1
|
Barrère-Lemaire S, Vincent A, Jorgensen C, Piot C, Nargeot J, Djouad F. Mesenchymal stromal cells for improvement of cardiac function following acute myocardial infarction: a matter of timing. Physiol Rev 2024; 104:659-725. [PMID: 37589393 DOI: 10.1152/physrev.00009.2023] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/05/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023] Open
Abstract
Acute myocardial infarction (AMI) is the leading cause of cardiovascular death and remains the most common cause of heart failure. Reopening of the occluded artery, i.e., reperfusion, is the only way to save the myocardium. However, the expected benefits of reducing infarct size are disappointing due to the reperfusion paradox, which also induces specific cell death. These ischemia-reperfusion (I/R) lesions can account for up to 50% of final infarct size, a major determinant for both mortality and the risk of heart failure (morbidity). In this review, we provide a detailed description of the cell death and inflammation mechanisms as features of I/R injury and cardioprotective strategies such as ischemic postconditioning as well as their underlying mechanisms. Due to their biological properties, the use of mesenchymal stromal/stem cells (MSCs) has been considered a potential therapeutic approach in AMI. Despite promising results and evidence of safety in preclinical studies using MSCs, the effects reported in clinical trials are not conclusive and even inconsistent. These discrepancies were attributed to many parameters such as donor age, in vitro culture, and storage time as well as injection time window after AMI, which alter MSC therapeutic properties. In the context of AMI, future directions will be to generate MSCs with enhanced properties to limit cell death in myocardial tissue and thereby reduce infarct size and improve the healing phase to increase postinfarct myocardial performance.
Collapse
Affiliation(s)
- Stéphanie Barrère-Lemaire
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Anne Vincent
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Christian Jorgensen
- Institute of Regenerative Medicine and Biotherapies, Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | - Christophe Piot
- Département de Cardiologie Interventionnelle, Clinique du Millénaire, Montpellier, France
| | - Joël Nargeot
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Farida Djouad
- Institute of Regenerative Medicine and Biotherapies, Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- Centre Hospitalier Universitaire Montpellier, Montpellier, France
| |
Collapse
|
2
|
Comparative analysis on the anti-inflammatory/immune effect of mesenchymal stem cell therapy for the treatment of pulmonary arterial hypertension. Sci Rep 2021; 11:2012. [PMID: 33479312 PMCID: PMC7820276 DOI: 10.1038/s41598-021-81244-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/30/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the advancement of targeted therapy for pulmonary arterial hypertension (PAH), poor prognosis remains a reality. Mesenchymal stem cells (MSCs) are one of the most clinically feasible alternative treatment options. We compared the treatment effects of adipose tissue (AD)-, bone marrow (BD)-, and umbilical cord blood (UCB)-derived MSCs in the rat monocrotaline-induced pulmonary hypertension (PH) model. The greatest improvement in the right ventricular function was observed in the UCB-MSCs treated group. The UCB-MSCs treated group also exhibited the greatest improvement in terms of the largest decrease in the medial wall thickness, perivascular fibrosis, and vascular cell proliferation, as well as the lowest levels of recruitment of innate and adaptive immune cells and associated inflammatory cytokines. Gene expression profiling of lung tissue confirmed that the UCB-MSCs treated group had the most notably attenuated immune and inflammatory profiles. Network analysis further revealed that the UCB-MSCs group had the greatest therapeutic effect in terms of the normalization of all three classical PAH pathways. The intravenous injection of the UCB-MSCs, compared with those of other MSCs, showed superior therapeutic effects in the PH model for the (1) right ventricular function, (2) vascular remodeling, (3) immune/inflammatory profiles, and (4) classical PAH pathways.
Collapse
|
3
|
Sveiven SN, Nordgren TM. Lung-resident mesenchymal stromal cells are tissue-specific regulators of lung homeostasis. Am J Physiol Lung Cell Mol Physiol 2020; 319:L197-L210. [PMID: 32401672 DOI: 10.1152/ajplung.00049.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Until recently, data supporting the tissue-resident status of mesenchymal stromal cells (MSC) has been ambiguous since their discovery in the 1950-60s. These progenitor cells were first discovered as bone marrow-derived adult multipotent cells and believed to migrate to sites of injury, opposing the notion that they are residents of all tissue types. In recent years, however, it has been demonstrated that MSC can be found in all tissues and MSC from different tissues represent distinct populations with differential protein expression unique to each tissue type. Importantly, these cells are efficient mediators of tissue repair, regeneration, and prove to be targets for therapeutics, demonstrated by clinical trials (phase 1-4) for MSC-derived therapies for diseases like graft-versus-host-disease, multiple sclerosis, rheumatoid arthritis, and Crohn's disease. The tissue-resident status of MSC found in the lung is a key feature of their importance in the context of disease and injuries of the respiratory system, since these cells could be instrumental to providing more specific and targeted therapies. Currently, bone marrow-derived MSC have been established in the treatment of disease, including diseases of the lung. However, with lung-resident MSC representing a unique population with a different phenotypic and gene expression pattern than MSC derived from other tissues, their role in remediating lung inflammation and injury could provide enhanced efficacy over bone marrow-derived MSC methods. Through this review, lung-resident MSC will be characterized, using previously published data, by surface markers, gene expression patterns, and compared with bone-marrow MSC to highlight similarities and, importantly, differences in these cell types.
