1
|
Yu F, Chen J, Wang X, Hou S, Li H, Yao Y, He Y, Chen K. Metabolic reprogramming of peritoneal mesothelial cells in peritoneal dialysis-associated fibrosis: therapeutic targets and strategies. Cell Commun Signal 2025; 23:114. [PMID: 40016825 PMCID: PMC11866825 DOI: 10.1186/s12964-025-02113-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/17/2025] [Indexed: 03/01/2025] Open
Abstract
Peritoneal dialysis (PD) is considered a life-saving treatment for end-stage renal disease. However, prolonged PD use can lead to the development of peritoneal fibrosis (PF), diminishing its efficacy. Peritoneal mesothelial cells (PMCs) are key initiators of PF when they become damaged. Exposure to high glucose‑based peritoneal dialysis fluids (PDFs) contributes to PF development by directly affecting highly metabolically active PMCs. Recent research indicates that PMCs undergo metabolic reprogramming when exposed to high-glucose PDFs, including enhanced glycolysis, impaired oxidative phosphorylation, abnormal lipid metabolism, and mitochondrial dysfunction. Although this metabolic transition temporarily compensates for the cellular damage and maintains energy levels, its long-term impact on peritoneal tissue is concerning. Multiple studies have identified a close association between this shift in energy metabolism and PF, and may promote the progression of PF through various molecular mechanisms. This review explores recent findings regarding the role and mechanism of PMC metabolic reprogramming in PF progression. Moreover, it provides a summary of potential therapeutic strategies aimed at various metabolic processes, including glucose metabolism, lipid metabolism, and mitochondrial function. The review establishes that targeting metabolic reprogramming in PMCs may be a novel strategy for preventing and treating PD-associated fibrosis.
Collapse
Affiliation(s)
- Fang Yu
- Department of Nephrology, Daping Hospital, Army Medical Center, Army Medical University, NO. 10 Changjiang Road, Yuzhong District, Chongqing, 400042, China
- Chongqing Key Laboratory of Precision Diagnosis and Treatment for Kidney Diseases, NO. 10 Changjiang Road, Yuzhong District, Chongqing, 400042, China
| | - Jia Chen
- Department of Nephrology, Daping Hospital, Army Medical Center, Army Medical University, NO. 10 Changjiang Road, Yuzhong District, Chongqing, 400042, China
- Chongqing Key Laboratory of Precision Diagnosis and Treatment for Kidney Diseases, NO. 10 Changjiang Road, Yuzhong District, Chongqing, 400042, China
| | - Xiaoyue Wang
- Department of Nephrology, Daping Hospital, Army Medical Center, Army Medical University, NO. 10 Changjiang Road, Yuzhong District, Chongqing, 400042, China
- Chongqing Key Laboratory of Precision Diagnosis and Treatment for Kidney Diseases, NO. 10 Changjiang Road, Yuzhong District, Chongqing, 400042, China
| | - Shihui Hou
- Department of Nephrology, Daping Hospital, Army Medical Center, Army Medical University, NO. 10 Changjiang Road, Yuzhong District, Chongqing, 400042, China
| | - Hong Li
- Department of Nephrology, Daping Hospital, Army Medical Center, Army Medical University, NO. 10 Changjiang Road, Yuzhong District, Chongqing, 400042, China
| | - Yaru Yao
- Department of Nephrology, Daping Hospital, Army Medical Center, Army Medical University, NO. 10 Changjiang Road, Yuzhong District, Chongqing, 400042, China
| | - Yani He
- Department of Nephrology, Daping Hospital, Army Medical Center, Army Medical University, NO. 10 Changjiang Road, Yuzhong District, Chongqing, 400042, China.
- Chongqing Key Laboratory of Precision Diagnosis and Treatment for Kidney Diseases, NO. 10 Changjiang Road, Yuzhong District, Chongqing, 400042, China.
- State Key Laboratory of Trauma and Chemical poisoning, Burns and Combined Injury, Army Medical University, NO. 10 Changjiang Road, Yuzhong District, Chongqing, 400042, China.
| | - Kehong Chen
- Department of Nephrology, Daping Hospital, Army Medical Center, Army Medical University, NO. 10 Changjiang Road, Yuzhong District, Chongqing, 400042, China.
- Chongqing Key Laboratory of Precision Diagnosis and Treatment for Kidney Diseases, NO. 10 Changjiang Road, Yuzhong District, Chongqing, 400042, China.
- State Key Laboratory of Trauma and Chemical poisoning, Burns and Combined Injury, Army Medical University, NO. 10 Changjiang Road, Yuzhong District, Chongqing, 400042, China.
| |
Collapse
|
2
|
Tomero-Sanz H, Jiménez-Heffernan JA, Fernández-Chacón MC, Cristóbal-García I, Sainz de la Cuesta R, González-Cortijo L, López-Cabrera M, Sandoval P. Detection of Carcinoma-Associated Fibroblasts Derived from Mesothelial Cells via Mesothelial-to-Mesenchymal Transition in Primary Ovarian Carcinomas. Cancers (Basel) 2024; 16:2697. [PMID: 39123425 PMCID: PMC11311419 DOI: 10.3390/cancers16152697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Carcinoma-associated fibroblasts (CAFs) are highly accumulated in the tumor-surrounding stroma of primary epithelial ovarian cancer (OC). CAFs exert important functions for the vascularization, growth, and progression of OC cells. However, the origin of CAFs in primary OC had not yet been studied, and they were assumed to arise from the activation of resident fibroblasts. Here, we compared CAFs in the ovary to CAFs found in peritoneal metastases from patients with advanced OC. Our findings show that CAFs from primary tumors and peritoneal metastases share the expression of mesothelial markers. Therefore, similar to peritoneal carcinomatosis, CAFs in primary ovarian carcinomas may originate from mesothelial cells via a mesothelial-to-mesenchymal transition. The detection of mesothelial-derived CAFs in tumors confined to the ovary and identification of biomarkers could be the key to the early detection of OC and peritoneal spread.
Collapse
Affiliation(s)
- Henar Tomero-Sanz
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, 28049 Madrid, Spain;
| | | | | | | | - Ricardo Sainz de la Cuesta
- Hospital Universitario QuirónSalud Madrid, 28223 Madrid, Spain; (R.S.d.l.C.); (L.G.-C.)
- Department of de Medicine, Facultad de Biomédica y Ciencias de la Salud, Universidad Europea de Madrid, 28670 Madrid, Spain
| | - Lucía González-Cortijo
- Hospital Universitario QuirónSalud Madrid, 28223 Madrid, Spain; (R.S.d.l.C.); (L.G.-C.)
- Department of de Medicine, Facultad de Biomédica y Ciencias de la Salud, Universidad Europea de Madrid, 28670 Madrid, Spain
| | - Manuel López-Cabrera
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, 28049 Madrid, Spain;
| | - Pilar Sandoval
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, 28049 Madrid, Spain;
| |
Collapse
|
3
|
Su H, Zou R, Su J, Chen X, Yang H, An N, Yang C, Tang J, Liu H, Yao C. Sterile inflammation of peritoneal membrane caused by peritoneal dialysis: focus on the communication between immune cells and peritoneal stroma. Front Immunol 2024; 15:1387292. [PMID: 38779674 PMCID: PMC11109381 DOI: 10.3389/fimmu.2024.1387292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
Peritoneal dialysis is a widely used method for treating kidney failure. However, over time, the peritoneal structure and function can deteriorate, leading to the failure of this therapy. This deterioration is primarily caused by infectious and sterile inflammation. Sterile inflammation, which is inflammation without infection, is particularly concerning as it can be subtle and often goes unnoticed. The onset of sterile inflammation involves various pathological processes. Peritoneal cells detect signals that promote inflammation and release substances that attract immune cells from the bloodstream. These immune cells contribute to the initiation and escalation of the inflammatory response. The existing literature extensively covers the involvement of different cell types in the sterile inflammation, including mesothelial cells, fibroblasts, endothelial cells, and adipocytes, as well as immune cells such as macrophages, lymphocytes, and mast cells. These cells work together to promote the occurrence and progression of sterile inflammation, although the exact mechanisms are not fully understood. This review aims to provide a comprehensive overview of the signals from both stromal cells and components of immune system, as well as the reciprocal interactions between cellular components, during the initiation of sterile inflammation. By understanding the cellular and molecular mechanisms underlying sterile inflammation, we may potentially develop therapeutic interventions to counteract peritoneal membrane damage and restore normal function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Huafeng Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Cuiwei Yao
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
4
|
Huang SH, Hong ZJ, Chen MF, Tsai MW, Chen SJ, Cheng CP, Sytwu HK, Lin GJ. Melatonin inhibits the formation of chemically induced experimental encapsulating peritoneal sclerosis through modulation of T cell differentiation by suppressing of NF-κB activation in dendritic cells. Int Immunopharmacol 2024; 126:111300. [PMID: 38016346 DOI: 10.1016/j.intimp.2023.111300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/19/2023] [Accepted: 11/24/2023] [Indexed: 11/30/2023]
Abstract
Encapsulating peritoneal sclerosis (EPS) is a severe complication of peritoneal dialysis (PD). Surgery is a therapeutic strategy for the treatment of complete intestinal obstruction. However, complete intestinal obstruction in long-term PD results in high mortality and morbidity rates after surgery. Immunopathogenesis participates in EPS formation: CD8, Th1, and Th17 cell numbers increased during the formation of EPS. The anti-inflammatory and immunomodulatory effects of melatonin may have beneficial effects on this EPS. In the present study, we determined that melatonin treatment significantly decreases the Th1 and Th17 cell populations in mice with EPS, decreases the production of IL-1β, TNF-α, IL-6, and IFN-γ, and increases the production of IL-10. The suppression of Th1 and Th17 cell differentiation by melatonin occurs through the inhibition of dendritic cell (DC) activation by affecting the initiation of the NF-κB signaling pathway in DCs. Our study suggests that melatonin has preventive potential against the formation of EPS in patients with PD.
Collapse
Affiliation(s)
- Shing-Hwa Huang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan; Department of General Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Department of General Surgery, En Chu Kong Hospital, New Taipei, Taiwan
| | - Zhi-Jie Hong
- Department of General Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Mei-Fei Chen
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Meng-Wei Tsai
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Shyi-Jou Chen
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Pi Cheng
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Huey-Kang Sytwu
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan; National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Gu-Jiun Lin
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan; Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
5
|
Carrillo-Rodríguez P, Robles-Guirado JÁ, Cruz-Palomares A, Palacios-Pedrero MÁ, González-Paredes E, Más-Ciurana A, Franco-Herrera C, Ruiz-de-Castroviejo-Teba PA, Lario A, Longobardo V, Montosa-Hidalgo L, Pérez-Sánchez-Cañete MM, Corzo-Corbera MM, Redondo-Sánchez S, Jodar AB, Blanco FJ, Zumaquero E, Merino R, Sancho J, Zubiaur M. Extracellular vesicles from pristane-treated CD38-deficient mice express an anti-inflammatory neutrophil protein signature, which reflects the mild lupus severity elicited in these mice. Front Immunol 2022; 13:1013236. [DOI: 10.3389/fimmu.2022.1013236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
In CD38-deficient (Cd38-/-) mice intraperitoneal injection of pristane induces a lupus-like disease, which is milder than that induced in WT mice, showing significant differences in the inflammatory and autoimmune processes triggered by pristane. Extracellular vesicles (EV) are present in all body fluids. Shed by cells, their molecular make-up reflects that of their cell of origin and/or tissue pathological situation. The aim of this study was to analyze the protein composition, protein abundance, and functional clustering of EV released by peritoneal exudate cells (PECs) in the pristane experimental lupus model, to identify predictive or diagnostic biomarkers that might discriminate the autoimmune process in lupus from inflammatory reactions and/or normal physiological processes. In this study, thanks to an extensive proteomic analysis and powerful bioinformatics software, distinct EV subtypes were identified in the peritoneal exudates of pristane-treated mice: 1) small EV enriched in the tetraspanin CD63 and CD9, which are likely of exosomal origin; 2) small EV enriched in CD47 and CD9, which are also enriched in plasma-membrane, membrane-associated proteins, with an ectosomal origin; 3) small EV enriched in keratins, ECM proteins, complement/coagulation proteins, fibrin clot formation proteins, and endopetidase inhibitor proteins. This enrichment may have an inflammation-mediated mesothelial-to-mesenchymal transition origin, representing a protein corona on the surface of peritoneal exudate EV; 4) HDL-enriched lipoprotein particles. Quantitative proteomic analysis allowed us to identify an anti-inflammatory, Annexin A1-enriched pro-resolving, neutrophil protein signature, which was more prominent in EV from pristane-treated Cd38-/- mice, and quantitative differences in the protein cargo of the ECM-enriched EV from Cd38-/- vs WT mice. These differences are likely to be related with the distinct inflammatory outcome shown by Cd38-/- vs WT mice in response to pristane treatment. Our results demonstrate the power of a hypothesis-free and data-driven approach to transform the heterogeneity of the peritoneal exudate EV from pristane-treated mice in valuable information about the relative proportion of different EV in a given sample and to identify potential protein markers specific for the different small EV subtypes, in particular those proteins defining EV involved in the resolution phase of chronic inflammation.
