinase-2 as a cancer therapeutic. Connect Tissue Res 2014; 55:13-9. [PMID: 24437600 PMCID: PMC6309251 DOI: 10.3109/03008207.2013.867339] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Matrix metalloproteinases (MMPs) are members of the Metzincin family of proteases responsible for degrading the extracellular matrix (ECM). In early studies, MMP degradation of the sub-epithelial basement membrane was thought to be tumor cell autonomous and contribute to the invasive behavior of malignant cells. It is now recognized that MMPs have multiple roles that can either promote or inhibit tumor progression and metastasis. The endogenous inhibitors of the MMPs are the tissue inhibitors of metalloproteinases (TIMPs). Early studies on the tumor microenvironment revealed TIMP function to be principally through the inhibition of MMPs, thereby blocking tumor cell migration and invasion. However, data from a number of laboratories are now reporting that TIMPs have direct cellular functions, independent of their MMP inhibitory activity. The TIMPs can modulate normal tissue physiology and development, as well as pathology and progression in a variety of acute and chronic disease states. In this review, we briefly describe the role of MMPs and TIMPs in ECM turnover and formation of the tumor microenvironment. Based on the evidence presented, we postulate that TIMP-2 and other soluble components of the normal ECM may provide a novel therapeutic approach to cancer treatment through "normalization" of the tumor microenvironment.
Collapse
Affiliation(s)
- William G. Stetler-Stevenson
- Senior Biomedical Research Service, National Institutes of Health, Bethesda, MD, USA
- Extracellular Matrix Pathology Section, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Noah Veis Gavil
- Bowdoin College, Brunswick, ME, USA
- Cancer Research Summer Interns Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
20
|
Wajner SM, Capp C, Brasil BA, Meurer L, Maia AL. Reduced tissue inhibitor of metalloproteinase-2 expression is associated with advanced medullary thyroid carcinoma. Oncol Lett 2013; 7:731-737. [PMID: 24527080 PMCID: PMC3919825 DOI: 10.3892/ol.2013.1767] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 12/03/2013] [Indexed: 12/19/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are enzymes for extracellular matrix remodeling that are involved in tumor growth, progression and metastasis. Among them, MMP-9 has been implicated in tumor angiogenesis. Tissue inhibitor of matrix metalloproteinase (TIMP)-2, a member of the family of MMP inhibitors, induces apoptosis and inhibits various stages of angiogenesis. Previous studies analyzing the expression of MMP-9 and TIMP-2 in medullary thyroid carcinoma (MTC) are scarce. The aims of the current study were to evaluate MMP-9 and TIMP-2 expression in MTC samples and correlate the results with clinical parameters. Paraffin-embedded samples from 77 MTC patients were evaluated for expression by immunohistochemistry. The clinical data in medical records were retrospectively reviewed. In total, 77 patients aged 35.6±17.1 years were enrolled. Of these patients, 36 had hereditary disease (46.8%). Immunohistochemical staining for MMP-9 and TIMP-2 was detected in 89.6 and 93.5% of the samples, respectively. The expression of MMP-9 was not found to correlate with clinical parameters, although, a trend toward a correlation between MMP-9 and distant metastasis was observed (P=0.053). By contrast, TIMP-2 staining was found to correlate with age at diagnosis (P=0.026) and negatively correlate with tumor size and tumoral stage (P=0.002 and P=0.001, respectively). Notably, the highest levels of TIMP-2 expression were observed in patients with intrathyroidal disease. The MMP-9 enzyme involved in extracellular matrix remodeling is overexpressed in MTC lesions and may contribute to tumor vascularization and growth. Reduced levels of TIMP-2 expression may be implicated in tumor progression and spread of disease.