Collapse
Affiliation(s)
- Stefanie Noel Sveiven
- Division of Biomedical Sciences, School of Medicine, University of California-Riverside, Riverside, California
| | - Tara M Nordgren
- Division of Biomedical Sciences, School of Medicine, University of California-Riverside, Riverside, California
| |
Collapse
|
4
|
Suzuki T, Ota C, Fujino N, Tando Y, Suzuki S, Yamada M, Kondo T, Okada Y, Kubo H. Improving the viability of tissue-resident stem cells using an organ-preservation solution. FEBS Open Bio 2019; 9:2093-2104. [PMID: 31642604 PMCID: PMC6886303 DOI: 10.1002/2211-5463.12748] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/02/2019] [Accepted: 10/22/2019] [Indexed: 12/24/2022] Open
Abstract
Human clinical specimens are a valuable source of tissue‐resident stem cells, but such cells need to be collected immediately after tissue collection. To extend the timescale for collection from fresh human samples, we developed a new extracellular fluid (ECF)‐type preservation solution based on a high‐sodium and low‐potassium solution containing low‐molecular‐weight dextran and glucose, which is used for preservation of organs for transplantation. In this study, we compared the preservation of tissue‐resident stem cells using our ECF solution with that using three other solutions: PBS, Dulbecco’s modified Eagle’s medium and Euro‐Collins solution. These solutions represent a common buffer, a common culture medium and a benchmark organ‐preservation solution, respectively. Lung tissues were removed from mice and preserved for 72 h under low‐temperature conditions. Of the solutions tested, only preservation in the ECF‐type solution could maintain the proliferation and differentiation capacity of mouse lung tissue‐resident stem cells. In addition, the ECF solution could preserve the viability and proliferation of human alveolar epithelial progenitor cells when stored for more than 7 days at 4 °C. The mean viability of human alveolar type II cells at 2, 5, 8 and 14 days of low‐temperature preservation was 90.9%, 84.8%, 85.7% and 66.3%, respectively, with no significant differences up to 8 days. Overall, our findings show that use of our ECF‐type preservation solution may maintain the viability and function of tissue‐resident stem cells. Use of this preservation solution may facilitate the investigation of currently unobtainable human tissue specimens for human stem cell biology. Here, we describe a newly developed extracellular fluid‐type organ preservation solution that maintained the viability of human lung stem/progenitor cells, such as alveolar type II cells, during 7‐day refrigerated preservation after the collection of lung specimens in local hospitals. This ready‐to‐use solution may be suitable for the transport of human clinical specimens from hospitals to scientific and bioengineering laboratories.![]()
Collapse
Affiliation(s)
- Takaya Suzuki
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Chiharu Ota
- Department of Pediatrics, Tohoku University Hospital, Sendai, Japan
| | - Naoya Fujino
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukiko Tando
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Satoshi Suzuki
- Department of Thoracic Surgery, Japanese Red Cross Ishinomaki Hospital, Ishinomaki, Japan
| | - Mitsuhiro Yamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Kondo
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yoshinori Okada
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Hiroshi Kubo
- Department of Advanced Preventive Medicine for Infectious Disease, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
5
|
Abstract
Rationale Stem cells have been identified in the human lung; however, their role in lung disease is not clear. We aimed to isolate mesenchymal stem cells (MSC) from human lung tissue and to study their in vitro properties. Methods MSC were cultured from lung tissue obtained from patients with fibrotic lung diseases (n = 17), from emphysema (n = 12), and normal lungs (n = 3). Immunofluorescence stainings were used to characterize MSC. The effect of MSC-conditioned media (MSC-CM) on fibroblast proliferation and on lung epithelial wound repair was studied. Results Expression of CD44, CD90, and CD105 characterized the cells as MSC. Moreover, the cells stained positive for the pluripotency markers Oct3/4 and Nanog. Positive co-stainings of chemokine receptor type 4 (CXCR4) with CD44, CD90 or CD105 indicated the cells are of bone marrow origin. MSC-CM significantly inhibited the proliferation of lung fibroblasts by 29% (p = 0.0001). Lung epithelial repair was markedly increased in the presence of MSC-CM (+ 32%). Significantly more MSC were obtained from fibrotic lungs than from emphysema or control lungs. Conclusions Our study demonstrates enhanced numbers of MSC in fibrotic lung tissue as compared to emphysema and normal lung. The cells inhibit the proliferation of fibroblasts and enhance epithelial repair in vitro. Further in vivo studies are needed to elucidate their potential role in the treatment of lung fibrosis.
Collapse
|
6
|
Sinclair KA, Yerkovich ST, Hopkins PMA, Chambers DC. Characterization of intercellular communication and mitochondrial donation by mesenchymal stromal cells derived from the human lung. Stem Cell Res Ther 2016; 7:91. [PMID: 27406134 PMCID: PMC4942965 DOI: 10.1186/s13287-016-0354-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/14/2016] [Accepted: 06/23/2016] [Indexed: 12/22/2022] Open
Abstract
Background Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are capable of repairing wounded lung epithelial cells by donating cytoplasmic material and mitochondria. Recently, we characterized two populations of human lung-derived mesenchymal stromal cells isolated from digested parenchymal lung tissue (LT-MSCs) from healthy individuals or from lung transplant recipients’ bronchoalveolar lavage fluid (BAL-MSCs). The aim of this study was to determine whether LT-MSCs and BAL-MSCs are also capable of donating cytoplasmic content and mitochondria to lung epithelial cells. Methods Cytoplasmic and mitochondrial transfer was assessed by co-culturing BEAS2B epithelial cells with Calcein AM or Mitotracker Green FM-labelled MSCs. Transfer was then measured by flow cytometry and validated by fluorescent microscopy. Molecular inhibitors were used to determine the contribution of microtubules/tunnelling nanotubes (TNTs, cytochalasin D), gap junctions (carbenoxolone), connexin-43 (gap26) and microvesicles (dynasore). Results F-actin microtubules/TNTs extending from BM-MSCs, LT-MSCs and BAL-MSCs to bronchial epithelial cells formed within 45 minutes of co-culturing cells. Each MSC population transferred a similar volume of cytoplasmic content to epithelial cells. Inhibiting microtubule/TNTs, gap junction formation and microvesicle endocytosis abrogated the transfer of cytoplasmic material from BM-MSCs, LT-MSCs and BAL-MSCs to epithelial cells. In contrast, blocking connexin-43 gap junction formation had no effect on cytoplasmic transfer. All MSC populations donated mitochondria to bronchial epithelial cells with similar efficiency. Mitochondrial transfer was reduced in all co-cultures after microtubule/TNT or endocytosis inhibition. Gap junction formation inhibition reduced mitochondrial transfer in BM-MSC and BAL-MSC co-cultures but had no effect on transfer in LT-MSC co-cultures. Connexin-43 inhibition did not impact mitochondrial transfer. Finally, bronchial epithelial cells were incapable of donating cytoplasmic content or mitochondria to any MSC population. Conclusion Similar to their bone marrow counterparts, LT-MSCs and BAL-MSCs can donate cytoplasmic content and mitochondria to bronchial epithelial cells via multiple mechanisms. Given that BM-MSCs utilize these mechanisms to mediate the repair of damaged bronchial epithelial cells, both LT-MSCs and BAL-MSCs will probably function similarly. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0354-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kenneth Andrew Sinclair
- School of Medicine, University of Queensland, Brisbane, QLD, Australia. .,Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD, 4032, Australia.
| | - Stephanie Terase Yerkovich
- School of Medicine, University of Queensland, Brisbane, QLD, Australia.,Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD, 4032, Australia
| | - Peter Mark-Anthony Hopkins
- School of Medicine, University of Queensland, Brisbane, QLD, Australia.,Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD, 4032, Australia
| | - Daniel Charles Chambers
- School of Medicine, University of Queensland, Brisbane, QLD, Australia.,Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD, 4032, Australia
| |
Collapse
|
7
|
Sinclair KA, Yerkovich ST, Chen T, McQualter JL, Hopkins PMA, Wells CA, Chambers DC. Mesenchymal Stromal Cells are Readily Recoverable from Lung Tissue, but not the Alveolar Space, in Healthy Humans. Stem Cells 2016; 34:2548-2558. [PMID: 27352824 DOI: 10.1002/stem.2419] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 04/14/2016] [Accepted: 05/06/2016] [Indexed: 12/17/2022]
Abstract
Stromal support is critical for lung homeostasis and the maintenance of an effective epithelial barrier. Despite this, previous studies have found a positive association between the number of mesenchymal stromal cells (MSCs) isolated from the alveolar compartment and human lung diseases associated with epithelial dysfunction. We hypothesised that bronchoalveolar lavage derived MSCs (BAL-MSCs) are dysfunctional and distinct from resident lung tissue MSCs (LT-MSCs). In this study, we comprehensively interrogated the phenotype and transcriptome of human BAL-MSCs and LT-MSCs. We found that MSCs were rarely recoverable from the alveolar space in healthy humans, but could be readily isolated from lung transplant recipients by bronchoalveolar lavage. BAL-MSCs exhibited a CD90Hi , CD73Hi , CD45Neg , CD105Lo immunophenotype and were bipotent, lacking adipogenic potential. In contrast, MSCs were readily recoverable from healthy human lung tissue and were CD90Hi or Lo , CD73Hi , CD45Neg , CD105Int and had full tri-lineage potential. Transcriptional profiling of the two populations confirmed their status as bona fide MSCs and revealed a high degree of similarity between each other and the archetypal bone-marrow MSC. 105 genes were differentially expressed; 76 of which were increased in BAL-MSCs including genes involved in fibroblast activation, extracellular matrix deposition and tissue remodelling. Finally, we found the fibroblast markers collagen 1A1 and α-smooth muscle actin were increased in BAL-MSCs. Our data suggests that in healthy humans, lung MSCs reside within the tissue, but in disease can differentiate to acquire a profibrotic phenotype and migrate from their in-tissue niche into the alveolar space. Stem Cells 2016;34:2548-2558.
