1
|
Kibet M, Abebayehu D. Crosstalk between T cells and fibroblasts in biomaterial-mediated fibrosis. Matrix Biol Plus 2025; 26:100172. [PMID: 40226302 PMCID: PMC11986236 DOI: 10.1016/j.mbplus.2025.100172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/28/2025] [Accepted: 03/19/2025] [Indexed: 04/15/2025] Open
Abstract
Biomaterial implants are a critical aspect of our medical therapies and biomedical research and come in various forms: stents, implantable glucose sensors, orthopedic implants, silicone implants, drug delivery systems, and tissue engineered scaffolds. Their implantation triggers a series of biological responses that often times lead to the foreign body response and subsequent fibrotic encapsulation, a dense ECM-rich capsule that isolates the biomaterial and renders it ineffective. These responses lead to the failure of biomaterials and is a major hurdle to overcome and in promoting their success. Much attention has been given to macrophage populations for the inflammatory component of these responses to biomaterials but recent work has identified an important role of T cells and their ability to modulate fibroblast activity and vice versa. In this review, we focus on T cell-fibroblast crosstalk by exploring T cell subsets, critical signaling pathways, and fibroblast populations that have been shown to dictate biomaterial-mediated fibrosis. We then highlight emerging technologies and model systems that enable new insights and avenues to T cell-fibroblast crosstalk that will improve biomaterial outcomes.
Collapse
Affiliation(s)
- Mathew Kibet
- Department of Biomedical Engineering, School of Engineering and Medicine, University of Virginia, Charlottesville, VA 22908, United States
| | - Daniel Abebayehu
- Department of Biomedical Engineering, School of Engineering and Medicine, University of Virginia, Charlottesville, VA 22908, United States
| |
Collapse
|
2
|
Amancherla K, Taravella Oill AM, Bledsoe X, Williams AL, Chow N, Zhao S, Sheng Q, Bearl DW, Hoffman RD, Menachem JN, Siddiqi HK, Brinkley DM, Mee ED, Hadad N, Agrawal V, Schmeckpepper J, Rali AS, Tsai S, Farber-Eger EH, Wells QS, Freedman JE, Tucker NR, Schlendorf KH, Gamazon ER, Shah RV, Banovich N. Dynamic responses to rejection in the transplanted human heart revealed through spatial transcriptomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640852. [PMID: 40093136 PMCID: PMC11908199 DOI: 10.1101/2025.02.28.640852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Allograft rejection following solid-organ transplantation is a major cause of graft dysfunction and mortality. Current approaches to diagnosis rely on histology, which exhibits wide diagnostic variability and lacks access to molecular phenotypes that may stratify therapeutic response. Here, we leverage image-based spatial transcriptomics at sub-cellular resolution in longitudinal human cardiac biopsies to characterize transcriptional heterogeneity in 62 adult and pediatric heart transplant (HT) recipients during and following histologically-diagnosed rejection. Across 28 cell types, we identified significant differences in abundance in CD4 + and CD8 + T cells, fibroblasts, and endothelial cells across different biological classes of rejection (cellular, mixed, antibody-mediated). We observed a broad overlap in cellular transcriptional states across histologic rejection severity and biological class and significant heterogeneity within rejection severity grades that would qualify for immunomodulatory treatment. Individuals who had resolved rejection after therapy had a distinct transcriptomic profile relative to those with persistent rejection, including 216 genes across 6 cell types along pathways of inflammation, IL6-JAK-STAT3 signaling, IFNα/IFNγ response, and TNFα signaling. Spatial transcriptomics also identified genes linked to long-term prognostic outcomes post-HT. These results underscore importance of subtyping immunologic states during rejection to stratify immune-cardiac interactions following HT that are therapeutically relevant to short- and long-term rejection-related outcomes.