Collapse
Affiliation(s)
- Simone Magagnin Wajner
- Thyroid Section, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| | - Clarissa Capp
- Thyroid Section, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| | - Beatriz Assis Brasil
- Department of Pathology, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| | - Luise Meurer
- Department of Pathology, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil ; Experimental Research Center, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| | - Ana Luiza Maia
- Thyroid Section, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| |
Collapse
|
21
|
Willis CD, Poluzzi C, Mongiat M, Iozzo RV. Endorepellin laminin-like globular 1/2 domains bind Ig3-5 of vascular endothelial growth factor (VEGF) receptor 2 and block pro-angiogenic signaling by VEGFA in endothelial cells. FEBS J 2013; 280:2271-84. [PMID: 23374253 DOI: 10.1111/febs.12164] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/23/2013] [Accepted: 01/28/2013] [Indexed: 11/30/2022]
Abstract
Endorepellin, a processed fragment of perlecan protein core, possesses anti-angiogenic activity by antagonizing endothelial cells. Endorepellin contains three laminin G-like (LG) domains and binds simultaneously to vascular endothelial growth factor receptor 2 (VEGFR2) and α2β1 integrin, resulting in dual receptor antagonism. Treatment of endothelial cells with endorepellin inhibits transcription of VEGFA, the natural ligand for VEGFR2, attenuating the pro-survival and migratory activities of VEGFA/VEGFR2 signaling cascade. Here, we investigated the specific binding site of endorepellin within the ectodomain of VEGFR2. Full-length endorepellin was not capable of displacing VEGFA binding from VEGFR2 and LG3 domain alone did not bind VEGFR2. This suggested different binding mechanisms of the extracellular Ig domains of VEGFR2. Therefore, we hypothesized that endorepellin would bind through its proximal LG1/2 domains to VEGFR2 in a different region than VEGFA. Indeed, we found that LG1/2 did not bind Ig1-3, but did bind with high affinity to Ig3-5, distal to the known VEGFA binding site, i.e. Ig2-3. These results support a role for endorepellin as an allosteric inhibitor of VEGFR2. Moreover, we found that LG1/2 blocked the rapid VEGFA activation of VEGFR2 at Tyr1175 in endothelial cells. In contrast, LG1/2 did not result in actin cytoskeletal disassembly in endothelial cells whereas LG3 alone did induce cytoskeletal collapse. However, LG1/2 did inhibit VEGFA-dependent endothelial migration through fibrillar collagen I. These studies provide a mechanistic understanding of how the different LG domains of endorepellin signal in endothelial cells while serving as a template for protein design of receptor tyrosine kinase antagonists.
Collapse
Affiliation(s)
- Chris D Willis
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling, Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
22
|
TIMP-2 targets tumor-associated myeloid suppressor cells with effects in cancer immune dysfunction and angiogenesis. J Immunother 2012; 35:502-12. [PMID: 22735808 DOI: 10.1097/cji.0b013e3182619c8e] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Angiogenesis and inflammation are important therapeutic targets in non-small cell lung cancer (NSCLC). It is well known that proteolysis mediated by matrix metalloproteinases (MMPs) promotes angiogenesis and inflammation in the tumor microenvironment. Here, the effects of the MMP inhibitor TIMP-2 on NSCLC inflammation and angiogenesis were evaluated in TIMP-2-deficient (timp2-/-) mice injected subcutaneously (SC) with Lewis lung carcinoma cells and compared with the effects on tumors in wild-type mice. TIMP-2-deficient mice demonstrated increased tumor growth, enhanced expression of angiogenic marker αvβ3 in tumor and endothelial cells, and significantly higher serum vascular endothelial growth factor-A levels. Tumor-bearing timp2-/- mice showed a significant number of inflammatory cells in their tumors, upregulation of inflammation mediators, nuclear factor-kappaB, and Annexin A1, as well as higher levels of serum interleukin (IL)-6. Phenotypic analysis revealed an increase in myeloid-derived suppressor cell (MDSC) cells (CD11b+ and Gr-1+) that coexpressed vascular-endothelial-growth factor receptor 1 (VEGF-R1) and elevated MMP activation present in tumors and spleens from timp2-/- mice. Furthermore, TIMP-2-deficient tumors upregulated expression of the immunosuppressing genes controlling MDSC growth, IL-10, IL-13, IL-11, and chemokine ligand (CCL-5/RANTES), and decreased interferon-γ and increased CD40L. Moreover, forced TIMP-2 expression in human lung adenocarcinoma A-549 resulted in a significant reduction of MDSCs recruited into tumors, as well as suppression of angiogenesis and tumor growth. The increase in MDSCs has been linked to cancer immunosuppression and angiogenesis. Therefore, this study supports TIMP-2 as a negative regulator of MDSCs with important implications for the immunotherapy and/or antiangiogenic treatment of NSCLC.
