1
|
Matsueda S, Yamada S, Torisu K, Kitamura H, Ninomiya T, Nakano T, Kitazono T. Vascular Calcification Is Accelerated by Hyponatremia and Low Osmolality. Arterioscler Thromb Vasc Biol 2024; 44:1925-1943. [PMID: 38989577 DOI: 10.1161/atvbaha.123.320069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Hyponatremia, frequently observed in patients with chronic kidney disease, is associated with increased cardiovascular morbidity and mortality. Hyponatremia or low osmolality induces oxidative stress and cell death, both of which accelerate vascular calcification (VC), a critical phenotype in patients with chronic kidney disease. Whether hyponatremia or low osmolality plays a role in the pathogenesis of VC is unknown. METHODS Human vascular smooth muscle cells (VSMCs) and mouse aortic rings were cultured in various osmotic conditions and calcifying medium supplemented with high calcium and phosphate. The effects of low osmolality on phenotypic change and oxidative stress in the cultured VSMCs were examined. Microarray analysis was conducted to determine the main signaling pathway of osmolality-related VC. The transcellular sodium and calcium ions flux across the VSMCs were visualized by live imaging. Furthermore, the effect of osmolality on calciprotein particles (CPPs) was investigated. Associations between arterial intimal calcification and hyponatremia or low osmolality were examined by a cross-sectional study using human autopsy specimens obtained in the Hisayama Study. RESULTS Low osmolality exacerbated calcification of the ECM (extracellular matrix) of cultured VSMCs and mouse aortic rings. Oxidative stress and osteogenic differentiation of VSMCs were identified as the underlying mechanisms responsible for low osmolality-induced VC. Microarray analysis showed that low osmolality activated the Rac1 (Ras-related C3 botulinum toxin substrate 1)-Akt (protein kinase B) pathway and reduced NCX1 (Na-Ca exchanger 1) expression. Live imaging showed synchronic calcium ion efflux and sodium ion influx via NCX1 when extracellular sodium ion concentrations were increased. An NCX1 inhibitor promoted calcifying media-induced VC by reducing calcium ion efflux. Furthermore, low osmolality accelerated the generation and maturation steps of CPPs. The cross-sectional study of human autopsy specimens showed that hyponatremia and low osmolality were associated with a greater area of arterial intimal calcification. CONCLUSIONS Hyponatremia and low osmolality promote VC through multiple cellular processes, including the Rac1-Akt pathway activation.
Collapse
Affiliation(s)
- Shumei Matsueda
- Departments of Medicine and Clinical Science (M.S., S.Y., K.T., T. Nakano, T.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shunsuke Yamada
- Departments of Medicine and Clinical Science (M.S., S.Y., K.T., T. Nakano, T.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kumiko Torisu
- Departments of Medicine and Clinical Science (M.S., S.Y., K.T., T. Nakano, T.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Toshiharu Ninomiya
- Epidemiology and Public Health (T. Ninomiya), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiaki Nakano
- Departments of Medicine and Clinical Science (M.S., S.Y., K.T., T. Nakano, T.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Kidney Care Unit, Kyushu University Hospital, Fukuoka, Japan (T. Nakano)
| | - Takanari Kitazono
- Departments of Medicine and Clinical Science (M.S., S.Y., K.T., T. Nakano, T.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
2
|
Bhat OM, Mir RA, Nehvi IB, Wani NA, Dar AH, Zargar MA. Emerging role of sphingolipids and extracellular vesicles in development and therapeutics of cardiovascular diseases. IJC HEART & VASCULATURE 2024; 53:101469. [PMID: 39139609 PMCID: PMC11320467 DOI: 10.1016/j.ijcha.2024.101469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024]
Abstract
Sphingolipids are eighteen carbon alcohol lipids synthesized from non-sphingolipid precursors in the endoplasmic reticulum (ER). The sphingolipids serve as precursors for a vast range of moieties found in our cells that play a critical role in various cellular processes, including cell division, senescence, migration, differentiation, apoptosis, pyroptosis, autophagy, nutrition intake, metabolism, and protein synthesis. In CVDs, different subclasses of sphingolipids and other derived molecules such as sphingomyelin (SM), ceramides (CERs), and sphingosine-1-phosphate (S1P) are directly related to diabetic cardiomyopathy, dilated cardiomyopathy, myocarditis, ischemic heart disease (IHD), hypertension, and atherogenesis. Several genome-wide association studies showed an association between genetic variations in sphingolipid pathway genes and the risk of CVDs. The sphingolipid pathway plays an important role in the biogenesis and secretion of exosomes. Small extracellular vesicles (sEVs)/ exosomes have recently been found as possible indicators for the onset of CVDs, linking various cellular signaling pathways that contribute to the disease progression. Important features of EVs like biocompatibility, and crossing of biological barriers can improve the pharmacokinetics of drugs and will be exploited to develop next-generation drug delivery systems. In this review, we have comprehensively discussed the role of sphingolipids, and sphingolipid metabolites in the development of CVDs. In addition, concise deliberations were laid to discuss the role of sEVs/exosomes in regulating the pathophysiological processes of CVDs and the exosomes as therapeutic targets.
Collapse
Affiliation(s)
- Owais Mohmad Bhat
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | | | - Nissar Ahmad Wani
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Abid Hamid Dar
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - M Afzal Zargar
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| |
Collapse
|
3
|
Siracusa C, Carino A, Carabetta N, Manica M, Sabatino J, Cianflone E, Leo I, Strangio A, Torella D, De Rosa S. Mechanisms of Cardiovascular Calcification and Experimental Models: Impact of Vitamin K Antagonists. J Clin Med 2024; 13:1405. [PMID: 38592207 PMCID: PMC10932386 DOI: 10.3390/jcm13051405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 04/10/2024] Open
Abstract
Cardiovascular calcification is a multifactorial and complex process involving an array of molecular mechanisms eventually leading to calcium deposition within the arterial walls. This process increases arterial stiffness, decreases elasticity, influences shear stress events and is related to an increased risk of morbidity and mortality associated with cardiovascular disease. In numerous in vivo and in vitro models, warfarin therapy has been shown to cause vascular calcification in the arterial wall. However, the exact mechanisms of calcification formation with warfarin remain largely unknown, although several molecular pathways have been identified. Circulating miRNA have been evaluated as biomarkers for a wide range of cardiovascular diseases, but their exact role in cardiovascular calcification is limited. This review aims to describe the current state-of-the-art research on the impact of warfarin treatment on the development of vascular calcification and to highlight potential molecular targets, including microRNA, within the implicated pathways.
Collapse
Affiliation(s)
- Chiara Siracusa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.S.); (A.C.); (N.C.); (M.M.); (E.C.)
| | - Annarita Carino
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.S.); (A.C.); (N.C.); (M.M.); (E.C.)
| | - Nicole Carabetta
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.S.); (A.C.); (N.C.); (M.M.); (E.C.)
| | - Marzia Manica
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.S.); (A.C.); (N.C.); (M.M.); (E.C.)
| | - Jolanda Sabatino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (J.S.); (I.L.); (A.S.); (D.T.)
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.S.); (A.C.); (N.C.); (M.M.); (E.C.)
| | - Isabella Leo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (J.S.); (I.L.); (A.S.); (D.T.)
| | - Antonio Strangio
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (J.S.); (I.L.); (A.S.); (D.T.)
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (J.S.); (I.L.); (A.S.); (D.T.)
| | - Salvatore De Rosa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.S.); (A.C.); (N.C.); (M.M.); (E.C.)
| |
Collapse
|
4
|
Ding N, Lv Y, Su H, Wang Z, Kong X, Zhen J, Lv Z, Wang R. Vascular calcification in CKD: New insights into its mechanisms. J Cell Physiol 2023; 238:1160-1182. [PMID: 37269534 DOI: 10.1002/jcp.31021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/28/2023] [Indexed: 06/05/2023]
Abstract
Vascular calcification (VC) is a common complication of chronic kidney disease (CKD) and contributes to an increased risk of cardiovascular morbidity and mortality. However, effective therapies are still unavailable at present. It has been well established that VC associated with CKD is not a passive process of calcium phosphate deposition, but an actively regulated and cell-mediated process that shares many similarities with bone formation. Additionally, numerous studies have suggested that CKD patients have specific risk factors and contributors to the development of VC, such as hyperphosphatemia, uremic toxins, oxidative stress and inflammation. Although research efforts in the past decade have greatly improved our knowledge of the multiple factors and mechanisms involved in CKD-related VC, many questions remain unanswered. Moreover, studies from the past decade have demonstrated that epigenetic modifications abnormalities, such as DNA methylation, histone modifications and noncoding RNAs, play an important role in the regulation of VC. This review seeks to provide an overview of the pathophysiological and molecular mechanisms of VC associated with CKD, mainly focusing on the involvement of epigenetic modifications in the initiation and progression of uremic VC, with the aim to develop promising therapies for CKD-related cardiovascular events in the future.
Collapse
Affiliation(s)
- Nannan Ding
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yaodong Lv
- Department of Neurology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Hong Su
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ziyang Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xianglei Kong
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Junhui Zhen
- Department of Pathology, Shandong University, Jinan, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
5
|
Wang G, Luo Y, Gao X, Liang Y, Yang F, Wu J, Fang D, Luo M. MicroRNA regulation of phenotypic transformations in vascular smooth muscle: relevance to vascular remodeling. Cell Mol Life Sci 2023; 80:144. [PMID: 37165163 PMCID: PMC11071847 DOI: 10.1007/s00018-023-04793-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/10/2023] [Accepted: 04/27/2023] [Indexed: 05/12/2023]
Abstract
Alterations in the vascular smooth muscle cells (VSMC) phenotype play a critical role in the pathogenesis of several cardiovascular diseases, including hypertension, atherosclerosis, and restenosis after angioplasty. MicroRNAs (miRNAs) are a class of endogenous noncoding RNAs (approximately 19-25 nucleotides in length) that function as regulators in various physiological and pathophysiological events. Recent studies have suggested that aberrant miRNAs' expression might underlie VSMC phenotypic transformation, appearing to regulate the phenotypic transformations of VSMCs by targeting specific genes that either participate in the maintenance of the contractile phenotype or contribute to the transformation to alternate phenotypes, and affecting atherosclerosis, hypertension, and coronary artery disease by altering VSMC proliferation, migration, differentiation, inflammation, calcification, oxidative stress, and apoptosis, suggesting an important regulatory role in vascular remodeling for maintaining vascular homeostasis. This review outlines recent progress in the discovery of miRNAs and elucidation of their mechanisms of action and functions in VSMC phenotypic regulation. Importantly, as the literature supports roles for miRNAs in modulating vascular remodeling and for maintaining vascular homeostasis, this area of research will likely provide new insights into clinical diagnosis and prognosis and ultimately facilitate the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Gang Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Longmatan District, No. 1, Section 1, Xianglin Road, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yulin Luo
- GCP Center, Affiliated Hospital (Traditional Chinese Medicine) of Southwest Medical University, Luzhou, China
| | - Xiaojun Gao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Longmatan District, No. 1, Section 1, Xianglin Road, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yu Liang
- Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Feifei Yang
- School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Jianbo Wu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Longmatan District, No. 1, Section 1, Xianglin Road, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Dan Fang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Longmatan District, No. 1, Section 1, Xianglin Road, Luzhou, Sichuan, China.
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Mao Luo
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Longmatan District, No. 1, Section 1, Xianglin Road, Luzhou, Sichuan, China.
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
- Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
6
|
Fan W, Sun X, Yang C, Wan J, Luo H, Liao B. Pacemaker activity and ion channels in the sinoatrial node cells: MicroRNAs and arrhythmia. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:151-167. [PMID: 36450332 DOI: 10.1016/j.pbiomolbio.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/13/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
The primary pacemaking activity of the heart is determined by a spontaneous action potential (AP) within sinoatrial node (SAN) cells. This unique AP generation relies on two mechanisms: membrane clocks and calcium clocks. Nonhomologous arrhythmias are caused by several functional and structural changes in the myocardium. MicroRNAs (miRNAs) are essential regulators of gene expression in cardiomyocytes. These miRNAs play a vital role in regulating the stability of cardiac conduction and in the remodeling process that leads to arrhythmias. Although it remains unclear how miRNAs regulate the expression and function of ion channels in the heart, these regulatory mechanisms may support the development of emerging therapies. This study discusses the spread and generation of AP in the SAN as well as the regulation of miRNAs and individual ion channels. Arrhythmogenicity studies on ion channels will provide a research basis for miRNA modulation as a new therapeutic target.