Collapse
Affiliation(s)
- K A Sinclair
- School of Medicine, The Australian Institute of Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia. .,Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, Queensland, Australia.
| | - S T Yerkovich
- School of Medicine, The Australian Institute of Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia.,Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, Queensland, Australia
| | - T Chen
- The Australian Institute of Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - J L McQualter
- Lung and Regenerative Medical Institutes, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - P M-A Hopkins
- School of Medicine, The Australian Institute of Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia.,Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, Queensland, Australia
| | - C A Wells
- The Australian Institute of Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - D C Chambers
- School of Medicine, The Australian Institute of Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia.,Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
8
|
Hosseinpur Z, Hashemi SM, Salehi E, Ghazanfari T. Comparison of TGF-β1 and NO production by mesenchymal stem cells isolated from murine lung and adipose tissues. Immunopharmacol Immunotoxicol 2016; 38:214-20. [PMID: 27097976 DOI: 10.3109/08923973.2016.1168434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
CONTEXT Mesenchymal stem cells (MSCs) are cell sources for tissues regeneration. By secretion of soluble factors including transforming growth factor-β (TGF-β1) and nitric oxide (NO), MSCs are also able to regulate the immune system. MSCs have been disclosed in lung and adipose tissues with insufficient comparison between the tissues. OBJECTIVES In this study, specific differentiation and the expression of surface antigens as well as TGF-β1 and NO productive levels were compared in murine lung-derived MSCs (LMSCs) and adipose tissue-derived MSCs (ADMSCs). MATERIALS AND METHODS MSCs were isolated from murine lung and adipose tissues and cultured. Both cell populations were characterized using multilineage potential and the expression of surface antigenic proteins, CD73, CD105, CD34, CD45, and CD11b. Finally, levels of TGF-β1 and NO were evaluated and compared in ADMSCs and LMSCs. RESULTS Expression of CD73 and CD105; lack of the expression of CD34, CD45, and CD11b markers; as well as adipocyte and osteocyte differentiations were detected in both adult stem cells. No significant difference was found in TGF-β1 and NO production between two stem cell populations. CONCLUSION Our data showed that LMSCs and ADMSCs have comparable phenotype and TGF-β1 and NO production.
Collapse
Affiliation(s)
- Zahra Hosseinpur
- a Immunoregulation Research Center, Shahed University , Tehran , Iran
| | - Seyed Mahmoud Hashemi
- b Department of Immunology, School of Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Eisa Salehi
- c Department of Immunology, Faculty of Medical Sciences , Tehran University of Medical Sciences , Tehran , Iran
| | - Tooba Ghazanfari
- a Immunoregulation Research Center, Shahed University , Tehran , Iran
| |
Collapse
|
9
|
Yang C, Jiang J, Yang X, Wang H, Du J. Stem/progenitor cells in endogenous repairing responses: new toolbox for the treatment of acute lung injury. J Transl Med 2016; 14:47. [PMID: 26865361 PMCID: PMC4750219 DOI: 10.1186/s12967-016-0804-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/27/2016] [Indexed: 02/07/2023] Open
Abstract
The repair of organs and tissues has stepped into a prospective era of regenerative medicine. However, basic research and clinical practice in the lung regeneration remains crawling. Owing to the complicated three dimensional structures and above 40 types of pulmonary cells, the regeneration of lung tissues becomes a great challenge. Compelling evidence has showed that distinct populations of intrapulmonary and extrapulmonary stem/progenitor cells can regenerate epithelia as well as endothelia in various parts of the respiratory tract. Recently, the discovery of human lung stem cells and their relevant studies has opened the door of hope again, which might put us on the path to repair our injured body parts, lungs on demand. Herein, we emphasized the role of endogenous and exogenous stem/progenitor cells in lungs as well as artificial tissue repair for the injured lungs, which constitute a marvelous toolbox for the treatment of acute lung injury. Finally, we further discussed the potential problems in the pulmonary remodeling and regeneration.
Collapse
Affiliation(s)
- Ce Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Changjiang Zhilu, Daping, 400042, Chongqing, China.
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Changjiang Zhilu, Daping, 400042, Chongqing, China.
| | - Xuetao Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Changjiang Zhilu, Daping, 400042, Chongqing, China.
| | - Haiyan Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Changjiang Zhilu, Daping, 400042, Chongqing, China.
| | - Juan Du
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Changjiang Zhilu, Daping, 400042, Chongqing, China.
| |
Collapse
|
10
|
Cortes-Dericks L, Froment L, Kocher G, Schmid RA. Human lung-derived mesenchymal stem cell-conditioned medium exerts in vitro antitumor effects in malignant pleural mesothelioma cell lines. Stem Cell Res Ther 2016; 7:25. [PMID: 26861734 PMCID: PMC4748521 DOI: 10.1186/s13287-016-0282-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/21/2015] [Accepted: 01/18/2016] [Indexed: 12/15/2022] Open
Abstract
Background The soluble factors secreted by mesenchymal stem cells are thought to either support or inhibit tumor growth. Herein, we investigated whether the human lung-derived mesenchymal stem cell-conditioned medium (hlMSC-CM) exerts antitumor activity in malignant pleural mesothelioma cell lines H28, H2052 and Meso4. Methods hlMSC-CM was collected from the human lung-derived mesenchymal stem cells. Inhibition of tumor cell growth was based on the reduction of cell viability and inhibition of cell proliferation using the XTT and BrdU assays, respectively. Elimination of tumor spheroids was assessed by the anchorage-independent sphere formation assay. The cytokine profile of hlMSC-CM was determined by a chemiluminescence-based cytokine array. Results Our data showed that hlMSC-CM contains a broad range of soluble factors which include: cytokines, chemokines, hormones, growth and angiogenic factors, matrix metalloproteinases, metalloproteinase inhibitors and cell–cell mediator proteins. The 48- and 72-hour hlMSC-CM treatments of H28, H2052 and Meso4 cell lines elicited significant decreases in cell viability and inhibited cell proliferation. The 72-hour hlMSC-CM incubation of H28 cells completely eliminated the drug-resistant sphere-forming cells, which is more potent than twice the half maximal inhibitory concentration of cisplatin. Conclusions Our findings indicate that the cell-free hlMSC-CM confers in vitro antitumor activities via soluble factors in the tested mesothelioma cells and, hence, may serve as a therapeutic tool to augment the current treatment strategies in malignant pleural mesothelioma. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0282-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lourdes Cortes-Dericks
- University Hospital Berne, Department of Clinical Research, Division of General Thoracic Surgery, Berne, Switzerland.