Collapse
|
23
|
Antagonism of VEGF-A-induced increase in vascular permeability by an integrin α3β1-Shp-1-cAMP/PKA pathway. Blood 2012; 120:4892-902. [PMID: 23074279 DOI: 10.1182/blood-2012-05-428243] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In cancer, VEGF-induced increase in vascular permeability results in increased interstitial pressure, reducing perfusion and increasing hypoxia, which reduce delivery of chemotherapeutic agents and increase resistance to ionizing radiation. Here, we show that both TIMP-2 and Ala + TIMP-2, a TIMP-2 mutant without matrix metalloproteinase inhibitory activity, antagonize the VEGF-A-induced increase in vascular permeability, both in vitro and in vivo. Like other agents known to preserve endothelial barrier function, TIMP-2 elevates cytosolic levels of cAMP and increases cytoskeletal-associated vascular endothelial cadherin in human microvascular endothelial cells. All of these effects are completely ablated by selective knockdown of integrin α3β1 expression, expression of a dominant negative protein tyrosine phosphatase Shp-1 mutant, administration of the protein tyrosine phosphatase inhibitor orthovanadate, or the adenylate cyclase inhibitor SQ22536. This TIMP-2-mediated inhibition of vascular permeability involves an integrin α3β1-Shp-1-cAMP/protein kinase A-dependent vascular endothelial cadherin cytoskeletal association, as evidenced by using siRNAs to integrin α3β1 and Shp-1, or treatment with Shp-1 inhibitor NSC87877 and protein kinase A inhibitor H89. Our results demonstrate the potential utility for TIMP-2 in cancer therapy through "normalization" of vascular permeability in addition to previously described antiangiogenic effects.
Collapse
|
24
|
Goyal A, Poluzzi C, Willis CD, Smythies J, Shellard A, Neill T, Iozzo RV. Endorepellin affects angiogenesis by antagonizing diverse vascular endothelial growth factor receptor 2 (VEGFR2)-evoked signaling pathways: transcriptional repression of hypoxia-inducible factor 1α and VEGFA and concurrent inhibition of nuclear factor of activated T cell 1 (NFAT1) activation. J Biol Chem 2012; 287:43543-56. [PMID: 23060442 DOI: 10.1074/jbc.m112.401786] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Endorepellin, the angiostatic C-terminal domain of the heparan sulfate proteoglycan perlecan, inhibits angiogenesis by simultaneously binding to the α2β1 integrin and the vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) on endothelial cells. This interaction triggers the down-regulation of both receptors and the concurrent activation of the tyrosine phosphatase SHP-1, which leads to a signaling cascade resulting in angiostasis. Here, we provide evidence that endorepellin is capable of attenuating both the PI3K/PDK1/Akt/mTOR and the PKC/JNK/AP1 pathways. We show that hypoxia-inducible factor 1α (HIF-1α) transcriptional activity induced by VEGFA was inhibited by endorepellin independent of oxygen concentration and that only a combination of both PI3K and calcineurin inhibitors completely blocked the suppressive activity evoked by endorepellin on HIF1A and VEGFA promoter activity. Moreover, endorepellin inhibited the PKC/JNK/AP1 axis induced by the recruitment of phospholipase γ and attenuated the VEGFA-induced activation of NFAT1, a process dependent on calcineurin activity. Finally, endorepellin inhibited VEGFA-evoked nuclear translocation of NFAT1 and promoted NFAT1 stability. Thus, we provide evidence for a novel downstream signaling axis for an angiostatic fragment and for the key components involved in the dual antagonistic activity of endorepellin, highlighting its potential use as a therapeutic agent.
Collapse
Affiliation(s)
- Atul Goyal
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Hua H, Li M, Luo T, Yin Y, Jiang Y. Matrix metalloproteinases in tumorigenesis: an evolving paradigm. Cell Mol Life Sci 2011; 68:3853-68. [PMID: 21744247 PMCID: PMC11114831 DOI: 10.1007/s00018-011-0763-x] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 05/31/2011] [Accepted: 06/21/2011] [Indexed: 02/05/2023]
Abstract
Proteases are crucial for development, tissue remodeling, and tumorigenesis. Matrix metalloproteinases (MMPs) family, in particular, consists of more than 20 members with unique substrates and diverse function. The expression and activity of MMPs in a variety of human cancers have been intensively studied. MMPs have well-recognized roles in the late stage of tumor progression, invasion, and metastasis. However, increasing evidence demonstrates that MMPs are involved earlier in tumorigenesis, e.g., in malignant transformation, angiogenesis, and tumor growth both at the primary and metastatic sites. Recent studies also suggest that MMPs play complex roles in tumor progression. While most MMPs promote tumor progression, some of them may protect the host against tumorigenesis in a context-dependent manner. MMPs have been chosen as promising targets for cancer therapy on the basis of their aberrant up-regulation in malignant tumors and their ability to promote cancer metastasis. Although preclinical studies testing the efficacy of MMP suppression in tumor models were so encouraging, the results of clinical trials in cancer patients have been rather disappointing. Here, we review the complex roles of MMPs and their endogenous inhibitors such as tissue inhibitors of metalloproteinase in tumorigenesis and strategies in suppressing MMPs.