Collapse
|
3
|
Tan Y, Huang Y, Guo L, Zhou L, Zhu K, Li Y, Tan J. HLA-DQB1 Allele Polymorphism Associated with Oral Submucous Fibrosis in Hunan, China. J Immunol Res 2024; 2024:8757860. [PMID: 38799118 PMCID: PMC11127765 DOI: 10.1155/2024/8757860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/02/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Methods 44 OSF patients and 44 healthy volunteers were included in this study. To detect the expression frequency of HLA-DQB1 alleles in the two groups and analyze significant allelic subtypes and their relative risk, polymerase chain reaction (PCR) sequence-specific primers were used. Subsequently, based on the identification of differential genes, we compare the gene expression levels of OSF patients and healthy volunteers expressing differential genes by real-time quantitative PCR. Results The expression frequency of the HLA-DQB1 ∗05 : 02 allele in the OSF group (36.4%) was significantly higher than in the controls (13.6%), and exposure to the HLA-DQB1 ∗05 : 02 allele was strongly related to OSF (OR (95% CI) = 3.619 (1.257,10.421), Wald χ2 = 5.681, P=0.017). However, there were no significant differences in the allele expression frequencies of DQB1 ∗02 : 01, DQB1 ∗03 : 03, DQB1 ∗05 : 01, DQB1 ∗05 : 03, DQB1 ∗06 : 02, DQB1 ∗06 : 03, and DQB1 ∗06 : 04 in the OSF group compared with the controls (all P > 0.05). Furthermore, the relative expression level of the HLA-DQB1 ∗05 : 02 allele in the OSF group (3.98 ± 3.50) was significantly higher than in controls (0.70 ± 0.41). Conclusions There are differences in the HLA-DQB1 allele polymorphisms between the healthy population and patients with oral submucosal fibrosis. Preliminarily, it is suggested that the HLA-DQB1 ∗05 : 02 allele, which has a strong correlation with OSF and great differential expression between patients with OSF and controls, might be a susceptibility gene for OSF in Hunan.
Collapse
Affiliation(s)
- Yisi Tan
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yuting Huang
- The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410007, China
| | - Linkai Guo
- The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410007, China
| | - Linghang Zhou
- The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410007, China
| | - Keke Zhu
- Department of Stomatology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Yuancong Li
- Department of Stomatology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Jin Tan
- Department of Stomatology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| |
Collapse
|
4
|
Rai V, Moellmer R, Agrawal DK. Role of fibroblast plasticity and heterogeneity in modulating angiogenesis and healing in the diabetic foot ulcer. Mol Biol Rep 2023; 50:1913-1929. [PMID: 36528662 DOI: 10.1007/s11033-022-08107-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022]
Abstract
Chronic diabetic foot ulcers (DFUs) are an important clinical issue faced by clinicians despite the advanced treatment strategies consisting of wound debridement, off-loading, medication, wound dressings, and keeping the ulcer clean. Non-healing DFUs are associated with the risk of amputation, increased morbidity and mortality, and economic stress. Neo-angiogenesis and granulation tissue formation are necessary for physiological DFU healing and acute inflammation play a key role in healing. However, chronic inflammation in association with diabetic complications holds the ulcer in the inflammatory phase without progressing to the resolution phase contributing to non-healing. Fibroblasts acquiring myofibroblasts phenotype contribute to granulation tissue formation and angiogenesis. However, recent studies suggest the presence of five subtypes of fibroblast population and of changing density in non-healing DFUs. Further, the association of fibroblast plasticity and heterogeneity with wound healing suggests that the switch in fibroblast phenotype may affect wound healing. The fibroblast phenotype shift and altered function may be due to the presence of chronic inflammation or a diabetic wound microenvironment. This review focuses on the role of fibroblast plasticity and heterogeneity, the effect of hyperglycemia and inflammatory cytokines on fibroblasts, and the interaction of fibroblasts with other cells in diabetic wound microenvironment in the perspective of DFU healing. Next, we summarize secretory, angiogenic, and angiostatic phenotypes of fibroblast which have been discussed in other organ systems but not in relation to DFUs followed by the perspective on the role of their phenotypes in promoting angiogenesis in DFUs.
Collapse
Affiliation(s)
- Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, 91766, Pomona, CA, USA.
| | - Rebecca Moellmer
- College of Podiatric Medicine, Western University of Health Sciences, 91766, Pomona, CA, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, 91766, Pomona, CA, USA
| |
Collapse
|
5
|
Khodeneva N, Sugimoto MA, Davan-Wetton CSA, Montero-Melendez T. Melanocortin therapies to resolve fibroblast-mediated diseases. Front Immunol 2023; 13:1084394. [PMID: 36793548 PMCID: PMC9922712 DOI: 10.3389/fimmu.2022.1084394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 11/28/2022] [Indexed: 02/01/2023] Open
Abstract
Stromal cells have emerged as central drivers in multiple and diverse diseases, and consequently, as potential new cellular targets for the development of novel therapeutic strategies. In this review we revise the main roles of fibroblasts, not only as structural cells but also as players and regulators of immune responses. Important aspects like fibroblast heterogeneity, functional specialization and cellular plasticity are also discussed as well as the implications that these aspects may have in disease and in the design of novel therapeutics. An extensive revision of the actions of fibroblasts on different conditions uncovers the existence of numerous diseases in which this cell type plays a pathogenic role, either due to an exacerbation of their 'structural' side, or a dysregulation of their 'immune side'. In both cases, opportunities for the development of innovative therapeutic approaches exist. In this regard, here we revise the existing evidence pointing at the melanocortin pathway as a potential new strategy for the treatment and management of diseases mediated by aberrantly activated fibroblasts, including scleroderma or rheumatoid arthritis. This evidence derives from studies involving models of in vitro primary fibroblasts, in vivo models of disease as well as ongoing human clinical trials. Melanocortin drugs, which are pro-resolving mediators, have shown ability to reduce collagen deposition, activation of myofibroblasts, reduction of pro-inflammatory mediators and reduced scar formation. Here we also discuss existing challenges, both in approaching fibroblasts as therapeutic targets, and in the development of novel melanocortin drug candidates, that may help advance the field and deliver new medicines for the management of diseases with high medical needs.