| | - Laurene Froment
- University Hospital Berne, Department of Clinical Research, Division of General Thoracic Surgery, Berne, Switzerland.
| | - Gregor Kocher
- University Hospital Berne, Department of Clinical Research, Division of General Thoracic Surgery, Berne, Switzerland.
| | - Ralph A Schmid
- University Hospital Berne, Department of Clinical Research, Division of General Thoracic Surgery, Berne, Switzerland.
| |
Collapse
|
11
|
Khatri M, Chattha KS. Replication of influenza A virus in swine umbilical cord epithelial stem-like cells. Virulence 2016; 6:40-9. [PMID: 25517546 DOI: 10.4161/21505594.2014.983020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In this study, we describe the isolation and characterization of epithelial stem-like cells from the swine umbilical cord and their susceptibility to influenza virus infection. Swine umbilical cord epithelial stem cells (SUCECs) expressed stem cell and pluripotency associated markers such as SSEA-1, SSEA-4, TRA 1-60 and TRA 1-81 and Oct4. Morphologically, cells displayed polygonal morphology and were found to express epithelial markers; pancytokeratin, cytokeratin-18 and occludin; mesenchymal cell markers CD44, CD90 and haematopoietic cell marker CD45 were not detected on these cells. The cells had extensive proliferation and self- renewal properties. The cells also possessed immunomodulatory activity and inhibited the proliferation of T cells. Also, higher levels of anti-inflammatory cytokine IL-10 were detected in SUCEC-T cell co-cultures. The cells were multipotent and differentiated into lung epithelial cells when cultured in epithelial differentiation media. We also examined if SUCECs are susceptible to infection with influenza virus. SUCECs expressed sialic acid receptors, used by influenza virus for binding to cells. The 2009 pandemic influenza virus and swine influenza virus replicated in these cells. SUCECs due to their differentiation and immunoregulatory properties will be useful as cellular therapy in a pig model for human diseases. Additionally, our data indicate that influenza virus can infect SUCECs and may transmit influenza virus from mother to fetus through umbilical cord and transplantation of influenza virus-infected stem cells may transmit infection to recipients. Therefore, we propose that umbilical cord cells, in addition to other agents, should also be tested for influenza virus before cryopreservation for future use as a cell therapy for disease conditions.
Collapse
Affiliation(s)
- Mahesh Khatri
- a Food Animal Health Research Program; Ohio Agricultural Research and Development Center; The Ohio State University ; Wooster , OH United States
| | | |
Collapse
|
12
|
Lung Regeneration: Endogenous and Exogenous Stem Cell Mediated Therapeutic Approaches. Int J Mol Sci 2016; 17:ijms17010128. [PMID: 26797607 PMCID: PMC4730369 DOI: 10.3390/ijms17010128] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 12/25/2022] Open
Abstract
The tissue turnover of unperturbed adult lung is remarkably slow. However, after injury or insult, a specialised group of facultative lung progenitors become activated to replenish damaged tissue through a reparative process called regeneration. Disruption in this process results in healing by fibrosis causing aberrant lung remodelling and organ dysfunction. Post-insult failure of regeneration leads to various incurable lung diseases including chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis. Therefore, identification of true endogenous lung progenitors/stem cells, and their regenerative pathway are crucial for next-generation therapeutic development. Recent studies provide exciting and novel insights into postnatal lung development and post-injury lung regeneration by native lung progenitors. Furthermore, exogenous application of bone marrow stem cells, embryonic stem cells and inducible pluripotent stem cells (iPSC) show evidences of their regenerative capacity in the repair of injured and diseased lungs. With the advent of modern tissue engineering techniques, whole lung regeneration in the lab using de-cellularised tissue scaffold and stem cells is now becoming reality. In this review, we will highlight the advancement of our understanding in lung regeneration and development of stem cell mediated therapeutic strategies in combating incurable lung diseases.
Collapse
|
13
|
Stabler CT, Lecht S, Lazarovici P, Lelkes PI. Mesenchymal stem cells for therapeutic applications in pulmonary medicine. Br Med Bull 2015; 115:45-56. [PMID: 26063231 DOI: 10.1093/bmb/ldv026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/17/2015] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) of different biological sources are in Phase 1 clinical trials and are being considered for Phase 2 therapy of lung disorders, and lung (progenitor) cells derived from pluripotent stem cells (SCs) are under development in preclinical animal models. SOURCES OF DATA PubMed.gov and ClinicalTrials.gov. AREAS OF AGREEMENT There is consensus about the therapeutic potential of transplanted SCs, mainly MSCs, primarily involves paracrine 'bystander' effects that confer protection of the epithelial and endothelial linings of the lung caused by inflammation and/or fibrosis and lead to increased survival in animal models. Clinical trials of Phase 1 indicate safety and suggest that the efficacy of SC therapy in patients with various lung diseases will require a higher dosage than previously evaluated. AREAS OF CONTROVERSY A growing interest in the re-epithelialization and re-endothelialization of damaged lung tissue involves the putative pulmonary differentiation of exogenous MSCs. Currently, it is not clear whether or not the observed regeneration of distal airways/vasculature is derived from lung-resident and/or transplanted SCs. GROWING POINTS Important topics under investigation include optimization of the cell source with a decrease in cell population heterogeneity characterized by defined markers, route of delivery for effective treatment, potential dose and therapeutic protocol of SC application, development of quantitative assays and biomarkers of lung disease and repair, and the potential use of tissue engineered lung. AREAS TIMELY FOR DEVELOPING RESEARCH Ability of MSCs to differentiate into epithelial cells of the lung, use of autologous induced pluripotent SCs (iPSCs) derived from the patients, complete biochemical characterization of the secretome of SCs used for therapy, and the incorporation of simultaneous and/or subsequent treatment with drugs which also aid in lung repair and regeneration. CAUTIONARY NOTE Although safety of MSC-based cell therapy was proved in Phase 1, efficacy, long-term survival and preservation of lung respiratory function need to be further evaluated, cautioning against hastily translating SCs therapy from animal models of lung injury to clinical trials of patients with lung disorders.