Collapse
Affiliation(s)
- Wei Fan
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China
| | - Xuemei Sun
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China
| | - Chao Yang
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China
| | - Juyi Wan
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China.
| | - Hongli Luo
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China.
| | - Bin Liao
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China.
| |
Collapse
|
7
|
Al-Khannaq M, Lytton J. Regulation of K +-Dependent Na +/Ca 2+-Exchangers (NCKX). Int J Mol Sci 2022; 24:ijms24010598. [PMID: 36614039 PMCID: PMC9820825 DOI: 10.3390/ijms24010598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Potassium-dependent sodium-calcium exchangers (NCKX) have emerged as key determinants of calcium (Ca2+) signaling and homeostasis, especially in environments where ion concentrations undergo large changes, such as excitatory cells and transport epithelia. The regulation of NCKX transporters enables them to respond to the changing cellular environment thereby helping to shape the extent and kinetics of Ca2+ signals. This review examines the current knowledge of the different ways in which NCKX activity can be modulated. These include (i) cellular and dynamic subcellular location (ii); changes in protein expression mediated at the gene, transcript, or protein level (iii); genetic changes resulting in altered protein structure or expression (iv); regulation via changes in substrate concentration (v); and post-translational modification, partner protein interactions, and allosteric regulation. Detailed mechanistic understanding of NCKX regulation is an emerging area of research with the potential to provide important new insights into transporter function, the control of Ca2+ signals, and possible interventions for dysregulated Ca2+ homeostasis.
Collapse
|
8
|
Analysis of miRNA Associated with Coronary Artery Calcification. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3708547. [PMID: 35924109 PMCID: PMC9343195 DOI: 10.1155/2022/3708547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 11/18/2022]
Abstract
Cardiovascular diseases seriously endanger human physical and mental health and life safety, to investigate correlation between miR-let-7b and miR-29b and coronary artery calcification of various patients. At present, real-time fluorescence quantitative PCR (qRT-PCR) was used to detect the expression levels of plasma miR-let-7b and miR-29b in patients with coronary artery calcification and noncoronary artery calcification and to analyze whether the expression levels of miR-let-7b and miR-29b were different between the two groups. It was shown that there was no significant difference in the expression of miR-let-7d-3p between the two groups. But the expression of miR-29b in the observation group was significantly lower than that in the control group. Taken together, miR-29b might be a risk factor for coronary artery calcification and may be a marker for early diagnosis of coronary artery calcification.
Collapse
|
9
|
Wu YY, Shan SK, Lin X, Xu F, Zhong JY, Wu F, Duan JY, Guo B, Li FXZ, Wang Y, Zheng MH, Xu QS, Lei LM, Ou-Yang WL, Tang KX, Li CC, Ullah MHE, Yuan LQ. Cellular Crosstalk in the Vascular Wall Microenvironment: The Role of Exosomes in Vascular Calcification. Front Cardiovasc Med 2022; 9:912358. [PMID: 35677687 PMCID: PMC9168031 DOI: 10.3389/fcvm.2022.912358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/02/2022] [Indexed: 07/20/2023] Open
Abstract
Vascular calcification is prevalent in aging, diabetes, chronic kidney disease, cardiovascular disease, and certain genetic disorders. However, the pathogenesis of vascular calcification is not well-understood. It has been progressively recognized that vascular calcification depends on the bidirectional interactions between vascular cells and their microenvironment. Exosomes are an essential bridge to mediate crosstalk between cells and organisms, and thus they have attracted increased research attention in recent years. Accumulating evidence has indicated that exosomes play an important role in cardiovascular disease, especially in vascular calcification. In this review, we introduce vascular biology and focus on the crosstalk between the different vessel layers and how their interplay controls the process of vascular calcification.
Collapse
Affiliation(s)
- Yun-Yun Wu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Su-Kang Shan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Lin
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Xu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Yu Zhong
- Department of Nuclear Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Feng Wu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Yue Duan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bei Guo
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fu-Xing-Zi Li
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Wang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Hui Zheng
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiu-Shuang Xu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Li-Min Lei
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Lu Ou-Yang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ke-Xin Tang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chang-Chun Li
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Muhammad Hasnain Ehsan Ullah
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Qing Yuan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Zhang D, Lu D, Xu R, Zhai S, Zhang K. Inhibition of XIST attenuates abdominal aortic aneurysm in mice by regulating apoptosis of vascular smooth muscle cells through miR-762/MAP2K4 axis. Microvasc Res 2022; 140:104299. [PMID: 34942175 DOI: 10.1016/j.mvr.2021.104299] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023]
Abstract
Abdominal aortic aneurysm (AAA) is a common chronic aortic degenerative disease. Long non-coding RNA X-inactive specific transcript (XIST) is associated with the progression of AAA, while the underlying mechanism is still unclear. We investigated the functional role of XIST in AAA. AAA mouse model was established by administration of Angiotensin II (Ang II). Primary mouse vascular smooth muscle cells (VSMCs) were separated from the abdominal aorta of Ang II-induced AAA mice, and then treated with Ang II. XIST was highly expressed in Ang II-treated VSMCs. Cell proliferation ability was decreased and apoptosis was increased in VSMCs following Ang II treatment. XIST knockdown reversed the impact of Ang II on cell proliferation and apoptosis in VSMCs. XIST promoted mitogen-activated protein kinase kinase 4 (MAP2K4) expression by sponging miR-762. XIST overexpression suppressed cell proliferation and apoptosis of Ang II-treated VSMCs by regulating miR-762/MAP2K4 axis. Finally, Ang II-induced AAA mouse model was established to verify the function of XIST in AAA. Inhibition of XIST significantly attenuated the pathological changes of abdominal aorta tissues in Ang II-induced mice. The expression of miR-762 was inhibited, and MAP2K4 expression was enhanced by XIST knockdown in the abdominal aorta tissues of AAA mice. In conclusion, these data demonstrate that inhibition of XIST attenuates AAA in mice, which attributes to inhibit apoptosis of VSMCs by regulating miR-762/MAP2K4 axis. Thus, this study highlights a novel ceRNA circuitry involving key regulators in the pathogenesis of AAA.
Collapse
MESH Headings
- Animals
- Aorta, Abdominal/enzymology
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/enzymology
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/prevention & control
- Apoptosis
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Gene Expression Regulation, Enzymologic
- MAP Kinase Kinase 4/genetics
- MAP Kinase Kinase 4/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- RNA Interference
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Signal Transduction
- Mice
Collapse
Affiliation(s)
- Dongbin Zhang
- Department of Vascular Surgery, Henan Provincial People's Hospital, China; Zhengzhou University People's Hospital, China; Henan University People's Hospital, No. 7 Weiwu Road, Zhengzhou 450003, Henan, China
| | - Danghui Lu
- Department of Vascular Surgery, Henan Provincial People's Hospital, China; Zhengzhou University People's Hospital, China; Henan University People's Hospital, No. 7 Weiwu Road, Zhengzhou 450003, Henan, China
| | - Rutao Xu
- Department of Vascular Surgery, Henan Provincial People's Hospital, China; Zhengzhou University People's Hospital, China; Henan University People's Hospital, No. 7 Weiwu Road, Zhengzhou 450003, Henan, China
| | - Shuiting Zhai
- Department of Vascular Surgery, Henan Provincial People's Hospital, China; Zhengzhou University People's Hospital, China; Henan University People's Hospital, No. 7 Weiwu Road, Zhengzhou 450003, Henan, China
| | - Kewei Zhang
- Department of Vascular Surgery, Henan Provincial People's Hospital, China; Zhengzhou University People's Hospital, China; Henan University People's Hospital, No. 7 Weiwu Road, Zhengzhou 450003, Henan, China.
| |
Collapse
|
11
|
Pu Z, Lu J, Yang X. Emerging Roles of Circular RNAs in Vascular Smooth Muscle Cell Dysfunction. Front Genet 2022; 12:749296. [PMID: 35126447 PMCID: PMC8807483 DOI: 10.3389/fgene.2021.749296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/02/2021] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis is the major pathophysiological basis of cerebrovascular and cardiovascular diseases. Vascular smooth muscle cells (VSMCs) constitute the main structure of vasculature and play important roles in maintaining vascular tone and blood pressure. Many biological processes and cellular signaling events involved in atherosclerogenesis have been shown to converge on deregulating VSMC functions. However, the molecular mechanisms underlying dysfunctional VSMC in atherosclerosis are still poorly defined. Recent evidence revealed that circular RNAs (circRNAs) are closely related to diseases such as degenerative diseases, tumor, congenital diseases, endocrine diseases and cardiovascular diseases. Several studies demonstrated that circRNAs (e.g., circACTA2, Circ-SATB2, circDiaph3, circ_0020397, circTET3, circCCDC66) played critical roles in the regulation of VSMC proliferation, migration, invasion, and contractile-to-synthetic phenotype transformation by sponging microRNAs (e.g., miR-548f-5p, miR-939, miR-148a-5p, miR-138, miR-351-5p, miR-342-3p). This review describes recent progress in the profiling of circRNAs by transcriptome analysis in VSMCs and their molecular functions in regulating VSMC proliferation and migration.
Collapse
Affiliation(s)
| | - Jingbo Lu
- *Correspondence: Jingbo Lu, ; Xiaohan Yang,
| | | |
Collapse
|
12
|
Abbasian N. Vascular Calcification Mechanisms: Updates and Renewed Insight into Signaling Pathways Involved in High Phosphate-Mediated Vascular Smooth Muscle Cell Calcification. Biomedicines 2021; 9:804. [PMID: 34356868 PMCID: PMC8301440 DOI: 10.3390/biomedicines9070804] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/04/2021] [Accepted: 07/09/2021] [Indexed: 12/18/2022] Open
Abstract
Vascular calcification (VC) is associated with aging, cardiovascular and renal diseases and results in poor morbidity and increased mortality. VC occurs in patients with chronic kidney disease (CKD), a condition that is associated with high serum phosphate (Pi) and severe cardiovascular consequences. High serum Pi level is related to some pathologies which affect the behaviour of vascular cells, including platelets, endothelial cells (ECs) and smooth muscle cells (SMCs), and plays a central role in promoting VC. VC is a complex, active and cell-mediated process involving the transdifferentiation of vascular SMCs to a bone-like phenotype, systemic inflammation, decreased anti-calcific events (loss of calcification inhibitors), loss in SMC lineage markers and enhanced pro-calcific microRNAs (miRs), an increased intracellular calcium level, apoptosis, aberrant DNA damage response (DDR) and senescence of vascular SMCs. This review gives a brief overview of the current knowledge of VC mechanisms with a particular focus on Pi-induced changes in the vascular wall important in promoting calcification. In addition to reviewing the main findings, this review also sheds light on directions for future research in this area and discusses emerging pathways such as Pi-regulated intracellular calcium signaling, epigenetics, oxidative DNA damage and senescence-mediated mechanisms that may play critical, yet to be explored, regulatory and druggable roles in limiting VC.
Collapse
Affiliation(s)
- Nima Abbasian
- School of Life and Medical Sciences, University of Hertfordshire, Hertfordshire AL10 9AB, UK
| |
Collapse
|
13
|
Qin Z, Liao R, Xiong Y, Jiang L, Li J, Wang L, Han M, Sun S, Geng J, Yang Q, Zhang Z, Li Y, Du H, Su B. A narrative review of exosomes in vascular calcification. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:579. [PMID: 33987277 DOI: 10.21037/atm-20-7355] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Vascular calcification (VC) is the abnormal deposition of calcium, phosphorus, and other minerals in the vessel wall and can be commonly observed in diabetes, chronic kidney disease, and chronic inflammatory disease. It is closely associated with mortality from cardiovascular events. Traditionally, calcification is considered as a degenerative disease associated with the aging process, while increasing evidence has shown that the occurrence and development of calcification is an active biological process, which is highly regulated by multiple factors. The molecular mechanisms of VC have not yet been fully elucidated. Exosomes, as important transporters of substance transport and intercellular communication, have been shown to participate in VC. The regulation of VC by exosomes involves a number of complex biological processes, which occur through a variety of interaction mechanisms. However, the specific role and mechanism of exosomes in the process of VC are still not fully understood and require further study. This review will briefly describe the roles of exosomes in the process of VC including in the promotion of extracellular mineral deposits, induction of phenotypic conversion of vascular smooth muscle cells (VSMCs), transport of microRNA between cells, and regulation on autophagy and oxidative stress, with the aim of providing novel ideas for the clinical diagnosis and treatment of VC.