Collapse
|
6
|
Passos FRS, Araújo-Filho HG, Monteiro BS, Shanmugam S, Araújo AADS, Almeida JRGDS, Thangaraj P, Júnior LJQ, Quintans JDSS. Anti-inflammatory and modulatory effects of steroidal saponins and sapogenins on cytokines: A review of pre-clinical research. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153842. [PMID: 34952766 DOI: 10.1016/j.phymed.2021.153842] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 10/23/2021] [Accepted: 10/28/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Saponins are glycosides which, after acid hydrolysis, liberate sugar(s) and an aglycone (sapogenin) which can be triterpenoid or steroidal in nature. Steroidal saponins and sapogenins have attracted significant attention as important natural anti-inflammatory compounds capable of acting on the activity of several inflammatory cytokines in various inflammatory models. PURPOSE The aim of this review is to collect preclinical in vivo studies on the anti-inflammatory activity of steroidal saponins through the modulation of inflammatory cytokines. STUDY DESIGN AND METHODS This review was carried out through a specialized search in three databases, that were accessed between September and October, 2021, and the publication period of the articles was not limited. Information about the name of the steroidal saponins, the animals used, the dose and route of administration, the model of pain or inflammation used, the tissue and experimental method used in the measurement of the cytokines, and the results observed on the levels of cytokines was retrieved. RESULTS Forty-five (45) articles met the inclusion criteria, involving the saponins cantalasaponin-1, α-chaconine, dioscin, DT-13, lycoperoside H, protodioscin, α-solanine, timosaponin AIII and BII, trillin, and the sapogenins diosgenin, hecogenin, and ruscogenin. The surveys were carried out in seven different countries and only articles between 2007 and 2021 were found. The studies included in the review showed that the saponins and sapogenins were anti-inflammatory, antinociceptive and antioxidant and they modulate inflammatory cytokines mainly through the Nf-κB, TLR4 and MAPKs pathways. CONCLUSION Steroidal saponins and sapogenins are promising compounds in handling of pain and inflammation for the development of natural product-derived drugs. However, it is necessary to increase the methodological quality of preclinical studies, mainly blinding and sample size calculation.
Collapse
Affiliation(s)
- Fabiolla Rocha Santos Passos
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, São Cristóvão, SE, Brazil; Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Marechal Rondon Avenue, S/N, Rosa Elza, São Cristóvão, Brazil
| | - Heitor Gomes Araújo-Filho
- Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Marechal Rondon Avenue, S/N, Rosa Elza, São Cristóvão, Brazil
| | - Brenda Souza Monteiro
- Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Marechal Rondon Avenue, S/N, Rosa Elza, São Cristóvão, Brazil
| | - Saravanan Shanmugam
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | | | | | | | - Lucindo José Quintans Júnior
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, São Cristóvão, SE, Brazil; Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Marechal Rondon Avenue, S/N, Rosa Elza, São Cristóvão, Brazil
| | - Jullyana de Souza Siqueira Quintans
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, São Cristóvão, SE, Brazil; Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Marechal Rondon Avenue, S/N, Rosa Elza, São Cristóvão, Brazil.