Collapse
Affiliation(s)
- Collin T Stabler
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Shimon Lecht
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Philip Lazarovici
- School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Peter I Lelkes
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA Temple Institute for Regenerative Medicine and Engineering (TIME), Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
14
|
Reactive Oxygen Species in Mesenchymal Stem Cell Aging: Implication to Lung Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:486263. [PMID: 26273422 PMCID: PMC4529978 DOI: 10.1155/2015/486263] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 04/15/2015] [Accepted: 05/01/2015] [Indexed: 12/13/2022]
Abstract
MSCs have become an emerging cell source with their immune modulation, high proliferation rate, and differentiation potential; indeed, they have been challenged in clinical trials. Recently, it has shown that ROS play a dual role as both deleterious and beneficial species depending on their concentration in MSCs. Various environmental stresses-induced excessive production of ROS triggers cellular senescence and abnormal differentiation on MSCs. Moreover, MSCs have been suggested to participate in the treatment of ALI/ARDS and COPD as a major cause of high morbidity and mortality. Therapeutic mechanisms of MSCs in the treatment of ARDS/COPD were focused on cell engraftment and paracrine action. However, ROS-mediated therapeutic mechanisms of MSCs still remain largely unknown. Here, we review the key factors associated with cell cycle and chromatin remodeling to accelerate or delay the MSC aging process. In addition, the enhanced ROS production and its associated pathophysiological pathways will be discussed along with the MSC senescence process. Furthermore, the present review highlights how the excessive amount of ROS-mediated oxidative stress might interfere with homeostasis of lungs and residual lung cells in the pathogenesis of ALI/ARDS and COPD.
Collapse
|
15
|
Van de Laar E, Clifford M, Hasenoeder S, Kim BR, Wang D, Lee S, Paterson J, Vu NM, Waddell TK, Keshavjee S, Tsao MS, Ailles L, Moghal N. Cell surface marker profiling of human tracheal basal cells reveals distinct subpopulations, identifies MST1/MSP as a mitogenic signal, and identifies new biomarkers for lung squamous cell carcinomas. Respir Res 2014; 15:160. [PMID: 25551685 PMCID: PMC4343068 DOI: 10.1186/s12931-014-0160-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 12/17/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The large airways of the lungs (trachea and bronchi) are lined with a pseudostratified mucociliary epithelium, which is maintained by stem cells/progenitors within the basal cell compartment. Alterations in basal cell behavior can contribute to large airway diseases including squamous cell carcinomas (SQCCs). Basal cells have traditionally been thought of as a uniform population defined by basolateral position, cuboidal cell shape, and expression of pan-basal cell lineage markers like KRT5 and TP63. While some evidence suggests that basal cells are not all functionally equivalent, few heterogeneously expressed markers have been identified to purify and study subpopulations. In addition, few signaling pathways have been identified that regulate their cell behavior. The goals of this work were to investigate tracheal basal cell diversity and to identify new signaling pathways that regulate basal cell behavior. METHODS We used flow cytometry (FACS) to profile cell surface marker expression at a single cell level in primary human tracheal basal cell cultures that maintain stem cell/progenitor activity. FACS results were validated with tissue staining, in silico comparisons with normal basal cell and lung cancer datasets, and an in vitro proliferation assay. RESULTS We identified 105 surface markers, with 47 markers identifying potential subpopulations. These subpopulations generally fell into more (~ > 13%) or less abundant (~ < 6%) groups. Microarray gene expression profiling supported the heterogeneous expression of these markers in the total population, and immunostaining of large airway tissue suggested that some of these markers are relevant in vivo. 24 markers were enriched in lung SQCCs relative to adenocarcinomas, with four markers having prognostic significance in SQCCs. We also identified 33 signaling receptors, including the MST1R/RON growth factor receptor, whose ligand MST1/MSP was mitogenic for basal cells. CONCLUSION This work provides the largest description to date of molecular diversity among human large airway basal cells. Furthermore, these markers can be used to further study basal cell function in repair and disease, and may aid in the classification and study of SQCCs.
Collapse
Affiliation(s)
- Emily Van de Laar
- />Department of Medical Biophysics, Ontario Cancer Institute/Campbell Family Cancer Research Institute/Princess Margaret Cancer Centre/University Health Network, University of Toronto, Toronto, ON M5G 1 L7 Canada
| | - Monica Clifford
- />Department of Medical Biophysics, Ontario Cancer Institute/Campbell Family Cancer Research Institute/Princess Margaret Cancer Centre/University Health Network, University of Toronto, Toronto, ON M5G 1 L7 Canada
| | - Stefan Hasenoeder
- />Department of Medical Biophysics, Ontario Cancer Institute/Campbell Family Cancer Research Institute/Princess Margaret Cancer Centre/University Health Network, University of Toronto, Toronto, ON M5G 1 L7 Canada
- />Present address: Helmholtz Zentrum München, Institute of Stem Cell Research, Ingolstädter Landstrasse 1, 85746 Neuherberg, Germany
| | - Bo Ram Kim
- />Department of Medical Biophysics, Ontario Cancer Institute/Campbell Family Cancer Research Institute/Princess Margaret Cancer Centre/University Health Network, University of Toronto, Toronto, ON M5G 1 L7 Canada
| | - Dennis Wang
- />Department of Medical Biophysics, Ontario Cancer Institute/Campbell Family Cancer Research Institute/Princess Margaret Cancer Centre/University Health Network, University of Toronto, Toronto, ON M5G 1 L7 Canada
| | - Sharon Lee
- />Department of Medical Biophysics, Ontario Cancer Institute/Campbell Family Cancer Research Institute/Princess Margaret Cancer Centre/University Health Network, University of Toronto, Toronto, ON M5G 1 L7 Canada
- />Department of Applied Mathematics, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| | - Josh Paterson
- />Department of Medical Biophysics, Ontario Cancer Institute/Campbell Family Cancer Research Institute/Princess Margaret Cancer Centre/University Health Network, University of Toronto, Toronto, ON M5G 1 L7 Canada
| | - Nancy M Vu
- />Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112 USA
- />Present address: University of Utah School of Medicine, Salt Lake City, UT 84132 USA
| | - Thomas K Waddell
- />Toronto Lung Transplant Program, University Health Network, University of Toronto, Toronto, ON M5G 1 L7 Canada
| | - Shaf Keshavjee
- />Toronto Lung Transplant Program, University Health Network, University of Toronto, Toronto, ON M5G 1 L7 Canada
| | - Ming-Sound Tsao
- />Department of Medical Biophysics, Ontario Cancer Institute/Campbell Family Cancer Research Institute/Princess Margaret Cancer Centre/University Health Network, University of Toronto, Toronto, ON M5G 1 L7 Canada
| | - Laurie Ailles
- />Department of Medical Biophysics, Ontario Cancer Institute/Campbell Family Cancer Research Institute/Princess Margaret Cancer Centre/University Health Network, University of Toronto, Toronto, ON M5G 1 L7 Canada
| | - Nadeem Moghal
- />Department of Medical Biophysics, Ontario Cancer Institute/Campbell Family Cancer Research Institute/Princess Margaret Cancer Centre/University Health Network, University of Toronto, Toronto, ON M5G 1 L7 Canada
- />Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112 USA
- />Present address: Ontario Cancer Institute and Princess Margaret Hospital, University Health Network, Toronto, ON M5G 1 L7 Canada
| |
Collapse
|
16
|
Pulmonary administration of Am80 regenerates collapsed alveoli. J Control Release 2014; 196:154-60. [DOI: 10.1016/j.jconrel.2014.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 08/21/2014] [Accepted: 10/02/2014] [Indexed: 02/08/2023]
|
17
|
Stem cells, cell therapies, and bioengineering in lung biology and diseases. Comprehensive review of the recent literature 2010-2012. Ann Am Thorac Soc 2014; 10:S45-97. [PMID: 23869446 DOI: 10.1513/annalsats.201304-090aw] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A conference, "Stem Cells and Cell Therapies in Lung Biology and Lung Diseases," was held July 25 to 28, 2011 at the University of Vermont to review the current understanding of the role of stem and progenitor cells in lung repair after injury and to review the current status of cell therapy and ex vivo bioengineering approaches for lung diseases. These are rapidly expanding areas of study that provide further insight into and challenge traditional views of mechanisms of lung repair after injury and pathogenesis of several lung diseases. The goals of the conference were to summarize the current state of the field, to discuss and debate current controversies, and to identify future research directions and opportunities for basic and translational research in cell-based therapies for lung diseases. The goal of this article, which accompanies the formal conference report, is to provide a comprehensive review of the published literature in lung regenerative medicine from the last conference report through December 2012.