Collapse
Affiliation(s)
- Zheng Qin
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Ruoxi Liao
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Yuqin Xiong
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Luojia Jiang
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Jiameng Li
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Liya Wang
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Mei Han
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Si Sun
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Jiwen Geng
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Qinbo Yang
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Zhuyun Zhang
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Yupei Li
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China.,Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, China
| | - Heyue Du
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Baihai Su
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Liu CJ, Cheng CW, Tsai YS, Huang HS. Crosstalk between Renal and Vascular Calcium Signaling: The Link between Nephrolithiasis and Vascular Calcification. Int J Mol Sci 2021; 22:ijms22073590. [PMID: 33808324 PMCID: PMC8036726 DOI: 10.3390/ijms22073590] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Calcium (Ca2+) is an important mediator of multicellular homeostasis and is involved in several diseases. The interplay among the kidney, bone, intestine, and parathyroid gland in Ca2+ homeostasis is strictly modulated by numerous hormones and signaling pathways. The calcium-sensing receptor (CaSR) is a G protein–coupled receptor, that is expressed in calcitropic tissues such as the parathyroid gland and the kidney, plays a pivotal role in Ca2+ regulation. CaSR is important for renal Ca2+, as a mutation in this receptor leads to hypercalciuria and calcium nephrolithiasis. In addition, CaSR is also widely expressed in the vascular system, including vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs) and participates in the process of vascular calcification. Aberrant Ca2+ sensing by the kidney and VSMCs, owing to altered CaSR expression or function, is associated with the formation of nephrolithiasis and vascular calcification. Based on emerging epidemiological evidence, patients with nephrolithiasis have a higher risk of vascular calcification, but the exact mechanism linking the two conditions is unclear. However, a dysregulation in Ca2+ homeostasis and dysfunction in CaSR might be the connection between the two. This review summarizes renal calcium handling and calcium signaling in the vascular system, with a special focus on the link between nephrolithiasis and vascular calcification.
Collapse
Affiliation(s)
- Chan-Jung Liu
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704302, Taiwan; (C.-J.L.); (C.-W.C.)
| | - Chia-Wei Cheng
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704302, Taiwan; (C.-J.L.); (C.-W.C.)
| | - Yau-Sheng Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704302, Taiwan;
- Center for Clinical Medicine Research, National Cheng Kung University Hospital, Tainan 704302, Taiwan
| | - Ho-Shiang Huang
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704302, Taiwan; (C.-J.L.); (C.-W.C.)
- Correspondence: ; Tel.: +886-6-2353535 (ext. 5251); Fax: +886-6-2766179
| |
Collapse
|
15
|
Düsing P, Zietzer A, Goody PR, Hosen MR, Kurts C, Nickenig G, Jansen F. Vascular pathologies in chronic kidney disease: pathophysiological mechanisms and novel therapeutic approaches. J Mol Med (Berl) 2021; 99:335-348. [PMID: 33481059 PMCID: PMC7900031 DOI: 10.1007/s00109-021-02037-7] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/14/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022]
Abstract
Cardiovascular disease (CVD) is a major cause of death in patients with chronic kidney disease (CKD). Both conditions are rising in incidence as well as prevalence, creating poor outcomes for patients and high healthcare costs. Recent data suggests CKD to be an independent risk factor for CVD. Accumulation of uremic toxins, chronic inflammation, and oxidative stress have been identified to act as CKD-specific alterations that increase cardiovascular risk. The association between CKD and cardiovascular mortality is markedly influenced through vascular alterations, in particular atherosclerosis and vascular calcification (VC). While numerous risk factors promote atherosclerosis by inducing endothelial dysfunction and its progress to vascular structural damage, CKD affects the medial layer of blood vessels primarily through VC. Ongoing research has identified VC to be a multifactorial, cell-mediated process in which numerous abnormalities like mineral dysregulation and especially hyperphosphatemia induce a phenotype switch of vascular smooth muscle cells to osteoblast-like cells. A combination of pro-calcifying stimuli and an impairment of inhibiting mechanisms like fetuin A and vitamin K-dependent proteins like matrix Gla protein and Gla-rich protein leads to mineralization of the extracellular matrix. In view of recent studies, intercellular communication pathways via extracellular vesicles and microRNAs represent key mechanisms in VC and thereby a promising field to a deeper understanding of the involved pathomechanisms. In this review, we provide an overview about pathophysiological mechanisms connecting CKD and CVD. Special emphasis is laid on vascular alterations and more recently discovered molecular pathways which present possible new therapeutic targets.
Collapse
Affiliation(s)
- Philip Düsing
- Heart Center, Department of Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Andreas Zietzer
- Heart Center, Department of Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Philip Roger Goody
- Heart Center, Department of Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Mohammed Rabiul Hosen
- Heart Center, Department of Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Christian Kurts
- Institute of Experimental Immunology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, Bonn, 53127, Germany
| | - Georg Nickenig
- Heart Center, Department of Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Felix Jansen
- Heart Center, Department of Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
16
|
Zheng D, Huo M, Li B, Wang W, Piao H, Wang Y, Zhu Z, Li D, Wang T, Liu K. The Role of Exosomes and Exosomal MicroRNA in Cardiovascular Disease. Front Cell Dev Biol 2021; 8:616161. [PMID: 33511124 PMCID: PMC7835482 DOI: 10.3389/fcell.2020.616161] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
Exosomes are small vesicles (30–150 nm in diameter) enclosed by a lipid membrane bilayer, secreted by most cells in the body. They carry various molecules, including proteins, lipids, mRNA, and other RNA species, such as long non-coding RNA, circular RNA, and microRNA (miRNA). miRNAs are the most numerous cargo molecules in the exosome. They are endogenous non-coding RNA molecules, approximately 19–22-nt-long, and important regulators of protein biosynthesis. Exosomes can be taken up by neighboring or distant cells, where they play a role in post-transcriptional regulation of gene expression by targeting mRNA. Exosomal miRNAs have diverse functions, such as participation in inflammatory reactions, cell migration, proliferation, apoptosis, autophagy, and epithelial–mesenchymal transition. There is increasing evidence that exosomal miRNAs play an important role in cardiovascular health. Exosomal miRNAs are widely involved in the occurrence and development of cardiovascular diseases, such as atherosclerosis, acute coronary syndrome, heart failure (HF), myocardial ischemia reperfusion injury, and pulmonary hypertension. In this review, we present a systematic overview of the research progress into the role of exosomal miRNAs in cardiovascular diseases, and present new ideas for the diagnosis and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Dongdong Zheng
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Ming Huo
- Department of Day Operating Room, The Second Hospital of Jilin University, Changchun, China
| | - Bo Li
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Weitie Wang
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Hulin Piao
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yong Wang
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Zhicheng Zhu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Dan Li
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Tiance Wang
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Kexiang Liu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
17
|
Wang SS, Wang C, Chen H. MicroRNAs are critical in regulating smooth muscle cell mineralization and apoptosis during vascular calcification. J Cell Mol Med 2020; 24:13564-13572. [PMID: 33089928 PMCID: PMC7754013 DOI: 10.1111/jcmm.16005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/27/2020] [Accepted: 10/01/2020] [Indexed: 02/01/2023] Open
Abstract
Vascular calcification refers to the pathological deposition of calcium and phosphate minerals into the vasculature. It is prevalent in atherosclerosis, ageing, type 2 diabetes mellitus and chronic kidney disease, thus, increasing morbidity and mortality from these conditions. Vascular calcification shares similar mechanisms with bone mineralization, with smooth muscle cells playing a critical role in both processes. In the last decade, a variety of microRNAs have been identified as key regulators for the differentiation, phenotypic switch, proliferation, apoptosis, cytokine production and matrix deposition in vascular smooth muscle cells during vascular calcification. Therefore, this review mainly discusses the roles of microRNAs in the pathophysiological mechanisms of vascular calcification in smooth muscle cells and describes several interventions against vascular calcification by regulating microRNAs. As the exact mechanisms of calcification remain not fully elucidated, having a better understanding of microRNA involvement in vascular calcification may give impetus to development of novel therapeutics for the control and treatment of vascular calcification.
Collapse
Affiliation(s)
- Shan-Shan Wang
- Department of Cardiology, Zhejiang Provincial Key Lab of Cardiovascular Disease Diagnosis and Treatment, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Wang
- Department of Cardiology, Zhejiang Provincial Key Lab of Cardiovascular Disease Diagnosis and Treatment, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Han Chen
- Department of Cardiology, Zhejiang Provincial Key Lab of Cardiovascular Disease Diagnosis and Treatment, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
18
|
Duan M, Zhao WL, Zhou L, Novák P, Zhu X, Yin K. Omics research in vascular calcification. Clin Chim Acta 2020; 511:319-328. [PMID: 33096035 DOI: 10.1016/j.cca.2020.10.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023]
Abstract
Vascular calcification (VC), the pathological process of hydroxyapatite mineral deposition in the vascular system, is closely associated with aging, atherosclerotic plaque formation, cardiovascular disease (CVD) and diabetes mellitus (DM). Studies have shown that VC is related to cellular phenotypic changes, extracellular vesicles, disordered calcium and phosphate homeostasis, and an imbalance between inducers and inhibitors of VC. Unfortunately, there is currently no effective preventive or targeted treatment for pathologic condition. The rapid evolution of omics technology (genomics, epigenomics, transcriptomics, proteomics and metabolomics) has provided a novel approach for elucidation of pathophysiologic mechanisms in general and those associated with VC specifically. Here, we review articles published over the last twenty years and focus on the current state, challenges, limitations and future of omics in VC research and clinical practice. Highlighting potential targets based on omics technology will improve our understanding of this pathologic condition and assist in the development of potential treatment options for VC related disease.
Collapse
Affiliation(s)
- Meng Duan
- Research Lab of Translational Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541100, China
| | - Wen-Li Zhao
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541100, China
| | - Le Zhou
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541100, China
| | - Petr Novák
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541100, China
| | - Xiao Zhu
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541100, China.
| | - Kai Yin
- The Second Affiliated Hospital of Guilin Medical University, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541100, China.
| |
Collapse
|
19
|
Duan M, Zhao WL, Zhou L, Novák P, Zhu X, Yin K. Omics research in vascular calcification. Clin Chim Acta 2020; 511:198-207. [PMID: 33096032 DOI: 10.1016/j.cca.2020.10.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023]
Abstract
Vascular calcification (VC), the pathological process of hydroxyapatite mineral deposition in the vascular system, is closely associated with aging, atherosclerotic plaque formation, cardiovascular disease (CVD) and diabetes mellitus (DM). Studies have shown that VC is related to cellular phenotypic changes, extracellular vesicles, disordered calcium phosphate homeostasis and an imbalance between inducers and inhibitors of VC. Unfortunately, there is currently no effective preventive or targeted treatment for this disorder. Recently, the evolution of omics technology (genomics, epigenomics, transcriptomics, proteomics and metabolomics) has paved the way for elucidation of complex biochemical processes and, as such, may provide new insight on VC. Accordingly, we conducted a review of articles published over the last twenty years and herein focus on current and future potential of omics technology in clarifying mechanisms of this disease process. Identification of new biomarkers will provide additional tools in characterizing this pathology and will further assist in the development of potential therapeutic targets.
Collapse
Affiliation(s)
- Meng Duan
- Research Lab of Translational Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541100, China
| | - Wen-Li Zhao
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541100, China
| | - Le Zhou
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541100, China
| | - Petr Novák
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541100, China
| | - Xiao Zhu
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541100, China.
| | - Kai Yin
- The Second Affiliated Hospital of Guilin Medical University, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541100, China.
| |
Collapse
|
20
|
Ding Q, Shao C, Rose P, Zhu YZ. Epigenetics and Vascular Senescence-Potential New Therapeutic Targets? Front Pharmacol 2020; 11:535395. [PMID: 33101015 PMCID: PMC7556287 DOI: 10.3389/fphar.2020.535395] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
Epigenetics is defined as the heritable alterations of gene expression without changes to the coding sequence of DNA. These alterations are mediated by processes including DNA methylation, histone modifications, and non-coding RNAs mechanisms. Vascular aging consists of both structural and functional changes in the vasculature including pathological processes that drive progression such as vascular cell senescence, inflammation, oxidation stress, and calcification. As humans age, these pathological conditions gradually accumulate, driven by epigenetic alterations, and are linked to various aging-related diseases. The development of drugs targeting a spectrum of epigenetic processes therefore offers novel treatment strategies for the targeting of age-related diseases. In our previous studies, we identified HDAC4, JMJD3, Fra-1, and GATA4 as potential pharmacological targets for regulating vascular inflammation, injury, and senescence.