Collapse
|
6
|
Krediet RT. Aging of the Peritoneal Dialysis Membrane. Front Physiol 2022; 13:885802. [PMID: 35574465 PMCID: PMC9096116 DOI: 10.3389/fphys.2022.885802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/11/2022] [Indexed: 12/02/2022] Open
Abstract
Long-term peritoneal dialysis as currently performed, causes structural and functional alterations of the peritoneal dialysis membrane. This decay is brought about by the continuous exposure to commercially available glucose-based dialysis solutions. This review summarizes our knowledge on the peritoneum in the initial phase of PD, during the first 2 years and the alterations in function and morphology in long-term PD patients. The pseudohypoxia hypothesis is discussed and how this glucose-induced condition can be used to explain all peritoneal alterations in long-term PD patients. Special attention is paid to the upregulation of hypoxia inducing factor-1 and the subsequent stimulation of the genes coding for glucose transporter-1 (GLUT-1) and the growth factors transforming growth factor-β (TGFβ), vascular endothelial growth factor (VEGF), plasminogen growth factor activator inhibitor-1 (PAI-1) and connective tissue growth factor (CTGF). It is argued that increased pseudohypoxia-induced expression of GLUT-1 in interstitial fibroblasts is the key factor in a vicious circle that augments ultrafiltration failure. The practical use of the protein transcripts of the upregulated growth factors in peritoneal dialysis effluent is considered. The available and developing options for prevention and treatment are examined. It is concluded that low glucose degradation products/neutral pH, bicarbonate buffered solutions with a combination of various osmotic agents all in low concentration, are currently the best achievable options, while other accompanying measures like the use of RAAS inhibitors and tamoxifen may be valuable. Emerging developments include the addition of alanyl glutamine to the dialysis solution and perhaps the use of nicotinamide mononucleotide, available as nutritional supplement.
Collapse
|
7
|
Hojo M, Yamamoto Y, Sakamoto Y, Maeno A, Ohnuki A, Suzuki J, Inomata A, Moriyasu T, Taquahashi Y, Kanno J, Hirose A, Nakae D. Histological sequence of the development of rat mesothelioma by MWCNT, with the involvement of apolipoproteins. Cancer Sci 2021; 112:2185-2198. [PMID: 33665882 PMCID: PMC8177772 DOI: 10.1111/cas.14873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/11/2021] [Accepted: 03/03/2021] [Indexed: 01/07/2023] Open
Abstract
A rat model of mesothelioma development by peritoneal injection of multiwalled carbon nanotube (MWCNT) has been established and found to be useful to understand the mechanisms underlying fibrous particles‐associated carcinogenesis. Its detailed histological sequence, however, remains largely obscure. We therefore aimed to assess the time‐course of mesothelioma development by MWCNT and evaluate a set of lipoprotein‐related molecules as potential mechanism‐based biomarkers for the phenomenon. Male Fischer 344 rats were injected intraperitoneally (ip) with MWCNT (MWNT‐7) at 1 mg/kg body weight, and necropsied at 8, 16, 24, 32, or 42 wk after injection. For biochemical analyses of the lipoprotein‐related molecules, more samples, including severe mesothelioma cases, were obtained from 2 other carcinogenicity tests. Histologically, in association with chronic inflammation, mesothelial proliferative lesions appeared at c. Wk‐24. Before and at the beginning of the tumor development, a prominent infiltration of CD163‐positive cells was seen near mesothelial cells. The histological pattern of early mesothelioma was not a papillary structure, but was a characteristic structure with a spherical appearance, composed of the mesothelioma cells in the surface area that were underlain by connective tissue‐like cells. Along with the progression, mesotheliomas started to show versatile histological subtypes. Serum levels of apolipoprotein A‐I and A‐IV, and a ratio of HDL cholesterol to total cholesterol were inversely correlated with mesothelioma severity. Overall, the detailed histological sequence of mesotheliomagenesis by MWCNT is demonstrated, and indicated that the altered profile of apolipoproteins may be involved in its underlying mechanisms.
Collapse
Affiliation(s)
- Motoki Hojo
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Yukio Yamamoto
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Yoshimitsu Sakamoto
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Ai Maeno
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Aya Ohnuki
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Jin Suzuki
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Akiko Inomata
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Takako Moriyasu
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Yuhji Taquahashi
- Center for Biological Safety and Research, National Institute of Health Sciences, Kanagawa, Japan
| | - Jun Kanno
- Center for Biological Safety and Research, National Institute of Health Sciences, Kanagawa, Japan
| | - Akihiko Hirose
- Center for Biological Safety and Research, National Institute of Health Sciences, Kanagawa, Japan
| | - Dai Nakae
- Department of Nutritional Science and Food Safety, Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
8
|
Terri M, Trionfetti F, Montaldo C, Cordani M, Tripodi M, Lopez-Cabrera M, Strippoli R. Mechanisms of Peritoneal Fibrosis: Focus on Immune Cells-Peritoneal Stroma Interactions. Front Immunol 2021; 12:607204. [PMID: 33854496 PMCID: PMC8039516 DOI: 10.3389/fimmu.2021.607204] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
Peritoneal fibrosis is characterized by abnormal production of extracellular matrix proteins leading to progressive thickening of the submesothelial compact zone of the peritoneal membrane. This process may be caused by a number of insults including pathological conditions linked to clinical practice, such as peritoneal dialysis, abdominal surgery, hemoperitoneum, and infectious peritonitis. All these events may cause acute/chronic inflammation and injury to the peritoneal membrane, which undergoes progressive fibrosis, angiogenesis, and vasculopathy. Among the cellular processes implicated in these peritoneal alterations is the generation of myofibroblasts from mesothelial cells and other cellular sources that are central in the induction of fibrosis and in the subsequent functional deterioration of the peritoneal membrane. Myofibroblast generation and activity is actually integrated in a complex network of extracellular signals generated by the various cellular types, including leukocytes, stably residing or recirculating along the peritoneal membrane. Here, the main extracellular factors and the cellular players are described with emphasis on the cross-talk between immune system and cells of the peritoneal stroma. The understanding of cellular and molecular mechanisms underlying fibrosis of the peritoneal membrane has both a basic and a translational relevance, since it may be useful for setup of therapies aimed at counteracting the deterioration as well as restoring the homeostasis of the peritoneal membrane.
Collapse
Affiliation(s)
- Michela Terri
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Flavia Trionfetti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Claudia Montaldo
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Marco Cordani
- instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA) Nanociencia, Madrid, Spain
| | - Marco Tripodi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Manuel Lopez-Cabrera
- Programa de Homeostasis de Tejidos y Organos, Centro de Biología Molecular “Severo Ochoa”-Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
9
|
Zhen Q, Zhang Y, Gao L, Wang R, Chu W, Zhao X, Li Z, Li H, Zhang B, Lv B, Liu J. EPAS1 promotes peritoneal carcinomatosis of non-small-cell lung cancer by enhancing mesothelial-mesenchymal transition. Strahlenther Onkol 2021; 197:141-149. [PMID: 32681351 DOI: 10.1007/s00066-020-01665-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/29/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Non-small-cell lung cancer (NSCLC) is a major cause of cancer-related death globally. Endothelial PAS domain-containing protein 1 (EPAS1) is a homolog of the hypoxia-inducible factor 1α and has been reported to confer tyrosine kinase inhibitor (TKI) resistance in NSCLC, but its role in peritoneal carcinomatosis of NSCLC is unknown. METHODS PC14HM, a high metastatic potential subline of NSCLC cell line PC14, was derived. Stable shRNA knockdown of EPAS1 was then established in PC14HM cells and subjected to assessment regarding the effects on proliferation and viability, xenograft tumor growth, metastatic potential, mesothelial-mesenchymal transition (MMT)-related characteristics and peritoneal carcinomatosis in a mouse model. RESULTS EPAS1 expression was elevated in PC14HM cells. Knockdown of EPAS1 inhibited the proliferation and viability of PC14HM cells in vitro and suppressed tumorigenesis in vivo. In addition, the metastatic features and in vitro productions of MMT-inducing factors in PC14HM cells was also associated with EPAS1. More importantly, knockdown of EPAS1 drastically suppressed peritoneal carcinomatosis of PC14HM cells in vivo. CONCLUSION EPAS1 promotes peritoneal carcinomatosis of NSCLC through enhancement of MMT and could therefore serve as a prognostic marker or a therapeutic target in treating NSCLC, particularly in patients with peritoneal carcinomatosis.
Collapse
Affiliation(s)
- Qiang Zhen
- Department of Thoracic Surgery, Shijiazhuang No. 1 Hospital, 36 Fanxi Road, 050011, Shijiazhuang, Hebei, China
| | - Yaxiao Zhang
- Department of Thoracic Surgery, Shijiazhuang No. 1 Hospital, 36 Fanxi Road, 050011, Shijiazhuang, Hebei, China.
| | - Lina Gao
- Central Supply Room, Hebei General Hospital, No. 348 Heping West Road, 050051, Shijiazhuang, Hebei, China
| | - Renfeng Wang
- Department of Thoracic Surgery, Shijiazhuang No. 1 Hospital, 36 Fanxi Road, 050011, Shijiazhuang, Hebei, China
| | - Weiwei Chu
- Department of Thoracic Surgery, Shijiazhuang No. 1 Hospital, 36 Fanxi Road, 050011, Shijiazhuang, Hebei, China
| | - Xiaojian Zhao
- Department of Thoracic Surgery, Shijiazhuang No. 1 Hospital, 36 Fanxi Road, 050011, Shijiazhuang, Hebei, China
| | - Zhe Li
- Department of Thoracic Surgery, Shijiazhuang No. 1 Hospital, 36 Fanxi Road, 050011, Shijiazhuang, Hebei, China
| | - Huixian Li
- Department of Thoracic Surgery, Shijiazhuang No. 1 Hospital, 36 Fanxi Road, 050011, Shijiazhuang, Hebei, China
| | - Bing Zhang
- Department of Thoracic Surgery, Shijiazhuang No. 1 Hospital, 36 Fanxi Road, 050011, Shijiazhuang, Hebei, China
| | - Baolei Lv
- Department of Thoracic Surgery, Shijiazhuang No. 1 Hospital, 36 Fanxi Road, 050011, Shijiazhuang, Hebei, China
| | - Jiabao Liu
- Department of Thoracic Surgery, Shijiazhuang No. 1 Hospital, 36 Fanxi Road, 050011, Shijiazhuang, Hebei, China
| |
Collapse
|
10
|
Yan D, Liu X, Xu H, Guo SW. Mesothelial Cells Participate in Endometriosis Fibrogenesis Through Platelet-Induced Mesothelial-Mesenchymal Transition. J Clin Endocrinol Metab 2020; 105:5894452. [PMID: 32813013 DOI: 10.1210/clinem/dgaa550] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
Abstract
CONTEXT While fibrosis in endometriosis has recently loomed prominently, the sources of myofibroblasts, the principal effector cell in fibrotic diseases, remain largely obscure. Mesothelial cells (MCs) can be converted into myofibroblasts through mesothelial-mesenchymal transition (MMT) in many fibrotic diseases and adhesion. OBJECTIVE To evaluate whether MCs contribute to the progression and fibrogenesis in endometriosis through MMT. SETTING, DESIGN, PATIENTS, INTERVENTION, AND MAIN OUTCOME MEASURES Dual immunofluorescence staining and immunohistochemistry using antibodies against calretinin, Wilms' tumor-1 (WT-1), and α-smooth muscle actin (α-SMA) were performed on lesion samples from 30 patients each with ovarian endometrioma (OE) and deep endometriosis (DE), and 30 normal endometrial (NE) tissue samples. Human pleural and peritoneal MCs were co-cultured with activated platelets or control medium with and without neutralization of transforming growth factor β1 (TGF-β1) and/or platelet-derived growth factor receptor (PDGFR) and their morphology, proliferation, and expression levels of genes and proteins known to be involved in MMT were evaluated, along with their migratory and invasive propensity, contractility, and collagen production. RESULTS The number of calretinin/WT-1 and α-SMA dual-positive fibroblasts in OE/DE lesions was significantly higher than NE samples. The extent of lesional fibrosis correlated positively with the lesional α-SMA staining levels. Human MCs co-cultured with activated platelets acquire a morphology suggestive of MMT, concomitant with increased proliferation, loss of calretinin expression, and marked increase in expression of mesenchymal markers. These changes coincided with functional differentiation as reflected by increased migratory and invasive capacity, contractility, and collagen production. Neutralization of TGF-β1 and PDGFR signaling abolished platelet-induced MMT in MCs. CONCLUSIONS MCs contribute to lesional progression and fibrosis through platelet-induced MMT.
Collapse
Affiliation(s)
- Dingmin Yan
- Shanghai OB/GYN Hospital, Fudan University, Shanghai, China
| | - Xishi Liu
- Shanghai OB/GYN Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China
| | - Hong Xu
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Sun-Wei Guo
- Shanghai OB/GYN Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China
| |
Collapse
|
11
|
IL-17A as a Potential Therapeutic Target for Patients on Peritoneal Dialysis. Biomolecules 2020; 10:biom10101361. [PMID: 32987705 PMCID: PMC7598617 DOI: 10.3390/biom10101361] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease (CKD) is a health problem reaching epidemic proportions. There is no cure for CKD, and patients may progress to end-stage renal disease (ESRD). Peritoneal dialysis (PD) is a current replacement therapy option for ESRD patients until renal transplantation can be achieved. One important problem in long-term PD patients is peritoneal membrane failure. The mechanisms involved in peritoneal damage include activation of the inflammatory and immune responses, associated with submesothelial immune infiltrates, angiogenesis, loss of the mesothelial layer due to cell death and mesothelial to mesenchymal transition, and collagen accumulation in the submesothelial compact zone. These processes lead to fibrosis and loss of peritoneal membrane function. Peritoneal inflammation and membrane failure are strongly associated with additional problems in PD patients, mainly with a very high risk of cardiovascular disease. Among the inflammatory mediators involved in peritoneal damage, cytokine IL-17A has recently been proposed as a potential therapeutic target for chronic inflammatory diseases, including CKD. Although IL-17A is the hallmark cytokine of Th17 immune cells, many other cells can also produce or secrete IL-17A. In the peritoneum of PD patients, IL-17A-secreting cells comprise Th17 cells, γδ T cells, mast cells, and neutrophils. Experimental studies demonstrated that IL-17A blockade ameliorated peritoneal damage caused by exposure to PD fluids. This article provides a comprehensive review of recent advances on the role of IL-17A in peritoneal membrane injury during PD and other PD-associated complications.