Collapse
|
18
|
Suzuki T, Suzuki S, Fujino N, Ota C, Yamada M, Suzuki T, Yamaya M, Kondo T, Kubo H. c-Kit immunoexpression delineates a putative endothelial progenitor cell population in developing human lungs. Am J Physiol Lung Cell Mol Physiol 2014; 306:L855-65. [PMID: 24583878 DOI: 10.1152/ajplung.00211.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Expression of c-Kit and its ligand, stem cell factor (SCF), in developing human lung tissue was investigated by immunohistochemistry. Twenty-eight human fetal lungs [age range 13 to 38 gestational wk (GW)] and 12 postnatal lungs (age range 1-79 yr) were evaluated. We identified c-Kit(+) cells in the lung mesenchyme as early as 13 GW. These mesenchymal c-Kit(+) cells in the lung did not express mast cell tryptase or α-smooth muscle actin. However, these cells did express CD34, VEGFR2, and Tie-2, indicating their endothelial lineage. Three-dimensional reconstructions of confocal laser scanning images revealed that c-Kit(+) cells displayed a closed-end tube formation that did not contain hematopoietic cells. From the pseudoglandular phase to the canalicular phase, c-Kit(+) cells appeared to continuously proliferate, to connect with central pulmonary vessels, and finally, to develop the lung capillary plexus. The spatial distribution of c-Kit- and SCF-positive cells was also demonstrated, and these cells were shown to be in close association. Our results suggest that c-Kit expression in early fetal lungs marks a progenitor population that is restricted to endothelial lineage. This study also suggests the potential involvement of c-Kit signaling in lung vascular development.
Collapse
Affiliation(s)
- Takaya Suzuki
- Dept. of Advanced Preventive Medicine for Infectious Disease, Tohoku Univ. School of Medicine, 2-1 Seiryoumachi, Aobaku, Sendai 980-8575, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Leeman KT, Fillmore CM, Kim CF. Lung stem and progenitor cells in tissue homeostasis and disease. Curr Top Dev Biol 2014; 107:207-233. [PMID: 24439808 DOI: 10.1016/b978-0-12-416022-4.00008-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The mammalian lung is a complex organ containing numerous putative stem/progenitor cell populations that contribute to region-specific tissue homeostasis and repair. In this review, we discuss recent advances in identifying and studying these cell populations in the context of lung homeostasis and disease. Genetically engineered mice now allow for lineage tracing of several lung stem and progenitor cell populations in vivo during different types of lung injury repair. Using specific sets of cell surface markers, these cells can also be isolated from murine and human lung and tested in 3D culture systems and in vivo transplant assays. The pathology of devastating lung diseases, including lung cancers, is likely in part due to dysregulation and dysfunction of lung stem cells. More precise characterization of stem cells with identification of new, unique markers; improvement in isolation and transplant techniques; and further development of functional assays will ultimately lead to new therapies for a host of human lung diseases. In particular, lung cancer biology may be greatly informed by findings in normal lung stem cell biology as evidence suggests that lung cancer is a disease that begins in, and may be driven by, neoplastic lung stem cells.
Collapse
Affiliation(s)
- Kristen T Leeman
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Stem Cell Program, Boston Children's Hospital, Boston, Massachusetts, USA.,The Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Christine M Fillmore
- Stem Cell Program, Boston Children's Hospital, Boston, Massachusetts, USA.,Stem Cell Program, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Carla F Kim
- Stem Cell Program, Boston Children's Hospital, Boston, Massachusetts, USA.,The Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Long-term research of stem cells in monocrotaline-induced pulmonary arterial hypertension. Clin Exp Med 2013; 14:439-46. [DOI: 10.1007/s10238-013-0256-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/19/2013] [Indexed: 10/26/2022]
|
21
|
HGF Expressing Stem Cells in Usual Interstitial Pneumonia Originate from the Bone Marrow and Are Antifibrotic. PLoS One 2013; 8:e65453. [PMID: 23840329 PMCID: PMC3686785 DOI: 10.1371/journal.pone.0065453] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 04/24/2013] [Indexed: 12/15/2022] Open
Abstract
Background Pulmonary fibrosis may result from abnormal alveolar wound repair after injury. Hepatocyte growth factor (HGF) improves alveolar epithelial wound repair in the lung. Stem cells were shown to play a major role in lung injury, repair and fibrosis. We studied the presence, origin and antifibrotic properties of HGF-expressing stem cells in usual interstitial pneumonia. Methods Immunohistochemistry was performed in lung tissue sections and primary alveolar epithelial cells obtained from patients with usual interstitial pneumonia (UIP, n = 7). Bone marrow derived stromal cells (BMSC) from adult male rats were transfected with HGF, instilled intratracheally into bleomycin injured rat lungs and analyzed 7 and 14 days later. Results In UIP, HGF was expressed in specific cells mainly located in fibrotic areas close to the hyperplastic alveolar epithelium. HGF-positive cells showed strong co-staining for the mesenchymal stem cell markers CD44, CD29, CD105 and CD90, indicating stem cell origin. HGF-positive cells also co-stained for CXCR4 (HGF+/CXCR4+) indicating that they originate from the bone marrow. The stem cell characteristics were confirmed in HGF secreting cells isolated from UIP lung biopsies. In vivo experiments showed that HGF-expressing BMSC attenuated bleomycin induced pulmonary fibrosis in the rat, indicating a beneficial role of bone marrow derived, HGF secreting stem cells in lung fibrosis. Conclusions HGF-positive stem cells are present in human fibrotic lung tissue (UIP) and originate from the bone marrow. Since HGF-transfected BMSC reduce bleomycin induced lung fibrosis in the bleomycin lung injury and fibrosis model, we assume that HGF-expressing, bone-marrow derived stem cells in UIP have antifibrotic properties.