Collapse
Affiliation(s)
- Qian Ding
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China.,School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Chunhong Shao
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai, China
| | - Peter Rose
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| |
Collapse
|
21
|
Ryu J, Ahn Y, Kook H, Kim YK. The roles of non-coding RNAs in vascular calcification and opportunities as therapeutic targets. Pharmacol Ther 2020; 218:107675. [PMID: 32910935 DOI: 10.1016/j.pharmthera.2020.107675] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023]
Abstract
Vascular calcification (VC) is characterized by an accumulation of calcium phosphate crystals inside the vessel wall. VC is often associated with diabetes, chronic kidney disease (CKD), atherosclerosis, and cardiovascular disease (CVD). Even though the number of patients with VC remains prevalent, there are still no approved therapies for the treatment of VC. Since the pathogenesis of VC is diverse and involves multiple factors and mechanisms, it is critical to reveal the novel mechanisms involved in VC. Although protein-coding RNAs involved in VC have been extensively studied, the roles of non-coding RNAs (ncRNAs) are not yet fully understood. The field of ncRNAs has recently received attention, and accumulating evidence from studies in VC suggests that ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), play an important role in the regulation of VC. NcRNAs can modulate VC by acting as promoters or inhibitors and may be useful in the clinical diagnosis and treatment of VC. In this article, we review and discuss ncRNAs that regulate VC and present the therapeutic implications of these ncRNAs.
Collapse
Affiliation(s)
- Juhee Ryu
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, Republic of Korea; Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Pharmacology, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
| | - Youngkeun Ahn
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Cardiology, Cardiovascular Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Hyun Kook
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, Republic of Korea; Department of Pharmacology, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.
| | - Young-Kook Kim
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, Republic of Korea; Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.
| |
Collapse
|
22
|
Bioinformatical Analysis of miRNA-mRNA Interaction Network Underlying Macrophage Aging and Cholesterol-Responsive Difference between Young and Aged Macrophages. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9267475. [PMID: 32626771 PMCID: PMC7306864 DOI: 10.1155/2020/9267475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/28/2020] [Accepted: 05/18/2020] [Indexed: 01/28/2023]
Abstract
Purpose Macrophage aging is involved with the occurrence and progression of age-related macular degeneration (AMD). The purpose of this study was to identify the specific microRNAs (miRNA), mRNAs, and their interactions underlying macrophage aging and response to cholesterol through bioinformatical analysis in order to get a better understanding of the mechanism of AMD. Methods The microarray data were obtained from Gene Expression Omnibus (accession GSE111304 and GSE111382). The age-related differentially expressed genes in macrophages were identified using R software. Further miRNA-mRNA interactions were analyzed through miRWalk, mirTarBase, starBase, and then produced by Cytoscape. The functional annotations including Gene Ontology and KEGG pathways of the miRNA target genes were performed by the DAVID and the STRING database. In addition, protein-protein interaction network was constructed to identify the key genes in response to exogenous cholesterol. Results When comparing aged and young macrophages, a total of 14 miRNAs and 101 mRNAs were detected as differentially expressed. Besides, 19 validated and 544 predicted miRNA-mRNA interactions were detected. Lipid metabolic process was found to be associated with macrophage aging through functional annotations of the miRNA targets. After being treated with oxidized and acetylated low-density lipoprotein, miR-714 and 16 mRNAs differentially expressed in response to both kinds of cholesterol between aged and young macrophages. Among them, 6 miRNA-mRNA predicted pairs were detected. The functional annotations were mainly related to lipid metabolism process and farnesyl diphosphate farnesyl transferase 1 (FDFT1) was identified to be the key gene in the difference of response to cholesterol between aged and young macrophages. Conclusions Lipid metabolic process was critical in both macrophage aging and response to cholesterol thus was regarded to be associated with the occurrence and progression of AMD. Moreover, miR-714-FDFT1 may modulate cholesterol homeostasis in aged macrophages and have the potential to be a novel therapeutic target for AMD.
Collapse
|
23
|
Roles of Histone Acetylation Modifiers and Other Epigenetic Regulators in Vascular Calcification. Int J Mol Sci 2020; 21:ijms21093246. [PMID: 32375326 PMCID: PMC7247359 DOI: 10.3390/ijms21093246] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 02/07/2023] Open
Abstract
Vascular calcification (VC) is characterized by calcium deposition inside arteries and is closely associated with the morbidity and mortality of atherosclerosis, chronic kidney disease, diabetes, and other cardiovascular diseases (CVDs). VC is now widely known to be an active process occurring in vascular smooth muscle cells (VSMCs) involving multiple mechanisms and factors. These mechanisms share features with the process of bone formation, since the phenotype switching from the contractile to the osteochondrogenic phenotype also occurs in VSMCs during VC. In addition, VC can be regulated by epigenetic factors, including DNA methylation, histone modification, and noncoding RNAs. Although VC is commonly observed in patients with chronic kidney disease and CVD, specific drugs for VC have not been developed. Thus, discovering novel therapeutic targets may be necessary. In this review, we summarize the current experimental evidence regarding the role of epigenetic regulators including histone deacetylases and propose the therapeutic implication of these regulators in the treatment of VC.
Collapse
|
24
|
Hou YC, Lu CL, Zheng CM, Liu WC, Yen TH, Chen RM, Lin YF, Chao CT, Lu KC. The Role of Vitamin D in Modulating Mesenchymal Stem Cells and Endothelial Progenitor Cells for Vascular Calcification. Int J Mol Sci 2020; 21:2466. [PMID: 32252330 PMCID: PMC7177675 DOI: 10.3390/ijms21072466] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
Vascular calcification, which involves the deposition of calcifying particles within the arterial wall, is mediated by atherosclerosis, vascular smooth muscle cell osteoblastic changes, adventitial mesenchymal stem cell osteoblastic differentiation, and insufficiency of the calcification inhibitors. Recent observations implied a role for mesenchymal stem cells and endothelial progenitor cells in vascular calcification. Mesenchymal stem cells reside in the bone marrow and the adventitial layer of arteries. Endothelial progenitor cells that originate from the bone marrow are an important mechanism for repairing injured endothelial cells. Mesenchymal stem cells may differentiate osteogenically by inflammation or by specific stimuli, which can activate calcification. However, the bioactive substances secreted from mesenchymal stem cells have been shown to mitigate vascular calcification by suppressing inflammation, bone morphogenetic protein 2, and the Wingless-INT signal. Vitamin D deficiency may contribute to vascular calcification. Vitamin D supplement has been used to modulate the osteoblastic differentiation of mesenchymal stem cells and to lessen vascular injury by stimulating adhesion and migration of endothelial progenitor cells. This narrative review clarifies the role of mesenchymal stem cells and the possible role of vitamin D in the mechanisms of vascular calcification.
Collapse
Affiliation(s)
- Yi-Chou Hou
- Division of Nephrology, Department of Medicine, Cardinal-Tien Hospital, New Taipei City 231, Taiwan;
- School of Medicine, Fu-Jen Catholic University, New Taipei City 234, Taiwan;
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (C.-M.Z.); (W.-C.L.); (Y.-F.L.)
| | - Chien-Lin Lu
- School of Medicine, Fu-Jen Catholic University, New Taipei City 234, Taiwan;
- Division of Nephrology, Department of Medicine, Fu-Jen Catholic University Hospital, New Taipei City 243, Taiwan
| | - Cai-Mei Zheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (C.-M.Z.); (W.-C.L.); (Y.-F.L.)
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei 235, Taiwan
| | - Wen-Chih Liu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (C.-M.Z.); (W.-C.L.); (Y.-F.L.)
- Division of Nephrology, Department of Internal Medicine, Tungs’ Taichung Metroharbor Hospital, Taichung City 43304, Taiwan
| | - Tzung-Hai Yen
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Ruei-Ming Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Yuh-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (C.-M.Z.); (W.-C.L.); (Y.-F.L.)
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei 235, Taiwan
| | - Chia-Ter Chao
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei 104, Taiwan
- Nephrology division, Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital BeiHu Branch, Taipei 108, Taiwan
| | - Kuo-Cheng Lu
- School of Medicine, Fu-Jen Catholic University, New Taipei City 234, Taiwan;
- Division of Nephrology, Department of Medicine, Fu-Jen Catholic University Hospital, New Taipei City 243, Taiwan
- Division of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and School of Medicine, Buddhist Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
25
|
Ni YQ, Lin X, Zhan JK, Liu YS. Roles and Functions of Exosomal Non-coding RNAs in Vascular Aging. Aging Dis 2020; 11:164-178. [PMID: 32010490 PMCID: PMC6961769 DOI: 10.14336/ad.2019.0402] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/02/2019] [Indexed: 12/13/2022] Open
Abstract
Aging is a progressive loss of physiological integrity and functionality process which increases susceptibility and mortality to diseases. Vascular aging is a specific type of organic aging. The structure and function changes of endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are the main cause of vascular aging, which could influence the threshold, process, and severity of vascular related diseases. Accumulating evidences demonstrate that exosomes serve as novel intercellular information communicator between cell to cell by delivering variety biologically active cargos, especially exosomal non-coding RNAs (ncRNAs), which are associated with most of aging-related biological and functional disorders. In this review, we will summerize the emerging roles and mechanisms of exosomal ncRNAs in vascular aging and vascular aging related diseases, focusing on the role of exosomal miRNAs and lncRNAs in regulating the functions of ECs and VSMCs. Moreover, the relationship between the ECs and VSMCs linked by exosomes, the potential diagnostic and therapeutic application of exosomes in vascular aging and the clinical evaluation and treatment of vascular aging and vascular aging related diseases will also be discussed.
Collapse
Affiliation(s)
| | | | - Jun-Kun Zhan
- Department of Geriatrics, Institute of Aging and Geriatrics, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - You-Shuo Liu
- Department of Geriatrics, Institute of Aging and Geriatrics, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
26
|
The Epigenetic Landscape of Vascular Calcification: An Integrative Perspective. Int J Mol Sci 2020; 21:ijms21030980. [PMID: 32024140 PMCID: PMC7037112 DOI: 10.3390/ijms21030980] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/26/2022] Open
Abstract
Vascular calcification (VC) is an important complication among patients of advanced age, those with chronic kidney disease, and those with diabetes mellitus. The pathophysiology of VC encompasses passive occurrence of physico-chemical calcium deposition, active cellular secretion of osteoid matrix upon exposure to metabolically noxious stimuli, or a variable combination of both processes. Epigenetic alterations have been shown to participate in this complex environment, through mechanisms including DNA methylation, non-coding RNAs, histone modifications, and chromatin changes. Despite such importance, existing reviews fail to provide a comprehensive view of all relevant reports addressing epigenetic processes in VC, and cross-talk between different epigenetic machineries is rarely examined. We conducted a systematic review based on PUBMED and MEDLINE databases up to 30 September 2019, to identify clinical, translational, and experimental reports addressing epigenetic processes in VC; we retrieved 66 original studies, among which 60.6% looked into the pathogenic role of non-coding RNA, followed by DNA methylation (12.1%), histone modification (9.1%), and chromatin changes (4.5%). Nine (13.6%) reports examined the discrepancy of epigenetic signatures between subjects or tissues with and without VC, supporting their applicability as biomarkers. Assisted by bioinformatic analyses blending in each epigenetic component, we discovered prominent interactions between microRNAs, DNA methylation, and histone modification regarding potential influences on VC risk.
Collapse
|
27
|
Abstract
Calcification is a regulated physiological process occurring in bones and teeth. However, calcification is commonly found in soft tissues in association with aging and in a variety of diseases. Over the last two decades, it has emerged that calcification occurring in diseased arteries is not simply an inevitable build-up of insoluble precipitates of calcium phosphate. In some cases, it is an active process in which transcription factors drive conversion of vascular cells to an osteoblast or chondrocyte-like phenotype, with the subsequent production of mineralizing "matrix vesicles." Early studies of bone and cartilage calcification suggested roles for cellular calcium signaling in several of the processes involved in the regulation of bone calcification. Similarly, calcium signaling has recently been highlighted as an important component in the mechanisms regulating pathological calcification. The emerging hypothesis is that ectopic/pathological calcification occurs in tissues in which there is an imbalance in the regulatory mechanisms that actively prevent calcification. This review highlights the various ways that calcium signaling regulates tissue calcification, with a particular focus on pathological vascular calcification.