Collapse
|
12
|
Increased miR-7641 Levels in Peritoneal Hyalinizing Vasculopathy in Long-Term Peritoneal Dialysis Patients. Int J Mol Sci 2020; 21:ijms21165824. [PMID: 32823722 PMCID: PMC7461593 DOI: 10.3390/ijms21165824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Peritoneal hyalinizing vasculopathy (PHV) represents the cornerstone of long-term peritoneal dialysis (PD), and especially characterizes patients associated with encapsulating peritoneal sclerosis. However, the mechanisms of PHV development remain unknown. A cross sectional study was performed in 100 non-selected peritoneal biopsies of PD patients. Clinical data were collected and lesions were evaluated by immunohistochemistry. In selected biopsies a microRNA (miRNA)-sequencing analysis was performed. Only fifteen patients (15%) showed PHV at different degrees. PHV prevalence was significantly lower among patients using PD fluids containing low glucose degradation products (GDP) (5.9% vs. 24.5%), angiotensin converting enzyme inhibitors (ACEIs) (7.5% vs. 23.4%), statins (6.5% vs. 22.6%) or presenting residual renal function, suggesting the existence of several PHV protective factors. Peritoneal biopsies from PHV samples showed loss of endothelial markers and induction of mesenchymal proteins, associated with collagen IV accumulation and wide reduplication of the basement membrane. Moreover, co-expression of endothelial and mesenchymal markers, as well as TGF-β1/Smad3 signaling activation were found in PHV biopsies. These findings suggest that an endothelial-to-mesenchymal transition (EndMT) process was taking place. Additionally, significantly higher levels of miR-7641 were observed in severe PHV compared to non-PHV peritoneal biopsies. Peritoneal damage by GDPs induce miRNA deregulation and an EndMT process in submesothelial vessels, which could contribute to collagen IV accumulation and PHV.
Collapse
|
13
|
Kang DH. Loosening of the mesothelial barrier as an early therapeutic target to preserve peritoneal function in peritoneal dialysis. Kidney Res Clin Pract 2020; 39:136-144. [PMID: 32576713 PMCID: PMC7321674 DOI: 10.23876/j.krcp.20.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/21/2022] Open
Abstract
Phenotype transition of peritoneal mesothelial cells (MCs) including the epithelial-to-mesenchymal transition (EMT) is regarded as an early mechanism of peritoneal dysfunction and fibrosis in peritoneal dialysis (PD), producing proinflammatory and pro-fibrotic milieu in the intra-peritoneal cavity. Loosening of intercellular tight adhesion between adjacent MCs as an initial process of EMT creates the environment where mesothelium and submesothelial tissue are more vulnerable to the composition of bio-incompatible dialysates, reactive oxygen species, and inflammatory cytokines. In addition, down-regulation of epithelial cell markers such as E-cadherin facilitates de novo acquisition of mesenchymal phenotypes in MCs and production of extracellular matrices. Major mechanisms underlying the EMT of MCs include induction of oxidative stress, pro-inflammatory cytokines, endoplasmic reticulum stress and activation of the local renin-angiotensin system. Another mechanism of peritoneal EMT is mitigation of intrinsic defense mechanisms such as the peritoneal antioxidant system and anti-fibrotic peptide production in the peritoneal cavity. In addition to use of less bio-incompatible dialysates and optimum treatment of peritonitis in PD, therapies to prevent or alleviate peritoneal EMT have demonstrated a favorable effect on peritoneal function and structure, suggesting that EMT can be an early interventional target to preserve peritoneal integrity.
Collapse
Affiliation(s)
- Duk-Hee Kang
- Division of Nephrology, Department of Internal Medicine, Ewha Womans University School of Medicine, Ewha Medical Research Center, Seoul, Republic of Korea
| |
Collapse
|
14
|
Lin GJ, Wu CH, Yu CC, Lin JR, Liu XD, Chen YW, Chang HM, Hong ZJ, Cheng CP, Sytwu HK, Huang SH. Adoptive transfer of DMSO-induced regulatory T cells exhibits a similar preventive effect compared to an in vivo DMSO treatment for chemical-induced experimental encapsulating peritoneal sclerosis in mice. Toxicol Appl Pharmacol 2019; 378:114641. [PMID: 31254568 DOI: 10.1016/j.taap.2019.114641] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 11/29/2022]
Abstract
Encapsulating peritoneal sclerosis (EPS) is a severe complication of peritoneal dialysis (PD). This disease leads to intestinal obstruction with or without peritonitis. The imbalance between the populations of Th17 and regulatory T (Treg) cells (higher Th17 cells and lower Treg cells) is part of the pathogenesis of EPS formation. We demonstrated that dimethyl sulfoxide (DMSO) effectively inhibited autoimmune diabetes recurrence in the islet transplantation of NOD mice via the induction of the differentiation of Treg cells. In this study, we investigated the therapeutic potential of DMSO in the inhibition of EPS formation by a mouse model. Under DMSO treatment, the thickening of the parietal and visceral peritoneum was significantly reduced. The populations of CD4, CD8, and IFN-γ-producing CD4 and CD8 T cells were decreased. The populations of IL-4-producing CD4 T lymphocytes, IL-10-producing CD4 T lymphocytes, CD4 CD69 T lymphocytes and Treg lymphocytes were increased. The expression levels of the cytokines IFN-γ, IL-17a, TNF-α and IL-23, in ascites, were significantly decreased following the DMSO treatment. Furthermore, the differentiation of Treg cells was induced by DMSO from naïve CD4 T cells in vitro, and these cells were adoptively transferred into the EPS mice and significantly prevented EPS formation, exhibiting a comparable effect to the in vivo DMSO treatment. We also demonstrated that the differentiation of Treg cells by DMSO occurred via the activation of STAT5 by its epigenetic effect, without altering the PI3K-AKT-mTOR or Raf-ERK pathways. Our results demonstrated, for the first time, that in vivo DMSO treatment suppresses EPS formation in a mouse model. Furthermore, the adoptive transfer of Treg cells that were differentiated from naïve CD4 T cells by an in vitro DMSO treatment exhibited a similar effect to the in vivo DMSO treatment for the prevention of EPS formation.
Collapse
Affiliation(s)
- Gu-Jiun Lin
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chih-Hsiung Wu
- Department of General Surgery, En Chu Kong Hospital, New Taipei, Taiwan, Republic of China
| | - Chiao-Chi Yu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, Republic of China; Department of General Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Jeng-Rong Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Xiao-Dong Liu
- Department of General Surgery, En Chu Kong Hospital, New Taipei, Taiwan, Republic of China
| | - Yuan-Wu Chen
- School of Dentistry, National Defense Medical Center, Taipei, Taiwan, Republic of China; Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Hao-Ming Chang
- Department of General Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Zhi-Jie Hong
- Department of General Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chia-Pi Cheng
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Huey-Kang Sytwu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli County, Taiwan, Republic of China; Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Shing-Hwa Huang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, Republic of China; Department of General Surgery, En Chu Kong Hospital, New Taipei, Taiwan, Republic of China; Department of General Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China.
| |
Collapse
|
15
|
Li Q, Li B, Li Q, Wei S, He Z, Huang X, Wang L, Xia Y, Xu Z, Li Z, Wang W, Yang L, Zhang D, Xu Z. Exosomal miR-21-5p derived from gastric cancer promotes peritoneal metastasis via mesothelial-to-mesenchymal transition. Cell Death Dis 2018; 9:854. [PMID: 30154401 PMCID: PMC6113299 DOI: 10.1038/s41419-018-0928-8] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/25/2018] [Accepted: 07/30/2018] [Indexed: 02/08/2023]
Abstract
Peritoneal metastasis is a primary metastatic route for gastric cancers, and the mechanisms underlying this process are still unclear. Peritoneal mesothelial cells (PMCs) undergo mesothelial-to-mesenchymal transition (MMT) to provide a favorable environment for metastatic cancer cells. In this study, we investigated how the exosomal miR-21-5p induces MMT and promotes peritoneal metastasis. Gastric cancer (GC)-derived exosomes were identified by transmission electron microscopy and western blot analysis, then the uptake of exosomes was confirmed by PKH-67 staining. The expression of miR-21-5p and SMAD7 were measured by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot, and the interactions between miR-21-5p and its target genes SMAD7 were confirmed by Luciferase reporter assays. The MMT of PMCs was determined by invasion assays, adhesion assays, immunofluorescent assay, and western blot. Meanwhile, mouse model of tumor peritoneal dissemination model was performed to investigate the role of exosomal miR-21-5p in peritoneal metastasis in vivo. We found that PMCs could internalize GC-derived exosomal miR-21-5p and led to increased levels of miR-21-5p in PMCs. Through various types of in vitro and in vivo assays, we confirmed that exosomal miR-21-5p was able to induce MMT of PMCs and promote tumor peritoneal metastasis. Moreover, our study revealed that this process was promoted by exosomal miR-21-5p through activating TGF-β/Smad pathway via targeting SMAD7. Altogether, our data suggest that exosomal miR-21-5p induces MMT of PMCs and promote cancer peritoneal dissemination by targeting SMAD7. The exosomal miR-21-5p may be a novel therapeutic target for GC peritoneal metastasis.
Collapse
Affiliation(s)
- Qiang Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Bowen Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Qing Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Song Wei
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Zhongyuan He
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Xiaoxu Huang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Lu Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Yiwen Xia
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Zhipeng Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Zheng Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Weizhi Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Li Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Diancai Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China.
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| |
Collapse
|
16
|
González-Mateo GT, Pascual-Antón L, Sandoval P, Aguilera Peralta A, López-Cabrera M. Surgical Techniques for Catheter Placement and 5/6 Nephrectomy in Murine Models of Peritoneal Dialysis. J Vis Exp 2018. [PMID: 30080204 DOI: 10.3791/56746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Peritoneal dialysis (PD) is a renal replacement therapy consistent on the administration and posterior recovery of a hyperosmotic fluid in the peritoneal cavity to drain water and toxic metabolites that functionally-insufficient kidneys are not able to eliminate. Unfortunately, this procedure deteriorates the peritoneum. Tissue damage triggers the onset of inflammation to heal the injury. If the injury persists and inflammation becomes chronic, it may lead to fibrosis, which is a common occurrence in many diseases. In PD, chronic inflammation and fibrosis, along with other specific processes related to these ones, lead to ultrafiltration capacity deterioration, which means the failure and subsequent cessation of the technique. Working with human samples provides information about this deterioration but presents technical and ethical limitations to obtain biopsies. Animal models are essential to study this deterioration since they overcome these shortcomings. A chronic mouse infusion model was developed in 2008, which benefits from the wide range of genetically modified mice, opening up the possibility of studying the mechanisms involved. This model employs a customized device designed for mice, consisting of a catheter attached to an access port that is placed subcutaneously at the back of the animal. This procedure avoids continuous puncture of the peritoneum during long-term experiments, reducing infections and inflammation due to injections. Thanks to this model, peritoneal damage induced by chronic PD fluid exposure has been characterized and modulated. This technique allows the infusion of large volumes of fluids and could be used for the study of other diseases in which inoculation of drugs or other substances over extended periods of time is necessary. This article shows the method for the surgical placement of the catheter in mice. Moreover, it explains the procedure for a 5/6 nephrectomy to mimic the state of renal insufficiency present in PD patients.
Collapse
Affiliation(s)
- Guadalupe Tirma González-Mateo
- Molecular Biology Research Centre Severo Ochoa, Spanish National Research Council; IdiPAZ Research Institute, La Paz University Hospital;
| | - Lucía Pascual-Antón
- Molecular Biology Research Centre Severo Ochoa, Spanish National Research Council
| | - Pilar Sandoval
- Molecular Biology Research Centre Severo Ochoa, Spanish National Research Council
| | | | - Manuel López-Cabrera
- Molecular Biology Research Centre Severo Ochoa, Spanish National Research Council
| |
Collapse
|
17
|
Masola V, Granata S, Bellin G, Gambaro G, Onisto M, Rugiu C, Lupo A, Zaza G. Specific heparanase inhibition reverses glucose-induced mesothelial-to-mesenchymal transition. Nephrol Dial Transplant 2018; 32:1145-1154. [PMID: 28064160 DOI: 10.1093/ndt/gfw403] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/10/2016] [Indexed: 01/19/2023] Open
Abstract
Background Epithelial-to-mesenchymal transition (EMT) of peritoneal mesothelial cells induced by high glucose (HG) levels is a major biological mechanism leading to myofibroblast accumulation in the omentum of patients on peritoneal dialysis (PD). Heparanase (HPSE), an endoglycosidase that cleaves heparan sulfate chains, is involved in the EMT of several cell lines, and may have a major role in this pro-fibrotic process potentially responsible for the failure of dialysis. Its specific inhibition may therefore plausibly minimize this pathological condition. Methods An in vitro study employing several biomolecular strategies was conducted to assess the role of HPSE in the HG-induced mesothelial EMT process, and to measure the effects of its specific inhibition by SST0001, a N-acetylated glycol-split heparin with a strong anti-HPSE activity. Rat mesothelial cells were grown for 6 days in HG (200 mM) culture medium with or without SST0001. Then EMT markers (VIM, α-SMA, TGF-β) and vascular endothelial growth factor (VEGF) (a factor involved in neoangiogenesis) were measured by real-time PCR and immunofluorescence/western blotting. As a functional analysis, trans-epithelial resistance (TER) and permeability to albumin were also measured in our in vitro model using a Millicell-ERS ohmmeter and a spectrophotometer, respectively. Results Our results showed that 200 mM of glucose induced a significant gene and protein up-regulation of VEGF and all EMT markers after 6 days of culture. Intriguingly, adding SST0001 on day 3 reversed these biological and cellular effects. HPSE inhibition also restored the normal TER and permeability lost during the HG treatment. Conclusion Taken together, our data confirm that HG can induce EMT of mesothelial cells, and that HPSE plays a central part in this process. Our findings also suggest that pharmacological HPSE inhibition could prove a valuable therapeutic tool for minimizing fibrosis and avoiding a rapid decline in the efficacy of dialysis in patients on PD, though clinical studies and/or trials would be needed to confirm the clinical utility of this treatment.