Collapse
Affiliation(s)
- Hui Hua
- State Key Laboratory of Biotherapy, Section of Signal Transduction and Molecular Targeted Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Minjing Li
- State Key Laboratory of Biotherapy, Section of Signal Transduction and Molecular Targeted Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Luo
- Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yancun Yin
- State Key Laboratory of Biotherapy, Section of Signal Transduction and Molecular Targeted Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yangfu Jiang
- State Key Laboratory of Biotherapy, Section of Signal Transduction and Molecular Targeted Therapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
26
|
Bourboulia D, Jensen-Taubman S, Rittler MR, Han HY, Chatterjee T, Wei B, Stetler-Stevenson WG. Endogenous angiogenesis inhibitor blocks tumor growth via direct and indirect effects on tumor microenvironment. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2589-600. [PMID: 21933655 PMCID: PMC3204083 DOI: 10.1016/j.ajpath.2011.07.035] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 07/12/2011] [Accepted: 07/21/2011] [Indexed: 12/31/2022]
Abstract
Tissue inhibitor of matrix metalloproteinase-2 (TIMP-2) belongs to a small family of endogenous proteins that inhibits a group of enzymes, the matrix metalloproteinases (MMPs). TIMP-2 inhibits endothelial cell proliferation and migration in vitro and angiogenesis in vivo, through MMP-dependent and -independent mechanisms. However, little is known regarding the contribution of these mechanisms to the antitumor effects of TIMP-2. Using a retroviral delivery system, we stably overexpressed TIMP-2 and its mutant Ala+TIMP-2 (devoid of MMP inhibitory activity) in human adenocarcinoma A549 cells. Using real time PCR, and enzyme-linked immunosorbent assay (ELISA), we confirmed enhanced TIMP-2 expression and its MMP inhibitory activity by reverse zymography. In vitro, growth assays suggested that TIMP-2 and Ala+TIMP-2 did not alter basal cell proliferation rates, however, tumor cell migration and invasion were inhibited. In vivo, both TIMP-2 and Ala+TIMP-2 A549 xenografts exhibited reduced growth rate, CD31 immunostaining indicated decreased intratumoral microvascular density, and TUNEL demonstrated enhanced tumor cell apoptosis. Immunoblotting and immunohistochemical analyses of A549 xenograft tissues with either phospho-FAK (Tyr397) or phospho-AKT (Ser473) showed decreased activation in both TIMP-2 and Ala+TIMP-2 tumor cells. We conclude that TIMP-2-mediated inhibition of tumor growth occurs, at least in part, independently of MMP inhibition, and is a consequence of both direct effects of TIMP-2 on tumor cells and modulation of the tumor microenvironment.
Collapse
Affiliation(s)
- Dimitra Bourboulia
- Extracellular Matrix Pathology Section, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, the National Institutes of Health, Advanced Technology Center, Bethesda, Maryland
| | - Sandra Jensen-Taubman
- Extracellular Matrix Pathology Section, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, the National Institutes of Health, Advanced Technology Center, Bethesda, Maryland
| | - Matthew R. Rittler
- Extracellular Matrix Pathology Section, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, the National Institutes of Health, Advanced Technology Center, Bethesda, Maryland
| | - Hui Ying Han
- Extracellular Matrix Pathology Section, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, the National Institutes of Health, Advanced Technology Center, Bethesda, Maryland
| | - Tania Chatterjee
- Extracellular Matrix Pathology Section, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, the National Institutes of Health, Advanced Technology Center, Bethesda, Maryland
- Department of Biological Sciences, University of Maryland, Baltimore, Maryland
| | - Beiyang Wei
- Extracellular Matrix Pathology Section, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, the National Institutes of Health, Advanced Technology Center, Bethesda, Maryland
| | - William G. Stetler-Stevenson
- Extracellular Matrix Pathology Section, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, the National Institutes of Health, Advanced Technology Center, Bethesda, Maryland
- Department of Biological Sciences, University of Maryland, Baltimore, Maryland
| |
Collapse
|
27
|