Collapse
Affiliation(s)
- Diane Proudfoot
- Signalling Division, Babraham Institute, Babraham, Cambridge CB22 3AT, United Kingdom
| |
Collapse
|
28
|
Gao XF, Wang ZM, Wang F, Gu Y, Zhang JJ, Chen SL. Exosomes in Coronary Artery Disease. Int J Biol Sci 2019; 15:2461-2470. [PMID: 31595163 PMCID: PMC6775305 DOI: 10.7150/ijbs.36427] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
Exosomes, the nanosized vesicles released from various cell types, contain many bioactive molecules, such as proteins, lipids, and nucleic acids, which can participate in intercellular communication in a paracrine manner or an endocrine manner, in order to maintain the homeostasis and respond to stress adaptively. Currently, exosomes have already been utilized as diagnostic biomarkers and therapeutic tools in cancer clinical trials. There has also been great progress in cell and animal exosomes studies of coronary artery disease (CAD). Emerging evidence suggests that exosomes released from endothelial cells, smooth muscle cells, adipose cells, platelets, cardiomyocytes, and stem cells have been reported to play crucial roles in the development and progression of CAD. Moreover, it has been showed that exosomes released from different cell types exhibit diverse biological functions, either detrimental or protective, depending on the cell state and the microenvironment. However, the systematic knowledge of exosomes in CAD at the patient level has not been well established, which are far away from clinical application. This review summarizes the basic information about exosomes and provides an update of the recent findings on exosome-mediated intercellular communication in the development and progression of CAD, which could be helpful for understanding the pathophysiology of CAD and promoting the further potential clinical translation.
Collapse
Affiliation(s)
- Xiao-Fei Gao
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Cardiology, Nanjing Heart Centre, Nanjing, China
| | - Zhi-Mei Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Feng Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yue Gu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jun-Jie Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Cardiology, Nanjing Heart Centre, Nanjing, China
| | - Shao-Liang Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Cardiology, Nanjing Heart Centre, Nanjing, China
| |
Collapse
|
29
|
Anasagasti A, Ezquerra-Inchausti M, Barandika O, Muñoz-Culla M, Caffarel MM, Otaegui D, López de Munain A, Ruiz-Ederra J. Expression Profiling Analysis Reveals Key MicroRNA-mRNA Interactions in Early Retinal Degeneration in Retinitis Pigmentosa. Invest Ophthalmol Vis Sci 2019; 59:2381-2392. [PMID: 29847644 PMCID: PMC5939684 DOI: 10.1167/iovs.18-24091] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The aim of this study was to identify differentially expressed microRNAs (miRNAs) that might play an important role in the etiology of retinal degeneration in a genetic mouse model of retinitis pigmentosa (rd10 mice) at initial stages of the disease. Methods miRNAs–mRNA interaction networks were generated for analysis of biological pathways involved in retinal degeneration. Results Of more than 1900 miRNAs analyzed, we selected 19 miRNAs on the basis of (1) a significant differential expression in rd10 retinas compared with control samples and (2) an inverse expression relationship with predicted mRNA targets involved in biological pathways relevant to retinal biology and/or degeneration. Seven of the selected miRNAs have been associated with retinal dystrophies, whereas, to our knowledge, nine have not been previously linked to any disease. Conclusions This study contributes to our understanding of the etiology and progression of retinal degeneration.
Collapse
Affiliation(s)
- Ander Anasagasti
- Neuroscience Area, Sensorial Neurodegeneration Group, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Maitane Ezquerra-Inchausti
- Neuroscience Area, Sensorial Neurodegeneration Group, Biodonostia Health Research Institute, San Sebastian, Spain.,RETICS OFTARED, National Institute of Health Carlos III, Ministry of Economy and Competitiveness, Spain
| | - Olatz Barandika
- Neuroscience Area, Sensorial Neurodegeneration Group, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Maider Muñoz-Culla
- Neuroscience Area, Multiple Sclerosis Group, Biodonostia Health Research Institute, San Sebastian, Spain.,Spanish Network on Multiple Sclerosis (Red Española de Esclerosis Múltiple)
| | - María M Caffarel
- Oncology Area, Biodonostia Health Research Institute, San Sebastian, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - David Otaegui
- Neuroscience Area, Multiple Sclerosis Group, Biodonostia Health Research Institute, San Sebastian, Spain.,Spanish Network on Multiple Sclerosis (Red Española de Esclerosis Múltiple)
| | - Adolfo López de Munain
- Neuroscience Area, Sensorial Neurodegeneration Group, Biodonostia Health Research Institute, San Sebastian, Spain.,Department of Neurology, Donostia University Hospital, San Sebastian, Spain.,Centro de Investigaciones Biomédicas en Red Sobre Enfermedades Neurodegenerativas, Instituto Carlos III, Ministerio de Economía y Competitividad, Spain.,Department of Neuroscience, University of the Basque Country, San Sebastian, Spain
| | - Javier Ruiz-Ederra
- Neuroscience Area, Sensorial Neurodegeneration Group, Biodonostia Health Research Institute, San Sebastian, Spain.,RETICS OFTARED, National Institute of Health Carlos III, Ministry of Economy and Competitiveness, Spain
| |
Collapse
|
30
|
Zhang C, Zhang K, Huang F, Feng W, Chen J, Zhang H, Wang J, Luo P, Huang H. Exosomes, the message transporters in vascular calcification. J Cell Mol Med 2018; 22:4024-4033. [PMID: 29892998 PMCID: PMC6111818 DOI: 10.1111/jcmm.13692] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 04/18/2018] [Indexed: 12/17/2022] Open
Abstract
Vascular calcification (VC) is caused by hydroxyapatite deposition in the intimal and medial layers of the vascular wall, leading to severe cardiovascular events in patients with hypertension, chronic kidney disease and diabetes mellitus. VC occurrences involve complicated mechanism networks, such as matrix vesicles or exosomes production, osteogenic differentiation, reduced cell viability, aging and so on. However, with present therapeutic methods targeting at VC ineffectively, novel targets for VC treatment are demanded. Exosomes are proven to participate in VC and function as initializers for mineral deposition. Secreted exosomes loaded with microRNAs are also demonstrated to modulate VC procession in recipient vascular smooth muscle cells. In this review, we targeted at the roles of exosomes during VC, especially at their effects on transporting biological information among cells. Moreover, we will discuss the potential mechanisms of exosomes in VC.
Collapse
Affiliation(s)
- Chao Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, GuangZhou, China
| | - Kun Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, GuangZhou, China
| | - Feifei Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, GuangZhou, China
| | - Weijing Feng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, GuangZhou, China
| | - Jie Chen
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, GuangZhou, China.,Department of Radiation Oncology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huanji Zhang
- Cardiovascular Department, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jingfeng Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, GuangZhou, China
| | - Pei Luo
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Hui Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, GuangZhou, China
| |
Collapse
|
31
|
Schurgers LJ, Akbulut AC, Kaczor DM, Halder M, Koenen RR, Kramann R. Initiation and Propagation of Vascular Calcification Is Regulated by a Concert of Platelet- and Smooth Muscle Cell-Derived Extracellular Vesicles. Front Cardiovasc Med 2018; 5:36. [PMID: 29682509 PMCID: PMC5897433 DOI: 10.3389/fcvm.2018.00036] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/26/2018] [Indexed: 12/20/2022] Open
Abstract
The ageing population continues to suffer from its primary killer, cardiovascular disease (CVD). Despite recent advances in interventional medicinal and surgical therapies towards the end of the 20th century, the epidemic of cardiovascular disease has not been halted. Yet, rather than receding globally, the burden of CVD has risen to become a top cause of morbidity and mortality worldwide. Most CVD arises from thrombotic rupture of an atherosclerotic plaque, the pathologic thickening of coronary and carotid artery segments and subsequent distal ischemia in heart or brain. In fact, one-fifth of deaths are directly attributable to thrombotic rupture of a vulnerable plaque. Atherosclerotic lesion formation is caused by a concert of interactions between circulating leukocytes and platelets, interacting with the endothelial barrier, signalling into the arterial wall by the release of cytokines and extracellular vesicles (EVs). Both platelet- and cell-derived EVs represent a novel mechanism of cellular communication, particularly by the transport and transfer of cargo and by reprogramming of the recipient cell. These interactions result in phenotypic switching of vascular smooth muscle cells (VSMCs) causing migration and proliferation, and subsequent secretion of EVs. Loss of VSMCs attracts perivascular Mesenchymal Stem Cells (MSCs) from the adventitia, which are a source of VSMCs and contribute to repair after vascular injury. However, continuous stress stimuli eventually switch phenotype of cells into osteochondrogenic VSMCs facilitating vascular calcification. Although Virchow’s triad is over 100 years old, it is a reality that is accurate today. It can be briefly summarised as changes in the composition of blood (platelet EVs), alterations in the vessel wall (VSMC phenotypic switching, MSC infiltration and EV release) and disruption of blood flow (atherothrombosis). In this paper, we review the latest relevant advances in the identification of extracellular vesicle pathways as well as VSMCs and pericyte/MSC phenotypic switching, underlying vascular calcification.
Collapse
Affiliation(s)
- Leon J Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | - Asim C Akbulut
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | - Dawid M Kaczor
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | - Maurice Halder
- Division of Nephrology, RWTH Aachen University, Aachen, Germany
| | - Rory R Koenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | - Rafael Kramann
- Division of Nephrology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
32
|
Sun WL, Wang N, Xu Y. Impact of miR-302b on Calcium-phosphorus Metabolism and Vascular Calcification of Rats with Chronic Renal Failure by Regulating BMP-2/Runx2/Osterix Signaling Pathway. Arch Med Res 2018; 49:164-171. [DOI: 10.1016/j.arcmed.2018.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 07/30/2018] [Indexed: 12/22/2022]
|
33
|
Epigenetic Regulation of Vascular Aging and Age-Related Vascular Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1086:55-75. [PMID: 30232752 DOI: 10.1007/978-981-13-1117-8_4] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vascular aging refers to the structural and functional defects that occur in the aorta during the aging process and is characterized by increased vascular cell senescence, vascular dyshomeostasis, and vascular remodeling. Vascular aging is a major risk factor for vascular diseases. However, the current understanding of the biological process of vascular aging and age-related diseases is insufficient. Epigenetic regulation can influence gene expression independently of the gene sequence and mainly includes DNA methylation, histone modifications, and RNA-based gene regulation. Epigenetic regulation plays important roles in many physiological and pathophysiological processes and may explain some gaps in our knowledge regarding the interaction between genes and diseases. In this review, we summarize recent advances in the understanding of the epigenetic regulation of vascular aging and age-related diseases in terms of vascular cell senescence, vascular dyshomeostasis, and vascular remodeling. Moreover, the possibility of targeting epigenetic regulation to delay vascular aging and treat age-related vascular diseases is also discussed.
Collapse
|
34
|
Katano H, Nishikawa Y, Yamada H, Yamada K, Mase M. Differential Expression of microRNAs in Severely Calcified Carotid Plaques. J Stroke Cerebrovasc Dis 2017; 27:108-117. [PMID: 28939047 DOI: 10.1016/j.jstrokecerebrovasdis.2017.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 07/15/2017] [Accepted: 08/10/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND We investigated whether microRNA (miRNA) alteration is related to the presence of calcification in carotid plaques. METHODS We classified 10 plaques from carotid endarterectomy patients into high- and low-calcified plaques based on Agatston calcium scores. A microarray analysis for miRNA profiles was performed, with validation by a miRNA quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS The miRNA microarray identified 697 probes; 657 of them were downregulated. We selected the genes that satisfied total gene signal (TGS) >50, |Log2 ratio| > 1 and ≥1 of the following: (1) false discovery rate (FDR) <.05 in the comparison of mean values of logarithmic transformed signals between the groups; (2) .05 ≤ FDR < .1 and showing either high or median for context score+ in miRSearch among the 72 carefully selected genes related to angiogenesis or calcification; and (3) FDR < .1 in the comparison of 10 individual sets of high- and low-calcified plaques. The expression of miRNA validated by qRT-PCR revealed a significant downregulation of hsa-miR-4530, hsa-miR133b, and hsa-miR-1-3p. A Spearman's rank correlation analysis revealed that the logarithmic TGSs for the microarray of hsa-miR-4530 and hsa-miR-133b were significantly inversely correlated with the carotid plaques' calcium scores, and the delta Cq values for the qRT-PCR showed a direct association. CONCLUSIONS In high-calcified carotid plaques, a specific profile for miRNA may be identified, and the expressions of hsa-miR-4530 and hsa-miR-133b had inverse correlations with the calcium score in the plaques, suggesting that miRNAs may play a modulating role in calcified plaques and plaque stability.