Collapse
|
22
|
Sinclair K, Yerkovich ST, Chambers DC. Mesenchymal stem cells and the lung. Respirology 2013; 18:397-411. [DOI: 10.1111/resp.12050] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 11/28/2012] [Accepted: 01/01/2013] [Indexed: 12/20/2022]
|
23
|
Oct4+ stem/progenitor swine lung epithelial cells are targets for influenza virus replication. J Virol 2012; 86:6427-33. [PMID: 22491467 DOI: 10.1128/jvi.00341-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We isolated stem/progenitor epithelial cells from the lungs of 4- to 6-week-old pigs. The epithelial progenitor colony cells were surrounded by mesenchymal stromal cells. The progenitor epithelial colony cells expressed stem cell markers such as octamer binding transcription factor 4 (Oct4) and stage-specific embryonic antigen 1 (SSEA-1), as well as the epithelial markers pancytokeratin, cytokeratin-18, and occludin, but not mesenchymal (CD44, CD29, and CD90) and hematopoietic (CD45) markers. The colony cells had extensive self-renewal potential and had the capacity to undergo differentiation to alveolar type I- and type II-like pneumocytes. Additionally, these cells expressed sialic acid receptors and supported the active replication of influenza virus, which was accompanied by cell lysis. The lysis of progenitor epithelial cells by influenza virus may cause a marked reduction in the potential of progenitor cells for self renewal and for their ability to differentiate into specialized cells of the lung. These observations suggest the possible involvement of lung stem/progenitor cells in influenza virus infection.
Collapse
|
24
|
|
25
|
Lau AN, Goodwin M, Kim CF, Weiss DJ. Stem cells and regenerative medicine in lung biology and diseases. Mol Ther 2012; 20:1116-30. [PMID: 22395528 DOI: 10.1038/mt.2012.37] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A number of novel approaches for repair and regeneration of injured lung have developed over the past several years. These include a better understanding of endogenous stem and progenitor cells in the lung that can function in reparative capacity as well as extensive exploration of the potential efficacy of administering exogenous stem or progenitor cells to function in lung repair. Recent advances in ex vivo lung engineering have also been increasingly applied to the lung. The current status of these approaches as well as initial clinical trials of cell therapies for lung diseases are reviewed below.
Collapse
Affiliation(s)
- Allison N Lau
- Department of Genetics, Stem Cell Program, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
26
|
Ingenito EP, Tsai L, Murthy S, Tyagi S, Mazan M, Hoffman A. Autologous Lung-Derived Mesenchymal Stem Cell Transplantation in Experimental Emphysema. Cell Transplant 2012; 21:175-89. [DOI: 10.3727/096368910x550233] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Autologous lung-derived mesenchymal stem cells (LMSCs) were transplanted endoscopically into sheep with experimental emphysema to assess their capacity to regenerate functional tissue. LMSC lines were derived from transbronchial biopsies, cloned at passage 2, expanded in culture, and labeled. A delivery scaffold containing 1% fibrinogen, 20 μg/ml of fibronectin, and 20 μg/ml of poly-L-lysine was used to promote cell attachment and spreading. Treatment animals received scaffold containing 5–10 × 106 cells/site; control animals received scaffold alone. Phenotypic markers, differentiation capacity, extracellular matrix protein expression, and paracrine function of LMSCs were characterized in vitro. Responses to LMSC transplantation in vivo were assessed in terms of clinical toxicity, lung physiology, change in tissue mass (measured by CT scanning) and perfusion (measured by scintigraphy scanning), and tissue histology. At 4-week follow-up, transplants were well tolerated and associated with increased tissue mass and lung perfusion compared to control treatment. Histology confirmed cell retention, increased cellularity, and increased extracellular matrix content following LMSC treatment. Labeled cells were distributed in the alveolar septum and peribronchiolar interstitium. Some label was also present within phagocytes, indicating that a fraction of autologous LMSCs do not survive transplantation. These results suggest that endobronchial delivery of autologous LMSCs has potential therapeutic utility for regenerating functional lung in emphysema.
Collapse
Affiliation(s)
- Edward P. Ingenito
- Division of Pulmonary & Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Larry Tsai
- Division of Pulmonary & Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Shankar Murthy
- Division of Pulmonary & Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Shivraj Tyagi
- Division of Pulmonary & Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Melissa Mazan
- Tufts Cummings School of Veterinary Medicine, N. Grafton, MA, USA
| | - Andrew Hoffman
- Tufts Cummings School of Veterinary Medicine, N. Grafton, MA, USA
| |
Collapse
|
27
|
Ion transport by pulmonary epithelia. J Biomed Biotechnol 2011; 2011:174306. [PMID: 22131798 PMCID: PMC3205707 DOI: 10.1155/2011/174306] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 08/16/2011] [Indexed: 12/13/2022] Open
Abstract
The lung surface of air-breathing vertebrates is formed by a continuous epithelium that is covered by a fluid layer. In the airways, this epithelium is largely pseudostratified consisting of diverse cell types such as ciliated cells, goblet cells, and undifferentiated basal cells, whereas the alveolar epithelium consists of alveolar type I and alveolar type II cells. Regulation and maintenance of the volume and viscosity of the fluid layer covering the epithelium is one of the most important functions of the epithelial barrier that forms the outer surface area of the lungs. Therefore, the epithelial cells are equipped with a wide variety of ion transport proteins, among which Na+, Cl−, and K+ channels have been identified to play a role in the regulation of the fluid layer. Malfunctions of pulmonary epithelial ion transport processes and, thus, impairment of the liquid balance in our lungs is associated with severe diseases, such as cystic fibrosis and pulmonary oedema. Due to the important role of pulmonary epithelial ion transport processes for proper lung function, the present paper summarizes the recent findings about composition, function, and ion transport properties of the airway epithelium as well as of the alveolar epithelium.
Collapse
|
28
|
Endothelin-1 governs proliferation and migration of bronchoalveolar lavage-derived lung mesenchymal stem cells in bronchiolitis obliterans syndrome. Transplantation 2011; 92:155-62. [PMID: 21701423 DOI: 10.1097/tp.0b013e318222c9ea] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Bronchiolitis obliterans syndrome (BOS) has an incidence of 57% at 5 years after lung transplantation, accounts for 30% of all deaths 3 years posttransplant and because treatment options are extremely limited, it constitutes a significant health care problem. Adult mesenchymal stem cells (MSCs) play a role in lung turnover; however, their role in BOS remains unknown. METHODS MSCs were isolated from bronchoalveolar lavage (BAL) in 101 lung allograft recipients. BAL was screened by protein array and MSCs were analyzed by real-time polymerase chain reaction, proliferation, migration, and enzyme linked immunosorbent assays. RESULTS Multipotent MSCs were isolated from BAL of lung recipients independent of BOS presence. However, MSCs from BOS patients proliferated at higher rates (P<0.001) and were associated with higher α-smooth muscle actin (P = 0.03) but lower surfactant protein B (P = 0.02) compared with those from no-BOS patients. Histological analysis revealed that MSCs are abundant in lung tissue of BOS patients. MSCs from BOS patients produced higher endothelin-1 (ET-1) amounts (P<0.001) compared with those from no-BOS; and ET-1 stimulated whereas ET-1 blockade suppressed MSC proliferation, migration, and differentiation. CONCLUSIONS These results indicate that MSCs are associated with BOS and are governed by ET-1. Targeting MSCs by ET-1 blockade might be useful in BOS treatment.