Collapse
Affiliation(s)
- Valentina Masola
- Renal Unit, Department of Medicine, Verona University Hospital, Verona, Italy
| | - Simona Granata
- Renal Unit, Department of Medicine, Verona University Hospital, Verona, Italy
| | - Gloria Bellin
- Renal Unit, Department of Medicine, Verona University Hospital, Verona, Italy
| | - Giovanni Gambaro
- Nephrology and Dialysis Division, Columbus-Gemelli Hospital, Catholic University School of Medicine, Rome, Italy
| | - Maurizio Onisto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Carlo Rugiu
- Renal Unit, Department of Medicine, Verona University Hospital, Verona, Italy
| | - Antonio Lupo
- Renal Unit, Department of Medicine, Verona University Hospital, Verona, Italy
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, Verona University Hospital, Verona, Italy
| |
Collapse
|
18
|
Wang Q, Yang X, Xu Y, Shen Z, Cheng H, Cheng F, Liu X, Wang R. RhoA/Rho-kinase triggers epithelial-mesenchymal transition in mesothelial cells and contributes to the pathogenesis of dialysis-related peritoneal fibrosis. Oncotarget 2018; 9:14397-14412. [PMID: 29581852 PMCID: PMC5865678 DOI: 10.18632/oncotarget.24208] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 12/05/2017] [Indexed: 12/22/2022] Open
Abstract
Peritoneal fibrosis (PF) with associated peritoneal dysfunction is almost invariably observed in long-term peritoneal dialysis (PD) patients. Advanced glycation end products (AGEs) are pro-oxidant compounds produced in excess during the metabolism of glucose and are present in high levels in standard PD solutions. The GTPase RhoA has been implicated in PF, but its specific role remains poorly understood. Here, we studied the effects of RhoA/Rho-kinase signaling in AGEs-induced epithelial-mesenchymal transition (EMT) in human peritoneal mesothelial cells (HPMCs), and evaluated morphological and molecular changes in a rat model of PD-related PF. Activation of RhoA/Rho-kinase and activating protein-1 (AP-1) was assessed in HPMCs using pull-down and electrophoretic mobility shift assays, respectively, while expression of transforming growth factor-β, fibronectin, α-smooth muscle actin, vimentin, N-cadherin, and E-cadherin expression was assessed using immunohistochemistry and western blot. AGEs exposure activated Rho/Rho-kinase in HPMCs and upregulated EMT-related genes via AP-1. These changes were prevented by the Rho-kinase inhibitors fasudil and Y-27632, and by the AP-1 inhibitor curcumin. Importantly, fasudil normalized histopathological and molecular alterations and preserved peritoneal function in rats. These data support the therapeutic potential of Rho-kinase inhibitors in PD-related PF.
Collapse
Affiliation(s)
- Qinglian Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xiaowei Yang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Ying Xu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Zhenwei Shen
- Department of Biostatistics, School of Public Health, Shandong University, Jinan, China
| | - Hongxia Cheng
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Fajuan Cheng
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xiang Liu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
19
|
Abstract
Peritoneal dialysis (PD) is a successfully used method for renal replacement therapy. However, long-term PD may be associated with peritoneal fibrosis and ultrafiltration failure. The key factors linked to their appearance are repeated episodes of inflammation associated with peritonitis and long-term exposure to bioincompatible PD fluids. Different strategies have been proposed to preserve the peritoneal membrane. This article reviews the functional and structural alterations related to PD and strategies whereby we may prevent them to preserve the peritoneal membrane. The use of new, more biocompatible, PD solutions is promising, although further morphologic studies in patients using these solutions are needed. Blockade of the renin-angiotensin-aldosterone system appears to be efficacious and strongly should be considered. Other agents have been proven in experimental studies, but most of them have not yet been tested appropriately in human beings.
Collapse
Affiliation(s)
- M Auxiliadora Bajo
- Home Dialysis Unit, Nephrology Department, La Paz University Hospital, Madrid, Spain.
| | - Gloria Del Peso
- University Autónoma of Madrid, Hospital La Paz Institute for Health Research, Spanish Renal Research Network, Reina Sofia Institute for Nephrology Research, Madrid, Spain
| | - Isaac Teitelbaum
- Home Dialysis Program, University of Colorado Hospital, University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|
20
|
Liappas G, González-Mateo G, Aguirre AR, Abensur H, Albar-Vizcaino P, Parra EG, Sandoval P, Ramírez LG, Del Peso G, Acedo JM, Bajo MA, Selgas R, Sánchez Tomero JA, López-Cabrera M, Aguilera A. Nebivolol, a β1-adrenergic blocker, protects from peritoneal membrane damage induced during peritoneal dialysis. Oncotarget 2017; 7:30133-46. [PMID: 27102153 PMCID: PMC5058669 DOI: 10.18632/oncotarget.8780] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 03/31/2016] [Indexed: 01/26/2023] Open
Abstract
Peritoneal dialysis (PD) is a form of renal replacement treatment, which employs the peritoneal membrane (PM) to eliminate toxins that cannot be removed by the kidney. The procedure itself, however, contributes to the loss of the PM ultrafiltration capacity (UFC), leading consequently to the technique malfunction. β-blockers have been considered deleterious for PM due to their association with loss of UFC and induction of fibrosis. Herein we analyzed the effects of Nebivolol, a new generation of β1-blocker, on PM alterations induced by PD fluids (PDF). In vitro: We found that mesothelial cells (MCs) express β1-adrenergic receptor. MCs were treated with TGF-β to induce mesothelial-to-mesenchymal transition (MMT) and co-treated with Nebivolol. Nebivolol reversed the TGF-β effects, decreasing extracellular matrix synthesis, and improved the fibrinolytic capacity, decreasing plasminogen activator inhibitor-1 (PAI-1) and increasing tissue-type plasminogen activator (tPA) supernatant levels. Moreover, Nebivolol partially inhibited MMT and decreased vascular endothelial growth factor (VEGF) and IL-6 levels in supernatants. In vivo: Twenty-one C57BL/6 mice were divided into 3 groups. Control group carried a catheter without PDF infusion. Study group received intraperitoneally PDF and oral Nebivolol during 30 days. PDF group received PDF alone. Nebivolol maintained the UFC and reduced PM thickness, MMT and angiogenesis promoted by PDF. It also improved the fibrinolytic capacity in PD effluents decreasing PAI-1 and IL-8 and increased tPA levels. Conclusion: Nebivolol protects PM from PDF-induced damage, promoting anti-fibrotic, anti-angiogenic, anti-inflammatory and pro-fibrinolytic effects.
Collapse
Affiliation(s)
- Georgios Liappas
- Immunology and Cellular Biology Department, Molecular Biology Centre Severo Ochoa, Madrid, Spain
| | - Guadalupe González-Mateo
- Immunology and Cellular Biology Department, Molecular Biology Centre Severo Ochoa, Madrid, Spain
| | - Anna Rita Aguirre
- Nephrology Department, University of Sao Paulo, School of Medicine, Sao Paulo, Brazil
| | - Hugo Abensur
- Nephrology Department, University of Sao Paulo, School of Medicine, Sao Paulo, Brazil
| | - Patricia Albar-Vizcaino
- Molecular Biology Unit and Nephrology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - Emilio González Parra
- Nephrology Department, Fundación Jiménez-Díaz, Instituto de Investigación Sanitaria, Madrid, Spain
| | - Pilar Sandoval
- Immunology and Cellular Biology Department, Molecular Biology Centre Severo Ochoa, Madrid, Spain
| | - Laura García Ramírez
- Molecular Biology Unit and Nephrology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - Gloria Del Peso
- Nephrology Department, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | | | - María A Bajo
- Nephrology Department, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Rafael Selgas
- Nephrology Department, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - José A Sánchez Tomero
- Molecular Biology Unit and Nephrology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - Manuel López-Cabrera
- Immunology and Cellular Biology Department, Molecular Biology Centre Severo Ochoa, Madrid, Spain
| | - Abelardo Aguilera
- Molecular Biology Unit and Nephrology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| |
Collapse
|
21
|
Biomarker research to improve clinical outcomes of peritoneal dialysis: consensus of the European Training and Research in Peritoneal Dialysis (EuTRiPD) network. Kidney Int 2017; 92:824-835. [PMID: 28797473 DOI: 10.1016/j.kint.2017.02.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/16/2017] [Accepted: 02/27/2017] [Indexed: 12/15/2022]
Abstract
Peritoneal dialysis (PD) therapy substantially requires biomarkers as tools to identify patients who are at the highest risk for PD-related complications and to guide personalized interventions that may improve clinical outcome in the individual patient. In this consensus article, members of the European Training and Research in Peritoneal Dialysis Network (EuTRiPD) review the current status of biomarker research in PD and suggest a selection of biomarkers that can be relevant to the care of PD patients and that are directly accessible in PD effluents. Currently used biomarkers such as interleukin-6, interleukin-8, ex vivo-stimulated interleukin-6 release, cancer antigen-125, and advanced oxidation protein products that were collected through a Delphi procedure were first triaged for inclusion as surrogate endpoints in a clinical trial. Next, novel biomarkers were selected as promising candidates for proof-of-concept studies and were differentiated into inflammation signatures (including interleukin-17, M1/M2 macrophages, and regulatory T cell/T helper 17), mesothelial-to-mesenchymal transition signatures (including microRNA-21 and microRNA-31), and signatures for senescence and inadequate cellular stress responses. Finally, the need for defining pathogen-specific immune fingerprints and phenotype-associated molecular signatures utilizing effluents from the clinical cohorts of PD patients and "omics" technologies and bioinformatics-biostatistics in future joint-research efforts was expressed. Biomarker research in PD offers the potential to develop valuable tools for improving patient management. However, for all biomarkers discussed in this consensus article, the association of biological rationales with relevant clinical outcomes remains to be rigorously validated in adequately powered, prospective, independent clinical studies.
Collapse
|
22
|
Sanchez-Martin D, Uldrick TS, Kwak H, Ohnuki H, Polizzotto MN, Annunziata CM, Raffeld M, Wyvill KM, Aleman K, Wang V, Marshall VA, Whitby D, Yarchoan R, Tosato G. Evidence for a Mesothelial Origin of Body Cavity Effusion Lymphomas. J Natl Cancer Inst 2017; 109:3078996. [PMID: 28376153 DOI: 10.1093/jnci/djx016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/20/2017] [Indexed: 12/19/2022] Open
Abstract
Background Primary effusion lymphoma (PEL) is a Kaposi's sarcoma herpes virus (KSHV)-induced lymphoma that typically arises in body cavities of HIV-infected patients. PEL cells are often co-infected with Epstein-Barr virus (EBV). "PEL-like" lymphoma is a KSHV-unrelated lymphoma that arises in body cavities of HIV-negative patients. "PEL-like" lymphoma is sometimes EBV positive. The derivation of PEL/"PEL-like" cells is unclear. Methods Mesothelial cells were cultured from body cavity effusions of 23 patients. Cell proliferation, cytokine secretion, marker phenotypes, KSHV/EBV infection, and clonality were evaluated by standard methods. Gene expression was measured by quantitative polymerase chain reaction and immunoblotting. A mouse model of PEL (3 mice/group) was used to evaluate tumorigenicity. Results We found that the mesothelia derived from six effusions of HIV-infected patients with PEL or other KSHV-associated diseases contained rare KSHV + or EBV + mesothelial cells. After extended culture (16-17 weeks), some mesothelial cells underwent a trans-differentiation process, generating lymphoid-type CD45 + /B220 + , CD5 + , CD27 + , CD43 + , CD11c + , and CD3 - cells resembling "B1-cells," most commonly found in mouse body cavities. These "B1-like" cells were short lived. However, long-term KSHV + EBV - and EBV + KSHV - clonal cell lines emerged from mesothelial cultures from two patients that were clonally distinct from the monoclonal or polyclonal B-cell populations found in the patients' original effusions. Conclusions Mesothelial-to-lymphoid transformation is a newly identified in vitro process that generates "B1-like" cells and is associated with the emergence of long-lived KSHV or EBV-infected cell lines in KSHV-infected patients. These results identify mesothelial cultures as a source of PEL cells and lymphoid cells in humans.