Collapse
Affiliation(s)
- Hiroyuki Katano
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; Department of Medical Informatics & Integrative Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| | - Yusuke Nishikawa
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroshi Yamada
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kazuo Yamada
- Nagoya City Rehabilitation Center, Nagoya, Japan
| | - Mitsuhito Mase
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
35
|
Alkagiet S, Tziomalos K. Vascular calcification: the role of microRNAs. Biomol Concepts 2017; 8:119-123. [PMID: 28426428 DOI: 10.1515/bmc-2017-0001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/21/2017] [Indexed: 01/22/2023] Open
Abstract
Vascular calcification represents the deposition of calcium phosphate salts in the tunica media of the vascular wall. It occurs during aging but is accelerated and pronounced in patients with diabetes mellitus, chronic kidney disease (CKD) and established cardiovascular disease. Due to the loss of elasticity of the vessel wall, vascular calcification might result in left ventricular hypertrophy and compromise coronary perfusion. Accordingly, several studies showed that vascular calcification is associated with increased risk for cardiovascular morbidity and mortality. Accumulating data suggest that microRNAs (miRs) play an important role in vascular calcification. A variety of miRs have been implicated in the development of vascular calcification, whereas others appear to play a protective role. Accordingly, miRs might represent promising targets for the prevention of vascular calcification and its adverse cardiovascular sequelae. However, given the complexity of regulation of this process and the multitude of miRs involved, more research is needed to identify the optimal candidate miRs for targeting.
Collapse
|
36
|
Chao CT, Liu YP, Su SF, Yeh HY, Chen HY, Lee PJ, Chen WJ, Lee YM, Huang JW, Chiang CK, Hung KY, Chen HW. Circulating MicroRNA-125b Predicts the Presence and Progression of Uremic Vascular Calcification. Arterioscler Thromb Vasc Biol 2017; 37:1402-1414. [PMID: 28522697 DOI: 10.1161/atvbaha.117.309566] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 05/02/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Vascular calcification (VC) is a major cause of mortality in patients with end-stage renal diseases. Biomarkers to predict the progression of VC early are in urgent demand. APPROACH AND RESULTS We identified circulating, cell-free microRNAs as potential biomarkers using in vitro VC models in which both rat and human aortic vascular smooth muscle cells were treated with high levels of phosphate to mimic uremic hyperphosphatemia. Using an Affymetrix microRNA array, we found that miR-125b and miR-382 expression levels declined significantly as biomineralization progressed, but this decline was only observed for miR-125b in the culture medium. A time-dependent decrease in aortic tissue and serum miR-125b levels was also found in both ex vivo and in vivo renal failure models. We examined the levels of circulating, cell-free miR-125b in sera from patients with end-stage renal diseases (n=88) and found an inverse association between the severity of VC and the circulating miR-125b level, irrespective of age or mineral-related hormones (odds ratio, 0.71; P=0.03). Furthermore, serum miR-125b levels on enrollment can predict VC progression years later (for high versus low, odds ratio, 0.14; P<0.01; for the highest versus lowest tertile and middle versus lowest tertile, odds ratio, 0.55 and 0.13; P=0.3 and <0.01, respectively). The uremic VC prediction efficacy using circulating miR-125b levels was also observed in an independent cohort (n=135). CONCLUSIONS The results suggest that serum miR-125b levels are associated with VC severity and serve as a novel predictive marker for the risk of uremia-associated calcification progression.
Collapse
Affiliation(s)
- Chia-Ter Chao
- From the Department of Medicine, National Taiwan University Hospital Jin-Shan Branch, New Taipei City (C.-T.C.); Graduate Institute of Toxicology (C.-T.C., Y.-P.L., P.-J.L., W.-J.C., Y.-M.L., C.-K.C., H.-W.C.), and Graduate Institute of Oncology (P.-J.L., W.-J.C.), College of Medicine, National Taiwan University, Taipei; Institute of Statistical Science, Academia Sinica, Taipei, Taiwan (Y.-P.L., S.-F.S., H.-Y.C., P.-J.L., W.-J.C.); School of Big Data Management, Soochow University, Taipei, Taiwan (H.-Y.Y.); Nephrology Division, Department of Internal Medicine (C.-T.C., J.-W.H., K.-Y.H.) and Department of Integrative Diagnostics and Therapeutics (C.-K.C.), National Taiwan University Hospital, Taipei; and Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu branch, Hsin-Chu County (K.-Y.H.)
| | - You-Pi Liu
- From the Department of Medicine, National Taiwan University Hospital Jin-Shan Branch, New Taipei City (C.-T.C.); Graduate Institute of Toxicology (C.-T.C., Y.-P.L., P.-J.L., W.-J.C., Y.-M.L., C.-K.C., H.-W.C.), and Graduate Institute of Oncology (P.-J.L., W.-J.C.), College of Medicine, National Taiwan University, Taipei; Institute of Statistical Science, Academia Sinica, Taipei, Taiwan (Y.-P.L., S.-F.S., H.-Y.C., P.-J.L., W.-J.C.); School of Big Data Management, Soochow University, Taipei, Taiwan (H.-Y.Y.); Nephrology Division, Department of Internal Medicine (C.-T.C., J.-W.H., K.-Y.H.) and Department of Integrative Diagnostics and Therapeutics (C.-K.C.), National Taiwan University Hospital, Taipei; and Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu branch, Hsin-Chu County (K.-Y.H.)
| | - Sheng-Fang Su
- From the Department of Medicine, National Taiwan University Hospital Jin-Shan Branch, New Taipei City (C.-T.C.); Graduate Institute of Toxicology (C.-T.C., Y.-P.L., P.-J.L., W.-J.C., Y.-M.L., C.-K.C., H.-W.C.), and Graduate Institute of Oncology (P.-J.L., W.-J.C.), College of Medicine, National Taiwan University, Taipei; Institute of Statistical Science, Academia Sinica, Taipei, Taiwan (Y.-P.L., S.-F.S., H.-Y.C., P.-J.L., W.-J.C.); School of Big Data Management, Soochow University, Taipei, Taiwan (H.-Y.Y.); Nephrology Division, Department of Internal Medicine (C.-T.C., J.-W.H., K.-Y.H.) and Department of Integrative Diagnostics and Therapeutics (C.-K.C.), National Taiwan University Hospital, Taipei; and Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu branch, Hsin-Chu County (K.-Y.H.)
| | - Hsiang-Yuan Yeh
- From the Department of Medicine, National Taiwan University Hospital Jin-Shan Branch, New Taipei City (C.-T.C.); Graduate Institute of Toxicology (C.-T.C., Y.-P.L., P.-J.L., W.-J.C., Y.-M.L., C.-K.C., H.-W.C.), and Graduate Institute of Oncology (P.-J.L., W.-J.C.), College of Medicine, National Taiwan University, Taipei; Institute of Statistical Science, Academia Sinica, Taipei, Taiwan (Y.-P.L., S.-F.S., H.-Y.C., P.-J.L., W.-J.C.); School of Big Data Management, Soochow University, Taipei, Taiwan (H.-Y.Y.); Nephrology Division, Department of Internal Medicine (C.-T.C., J.-W.H., K.-Y.H.) and Department of Integrative Diagnostics and Therapeutics (C.-K.C.), National Taiwan University Hospital, Taipei; and Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu branch, Hsin-Chu County (K.-Y.H.)
| | - Hsuan-Yu Chen
- From the Department of Medicine, National Taiwan University Hospital Jin-Shan Branch, New Taipei City (C.-T.C.); Graduate Institute of Toxicology (C.-T.C., Y.-P.L., P.-J.L., W.-J.C., Y.-M.L., C.-K.C., H.-W.C.), and Graduate Institute of Oncology (P.-J.L., W.-J.C.), College of Medicine, National Taiwan University, Taipei; Institute of Statistical Science, Academia Sinica, Taipei, Taiwan (Y.-P.L., S.-F.S., H.-Y.C., P.-J.L., W.-J.C.); School of Big Data Management, Soochow University, Taipei, Taiwan (H.-Y.Y.); Nephrology Division, Department of Internal Medicine (C.-T.C., J.-W.H., K.-Y.H.) and Department of Integrative Diagnostics and Therapeutics (C.-K.C.), National Taiwan University Hospital, Taipei; and Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu branch, Hsin-Chu County (K.-Y.H.)
| | - Pei-Jung Lee
- From the Department of Medicine, National Taiwan University Hospital Jin-Shan Branch, New Taipei City (C.-T.C.); Graduate Institute of Toxicology (C.-T.C., Y.-P.L., P.-J.L., W.-J.C., Y.-M.L., C.-K.C., H.-W.C.), and Graduate Institute of Oncology (P.-J.L., W.-J.C.), College of Medicine, National Taiwan University, Taipei; Institute of Statistical Science, Academia Sinica, Taipei, Taiwan (Y.-P.L., S.-F.S., H.-Y.C., P.-J.L., W.-J.C.); School of Big Data Management, Soochow University, Taipei, Taiwan (H.-Y.Y.); Nephrology Division, Department of Internal Medicine (C.-T.C., J.-W.H., K.-Y.H.) and Department of Integrative Diagnostics and Therapeutics (C.-K.C.), National Taiwan University Hospital, Taipei; and Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu branch, Hsin-Chu County (K.-Y.H.)
| | - Wan-Jiun Chen
- From the Department of Medicine, National Taiwan University Hospital Jin-Shan Branch, New Taipei City (C.-T.C.); Graduate Institute of Toxicology (C.-T.C., Y.-P.L., P.-J.L., W.-J.C., Y.-M.L., C.-K.C., H.-W.C.), and Graduate Institute of Oncology (P.-J.L., W.-J.C.), College of Medicine, National Taiwan University, Taipei; Institute of Statistical Science, Academia Sinica, Taipei, Taiwan (Y.-P.L., S.-F.S., H.-Y.C., P.-J.L., W.-J.C.); School of Big Data Management, Soochow University, Taipei, Taiwan (H.-Y.Y.); Nephrology Division, Department of Internal Medicine (C.-T.C., J.-W.H., K.-Y.H.) and Department of Integrative Diagnostics and Therapeutics (C.-K.C.), National Taiwan University Hospital, Taipei; and Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu branch, Hsin-Chu County (K.-Y.H.)
| | - Yee-Ming Lee
- From the Department of Medicine, National Taiwan University Hospital Jin-Shan Branch, New Taipei City (C.-T.C.); Graduate Institute of Toxicology (C.-T.C., Y.-P.L., P.-J.L., W.-J.C., Y.-M.L., C.-K.C., H.-W.C.), and Graduate Institute of Oncology (P.-J.L., W.-J.C.), College of Medicine, National Taiwan University, Taipei; Institute of Statistical Science, Academia Sinica, Taipei, Taiwan (Y.-P.L., S.-F.S., H.-Y.C., P.-J.L., W.-J.C.); School of Big Data Management, Soochow University, Taipei, Taiwan (H.-Y.Y.); Nephrology Division, Department of Internal Medicine (C.-T.C., J.-W.H., K.-Y.H.) and Department of Integrative Diagnostics and Therapeutics (C.-K.C.), National Taiwan University Hospital, Taipei; and Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu branch, Hsin-Chu County (K.-Y.H.)
| | - Jenq-Wen Huang
- From the Department of Medicine, National Taiwan University Hospital Jin-Shan Branch, New Taipei City (C.-T.C.); Graduate Institute of Toxicology (C.-T.C., Y.-P.L., P.-J.L., W.-J.C., Y.-M.L., C.-K.C., H.-W.C.), and Graduate Institute of Oncology (P.-J.L., W.-J.C.), College of Medicine, National Taiwan University, Taipei; Institute of Statistical Science, Academia Sinica, Taipei, Taiwan (Y.-P.L., S.-F.S., H.-Y.C., P.-J.L., W.-J.C.); School of Big Data Management, Soochow University, Taipei, Taiwan (H.-Y.Y.); Nephrology Division, Department of Internal Medicine (C.-T.C., J.-W.H., K.-Y.H.) and Department of Integrative Diagnostics and Therapeutics (C.-K.C.), National Taiwan University Hospital, Taipei; and Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu branch, Hsin-Chu County (K.-Y.H.)