| |
Collapse
|
7
|
Luo M, Liu X, Meng H, Xu L, Li Y, Li Z, Liu C, Luo YB, Hu B, Xue Y, Liu Y, Luo Z, Yang H. IFNA-AS1 regulates CD4 + T cell activation in myasthenia gravis though HLA-DRB1. Clin Immunol 2017; 183:121-131. [PMID: 28822831 DOI: 10.1016/j.clim.2017.08.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/04/2017] [Accepted: 08/10/2017] [Indexed: 12/17/2022]
Abstract
Abnormal CD4+T cell activation is known to play roles in the pathogenesis of myasthenia gravis (MG). However, little is known about the mechanisms underlying the roles of lncRNAs in regulating CD4+ T cell. In this study, we discovered that the lncRNA IFNG-AS1 is abnormally expressed in MG patients associated with quantitative myasthenia gravis (QMG) and the positive anti-AchR Ab levels patients. IFNG-AS1 influenced Th1/Treg cell proliferation and regulated the expression levels of their transcription factors in an experimental autoimmune myasthenia gravis (EAMG)model. IFNG-AS1 could reduce the expression of HLA-DRB and HLA-DOB and they had a negative correlation in MG. Furthermore IFNG-AS1 influenced the expression levels of CD40L and CD4+ T cells activation in MG patient partly depend on effecting the HLA-DRB1 expression. It suggests that IFNG-AS1 may be involved in CD4+T cell-mediated immune responses in MG.
Collapse
Affiliation(s)
- Mengchuan Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Neurology Institute of Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiaofang Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Neurology Institute of Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Huanyu Meng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Neurology Institute of Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Liqun Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Neurology Institute of Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yi Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Neurology Institute of Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhibin Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Neurology Institute of Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Chang Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Neurology Institute of Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yue-Bei Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Neurology Institute of Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Bo Hu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Neurology Institute of Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yuanyuan Xue
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Neurology Institute of Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yu Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Neurology Institute of Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhaohui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Neurology Institute of Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Neurology Institute of Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
8
|
Abstract
Cardiac allograft vasculopathy (CAV) has a high prevalence among patients that have undergone heart transplantation. Cardiac allograft vasculopathy is a multifactorial process in which the immune system is the driving force. In this review, the data on the immunological and fibrotic processes that are involved in the development of CAV are summarized. Areas where a lack of knowledge exists and possible additional research can be completed are pinpointed. During the pathogenesis of CAV, cells from the innate and the adaptive immune system cooperate to reject the foreign heart. This inflammatory response results in dysfunction of the endothelium and migration and proliferation of smooth muscle cells (SMCs). Apoptosis and factors secreted by both the endothelium as well as the SMCs lead to fibrosis. The migration of SMCs together with fibrosis provoke concentric intimal thickening of the coronary arteries, which is the main characteristic of CAV.
Collapse
|
9
|
Xiong S, Guo R, Yang Z, Xu L, Du L, Li R, Xiao F, Wang Q, Zhu M, Pan X. Treg depletion attenuates irradiation-induced pulmonary fibrosis by reducing fibrocyte accumulation, inducing Th17 response, and shifting IFN-γ, IL-12/IL-4, IL-5 balance. Immunobiology 2015. [PMID: 26224246 DOI: 10.1016/j.imbio.2015.07.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Irradiation-induced pulmonary fibrosis results from thoracic radiotherapy and severely limits radiotherapy approaches. CD4(+) CD25(+) FoxP3(+) regulatory T cells (Tregs) are involved in experimentally induced murine lung fibrosis. However, the precise contribution of Tregs to irradiation-induced pulmonary fibrosis still remains unclear. We have previously established the mouse model of irradiation-induced pulmonary fibrosis and observed an increased frequency of Tregs during the process. This study aimed to investigate the effects of Treg depletion on irradiation-induced pulmonary fibrosis and on fibrocyte, Th17 cell response and production of multiple cytokines in mice. Treg-depleted mice were generated by intraperitoneal injection with anti-CD25 mAb 2h after 20 Gy (60)CO γ-ray thoracic irradiation and every 7 days thereafter. Pulmonary fibrosis was semi-quantitatively assessed using Masson's trichrome staining. The proportions of Tregs, fibrocyte and Th17 cells were detected by flow cytometry. Th1/Th2 cytokines were assessed by Luminex assays. We found that Treg depletion decelerated the process of irradiation-induced pulmonary fibrosis and hindered fibrocyte recruitment to the lung. In response to Treg depletion, the number of CD4(+) T lymphocytes and Th17 cells increased. Moreover, Th1/Th2 cytokine balance was disturbed into Th1 dominance upon Treg depletion. Our study demonstrates that Tregs are involved in irradiation-induced pulmonary fibrosis by promoting fibrocyte accumulation, attenuating Th17 response and regulating Th1/Th2 cytokine balance in the lung tissues, which suggests that Tregs may be therapeutically manipulated to decelerate the progression of irradiation-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Shanshan Xiong
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Renfeng Guo
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109-0602,USA
| | - Zhihua Yang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Long Xu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Li Du
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ruoxi Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Fengjun Xiao
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Qianjun Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Maoxiang Zhu
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Xiujie Pan
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
10
|
Mancini RJ, Stutts L, Moore T, Esser-Kahn AP. Controlling the origins of inflammation with a photoactive lipopeptide immunopotentiator. Angew Chem Int Ed Engl 2015; 54:5962-5. [PMID: 25800006 DOI: 10.1002/anie.201500416] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Indexed: 11/06/2022]
Abstract
Inflammatory immune responses are mediated by signaling molecules that are both produced by and recognized across highly heterogeneous cell populations. As such, the study of inflammation using traditional immunostimulants is complicated by paracrine and autocrine signaling, which obscures the origin of a propagating response. To address this challenge, we developed a small-molecule probe that can photosensitize immune cells, thus allowing light-mediated inflammation. This probe was used to control the origin of inflammation using light. Following this motif, inflammation was initiated from fibroblasts or dendritic cells. The contributions of fibroblasts and dendritic cells in initiating inflammation in heterogeneous co-culture are reported, thus providing insights into the future development of vaccines and treatment of inflammation.