Collapse
Affiliation(s)
- David Sanchez-Martin
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Thomas S Uldrick
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Hyeongil Kwak
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Hidetaka Ohnuki
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Mark N Polizzotto
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Christina M Annunziata
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Mark Raffeld
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Kathleen M Wyvill
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Karen Aleman
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Victoria Wang
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Vickie A Marshall
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Denise Whitby
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Giovanna Tosato
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
23
|
Rynne-Vidal A, Au-Yeung CL, Jiménez-Heffernan JA, Pérez-Lozano ML, Cremades-Jimeno L, Bárcena C, Cristóbal-García I, Fernández-Chacón C, Yeung TL, Mok SC, Sandoval P, López-Cabrera M. Mesothelial-to-mesenchymal transition as a possible therapeutic target in peritoneal metastasis of ovarian cancer. J Pathol 2017; 242:140-151. [PMID: 28247413 PMCID: PMC5468005 DOI: 10.1002/path.4889] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/28/2016] [Accepted: 02/17/2017] [Indexed: 12/12/2022]
Abstract
Peritoneal dissemination is the primary metastatic route of ovarian cancer (OvCa), and is often accompanied by the accumulation of ascitic fluid. The peritoneal cavity is lined by mesothelial cells (MCs), which can be converted into carcinoma‐associated fibroblasts (CAFs) through mesothelial‐to‐mesenchymal transition (MMT). Here, we demonstrate that MCs isolated from ascitic fluid (AFMCs) of OvCa patients with peritoneal implants also undergo MMT and promote subcutaneous tumour growth in mice. RNA sequencing of AFMCs revealed that MMT‐related pathways – including transforming growth factor (TGF)‐β signalling – are differentially regulated, and a gene signature was verified in peritoneal implants from OvCa patients. In a mouse model, pre‐induction of MMT resulted in increased peritoneal tumour growth, whereas interfering with the TGF‐β receptor reduced metastasis. MC‐derived CAFs showed activation of Smad‐dependent TGF‐β signalling, which was disrupted in OvCa cells, despite their elevated TGF‐β production. Accordingly, targeting Smad‐dependent signalling in the peritoneal pre‐metastatic niche in mice reduced tumour colonization, suggesting that Smad‐dependent MMT could be crucial in peritoneal carcinomatosis. Together, these results indicate that bidirectional communication between OvCa cells and MC‐derived CAFs, via TGF‐β‐mediated MMT, seems to be crucial to form a suitable metastatic niche. We suggest MMT as a possible target for therapeutic intervention and a potential source of biomarkers for improving OvCa diagnosis and/or prognosis. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Angela Rynne-Vidal
- Centro de Biología Molecular-Severo Ochoa (CBMSO), Departamento de Biología Celular e Inmunología, Madrid, Spain.,Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chi Lam Au-Yeung
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - José A Jiménez-Heffernan
- Departamento de Anatomía Patológica, Hospital Universitario La Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - María Luisa Pérez-Lozano
- Centro de Biología Molecular-Severo Ochoa (CBMSO), Departamento de Biología Celular e Inmunología, Madrid, Spain
| | - Lucía Cremades-Jimeno
- Centro de Biología Molecular-Severo Ochoa (CBMSO), Departamento de Biología Celular e Inmunología, Madrid, Spain
| | - Carmen Bárcena
- Departamento de Anatomía Patológica, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | | | - Tsz Lun Yeung
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Samuel C Mok
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pilar Sandoval
- Centro de Biología Molecular-Severo Ochoa (CBMSO), Departamento de Biología Celular e Inmunología, Madrid, Spain
| | - Manuel López-Cabrera
- Centro de Biología Molecular-Severo Ochoa (CBMSO), Departamento de Biología Celular e Inmunología, Madrid, Spain
| |
Collapse
|
24
|
Zhang YF, Wang Q, Su YY, Wang JL, Hua BJ, Yang S, Feng JX, Li HY. PPAR‑γ agonist rosiglitazone protects rat peritoneal mesothelial cells against peritoneal dialysis solution‑induced damage. Mol Med Rep 2017; 15:1786-1792. [PMID: 28259952 DOI: 10.3892/mmr.2017.6196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 09/26/2016] [Indexed: 11/05/2022] Open
Abstract
Long-term peritoneal dialysis (PD) leads to ultrafiltration failure (UFF). Peritoneal mesothelial cells, which form the innermost monolayer of the peritoneal cavity, have been shown to regulate various responses, including inflammation, in UFF. The present study was designed to investigate the effect of the peroxisome proliferator‑activated receptor‑γ (PPAR‑γ) agonist, rosiglitazone, on peritoneal dialysis solution (PDS)‑induced injuries in rat peritoneal mesothelial cells (RPMCs). RPMCs were cultured for different durations and with different concentrations of PDS. The gene expression levels of aquaporin‑1 (AQP‑1) and zonula occluden‑1 (ZO‑1) were determined using reverse transcription‑quantitative polymerase chain reaction analysis. The protein levels of AQP‑1, ZO‑1 and PPAR‑γ were measured using western blot analysis. Interleukin (IL)‑6 and IL‑8 were detected using ELISA. The RPMCs were damaged by stimulation with 4.25% PDS for 72 h. The expression levels of AQP‑1 and ZO‑1 were increased, and the secretion of IL‑6 and IL‑8 were decreased by rosiglitazone. The use of the PPAR‑γ inhibitor, GW‑9662, completely prevented the effects of rosiglitazone. These results indicated that PDS exposure stimulated an inflammatory response in the RPMCs. The PPAR‑γ activator, rosiglitazone, appeared to relieve the injury by inhibiting inflammation, and regulating the expression of AQP‑1 and ZO‑1, however further investigations are required to elucidate the potential underlying mechanism.
Collapse
Affiliation(s)
- Yun-Fang Zhang
- Center of Kidney Disease, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Qi Wang
- Center of Kidney Disease, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Yan-Yan Su
- Center of Kidney Disease, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Jie-Lin Wang
- Center of Kidney Disease, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Bao-Jun Hua
- Center of Kidney Disease, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Shen Yang
- Center of Kidney Disease, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Jun-Xia Feng
- Center of Kidney Disease, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Hong-Yan Li
- Center of Kidney Disease, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| |
Collapse
|
25
|
Hirata H, Fumoto S, Miyamoto H, Nakashima M, Nakayama M, Nishida K. Evaluation for Peritoneal Injury at an Early Stage Using Dual Macromolecular Markers. Biol Pharm Bull 2017; 39:1581-1587. [PMID: 27725434 DOI: 10.1248/bpb.b15-01042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Long-term peritoneal dialysis (PD) frequently produces morphological and functional changes of the peritoneum, making continuation of PD difficult. Therefore, it is necessary to evaluate peritoneal injury at an early stage and develop appropriate therapies. The aims of the present study were to evaluate peritoneal injury at an early stage and assess a drug for prevention of peritoneal injury using our previously developed novel evaluation method. Peritoneal injury was induced in model animals by intraperitoneal injection of methylglyoxal (MGO) for 1 to 5 consecutive days or chlorhexidine digluconate (CG) for 1 to 14 consecutive days. Tetramethylrhodamine-dextran (RD)-10 and fluorescein isothiocyanate-dextran (FD)-2000 were then injected into the peritoneal cavity and recovered after 120 min to evaluate peritoneal injury. The ratio of the concentration of RD-10 to FD-2000 (RD-10/FD-2000 ratio) significantly decreased in animals that had been treated with MGO or CG for 1 d. Moreover, the RD-10/FD-2000 ratio significantly increased in CG- and thalidomide-treated animals. The RD-10/FD-2000 ratio can be used to evaluate peritoneal injury at an early stage and assess the drug efficacy of thalidomide for prevention of peritoneal injury. This study will contribute to the development of therapeutic treatments for peritoneal injury.
Collapse
Affiliation(s)
- Haruna Hirata
- Graduate School of Biomedical Sciences, Nagasaki University
| | | | | | | | | | | |
Collapse
|
26
|
Is there such a thing as biocompatible peritoneal dialysis fluid? Pediatr Nephrol 2017; 32:1835-1843. [PMID: 27722783 PMCID: PMC5579143 DOI: 10.1007/s00467-016-3461-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/01/2016] [Accepted: 07/01/2016] [Indexed: 10/31/2022]
Abstract
Introduction of the so-called biocompatible peritoneal dialysis (PD) fluids was based on a large body of experimental evidence and various clinical trials suggesting important clinical benefits. Of these, until now, only preservation of residual renal function-likely due to lower glucose degradation product load and, in case of icodextrin, improved fluid and blood pressure control-have consistently been proven, whereas the impact on important clinical endpoints such as infectious complications, preservation of PD membrane transport function, and patient outcome, are still debated. In view of the high morbidity and mortality rates of PD patients, novel approaches are warranted and comprise the search for alternative osmotic agents and enrichment of PD fluids with specific pharmacologic agents, such as alanyl-glutamine, potentially counteracting local but also systemic sequelae of uremia and PD.
Collapse
|
27
|
Rosiglitazone, a Peroxisome Proliferator-Activated Receptor (PPAR)-γ Agonist, Attenuates Inflammation Via NF-κB Inhibition in Lipopolysaccharide-Induced Peritonitis. Inflammation 2016; 38:2105-15. [PMID: 26047949 DOI: 10.1007/s10753-015-0193-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We assessed the anti-inflammatory effect of peroxisome proliferator-activated receptor (PPAR)-γ agonist, rosiglitazone, in a lipopolysaccharide (LPS)-induced peritonitis rat model. LPS was intraperitoneally injected into rats to establish peritonitis model. Male Sprague-Dawley (SD) rats were assigned to normal saline (the solvent of LPS), LPS, rosiglitazone plus LPS, and rosiglitazone alone. A simple peritoneal equilibrium test was performed with 20 ml 4.25 % peritoneal dialysis fluid. We measured the leukocyte count in dialysate and ultrafiltration volume. Peritoneal membrane histochemical staining was performed, and peritoneal thickness was assessed. CD40 and intercellular adhesion molecule-1 messenger RNA (ICAM-1 mRNA) levels in rat visceral peritoneum were detected by reverse transcription (RT)-PCR. IL-6 in rat peritoneal dialysis effluent was measured using enzyme-linked immunosorbent assay. The phosphorylation of NF-κB-p65 and IκBα was analyzed by Western blot. LPS administration resulted in increased peritoneal thickness and decreased ultrafiltration volume. Rosiglitazone pretreatment significantly decreased peritoneal thickness. In addition to CD40 and ICAM-1 mRNA expression, the IL-6, p-p65, and p-IκBα protein expressions were enhanced in LPS-administered animals. Rosiglitazone pretreatment significantly decreased ICAM-1 mRNA upregulation, secretion of IL-6 protein, and phosphorylation of NF-κB-p65 and IκBα without decreasing CD40 mRNA expression. Rosiglitazone has a protective effect in peritonitis, simultaneously decreasing NF-κB phosphorylation, suggesting that NF-κB signaling pathway mediated peritoneal inflammation induced by LPS. PPAR-γ might be considered a potential therapeutic target against peritonitis.
Collapse
|
28
|
Protein kinase C α inhibition prevents peritoneal damage in a mouse model of chronic peritoneal exposure to high-glucose dialysate. Kidney Int 2016; 89:1253-67. [DOI: 10.1016/j.kint.2016.01.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 12/23/2015] [Accepted: 01/07/2016] [Indexed: 12/27/2022]
|
29
|
Liappas G, González-Mateo GT, Sánchez-Díaz R, Lazcano JJ, Lasarte S, Matesanz-Marín A, Zur R, Ferrantelli E, Ramírez LG, Aguilera A, Fernández-Ruiz E, Beelen RHJ, Selgas R, Sánchez-Madrid F, Martín P, López-Cabrera M. Immune-Regulatory Molecule CD69 Controls Peritoneal Fibrosis. J Am Soc Nephrol 2016; 27:3561-3576. [PMID: 27151919 DOI: 10.1681/asn.2015080909] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 03/07/2016] [Indexed: 01/16/2023] Open
Abstract
Patients with ESRD undergoing peritoneal dialysis develop progressive peritoneal fibrosis, which may lead to technique failure. Recent data point to Th17-mediated inflammation as a key contributor in peritoneal damage. The leukocyte antigen CD69 modulates the setting and progression of autoimmune and inflammatory diseases by controlling the balance between Th17 and regulatory T cells (Tregs). However, the relevance of CD69 in tissue fibrosis remains largely unknown. Thus, we explored the role of CD69 in fibroproliferative responses using a mouse model of peritoneal fibrosis induced by dialysis fluid exposure under either normal or uremic status. We found that cd69-/- mice compared with wild-type (WT) mice showed enhanced fibrosis, mesothelial to mesenchymal transition, IL-17 production, and Th17 cell infiltration in response to dialysis fluid treatment. Uremia contributed partially to peritoneal inflammatory and fibrotic responses. Additionally, antibody-mediated CD69 blockade in WT mice mimicked the fibrotic response of cd69-/- mice. Finally, IL-17 blockade in cd69-/- mice decreased peritoneal fibrosis to the WT levels, and mixed bone marrow from cd69-/- and Rag2-/-γc-/- mice transplanted into WT mice reproduced the severity of the response to dialysis fluid observed in cd69-/- mice, showing that CD69 exerts its regulatory function within the lymphocyte compartment. Overall, our results indicate that CD69 controls tissue fibrosis by regulating Th17-mediated inflammation.
Collapse
Affiliation(s)
- Georgios Liappas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas Universidad Autónoma de Madrid, Madrid, Spain
| | - Guadalupe Tirma González-Mateo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas Universidad Autónoma de Madrid, Madrid, Spain
| | - Raquel Sánchez-Díaz
- Signaling and Inflammation Program, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Juan José Lazcano
- Signaling and Inflammation Program, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Sandra Lasarte
- Signaling and Inflammation Program, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Adela Matesanz-Marín
- Signaling and Inflammation Program, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Rafal Zur
- Department of Immunology and Oncology, Centro Nacional de Biotecnología Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Evelina Ferrantelli
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit University Medical Center Vrije Universiteit Medisch Centrum, Amsterdam, The Netherlands
| | | | | | | | - Robert H J Beelen
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit University Medical Center Vrije Universiteit Medisch Centrum, Amsterdam, The Netherlands
| | - Rafael Selgas
- Nephrology Department, Hospital Universitario La Paz, Instituto de Investigación Sanitaria La Paz, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Signaling and Inflammation Program, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.,Immunology Department, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain; and
| | - Pilar Martín
- Signaling and Inflammation Program, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain;
| | - Manuel López-Cabrera
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas Universidad Autónoma de Madrid, Madrid, Spain;
| |
Collapse
|
30
|
Sandoval P, Jiménez-Heffernan JA, Guerra-Azcona G, Pérez-Lozano ML, Rynne-Vidal Á, Albar-Vizcaíno P, Gil-Vera F, Martín P, Coronado MJ, Barcena C, Dotor J, Majano PL, Peralta AA, López-Cabrera M. Mesothelial-to-mesenchymal transition in the pathogenesis of post-surgical peritoneal adhesions. J Pathol 2016; 239:48-59. [DOI: 10.1002/path.4695] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/30/2015] [Accepted: 01/26/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Pilar Sandoval
- Centro de Biología Molecular-Severo Ochoa; CSIC. Cantoblanco; Madrid Spain
| | - José A Jiménez-Heffernan
- Departamento de Anatomía Patológica; Hospital Universitario La Princesa, Instituto de Investigación Sanitaria Princesa (IP); Madrid Spain
| | | | | | - Ángela Rynne-Vidal
- Centro de Biología Molecular-Severo Ochoa; CSIC. Cantoblanco; Madrid Spain
| | - Patricia Albar-Vizcaíno
- Unidad de Biología Molecular y Servicio de Nefrología, Hospital Universitario La Princesa; Instituto de Investigación Sanitaria Princesa (IP); Madrid Spain
| | | | - Paloma Martín
- Departamento de Anatomía Patológica; Hospital Universitario Puerta de Hierro; Madrid Spain
| | - María José Coronado
- Unidad de Microscopía Confocal, Instituto de Investigación Sanitaria Hospital Puerta de Hierro; Madrid Spain
| | - Carmen Barcena
- Departamento de Anatomía Patológica, Hospital Universitario 12 de Octubre; Madrid Spain
| | | | - Pedro Lorenzo Majano
- Unidad de Biología Molecular y Servicio de Nefrología, Hospital Universitario La Princesa; Instituto de Investigación Sanitaria Princesa (IP); Madrid Spain
| | - Abelardo Aguilera Peralta
- Unidad de Biología Molecular y Servicio de Nefrología, Hospital Universitario La Princesa; Instituto de Investigación Sanitaria Princesa (IP); Madrid Spain
| | | |
Collapse
|
31
|
Liu Y, Dong Z, Liu H, Zhu J, Liu F, Chen G. Transition of mesothelial cell to fibroblast in peritoneal dialysis: EMT, stem cell or bystander? Perit Dial Int 2015; 35:14-25. [PMID: 25700459 DOI: 10.3747/pdi.2014.00188] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Long-term peritoneal dialysis (PD) can lead to fibrotic changes in the peritoneum, characterized by loss of mesothelial cells (MCs) and thickening of the submesothelial area with an accumulation of collagen and myofibroblasts. The origin of myofibroblasts is a central question in peritoneal fibrosis that remains unanswered at present. Numerous clinical and experimental studies have suggested that MCs, through epithelial-mesenchymal transition (EMT), contribute to the pool of peritoneal myofibroblasts. However, recent work has placed significant doubts on the paradigm of EMT in organ fibrogenesis (in the kidney particularly), highlighting the need to reconsider the role of EMT in the generation of myofibroblasts in peritoneal fibrosis. In particular, selective cell isolation and lineage-tracing experiments have suggested the existence of progenitor cells in the peritoneum, which are able to switch to fibroblast-like cells when stimulated by the local environment. These findings highlight the plastic nature of MCs and its contribution to peritoneal fibrogenesis. In this review, we summarize the key findings and caveats of EMT in organ fibrogenesis, with a focus on PD-related peritoneal fibrosis, and discuss the potential of peritoneal MCs as a source of myofibroblasts.