| | - Chih-Kang Chiang
- From the Department of Medicine, National Taiwan University Hospital Jin-Shan Branch, New Taipei City (C.-T.C.); Graduate Institute of Toxicology (C.-T.C., Y.-P.L., P.-J.L., W.-J.C., Y.-M.L., C.-K.C., H.-W.C.), and Graduate Institute of Oncology (P.-J.L., W.-J.C.), College of Medicine, National Taiwan University, Taipei; Institute of Statistical Science, Academia Sinica, Taipei, Taiwan (Y.-P.L., S.-F.S., H.-Y.C., P.-J.L., W.-J.C.); School of Big Data Management, Soochow University, Taipei, Taiwan (H.-Y.Y.); Nephrology Division, Department of Internal Medicine (C.-T.C., J.-W.H., K.-Y.H.) and Department of Integrative Diagnostics and Therapeutics (C.-K.C.), National Taiwan University Hospital, Taipei; and Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu branch, Hsin-Chu County (K.-Y.H.)
| | - Kuan-Yu Hung
- From the Department of Medicine, National Taiwan University Hospital Jin-Shan Branch, New Taipei City (C.-T.C.); Graduate Institute of Toxicology (C.-T.C., Y.-P.L., P.-J.L., W.-J.C., Y.-M.L., C.-K.C., H.-W.C.), and Graduate Institute of Oncology (P.-J.L., W.-J.C.), College of Medicine, National Taiwan University, Taipei; Institute of Statistical Science, Academia Sinica, Taipei, Taiwan (Y.-P.L., S.-F.S., H.-Y.C., P.-J.L., W.-J.C.); School of Big Data Management, Soochow University, Taipei, Taiwan (H.-Y.Y.); Nephrology Division, Department of Internal Medicine (C.-T.C., J.-W.H., K.-Y.H.) and Department of Integrative Diagnostics and Therapeutics (C.-K.C.), National Taiwan University Hospital, Taipei; and Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu branch, Hsin-Chu County (K.-Y.H.)
| | - Huei-Wen Chen
- From the Department of Medicine, National Taiwan University Hospital Jin-Shan Branch, New Taipei City (C.-T.C.); Graduate Institute of Toxicology (C.-T.C., Y.-P.L., P.-J.L., W.-J.C., Y.-M.L., C.-K.C., H.-W.C.), and Graduate Institute of Oncology (P.-J.L., W.-J.C.), College of Medicine, National Taiwan University, Taipei; Institute of Statistical Science, Academia Sinica, Taipei, Taiwan (Y.-P.L., S.-F.S., H.-Y.C., P.-J.L., W.-J.C.); School of Big Data Management, Soochow University, Taipei, Taiwan (H.-Y.Y.); Nephrology Division, Department of Internal Medicine (C.-T.C., J.-W.H., K.-Y.H.) and Department of Integrative Diagnostics and Therapeutics (C.-K.C.), National Taiwan University Hospital, Taipei; and Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu branch, Hsin-Chu County (K.-Y.H.).
| |
Collapse
|
37
|
Mencke R, Hillebrands JL. The role of the anti-ageing protein Klotho in vascular physiology and pathophysiology. Ageing Res Rev 2017; 35:124-146. [PMID: 27693241 DOI: 10.1016/j.arr.2016.09.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/23/2016] [Indexed: 02/08/2023]
Abstract
Klotho is an anti-ageing protein that functions in many pathways that govern ageing, like regulation of phosphate homeostasis, insulin signaling, and Wnt signaling. Klotho expression levels and levels in blood decline during ageing. The vascular phenotype of Klotho deficiency features medial calcification, intima hyperplasia, endothelial dysfunction, arterial stiffening, hypertension, and impaired angiogenesis and vasculogenesis, with characteristics similar to aged human arteries. Klotho-deficient phenotypes can be prevented and rescued by Klotho gene expression or protein supplementation. High phosphate levels are likely to be directly pathogenic and are a prerequisite for medial calcification, but more important determinants are pathways that regulate cellular senescence, suggesting that deficiency of Klotho renders cells susceptible to phosphate toxicity. Overexpression of Klotho is shown to ameliorate medial calcification, endothelial dysfunction, and hypertension. Endogenous vascular Klotho expression is a controversial subject and, currently, no compelling evidence exists that supports the existence of vascular membrane-bound Klotho expression, as expressed in kidney. In vitro, Klotho has been shown to decrease oxidative stress and apoptosis in both SMCs and ECs, to reduce SMC calcification, to maintain the contractile SMC phenotype, and to prevent μ-calpain overactivation in ECs. Klotho has many protective effects with regard to the vasculature and constitutes a very promising therapeutic target. The purpose of this review is to explore the etiology of the vascular phenotype of Klotho deficiency and the therapeutic potential of Klotho in vascular disease.
Collapse
|
38
|
Liu J, Xiao X, Shen Y, Chen L, Xu C, Zhao H, Wu Y, Zhang Q, Zhong J, Tang Z, Liu C, Zhao Q, Zheng Y, Cao R, Zu X. MicroRNA-32 promotes calcification in vascular smooth muscle cells: Implications as a novel marker for coronary artery calcification. PLoS One 2017; 12:e0174138. [PMID: 28319142 PMCID: PMC5358880 DOI: 10.1371/journal.pone.0174138] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/03/2017] [Indexed: 11/19/2022] Open
Abstract
Cardiovascular calcification is one of the most severe outcomes associated with cardiovascular disease and often results in significant morbidity and mortality. Previous reports indicated that epigenomic regulation of microRNAs (miRNAs) might play important roles in vascular smooth muscle cell (VSMC) calcification. Here, we identified potential key miRNAs involved in vascular calcification in vivo and investigated the role of miR-32-5p (miR-32). According to microarray analysis, we observed increased expression of miR-125b, miR-30a, and miR-32 and decreased expression of miR-29a, miR-210, and miR-320 during the progression of vascularcalcification. Additionally, gain- and loss-of-function studies of miR-32 confirmed promotion of VSMC calcification in mice through the enhanced expression of bonemorphogenetic protein-2, runt-related transcription factor-2(RUNX2), osteopontin, and the bone-specific phosphoprotein matrix GLA protein in vitro. Moreover, miR-32 modulated vascularcalcification progression by activating phosphoinositide 3-kinase (PI3K)signaling and increasing RUNX2 expression and phosphorylation by targeting the 3'-untranslated region of phosphatase and tensin homolog Mrna (PTEN) in mouse VSMCs. Furthermore, we detected higher miR-32 levels in plasmafrom patients with coronary artery disease with coronary artery calcification (CAC) as compared with levels observed in non-CAC patients (P = 0.016), further confirming miR-32 as a critical modulator and potential diagnostic marker for CAC.
Collapse
Affiliation(s)
- Jianghua Liu
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, People’s Republic of China (PRC)
- Department of Metabolism and Endocrinology, the First Affiliated Hospital of University of South China, Hengyang, PRC
| | - Xinhua Xiao
- Department of Metabolism and Endocrinology, the First Affiliated Hospital of University of South China, Hengyang, PRC
| | - Yingying Shen
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, People’s Republic of China (PRC)
| | - Ling Chen
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, People’s Republic of China (PRC)
| | - Canxin Xu
- Department of Pathology and Immunology, University of Washington School of Medicine, St. Louis, Missouri, United States of America
| | - Heng Zhao
- Department of Metabolism and Endocrinology, the First Affiliated Hospital of University of South China, Hengyang, PRC
| | - Ying Wu
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, People’s Republic of China (PRC)
| | - Qinghai Zhang
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, People’s Republic of China (PRC)
| | - Jing Zhong
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, People’s Republic of China (PRC)
| | - Zhenwang Tang
- Department of Cardiovascular Medicine, the First Affiliated Hospital of University of South China, Hengyang, PRC
| | - Changhui Liu
- Department of Cardiovascular Medicine, the First Affiliated Hospital of University of South China, Hengyang, PRC
| | - Qiang Zhao
- Department of Metabolism and Endocrinology, the First Affiliated Hospital of University of South China, Hengyang, PRC
| | - Yi Zheng
- Department of Metabolism and Endocrinology, the First Affiliated Hospital of University of South China, Hengyang, PRC
| | - Renxian Cao
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, People’s Republic of China (PRC)
- Department of Metabolism and Endocrinology, the First Affiliated Hospital of University of South China, Hengyang, PRC
| | - Xuyu Zu
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, People’s Republic of China (PRC)
| |
Collapse
|
39
|
Rodenbeck SD, Zarse CA, McKenney-Drake ML, Bruning RS, Sturek M, Chen NX, Moe SM. Intracellular calcium increases in vascular smooth muscle cells with progression of chronic kidney disease in a rat model. Nephrol Dial Transplant 2017; 32:450-458. [PMID: 27510531 PMCID: PMC5837609 DOI: 10.1093/ndt/gfw274] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/08/2016] [Indexed: 01/12/2023] Open
Abstract
Background Vascular smooth muscle cells (VSMCs) exhibit phenotypic plasticity, promoting vascular calcification and increasing cardiovascular risk. Changes in VSMC intracellular calcium ([Ca 2+ ] i ) are a major determinant of plasticity, but little is known about changes in [Ca 2+ ] i in chronic kidney disease (CKD). We have previously demonstrated such plasticity in aortas from our rat model of CKD and therefore sought to examine changes in [Ca 2+ ] i during CKD progression. Materials and Methods We examined freshly isolated VSMCs from aortas of normal rats, Cy/+ rats (CKD) with early and advanced CKD, and advanced CKD rats treated without and with 3% calcium gluconate (CKD + Ca 2+ ) to lower parathyroid hormone (PTH) levels. [Ca 2+ ] i was measured with fura-2. Results Cy/+ rats developed progressive CKD, as assessed by plasma levels of blood urea nitrogen, calcium, phosphorus, parathyroid hormone and fibroblast growth factor 23. VSMCs isolated from rats with CKD demonstrated biphasic alterations in resting [Ca 2+ ] i : VSMCs from rats with early CKD exhibited reduced resting [Ca 2+ ] i , while VSMCs from rats with advanced CKD exhibited elevated resting [Ca 2+ ] i . Caffeine-induced sarcoplasmic reticulum (SR) Ca 2+ store release was modestly increased in early CKD and was more drastically increased in advanced CKD. The advanced CKD elevation in SR Ca 2+ store release was associated with a significant increase in the activity of the sarco-endoplasmic reticulum Ca 2+ ATPase (SERCA); however, SERCA2a protein expression was decreased in advanced CKD. Following SR Ca 2+ store release, recovery of [Ca 2+ ] i in the presence of caffeine and extracellular Ca 2+ was attenuated in VSMCs from rats with advanced CKD. This impairment, together with reductions in expression of the Na + /Ca 2+ exchanger, suggest a reduction in Ca 2+ extrusion capability. Finally, store-operated Ca 2+ entry (SOCE) was assessed following SR Ca 2+ store depletion. Ca 2+ entry during recovery from caffeine-induced SR Ca 2+ store release was elevated in advanced CKD, suggesting a role for exacerbated SOCE with progressing CKD. Conclusions With progressive CKD in the Cy/+ rat there is increased resting [Ca 2+ ] i in VSMCs due, in part, to increased SOCE and impaired calcium extrusion from the cell. Such changes may predispose VSMCs to phenotypic changes that are a prerequisite to calcification.
Collapse
Affiliation(s)
- Stacey Dineen Rodenbeck
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chad A. Zarse
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, 950 W. Walnut Street, R2-202, Indianapolis, IN 46202, USA
| | - Mikaela L. McKenney-Drake
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rebecca S. Bruning
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael Sturek
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Neal X. Chen
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, 950 W. Walnut Street, R2-202, Indianapolis, IN 46202, USA
| | - Sharon M. Moe
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, 950 W. Walnut Street, R2-202, Indianapolis, IN 46202, USA
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Roudebush Veterans Affairs Medical Center, Indianapolis, IN, USA
| |
Collapse
|
40
|
Function, Role, and Clinical Application of MicroRNAs in Vascular Aging. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6021394. [PMID: 28097140 PMCID: PMC5209603 DOI: 10.1155/2016/6021394] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/07/2016] [Accepted: 11/23/2016] [Indexed: 01/31/2023]
Abstract
Vascular aging, a specific type of organic aging, is related to age-dependent changes in the vasculature, including atherosclerotic plaques, arterial stiffness, fibrosis, and increased intimal thickening. Vascular aging could influence the threshold, process, and severity of various cardiovascular diseases, thus making it one of the most important risk factors in the high mortality of cardiovascular diseases. As endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are the main cell biological basis of these pathology changes of the vasculature, the structure and function of ECs and VSMCs play a key role in vascular aging. MicroRNAs (miRNAs), small noncoding RNAs, have been shown to regulate the expression of multiple messenger RNAs (mRNAs) posttranscriptionally, contributing to many crucial aspects of cell biology. Recently, miRNAs with functions associated with aging or aging-related diseases have been studied. In this review, we will summarize the reported role of miRNAs in the process of vascular aging with special emphasis on EC and VSMC functions. In addition, the potential application of miRNAs to clinical practice for the diagnosis and treatment of cardiovascular diseases will also be discussed.