Fang JH, Zhou HC, Zeng C, Yang J, Liu Y, Huang X, Zhang JP, Guan XY, Zhuang SM. MicroRNA-29b suppresses tumor angiogenesis, invasion, and metastasis by regulating matrix metalloproteinase 2 expression. Hepatology 2011; 54:1729-40. [PMID: 21793034 DOI: 10.1002/hep.24577] [Citation(s) in RCA: 246] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UNLABELLED Hepatocellular carcinoma (HCC) is a highly vascularized tumor with frequent intrahepatic metastasis. Active angiogenesis and metastasis are responsible for rapid recurrence and poor survival of HCC. We previously found that microRNA-29b (miR-29b) down-regulation was significantly associated with poor recurrence-free survival of HCC patients. Therefore, the role of miR-29b in tumor angiogenesis, invasion, and metastasis was further investigated in this study using in vitro capillary tube formation and transwell assays, in vivo subcutaneous and orthotopic xenograft mouse models, and Matrigel plug assay, and human HCC samples. Both gain- and loss-of-function studies showed that miR-29b dramatically suppressed the ability of HCC cells to promote capillary tube formation of endothelial cells and to invade extracellular matrix gel in vitro. Using mouse models, we revealed that tumors derived from miR-29b-expressed HCC cells displayed significant reduction in microvessel density and in intrahepatic metastatic capacity compared with those from the control group. Subsequent investigations revealed that matrix metalloproteinase-2 (MMP-2) was a direct target of miR-29b. The blocking of MMP-2 by neutralizing antibody or RNA interference phenocopied the antiangiogenesis and antiinvasion effects of miR-29b, whereas introduction of MMP-2 antagonized the function of miR-29b. We further disclosed that miR-29b exerted its antiangiogenesis function, at least partly, by suppressing MMP-2 expression in tumor cells and, in turn, impairing vascular endothelial growth factor receptor 2-signaling in endothelial cells. Consistently, in human HCC tissues and mouse xenograft tumors miR-29b level was inversely correlated with MMP-2 expression, as well as tumor angiogenesis, venous invasion, and metastasis. CONCLUSION miR-29b deregulation contributes to angiogenesis, invasion, and metastasis of HCC. Restoration of miR-29b represents a promising new strategy in anti-HCC therapy.
Collapse
Affiliation(s)
- Jian-Hong Fang
- Key Laboratory of Gene Engineering of Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Guangzhou, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Goyal A, Pal N, Concannon M, Paul M, Doran M, Poluzzi C, Sekiguchi K, Whitelock JM, Neill T, Iozzo RV. Endorepellin, the angiostatic module of perlecan, interacts with both the α2β1 integrin and vascular endothelial growth factor receptor 2 (VEGFR2): a dual receptor antagonism. J Biol Chem 2011; 286:25947-62. [PMID: 21596751 PMCID: PMC3138248 DOI: 10.1074/jbc.m111.243626] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/04/2011] [Indexed: 12/21/2022] Open
Abstract
Endorepellin, the C-terminal module of perlecan, negatively regulates angiogenesis counter to its proangiogenic parental molecule. Endorepellin (the C-terminal domain V of perlecan) binds the α2β1 integrin on endothelial cells and triggers a signaling cascade that leads to disruption of the actin cytoskeleton. Here, we show that both perlecan and endorepellin bind directly and with high affinity to both VEGF receptors 1 and 2, in a region that differs from VEGFA-binding site. In both human and porcine endothelial cells, this interaction evokes a physical down-regulation of both the α2β1 integrin and VEGFR2, with concurrent activation of the tyrosine phosphatase SHP-1 and downstream attenuation of VEGFA transcription. We demonstrate that endorepellin requires both the α2β1 integrin and VEGFR2 for its angiostatic activity. Endothelial cells that express α2β1 integrin but lack VEGFR2, do not respond to endorepellin treatment. Thus, we provide a new paradigm for the activity of an antiangiogenic protein and mechanistically explain the specificity of endorepellin for endothelial cells, the only cells that simultaneously express both receptors. We hypothesize that a mechanism such as dual receptor antagonism could operate for other angiostatic fragments.
Collapse
Affiliation(s)
- Atul Goyal
- From the Department of Pathology, Anatomy, and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Nutan Pal
- From the Department of Pathology, Anatomy, and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Matthew Concannon
- From the Department of Pathology, Anatomy, and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Matthew Paul
- From the Department of Pathology, Anatomy, and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Mike Doran
- From the Department of Pathology, Anatomy, and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Chiara Poluzzi
- From the Department of Pathology, Anatomy, and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Kiyotoshi Sekiguchi
- the Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan, and
| | - John M. Whitelock
- the Graduate School of Biomedical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Thomas Neill
- From the Department of Pathology, Anatomy, and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Renato V. Iozzo
- From the Department of Pathology, Anatomy, and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| |
Collapse
|