Collapse
Affiliation(s)
- Yu Liu
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Department of Cellular Biology and Anatomy, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA
| | - Zheng Dong
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Department of Cellular Biology and Anatomy, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Department of Cellular Biology and Anatomy, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA
| | - Hong Liu
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Department of Cellular Biology and Anatomy, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA
| | - Jiefu Zhu
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Department of Cellular Biology and Anatomy, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA
| | - Fuyou Liu
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Department of Cellular Biology and Anatomy, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA
| | - Guochun Chen
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Department of Cellular Biology and Anatomy, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA
| |
Collapse
|
32
|
Fierro-Fernández M, Busnadiego Ó, Sandoval P, Espinosa-Díez C, Blanco-Ruiz E, Rodríguez M, Pian H, Ramos R, López-Cabrera M, García-Bermejo ML, Lamas S. miR-9-5p suppresses pro-fibrogenic transformation of fibroblasts and prevents organ fibrosis by targeting NOX4 and TGFBR2. EMBO Rep 2015; 16:1358-77. [PMID: 26315535 DOI: 10.15252/embr.201540750] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/20/2015] [Indexed: 02/06/2023] Open
Abstract
Uncontrolled extracellular matrix (ECM) production by fibroblasts in response to injury contributes to fibrotic diseases, including idiopathic pulmonary fibrosis (IPF). Reactive oxygen species (ROS) generation is involved in the pathogenesis of IPF. Transforming growth factor-β1 (TGF-β1) stimulates the production of NADPH oxidase 4 (NOX4)-dependent ROS, promoting lung fibrosis (LF). Dysregulation of microRNAs (miRNAs) has been shown to contribute to LF. To identify miRNAs involved in redox regulation relevant for IPF, we performed arrays in human lung fibroblasts exposed to ROS. miR-9-5p was selected as the best candidate and we demonstrate its inhibitory effect on TGF-β receptor type II (TGFBR2) and NOX4 expression. Increased expression of miR-9-5p abrogates TGF-β1-dependent myofibroblast phenotypic transformation. In the mouse model of bleomycin-induced LF, miR-9-5p dramatically reduces fibrogenesis and inhibition of miR-9-5p and prevents its anti-fibrotic effect both in vitro and in vivo. In lung specimens from patients with IPF, high levels of miR-9-5p are found. In omentum-derived mesothelial cells (MCs) from patients subjected to peritoneal dialysis (PD), miR-9-5p also inhibits mesothelial to myofibroblast transformation. We propose that TGF-β1 induces miR-9-5p expression as a self-limiting homeostatic response.
Collapse
Affiliation(s)
- Marta Fierro-Fernández
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Óscar Busnadiego
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Pilar Sandoval
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Cristina Espinosa-Díez
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Eva Blanco-Ruiz
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Macarena Rodríguez
- Department of Pathology, Hospital Universitario "Ramón y Cajal", IRYCIS, Madrid, Spain
| | - Héctor Pian
- Department of Pathology, Hospital Universitario "Ramón y Cajal", IRYCIS, Madrid, Spain
| | - Ricardo Ramos
- Genomic Facility, Parque Científico de Madrid, Madrid, Spain
| | - Manuel López-Cabrera
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Santiago Lamas
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
33
|
Ditsawanon P, Aramwit P. Preserving the peritoneal membrane in long-term peritoneal dialysis patients. J Clin Pharm Ther 2015; 40:508-516. [PMID: 26280248 DOI: 10.1111/jcpt.12318] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/20/2015] [Indexed: 12/24/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Peritoneal dialysis (PD) has been widely used by patients with end-stage renal disease. However, chronic exposure of the peritoneal membrane to bioincompatible PD solutions, and peritonitis and uraemia during long-term dialysis result in peritoneal membrane injury and thereby contribute to membrane changes, ultrafiltration (UF) failure, inadequate dialysis and technical failure. Therefore, preserving the peritoneal membrane is important to maintain the efficacy of PD. This article reviews the current literature on therapeutic agents for preserving the peritoneal membrane. METHODS A literature search of PubMed was conducted using the search terms peritoneal fibrosis, peritoneal sclerosis, membrane, integrity, preserve, therapy and peritoneal dialysis, but not including peritonitis. Published clinical trials, in vitro studies, experimental trials in animal models, meta-analyses and review articles were identified and reviewed for relevance. RESULTS AND DISCUSSION We focus on understanding how factors cause peritoneal membrane changes, the characteristics and mechanisms of peritoneal membrane changes in patients undergoing PD and the types of therapeutic agents for peritoneal membrane preservation. There have been many investigations into the preservation of the peritoneal membrane, including PD solution improvement, the inhibition of cytokine and growth factor expression using renin-angiotensin-aldosterone system (RAAS) blockade, glycosaminoglycans (GAGs), L-carnitine and taurine additives. In addition, there are potential future therapeutic agents that are still in experimental investigations. WHAT IS NEW AND CONCLUSION The efficacy of many of the therapeutic agents is uncertain because there are insufficient good-quality clinical studies. Overall membrane preservation and patient survival remain unproven in using more biocompatible PD solutions. With RAAS blockade, results are still inconclusive, as many of the clinical studies were retrospective. With GAGs, L-carnitine and taurine additives, there is no sufficiently long follow-up clinical study with a large sample size to support its efficacy. Therefore, better quality clinical studies within this area should be performed.
Collapse
Affiliation(s)
- P Ditsawanon
- Bioactive Resources for Innovative Clinical Applications Research Unit, Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - P Aramwit
- Bioactive Resources for Innovative Clinical Applications Research Unit, Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
34
|
Mutsaers SE, Birnie K, Lansley S, Herrick SE, Lim CB, Prêle CM. Mesothelial cells in tissue repair and fibrosis. Front Pharmacol 2015; 6:113. [PMID: 26106328 PMCID: PMC4460327 DOI: 10.3389/fphar.2015.00113] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/12/2015] [Indexed: 12/21/2022] Open
Abstract
Mesothelial cells are fundamental to the maintenance of serosal integrity and homeostasis and play a critical role in normal serosal repair following injury. However, when normal repair mechanisms breakdown, mesothelial cells take on a profibrotic role, secreting inflammatory, and profibrotic mediators, differentiating and migrating into the injured tissues where they contribute to fibrogenesis. The development of new molecular and cell tracking techniques has made it possible to examine the origin of fibrotic cells within damaged tissues and to elucidate the roles they play in inflammation and fibrosis. In addition to secreting proinflammatory mediators and contributing to both coagulation and fibrinolysis, mesothelial cells undergo mesothelial-to-mesenchymal transition, a process analogous to epithelial-to-mesenchymal transition, and become fibrogenic cells. Fibrogenic mesothelial cells have now been identified in tissues where they have not previously been thought to occur, such as within the parenchyma of the fibrotic lung. These findings show a direct role for mesothelial cells in fibrogenesis and open therapeutic strategies to prevent or reverse the fibrotic process.
Collapse
Affiliation(s)
- Steven E Mutsaers
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia and Harry Perkins Institute of Medical Research , Nedlands, WA, Australia ; Institute for Respiratory Health, Centre for Asthma, Allergy and Respiratory Research, School of Medicine and Pharmacology, University of Western Australia , Nedlands, WA, Australia
| | - Kimberly Birnie
- Institute for Respiratory Health, Centre for Asthma, Allergy and Respiratory Research, School of Medicine and Pharmacology, University of Western Australia , Nedlands, WA, Australia
| | - Sally Lansley
- Institute for Respiratory Health, Centre for Asthma, Allergy and Respiratory Research, School of Medicine and Pharmacology, University of Western Australia , Nedlands, WA, Australia
| | - Sarah E Herrick
- Institute of Inflammation and Repair, Faculty of Medical and Human Sciences and Manchester Academic Health Science Centre, University of Manchester , Manchester, UK
| | - Chuan-Bian Lim
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia and Harry Perkins Institute of Medical Research , Nedlands, WA, Australia ; Institute for Respiratory Health, Centre for Asthma, Allergy and Respiratory Research, School of Medicine and Pharmacology, University of Western Australia , Nedlands, WA, Australia
| | - Cecilia M Prêle
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia and Harry Perkins Institute of Medical Research , Nedlands, WA, Australia ; Institute for Respiratory Health, Centre for Asthma, Allergy and Respiratory Research, School of Medicine and Pharmacology, University of Western Australia , Nedlands, WA, Australia
| |
Collapse
|
35
|
Su X, Yu R, Yang X, Zhou G, Wang Y, Li L, Li D. Telmisartan attenuates peritoneal fibrosis via peroxisome proliferator-activated receptor-γactivation in rats. Clin Exp Pharmacol Physiol 2015; 42:671-9. [PMID: 25867712 DOI: 10.1111/1440-1681.12403] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/24/2015] [Accepted: 04/02/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Xuesong Su
- Department of Nephrology; Shengjing Hospital of China Medical University; Shenyang China
| | - Rui Yu
- Department of Nephrology; Shengjing Hospital of China Medical University; Shenyang China
| | - Xu Yang
- Department of Nephrology; Shengjing Hospital of China Medical University; Shenyang China
| | - Guangyu Zhou
- Department of Nephrology; Shengjing Hospital of China Medical University; Shenyang China
| | - Yanqiu Wang
- Department of Nephrology; Shengjing Hospital of China Medical University; Shenyang China
| | - Li Li
- Department of Nephrology; Shengjing Hospital of China Medical University; Shenyang China
| | - Detian Li
- Department of Nephrology; Shengjing Hospital of China Medical University; Shenyang China
| |
Collapse
|
36
|
T Helper 17/Regulatory T Cell Balance and Experimental Models of Peritoneal Dialysis-Induced Damage. BIOMED RESEARCH INTERNATIONAL 2015; 2015:416480. [PMID: 26064907 PMCID: PMC4433660 DOI: 10.1155/2015/416480] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/29/2014] [Indexed: 02/06/2023]
Abstract
Fibrosis is a general complication in many diseases. It is the main complication during peritoneal dialysis (PD) treatment, a therapy for renal failure disease. Local inflammation and mesothelial to mesenchymal transition (MMT) are well known key phenomena in peritoneal damage during PD. New data suggest that, in the peritoneal cavity, inflammatory changes may be regulated at least in part by a delicate balance between T helper 17 and regulatory T cells. This paper briefly reviews the implication of the Th17/Treg-axis in fibrotic diseases. Moreover, it compares current evidences described in PD animal experimental models, indicating a loss of Th17/Treg balance (Th17 predominance) leading to peritoneal damage during PD. In addition, considering the new clinical and animal experimental data, new therapeutic strategies to reduce the Th17 response and increase the regulatory T response are proposed. Thus, future goals should be to develop new clinical biomarkers to reverse this immune misbalance and reduce peritoneal fibrosis in PD.
Collapse
|
37
|
Farhat K, Stavenuiter AWD, Beelen RHJ, Ter Wee PM. Pharmacologic targets and peritoneal membrane remodeling. Perit Dial Int 2014; 34:114-23. [PMID: 24525599 DOI: 10.3747/pdi.2011.00332] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Peritoneal dialysis (PD) is associated with functional and structural changes of the peritoneal membrane, also known as peritoneal remodeling. The peritoneal membrane is affected by many endogenous and exogenous factors such as cytokines, PD fluids, and therapeutic interventions. Here, we present an overview of various studies that have investigated pharmacologic interventions aimed at regression of peritoneal damage and prolongation of PD treatment.