Collapse
|
29
|
Molecular basis of lung tissue regeneration. Gen Thorac Cardiovasc Surg 2011; 59:231-44. [PMID: 21484549 DOI: 10.1007/s11748-010-0757-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 12/05/2010] [Indexed: 12/29/2022]
Abstract
Recent advances have expanded our understanding of lung endogenous stem cells, and this knowledge provides us with new ideas for future regenerative therapy for lung diseases. In studies using animal models for lung regeneration, compensatory lung growth, and lung repair, promising reagents for lung regeneration have been discovered. Stem or progenitor cells are needed for alveolar regeneration, lung growth, and lung repair after injury. Endogenous progenitor cells mainly participate in alveologenesis. However, human lung endogenous progenitor cells have not yet been clearly defined. Recently discovered human alveolar epithelial progenitor cells may give us a new perspective for understanding the pathogenesis of lung diseases. In parallel with such basic research, projects geared toward clinical application are proceeding. Cell therapy using mesenchymal stem cells to treat acute lung injury is one of the promising areas for this research. The creation of bioartificial lungs, which are based on decellularized lungs, is another interesting approach for future clinical applications. Although lungs are the most challenging organ for regenerative medicine, our cumulative knowledge of lung regeneration and of endogenous progenitor cells makes clear the possibilities and limitations of regenerative medicine for lung diseases.
Collapse
|
30
|
Fujino N, Kubo H, Suzuki T, Ota C, Hegab AE, He M, Suzuki S, Suzuki T, Yamada M, Kondo T, Kato H, Yamaya M. Isolation of alveolar epithelial type II progenitor cells from adult human lungs. J Transl Med 2011; 91:363-78. [PMID: 21079581 PMCID: PMC3125101 DOI: 10.1038/labinvest.2010.187] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Resident stem/progenitor cells in the lung are important for tissue homeostasis and repair. However, a progenitor population for alveolar type II (ATII) cells in adult human lungs has not been identified. The aim of this study is to isolate progenitor cells from adult human lungs with the ability to differentiate into ATII cells. We isolated colony-forming cells that had the capability for self-renewal and the potential to generate ATII cells in vitro. These undifferentiated progenitor cells expressed surface markers of mesenchymal stem cells (MSCs) and surfactant proteins associated with ATII cells, such as CD90 and pro-surfactant protein-C (pro-SP-C), respectively. Microarray analyses indicated that transcripts associated with lung development were enriched in the pro-SP-C(+)/CD90(+) cells compared with bone marrow-MSCs. Furthermore, pathological evaluation indicated that pro-SP-C and CD90 double-positive cells were present within alveolar walls in normal lungs, and significantly increased in ATII cell hyperplasias contributing to alveolar epithelial repair in damaged lungs. Our findings demonstrated that adult human lungs contain a progenitor population for ATII cells. This study is a first step toward better understanding of stem cell biology in adult human lung alveoli.
Collapse
Affiliation(s)
- Naoya Fujino
- Department of Advanced Preventive Medicine for Infectious Disease, Tohoku University Graduate School of Medicine, Aobaku, Sendai, Japan
| | - Hiroshi Kubo
- Department of Advanced Preventive Medicine for Infectious Disease, Tohoku University Graduate School of Medicine, Aobaku, Sendai, Japan,Department of Advanced Preventive Medicine for Infectious Disease, Tohoku University Graduate School of Medicine, 2-1 Seiryoumachi, Aobaku, Sendai 980-8575, Japan. E-mail:
| | - Takaya Suzuki
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Aobaku, Sendai, Japan
| | - Chiharu Ota
- Department of Advanced Preventive Medicine for Infectious Disease, Tohoku University Graduate School of Medicine, Aobaku, Sendai, Japan
| | - Ahmed E Hegab
- Department of Advanced Preventive Medicine for Infectious Disease, Tohoku University Graduate School of Medicine, Aobaku, Sendai, Japan
| | - Mei He
- Department of Advanced Preventive Medicine for Infectious Disease, Tohoku University Graduate School of Medicine, Aobaku, Sendai, Japan
| | - Satoshi Suzuki
- Department of Thoracic Surgery, Ishinomaki Red Cross Hospital, Hebita, Ishinomaki, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Aobaku, Sendai, Japan
| | - Mitsuhiro Yamada
- Department of Infection Control and Laboratory Diagnostics, Tohoku University Graduate School of Medicine, Aobaku, Sendai, Japan
| | - Takashi Kondo
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Aobaku, Sendai, Japan
| | - Hidemasa Kato
- Division of Developmental Biology, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Japan
| | - Mutsuo Yamaya
- Department of Advanced Preventive Medicine for Infectious Disease, Tohoku University Graduate School of Medicine, Aobaku, Sendai, Japan
| |
Collapse
|
31
|
Sueblinvong V, Weiss DJ. Stem cells and cell therapy approaches in lung biology and diseases. Transl Res 2010; 156:188-205. [PMID: 20801416 PMCID: PMC4201367 DOI: 10.1016/j.trsl.2010.06.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 06/14/2010] [Accepted: 06/16/2010] [Indexed: 12/19/2022]
Abstract
Cell-based therapies with embryonic or adult stem cells, including induced pluripotent stem cells, have emerged as potential novel approaches for several devastating and otherwise incurable lung diseases, including emphysema, pulmonary fibrosis, pulmonary hypertension, and the acute respiratory distress syndrome. Although initial studies suggested engraftment of exogenously administered stem cells in lung, this is now generally felt to be a rare occurrence of uncertain physiologic significance. However, more recent studies have demonstrated paracrine effects of administered cells, including stimulation of angiogenesis and modulation of local inflammatory and immune responses in mouse lung disease models. Based on these studies and on safety and initial efficacy data from trials of adult stem cells in other diseases, groundbreaking clinical trials of cell-based therapy have been initiated for pulmonary hypertension and for chronic obstructive pulmonary disease. In parallel, the identity and role of endogenous lung progenitor cells in development and in repair from injury and potential contribution as lung cancer stem cells continue to be elucidated. Most recently, novel bioengineering approaches have been applied to develop functional lung tissue ex vivo. Advances in each of these areas will be described in this review with particular reference to animal models.
Collapse
Key Words
- aec, alveolar epithelial cell
- ali, acute lung injury
- ards, acute respiratory distress syndrome
- basc, bronchioalveolar stem cell
- ccsp, clara cell secretory protein
- cf, cystic fibrosis
- cftr, cystic fibrosis transmembrane conductance regulator
- clp, cecal ligation and puncture
- copd, chronic obstructive pulmonary disease
- enos, endothelial nitric oxide synthetase
- epc, endothelial progenitor cell
- esc, embryonic stem cell
- fev1, forced expiratory volume in 1 second
- fvc, forced vital capacity
- gfp, green fluorescent protein
- hsc, hematopoietic stem cell
- ipf, idiopathic pulmonary fibrosis
- kgf, keratinocyte growth factor
- lps, lipopolysaccharide
- mct, monocrotaline
- mhc, major histocompatibility complex
- msc, mesenchymal stromal (stem) cell
- ph, pulmonary hypertension
- pro-spc, pro-surfactant protein c
- sca-1, stem cell antigen-1
Collapse
Affiliation(s)
- Viranuj Sueblinvong
- Division of Pulmonary, Critical Care and Allergy, Department of Medicine, Emory University, Atlanta, GA, USA
| | | |
Collapse
|