Collapse
Affiliation(s)
- Rock J Mancini
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, CA 92697 (USA)
| | | | | | | |
Collapse
|
11
|
Mancini RJ, Stutts L, Moore T, Esser-Kahn AP. Controlling the Origins of Inflammation with a Photoactive Lipopeptide Immunopotentiator. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201500416] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Valenzuela NM, Reed EF. Antibodies in transplantation: the effects of HLA and non-HLA antibody binding and mechanisms of injury. Methods Mol Biol 2014; 1034:41-70. [PMID: 23775730 DOI: 10.1007/978-1-62703-493-7_2] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Until recently, allograft rejection was thought to be mediated primarily by alloreactive T cells. Consequently, immunosuppressive approaches focused on inhibition of T cell activation. While short-term graft survival has significantly improved and rejection rates have dropped, acute rejection has not been eliminated and chronic rejection remains the major threat to long-term graft survival. Increased attention to humoral immunity in experimental systems and in the clinic has revealed that donor specific antibodies (DSA) can mediate and promote acute and chronic rejection. Herein, we detail the effects of alloantibody, particularly HLA antibody, binding to graft vascular and other cells, and briefly summarize the experimental methods used to assess such outcomes.
Collapse
Affiliation(s)
- Nicole M Valenzuela
- Department of Pathology and Laboratory Medicine, UCLA Immunogenetics Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | |
Collapse
|
13
|
Glisic S, Jailwala P. Interaction between Treg apoptosis pathways, Treg function and HLA risk evolves during type 1 diabetes pathogenesis. PLoS One 2012; 7:e36040. [PMID: 22563437 PMCID: PMC3338571 DOI: 10.1371/journal.pone.0036040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 03/29/2012] [Indexed: 11/23/2022] Open
Abstract
We have previously reported increased apoptosis of regulatory T cells (Tregs) in recent-onset Type 1 Diabetes subjects (RO T1D) in the honeymoon phase and in multiple autoantibody-positive (Ab+) subjects, some of which are developing T1D. We have also reported that increased Treg apoptosis was associated with High HLA risk and that it subsided with cessation of honeymoon period. In this report, we present results generated using genetics, genomics, functional cell-based assays and flow cytometry to assess cellular changes at the T-cell level during T1D pathogenesis. We measured ex vivo Treg apoptosis and Treg function, surface markers expression, expression of HLA class II genes, the influence of HLA risk on Treg apoptosis and function, and evaluated contribution of genes reported to be involved in the apoptosis process. This integrated comprehensive approach uncovered important information that can serve as a basis for future studies aimed to modulate Treg cell responsiveness to apoptotic signals in autoimmunity. For example, T1D will progress in those subjects where increased Treg apoptosis is accompanied with decreased Treg function. Furthermore, Tregs from High HLA risk healthy controls had increased Treg apoptosis levels and overexpressed FADD but not Fas/FasL. Tregs from RO T1D subjects in the honeymoon phase were primarily dying through withdrawal of growth hormones with contribution of oxidative stress, mitochondrial apoptotic pathways, and employment of TNF-receptor family members. Ab+ subjects, however, expressed high inflammation level, which probably contributed to Treg apoptosis, although other apoptotic pathways were also activated: withdrawal of growth hormones, oxidative stress, mitochondrial apoptosis and Fas/FasL apoptotic pathways. The value of these results lie in potentially different preventive treatment subjects would receive depending on disease progression stage when treated.
Collapse
Affiliation(s)
- Sanja Glisic
- Department of Pediatrics, Max McGee National Research Center for Juvenile Diabetes, Medical College of Wisconsin, Children's Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America.
| | | |
Collapse
|