Collapse
Affiliation(s)
- Karima Farhat
- Department of Nephrology,1 VU University Medical Center, and Department of Molecular Cell Biology and Immunology,2 VU University, Amsterdam, Netherlands
| | | | | | | |
Collapse
|
38
|
Kihm LP, Müller-Krebs S, Holoch S, Schmuck S, Becker LE, Brownlee M, Zeier M, Fleming TH, Nawroth PP, Schwenger V. Increased peritoneal damage in glyoxalase 1 knock-down mice treated with peritoneal dialysis. Nephrol Dial Transplant 2014; 30:401-9. [PMID: 25387474 DOI: 10.1093/ndt/gfu346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Peritoneal dialysis (PD) is limited by peritoneal fibrosis and ultrafiltration failure. This is in part caused by the high concentration of glucose degradation products (GDPs) present in PD fluids (PDF) as a consequence of heat sterilization. Existing research in long-term PD has mainly dealt with the toxicity induced by GDPs and the development of therapeutic strategies to reduce the cellular burden of GDPs. Currently, there are few data regarding the potential role of detoxification systems of GDP in PD. In this study, the role of glyoxalase 1 (Glo1), the major detoxification pathway for dicarbonyl-derived GD such as methylglyoxal (MG) and glyoxal (Gx), was investigated in vivo using heterozygous knock-down mice for Glo1 (Glo1(-/+)). METHODS Wild-type (WT) and Glo1(-/+) mice were repeatedly treated with PDF containing low and high amounts of GDP, particularly with respect to the content of dicarbonyls. After 12 weeks of treatment with PDF, peritoneal damage and function were evaluated. RESULTS Glo1(-/+) mice treated with PDF showed increased formation of advanced glycation endproduct (AGE) when compared with WT mice, particularly the Gx-derived AGE, carboxymethyl-lysine. This was associated with increased inflammation, neovascularization, increased peritoneal fibrosis and impaired peritoneal function. CONCLUSIONS This study suggests a pivotal and underestimated role for Glo1 as a detoxifying enzyme in GDP-associated peritoneal toxicity in PD. The indirect and direct modulation of Glo1 may therefore offer a new therapeutic option in prevention of GDP-induced peritoneal damage in PD.
Collapse
Affiliation(s)
- Lars P Kihm
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany Department of Internal Medicine I and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | | | - Sandra Holoch
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Svenja Schmuck
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Luis E Becker
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Michael Brownlee
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Martin Zeier
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Thomas H Fleming
- Department of Internal Medicine I and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Peter P Nawroth
- Department of Internal Medicine I and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Vedat Schwenger
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
39
|
Kitamura M, Nishino T, Obata Y, Ozono Y, Koji T, Kohno S. New insights into therapeutic strategies for the treatment of peritoneal fibrosis: learning from histochemical analyses of animal models. Acta Histochem Cytochem 2014; 47:133-43. [PMID: 25392567 PMCID: PMC4164701 DOI: 10.1267/ahc.14025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 05/23/2014] [Indexed: 01/01/2023] Open
Abstract
Encapsulating peritoneal sclerosis (EPS) is a fatal complication that can occur in patients undergoing long-term peritoneal dialysis. It is characterized by bowel obstruction and marked sclerotic thickening of the peritoneal membrane. Although the mechanisms underlying the development of EPS are complex, angiogenesis, inflammation, and peritoneal fibrosis are known to be essential factors. Now, several animal models that exhibit EPS have pathophysiology similar to that of human EPS and have been proposed for use in research to provide insights into it. Recent histochemical methods also help us to understand the pathophysiology of EPS. Advances in basic research based on the findings in those animal models have enabled the development of several strategies for the prevention and treatment of EPS. We describe here interventional studies in some animal models for peritoneal fibrosis, one of the histological disorders findings characteristic to EPS, and we highlight the need for a sophisticated animal model that closely resembles human conditions.
Collapse
Affiliation(s)
- Mineaki Kitamura
- Second Department of Internal Medicine, Nagasaki University School of Medicine, 1–7–1 Sakamoto, Nagasaki, Japan
| | - Tomoya Nishino
- Second Department of Internal Medicine, Nagasaki University School of Medicine, 1–7–1 Sakamoto, Nagasaki, Japan
| | - Yoko Obata
- Second Department of Internal Medicine, Nagasaki University School of Medicine, 1–7–1 Sakamoto, Nagasaki, Japan
- Medical Education Development Center, Nagasaki University Hospital, 1–7–1 Sakamoto, Nagasaki, Japan
| | - Yoshiyuki Ozono
- Department of General Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1–7–1 Sakamoto, Nagasaki, Japan
| | - Takehiko Koji
- Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1–12–4 Sakamoto, Nagasaki, Japan
| | - Shigeru Kohno
- Second Department of Internal Medicine, Nagasaki University School of Medicine, 1–7–1 Sakamoto, Nagasaki, Japan
| |
Collapse
|
40
|
Sandoval P, Jiménez-Heffernan JA, Rynne-Vidal Á, Pérez-Lozano ML, Gilsanz Á, Ruiz-Carpio V, Reyes R, García-Bordas J, Stamatakis K, Dotor J, Majano PL, Fresno M, Cabañas C, López-Cabrera M. Carcinoma-associated fibroblasts derive from mesothelial cells via mesothelial-to-mesenchymal transition in peritoneal metastasis. J Pathol 2014; 231:517-31. [PMID: 24114721 DOI: 10.1002/path.4281] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 09/20/2013] [Accepted: 09/24/2013] [Indexed: 12/29/2022]
Abstract
Peritoneal dissemination is a frequent metastatic route for cancers of the ovary and gastrointestinal tract. Tumour cells metastasize by attaching to and invading through the mesothelial cell (MC) monolayer that lines the peritoneal cavity. Metastases are influenced by carcinoma-associated fibroblasts (CAFs), a cell population that derives from different sources. Hence, we investigated whether MCs, through mesothelial-mesenchymal transition (MMT), were a source of CAFs during peritoneal carcinomatosis and whether MMT affected the adhesion and invasion of tumour cells. Biopsies from patients with peritoneal dissemination revealed the presence of myofibroblasts expressing mesothelial markers in the proximity of carcinoma implants. Prominent new vessel formation was observed in the peritoneal areas harbouring tumour cells when compared with tumour-free regions. The use of a mouse model of peritoneal dissemination confirmed the myofibroblast conversion of MCs and the increase in angiogenesis at places of tumour implants. Treatment of omentum MCs with conditioned media from carcinoma cell cultures resulted in phenotype changes reminiscent of MMT. Adhesion experiments demonstrated that MMT enhanced the binding of cancer cells to MCs in a β1-integrin-dependent manner. Scanning electron microscopy imaging showed that the enhanced adhesion was mostly due to increased cell-cell interaction and not to a mere matrix exposure. Invasion assays suggested a reciprocal stimulation of the invasive capacity of tumour cells and MCs. Our results demonstrate that CAFs can derive from mesothelial cells during peritoneal metastasis. We suggest that MMT renders the peritoneum more receptive for tumour cell attachment/invasion and contributes to secondary tumour growth by promoting its vascularization.
Collapse
Affiliation(s)
- Pilar Sandoval
- Centro de Biología Molecular-Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
IL-17A is a novel player in dialysis-induced peritoneal damage. Kidney Int 2014; 86:303-15. [PMID: 24552849 DOI: 10.1038/ki.2014.33] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 12/04/2013] [Accepted: 12/19/2013] [Indexed: 12/14/2022]
Abstract
The classical view of the immune system has changed by the discovery of novel T-helper (Th) subsets, including Th17 (IL-17A-producing cells). IL-17A participates in immune-mediated glomerulonephritis and more recently in inflammatory pathologies, including experimental renal injury. Peritoneal dialysis patients present chronic inflammation and Th1/Th2 imbalance, but the role of the Th17 response in peritoneal membrane damage has not been investigated. In peritoneal biopsies from dialyzed patients, IL-17A immunostaining was found mainly in inflammatory areas and was absent in the healthy peritoneum. IL-17A-expressing cells included lymphocytes (CD4+ and γδ), neutrophils, and mast cells. Elevated IL-17A effluent concentrations were found in long-term peritoneal dialysis patients. Studies in mice showed that repeated exposure to recombinant IL-17A caused peritoneal inflammation and fibrosis. Moreover, chronic exposure to dialysis fluids resulted in a peritoneal Th17 response, including elevated IL-17A gene and protein production, submesothelial cell infiltration of IL-17A-expressing cells, and upregulation of Th17 differentiation factors and cytokines. IL-17A neutralization diminished experimental peritoneal inflammation and fibrosis caused by chronic exposure to dialysis fluids in mice. Thus, IL-17A is a key player of peritoneum damage and it may be a good candidate for therapeutic intervention in peritoneal dialysis patients.
Collapse
|
42
|
Mesenchymal Conversion of Mesothelial Cells Is a Key Event in the Pathophysiology of the Peritoneum during Peritoneal Dialysis. Adv Med 2014; 2014:473134. [PMID: 26556413 PMCID: PMC4590954 DOI: 10.1155/2014/473134] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 11/09/2013] [Accepted: 11/18/2013] [Indexed: 12/03/2022] Open
Abstract
Peritoneal dialysis (PD) is a therapeutic option for the treatment of end-stage renal disease and is based on the use of the peritoneum as a semipermeable membrane for the exchange of toxic solutes and water. Long-term exposure of the peritoneal membrane to hyperosmotic PD fluids causes inflammation, loss of the mesothelial cells monolayer, fibrosis, vasculopathy, and angiogenesis, which may lead to peritoneal functional decline. Peritonitis may further exacerbate the injury of the peritoneal membrane. In parallel with these peritoneal alterations, mesothelial cells undergo an epithelial to mesenchymal transition (EMT), which has been associated with peritoneal deterioration. Factors contributing to the bioincompatibility of classical PD fluids include the high content of glucose/glucose degradation products (GDPs) and their acidic pH. New generation low-GDPs-neutral pH fluids have improved biocompatibility resulting in better preservation of the peritoneum. However, standard glucose-based fluids are still needed, as biocompatible solutions are expensive for many potential users. An alternative approach to preserve the peritoneal membrane, complementary to the efforts to improve fluid biocompatibility, is the use of pharmacological agents protecting the mesothelium. This paper provides a comprehensive review of recent advances that point to the EMT of mesothelial cells as a potential therapeutic target to preserve membrane function.
Collapse
|
43
|
Intra-abdominal fat depots represent distinct immunomodulatory microenvironments: a murine model. PLoS One 2013; 8:e66477. [PMID: 23776677 PMCID: PMC3680422 DOI: 10.1371/journal.pone.0066477] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 05/07/2013] [Indexed: 11/19/2022] Open
Abstract
White adipose tissue (WAT) is a multi-faceted endocrine organ involved in energy storage, metabolism, immune function and disease pathogenesis. In contrast to subcutaneous fat, visceral fat (V-WAT) has been associated with numerous diseases and metabolic disorders, indicating specific functions related to anatomical location. Although visceral depots are often used interchangeably in V-WAT-associated disease studies, there has been a recent subdivision of V-WAT into "true visceral" and non-visceral intra-abdominal compartments. These were associated with distinct physiological roles, illustrating a need for depot-specific information. Here, we use FACS analysis to comparatively characterize the leukocyte and progenitor populations in the stromal vascular fraction (SVF) of peritoneal serous fluid (PSF), parametrial (pmWAT), retroperitoneal (rpWAT), and omental (omWAT) adipose tissue from seven-month old C57BL/6 female mice. We found significant differences in SVF composition between all four microenvironments. PSF SVF was comprised almost entirely of CD45(+) leukocytes (>99%), while omWAT contained less, but still almost two-fold more leukocytes than pmWAT and rpWAT (75%, 38% and 38% respectively; p<0.01). PmWAT was composed primarily of macrophages, whereas rpWAT more closely resembled omWAT, denoted by high levels of B1 B-cell and monocyte populations. Further, omWAT harbored significantly higher proportions of T-cells than the other tissues, consistent with its role as a secondary lymphoid organ. These SVF changes were also reflected in the gene expression profiles of the respective tissues. Thus, intra-abdominal fat pads represent independent immunomodulatory microenvironments and should be evaluated as distinct entities with unique contributions to physiological and pathological processes.
Collapse
|
44
|
Loureiro J, Sandoval P, del Peso G, Gónzalez-Mateo G, Fernández-Millara V, Santamaria B, Bajo MA, Sánchez-Tomero JA, Guerra-Azcona G, Selgas R, López-Cabrera M, Aguilera AI. Tamoxifen ameliorates peritoneal membrane damage by blocking mesothelial to mesenchymal transition in peritoneal dialysis. PLoS One 2013; 8:e61165. [PMID: 23637793 PMCID: PMC3634067 DOI: 10.1371/journal.pone.0061165] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 03/07/2013] [Indexed: 11/29/2022] Open
Abstract
Mesothelial-to-mesenchymal transition (MMT) is an auto-regulated physiological process of tissue repair that in uncontrolled conditions such as peritoneal dialysis (PD) can lead to peritoneal fibrosis. The maximum expression of peritoneal fibrosis induced by PD fluids and other peritoneal processes is the encapsulating peritoneal sclerosis (EPS) for which no specific treatment exists. Tamoxifen, a synthetic estrogen, has successfully been used to treat retroperitoneal fibrosis and EPS associated with PD. Hence, we used in vitro and animal model approaches to evaluate the efficacy of Tamoxifen to inhibit the MMT as a trigger of peritoneal fibrosis. In vitro studies were carried out using omentum-derived mesothelial cells (MCs) and effluent-derived MCs. Tamoxifen blocked the MMT induced by transforming growth factor (TGF)-β1, as it preserved the expression of E-cadherin and reduced the expression of mesenchymal-associated molecules such as snail, fibronectin, collagen-I, α-smooth muscle actin, and matrix metalloproteinse-2. Tamoxifen-treatment preserved the fibrinolytic capacity of MCs treated with TGF-β1 and decreased their migration capacity. Tamoxifen did not reverse the MMT of non-epitheliod MCs from effluents, but it reduced the expression of some mesenchymal molecules. In mice PD model, we demonstrated that MMT progressed in parallel with peritoneal membrane thickness. In addition, we observed that Tamoxifen significantly reduced peritoneal thickness, angiogenesis, invasion of the compact zone by mesenchymal MCs and improved peritoneal function. Tamoxifen also reduced the effluent levels of vascular endothelial growth factor and leptin. These results demonstrate that Tamoxifen is a therapeutic option to treat peritoneal fibrosis, and that its protective effect is mediated via modulation of the MMT process.
Collapse
Affiliation(s)
- Jesús Loureiro
- Centro de Biología Molecular-Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain
| | - Pilar Sandoval
- Centro de Biología Molecular-Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain
| | - Gloria del Peso
- Servicio de Nefrología, Hospital Universitario La Paz, Instituto de Investigación Sanitaria la Paz (IdiPAZ), Madrid, Spain
| | - Guadalupe Gónzalez-Mateo
- Servicio de Nefrología, Hospital Universitario La Paz, Instituto de Investigación Sanitaria la Paz (IdiPAZ), Madrid, Spain
| | - Vanessa Fernández-Millara
- Servicio de Nefrología, Hospital Universitario La Paz, Instituto de Investigación Sanitaria la Paz (IdiPAZ), Madrid, Spain
| | - Beatríz Santamaria
- Unidad de Diálisis and Laboratorio de Investigación Renal y Vascular, Fundación Jiménez Díaz, Madrid, Spain
| | - Maria Auxiliadora Bajo
- Servicio de Nefrología, Hospital Universitario La Paz, Instituto de Investigación Sanitaria la Paz (IdiPAZ), Madrid, Spain
| | - José Antonio Sánchez-Tomero
- Unidad de Biología Molecular and Servicio de Nefrología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | | | - Rafael Selgas
- Servicio de Nefrología, Hospital Universitario La Paz, Instituto de Investigación Sanitaria la Paz (IdiPAZ), Madrid, Spain
| | | | - Abelardo I. Aguilera
- Unidad de Biología Molecular and Servicio de Nefrología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
- * E-mail:
| |
Collapse
|
45
|
Pérez-Lozano ML, Sandoval P, Rynne-Vidal Á, Aguilera A, Jiménez-Heffernan JA, Albar-Vizcaíno P, Majano PL, Sánchez-Tomero JA, Selgas R, López-Cabrera M. Functional relevance of the switch of VEGF receptors/co-receptors during peritoneal dialysis-induced mesothelial to mesenchymal transition. PLoS One 2013; 8:e60776. [PMID: 23585849 PMCID: PMC3621952 DOI: 10.1371/journal.pone.0060776] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 03/02/2013] [Indexed: 12/17/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is up-regulated during mesothelial to mesenchymal transition (MMT) and has been associated with peritoneal membrane dysfunction in peritoneal dialysis (PD) patients. It has been shown that normal and malignant mesothelial cells (MCs) express VEGF receptors (VEGFRs) and co-receptors and that VEGF is an autocrine growth factor for mesothelioma. Hence, we evaluated the expression patterns and the functional relevance of the VEGF/VEGFRs/co-receptors axis during the mesenchymal conversion of MCs induced by peritoneal dialysis. Omentum-derived MCs treated with TGF-β1 plus IL-1β (in vitro MMT) and PD effluent-derived MCs with non-epithelioid phenotype (ex vivo MMT) showed down-regulated expression of the two main receptors Flt-1/VEGFR-1 and KDR/VEGFR-2, whereas the co-receptor neuropilin-1 (Nrp-1) was up-regulated. The expression of the Nrp-1 ligand semaphorin-3A (Sema-3A), a functional VEGF competitor, was repressed throughout the MMT process. These expression pattern changes were accompanied by a reduction of the proliferation capacity and by a parallel induction of the invasive capacity of MCs that had undergone an in vitro or ex vivo MMT. Treatment with neutralizing anti-VEGF or anti-Nrp-1 antibodies showed that these molecules played a relevant role in cellular proliferation only in naïve omentum-derived MCs. Conversely, treatment with these blocking antibodies, as well as with recombinant Sema-3A, indicated that the switched VEGF/VEGFRs/co-receptors axis drove the enhanced invasion capacity of MCs undergoing MMT. In conclusion, the expression patterns of VEGFRs and co-receptors change in MCs during MMT, which in turn would determine their behaviour in terms of proliferation and invasion in response to VEGF.
Collapse
Affiliation(s)
| | - Pilar Sandoval
- Centro de Biología Molecular-Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain
| | - Ángela Rynne-Vidal
- Centro de Biología Molecular-Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain
| | - Abelardo Aguilera
- Unidad de Biología Molecular and Servicio de Nefrología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - José Antonio Jiménez-Heffernan
- Servicio de Anatomía Patológica, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - Patricia Albar-Vizcaíno
- Unidad de Biología Molecular and Servicio de Nefrología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - Pedro L. Majano
- Unidad de Biología Molecular and Servicio de Nefrología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - José Antonio Sánchez-Tomero
- Unidad de Biología Molecular and Servicio de Nefrología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - Rafael Selgas
- Servicio de Nefrología. Hospital Universitario La Paz, Instituto de Investigación Sanitaria la Paz (IdiPAZ), Madrid, Spain
| | - Manuel López-Cabrera
- Centro de Biología Molecular-Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain
- * E-mail:
| |
Collapse
|
46
|
Loureiro J, Gónzalez-Mateo G, Jimenez-Heffernan J, Selgas R, López-Cabrera M, Aguilera Peralta A. Are the Mesothelial-to-Mesenchymal Transition, Sclerotic Peritonitis Syndromes, and Encapsulating Peritoneal Sclerosis Part of the Same Process? Int J Nephrol 2013; 2013:263285. [PMID: 23476771 PMCID: PMC3582112 DOI: 10.1155/2013/263285] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 11/13/2012] [Accepted: 12/31/2012] [Indexed: 02/01/2023] Open
Abstract
Mesothelial-to-mesenchymal transition (MMT) is an autoregulated physiological process of tissue repair that in uncontrolled conditions, such as peritoneal dialysis (PD), can lead to peritoneal fibrosis. The maximum expression of sclerotic peritoneal syndromes (SPS) is the encapsulating peritoneal sclerosis (EPS) for which no specific treatment exists. The SPS includes a wide range of peritoneal fibrosis that appears progressively and is considered as a reversible process, while EPS does not. EPS is a serious complication of PD characterized by a progressive intra-abdominal inflammatory process that results in bridles and severe fibrous tissue formation which cover and constrict the viscera. Recent studies show that transdifferentiated mesothelial cells isolated from the PD effluent correlate very well with the clinical events such as the number of hemoperitoneum and peritonitis, as well as with PD function (lower ultrafiltration and high Cr-MTC). In addition, in peritoneal biopsies from PD patients, the MMT correlates very well with anatomical changes (fibrosis and angiogenesis). However, the pathway to reach EPS from SPS has not been fully and completely established. Herein, we present important evidence pointing to the MMT that is present in the initial peritoneal fibrosis stages and it is perpetual over time, with at least theoretical possibility that MMT initiated the fibrosing process to reach EPS.
Collapse
Affiliation(s)
- Jesús Loureiro
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Campus de Cantoblanco, Calle de Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Guadalupe Gónzalez-Mateo
- Servicio de Nefrología, Hospital Universitario La Paz, Instituto de Investigación Sanitaria La Paz (IdiPAZ), Paseo de la Castellana, 261, 28046 Madrid, Spain
| | - José Jimenez-Heffernan
- Servicio de Anatomía Patológica, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IP), Calle de Diego de León 62, 28006 Madrid, Spain
| | - Rafael Selgas
- Servicio de Nefrología, Hospital Universitario La Paz, Instituto de Investigación Sanitaria La Paz (IdiPAZ), Paseo de la Castellana, 261, 28046 Madrid, Spain
| | - Manuel López-Cabrera
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Campus de Cantoblanco, Calle de Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Abelardo Aguilera Peralta
- Unidad de Biología Molecular and Servicio de Nefrología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IP), Calle de Diego de León 62, 28006 Madrid, Spain
| |
Collapse
|
47
|
Activation of peroxisome proliferator-activated receptor-gamma by glitazones reduces the expression and release of monocyte chemoattractant protein-1 in human mesothelial cells. Mediators Inflamm 2012; 2012:217696. [PMID: 22496599 PMCID: PMC3306974 DOI: 10.1155/2012/217696] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 10/30/2011] [Indexed: 11/21/2022] Open
Abstract
Human peritoneal mesothelial cells (MC) play an important role in inflammatory processes of the peritoneal cavity by producing various cytokines and chemokines, such as monocyte chemoattractant protein-1 (MCP-1). The present study was designed to assess the effect of the peroxisome proliferator-activated receptor-gamma- (PPARγ-) activator rosiglitazone on the mesothelial MCP-1 expression and release. Primary cultures of MC were obtained from omental tissue. MCP-1 antigen concentrations were measured in the cell supernatant by ELISA and MCP-1 mRNA levels by real-time polymerase chain reaction. The presence of PPARγ on MC was assayed in a Western Blot analysis. MC constitutively express PPARγ. Activation of this receptor via rosiglitazone (0,1–10 μmol/L) resulted in significantly reduced amounts of mesothelial MCP-1 release as well as MCP-1 mRNA. The use of the PPARγ inhibitor GW-9662 could completely prevent the rosiglitazone effects. Rosiglitazone was also effective in reducing TNFα-induced enhanced secretion of MCP-1. Our findings indicate that glitazones are effective in reducing constitutive and TNFα-stimulated mesothelial MCP-1 mRNA expression and release.
Collapse
|
48
|
González-Mateo GT, Aroeira LS, López-Cabrera M, Ruiz-Ortega M, Ortiz A, Selgas R. Pharmacological modulation of peritoneal injury induced by dialysis fluids: is it an option? Nephrol Dial Transplant 2011; 27:478-81. [PMID: 21965583 DOI: 10.1093/ndt/gfr543] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
49
|
Loureiro J, Aguilera A, Selgas R, Sandoval P, Albar-Vizcaíno P, Pérez-Lozano ML, Ruiz-Carpio V, Majano PL, Lamas S, Rodríguez-Pascual F, Borras-Cuesta F, Dotor J, López-Cabrera M. Blocking TGF-β1 protects the peritoneal membrane from dialysate-induced damage. J Am Soc Nephrol 2011; 22:1682-95. [PMID: 21742730 DOI: 10.1681/asn.2010111197] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
During peritoneal dialysis (PD), mesothelial cells undergo mesothelial-to-mesenchymal transition (MMT), a process associated with peritoneal-membrane dysfunction. Because TGF-β1 can induce MMT, we evaluated the efficacy of TGF-β1-blocking peptides in modulating MMT and ameliorating peritoneal damage in a mouse model of PD. Exposure of the peritoneum to PD fluid induced fibrosis, angiogenesis, functional impairment, and the accumulation of fibroblasts. In addition to expressing fibroblast-specific protein-1 (FSP-1), some fibroblasts co-expressed cytokeratin, indicating their mesothelial origin. These intermediate-phenotype (Cyto(+)/FSP-1(+)) fibroblasts had features of myofibroblasts with fibrogenic capacity. PD fluid treatment triggered the appearance of CD31(+)/FSP-1(+) and CD45(+)/FSP-1(+) cells, suggesting that fibroblasts also originate from endothelial cells and from cells recruited from bone marrow. Administration of blocking peptides significantly ameliorated fibrosis and angiogenesis, improved peritoneal function, and reduced the number of FSP-1(+) cells, especially in the Cyto(+)/FSP-1(+) subpopulation. Conversely, overexpression of TGF-β1 in the peritoneum by adenovirus-mediated gene transfer led to a marked accumulation of fibroblasts, most of which derived from the mesothelium. Taken together, these results demonstrate that TGF-β1 drives the peritoneal deterioration induced by dialysis fluid and highlights a role of TGF-β1-mediated MMT in the pathophysiology of peritoneal-membrane dysfunction.
Collapse
Affiliation(s)
- Jesús Loureiro
- Unidad de Biología Molecular and Servicio de Nefrología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Liu L, Gong Z, Guo X, Xu B. Cloning, structural characterization and expression analysis of a novel lipid storage droplet protein-1 (LSD-1) gene in Chinese honeybee (Apis cerana cerana). Mol Biol Rep 2011; 39:2665-75. [PMID: 21695433 DOI: 10.1007/s11033-011-1020-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Accepted: 06/03/2011] [Indexed: 01/04/2023]
Abstract
Lipid storage droplet 1 (LSD-1), a PAT family protein located around lipid droplets in insects, is intimately linked to lipid droplets formation and lipid metabolism. Conjugated linoleic acid (CLA) and rosiglitazone (Rosi) have previously been shown to modulate the expression of several PAT family proteins through peroxisome proliferator-activated receptor-γ (PPARγ). In the present study, we isolated and characterized a novel LSD-1 gene, referred to AccLSD-1, from Chinese honeybee (Apis cerana cerana). Sequence analysis indicated that the central region of LSD-1 protein had significant sequence similarity and a typical LSD-1 gene was composed of 8 exons and 7 introns. Interestingly, the first intron of AccLSD-1 including several PPARγ-response elements (PPREs) was located in 5' UTR. Analysis of 5'-flanking region of AccLSD-1 revealed a number of putative cis-acting elements, including three PPREs. Quantitative real-time PCR showed that AccLSD-1 expressed ubiquitously from feeding larva to adult, and its expression level was highest at brown-eyed pupae (Pb) stage. The effect of CLA, Rosi and combination on AccLSD-1 expressions indicated 1% CLA and 0.5 mg/ml Rosi were considered as the suitable diets for rearing adult workers in laboratory, and AccLSD-1 was down-regulated by CLA whereas up-regulated by Rosi. Furthermore, the combination of CLA and Rosi remarkly rescued the suppression of AccLSD-1 expression by CLA alone. These results suggest that AccLSD-1 is associated with A. cerana cerana development, especially during pupal metamorphosis, and can be regulated by CLA or Rosi possibly via activating PPARγ.
Collapse
Affiliation(s)
- Li Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018 Shandong, People's Republic of China
| | | | | | | |
Collapse
|