Collapse
|
41
|
Lin L, He Y, Xi BL, Zheng HC, Chen Q, Li J, Hu Y, Ye MH, Chen P, Qu Y. MiR-135a Suppresses Calcification in Senescent VSMCs by Regulating KLF4/STAT3 Pathway. Curr Vasc Pharmacol 2016. [PMID: 26202084 PMCID: PMC5403971 DOI: 10.2174/1570161113666150722151817] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Cellular function phenotype is regulated by various microRNAs (miRs), including miR-135a. However, how miR-135a is involved in the calcification in senescent vascular smooth muscle cells (VSMCs) is not clear yet. In the present study, we first identified the significantly altered miRNAs in VSMCs, then performed consecutive passage culture of VSMCs and analyzed the expression of miR-135a and calcification genes in the senescent phase. Next, the effects of the miR-135a inhibition on calcification and calcification genes were analyzed. The luciferase assay was used to validate the target protein of miR-135a. The western blotting was used to determine the effects of miR-135a on Krüppel-like factor 4 (KLF4) and signal transducer and activator of transcription 3 protein (STAT3) expression, as well as the relationship between KLF4 and STAT3. Finally, the quantified cellular calcification was measured to examine the involvement of miR-135a, KLF4 and STAT3 in VSMCs calcification. Our results showed that miR-135a was significantly altered in VSMCs. Cell calcification and calcification genes were greatly altered by miR-135a inhibition. KLF4 was validated as the target RNA of miR-135a. Expression of KLF4 and STAT3 were both significantly decreased by over expressed miR-135a, while the inhibition of miR-135a and KLF4 siRNA both decreased the STAT3 protein levels. Moreover, the inhibition of miR-135a dramatically increased the calcium concentration, but co-treatment with KLF4 or STAT3 siRNA both decreased the calcium concentration. The present study identified miR-135a as a potential osteogenic differentiation suppressor in senescent VSMCs and revealed that KLF4/STAT3 pathway, at least partially, was involved in the mechanism.
Collapse
Affiliation(s)
| | | | - Bei-Li Xi
- Department of Geriatrics, Xuhui Central hospital, Shanghai Clinical Center, Chinese Academy of Science, No.966 Middle Huaihai Road, Shanghai, 200031, China.
| | | | | | | | | | | | | | - Yi Qu
- Department of Geriatrics, Xuhui Central hospital, Shanghai Clinical Center, Chinese Academy of Science, No.966 Middle Huaihai Road, Shanghai, 200031, China.
| |
Collapse
|
42
|
Cui L, Houston DA, Farquharson C, MacRae VE. Characterisation of matrix vesicles in skeletal and soft tissue mineralisation. Bone 2016; 87:147-58. [PMID: 27072517 DOI: 10.1016/j.bone.2016.04.007] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 03/25/2016] [Accepted: 04/06/2016] [Indexed: 12/16/2022]
Abstract
The importance of matrix vesicles (MVs) has been repeatedly highlighted in the formation of cartilage, bone, and dentin since their discovery in 1967. These nano-vesicular structures, which are found in the extracellular matrix, are believed to be one of the sites of mineral nucleation that occurs in the organic matrix of the skeletal tissues. In the more recent years, there have been numerous reports on the observation of MV-like particles in calcified vascular tissues that could be playing a similar role. Therefore, here, we review the characteristics MVs possess that enable them to participate in mineral deposition. Additionally, we outline the content of skeletal tissue- and soft tissue-derived MVs, and discuss their key mineralisation mediators that could be targeted for future therapeutic use.
Collapse
Affiliation(s)
- L Cui
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK.
| | - D A Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK
| | - C Farquharson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK
| | - V E MacRae
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK
| |
Collapse
|
43
|
Zhang XY, Zhang LX, Guo YL, Zhao LM, Tang XY, Tian CJ, Cheng DJ, Chen XL, Ma LJ, Chen ZC. Schisandrin B inhibits the proliferation of airway smooth muscle cells via microRNA-135a suppressing the expression of transient receptor potential channel 1. Cell Biol Int 2016; 40:742-9. [PMID: 26916957 DOI: 10.1002/cbin.10597] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/21/2016] [Indexed: 12/29/2022]
Abstract
Airway smooth muscle cell (ASMC) was known to involve in the pathophysiology of asthma. Schisandrin B was reported to have anti-asthmatic effects in a murine asthma model. However, the molecular mechanism involving in the effect of Schisandrin B on ASMCs remains poorly understood. Sprague-Dawley rats were divided into three groups: rats as the control (Group 1), sensitized rats (Group 2), sensitized rats and intragastric-administrated Schisandrin B (Group 3). The expression of miR-135a and TRPC1 was detected in the rats from three groups. Platelet-derived growth factor (PDGF)-BB was used to induce the proliferation of isolated ASMCs, and the expression of miR-135a and TRPC1 was detected in PDGF-BB-treated ASMCs. Cell viability was examined in ASMCs transfected with miR-135a inhibitor or si-TRPC1. The expression of TRPC1 was examined in A10 cells pretreated with miR-135a inhibitor or miR-135a mimic. In this study, we found that Schisandrin B attenuated the inspiratory and expiratory resistances in sensitized rats. Schisandrin B upregulated the mRNA level of miR-135a and decreased the expression of TRPC1 in sensitized rats. In addition, Schisandrin B reversed the expression of miR-135a and TRPC1 in PDGF-BB-induced ASMCs. Si-TRPC1 abrogated the increasing proliferation of ASMCs induced by miR-135a inhibitor. We also found that miR-135a regulated the expression of TRPC1 in the A10 cells. These results demonstrate that Schisandrin B inhibits the proliferation of ASMCs via miR-135a suppressing the expression of TRPC1.
Collapse
Affiliation(s)
- Xiao-Yu Zhang
- Department of Respiratory Medicine, People's Hospital Affiliated to Zhengzhou University, 7 Weiwu Rd., Zhengzhou, 450003, China
| | - Luo-Xian Zhang
- Department of Respiratory Medicine, People's Hospital Affiliated to Zhengzhou University, 7 Weiwu Rd., Zhengzhou, 450003, China
| | - Ya-Li Guo
- Department of Respiratory Medicine, People's Hospital Affiliated to Zhengzhou University, 7 Weiwu Rd., Zhengzhou, 450003, China
| | - Li-Min Zhao
- Department of Respiratory Medicine, People's Hospital Affiliated to Zhengzhou University, 7 Weiwu Rd., Zhengzhou, 450003, China
| | - Xue-Yi Tang
- Department of Respiratory Medicine, People's Hospital Affiliated to Zhengzhou University, 7 Weiwu Rd., Zhengzhou, 450003, China
| | - Cui-Jie Tian
- Department of Respiratory Medicine, People's Hospital Affiliated to Zhengzhou University, 7 Weiwu Rd., Zhengzhou, 450003, China
| | - Dong-Jun Cheng
- Department of Respiratory Medicine, People's Hospital Affiliated to Zhengzhou University, 7 Weiwu Rd., Zhengzhou, 450003, China
| | - Xian-Liang Chen
- Department of Respiratory Medicine, People's Hospital Affiliated to Zhengzhou University, 7 Weiwu Rd., Zhengzhou, 450003, China
| | - Li-Jun Ma
- Department of Respiratory Medicine, People's Hospital Affiliated to Zhengzhou University, 7 Weiwu Rd., Zhengzhou, 450003, China
| | - Zhuo-Chang Chen
- Department of Respiratory Medicine, People's Hospital Affiliated to Zhengzhou University, 7 Weiwu Rd., Zhengzhou, 450003, China
| |
Collapse
|
44
|
Lin X, He Y, Hou X, Zhang Z, Wang R, Wu Q. Endothelial Cells Can Regulate Smooth Muscle Cells in Contractile Phenotype through the miR-206/ARF6&NCX1/Exosome Axis. PLoS One 2016; 11:e0152959. [PMID: 27031991 PMCID: PMC4816502 DOI: 10.1371/journal.pone.0152959] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 03/22/2016] [Indexed: 01/08/2023] Open
Abstract
Active interactions between endothelial cells and smooth muscle cells (SMCs) are critical to maintaining the SMC phenotype. Exosomes play an important role in intercellular communication. However, little is known about the mechanisms that regulate endothelial cells and SMCs crosstalk. We aimed to determine the mechanisms underlying the regulation of the SMC phenotype by human umbilical vein endothelial cells (HUVECs) through exosomes. We found that HUVECs overexpressing miR-206 upregulated contractile marker (α-SMA, Smoothelin and Calponin) mRNA expression in SMCs. We also found that the expression of miR-206 by HUVECs reduced exosome production by regulating ADP-Ribosylation Factor 6 (ARF6) and sodium/calcium exchanger 1 (NCX1). Using real-time PCR and western blot analysis, we showed that HUVEC-derived exosomes decreased the expression of contractile phenotype marker genes (α-SMA, Smoothelin and Calponin) in SMCs. Furthermore, a reduction of the miR-26a-containing exosomes secreted from HUVECs affects the SMC phenotype. We propose a novel mechanism in which miR-206 expression in HUVECs maintains the contractile phenotype of SMCs by suppressing exosome secretion from HUVECs, particularly miR-26a in exosomes, through targeting ARF6 and NCX1.
Collapse
Affiliation(s)
- Xiao Lin
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yu He
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xue Hou
- Department of basic medicine, Medical College of Qinghai University, Xining 810016, China
| | - Zhenming Zhang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Rui Wang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiong Wu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
- * E-mail:
| |
Collapse
|
45
|
Abstract
Vascular calcification can lead to cardiovascular morbidity and mortality. The initiating factors and clinical consequences depend on the underlying disease state and location of the calcification. The pathogenesis of vascular calcification is complex and involves a transformation of vascular smooth muscle cells to an osteo/chondrocytic cell that expresses RUNX2 and produces matrix vesicles. The imbalance of promoters (such as hyperphosphatemia and hypercalcemia) and inhibitors (e.g., fetuin-A) is critical in the development of vascular calcification. The altered mineral metabolism and deficiency in inhibitors are common in patients with chronic kidney disease (CKD) and is one reason why vascular calcification is so prevalent in that population.
Collapse
Affiliation(s)
- Neal X Chen
- Department of Medicine, Indiana University School of Medicine, 950 W. Walnut Street, R2-202, Indianapolis, IN, 46202, USA.
| | - Sharon M Moe
- Department of Medicine, Indiana University School of Medicine, 950 W. Walnut Street, R2-202, Indianapolis, IN, 46202, USA
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 950 W. Walnut Street, R2-202, Indianapolis, IN, 46202, USA
- Roudebush Veterans Affairs Medical Center, Indianapolis, IN, USA
| |
Collapse
|
46
|
Herencia C, Rodríguez-Ortiz ME, Muñoz-Castañeda JR, Martinez-Moreno JM, Canalejo R, Montes de Oca A, Díaz-Tocados JM, Peralbo-Santaella E, Marín C, Canalejo A, Rodriguez M, Almaden Y. Angiotensin II prevents calcification in vascular smooth muscle cells by enhancing magnesium influx. Eur J Clin Invest 2015; 45:1129-44. [PMID: 26268950 DOI: 10.1111/eci.12517] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 08/08/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND Vascular calcification (VC) is highly prevalent in patients with chronic kidney disease (CKD). Low magnesium levels are associated with VC, and recent in vitro studies confirm a protective role of magnesium, which is mediated by its entry into the VSMCs through the Transient Receptor Potential Melastatin 7 (TRPM7) channel. The role of Angiotensin II (Ang II) on VC is still unclear. As Ang II is able to stimulate TRPM7 activity, we hypothesize that it might prevent VC. Thus, the aim of this study was to dissect the direct effect of Ang II on VC. MATERIALS AND METHODS We worked with a model of high phosphate (HP)-induced calcification in human aortic smooth muscle cells, which resembles the CKD-related VC. RESULTS Addition of Ang II to cells growing in HP decreased calcification, which was associated with the upregulation of the osteogenic factors BMP2, Runx2/Cbfa1, Osterix and ALP. A reduction of magnesium entry into the HP-calcifying cells was found. The treatment with Ang II avoided this reduction, which was reversed by the cotreatment with the TRPM7-inhibitor 2-APB. The protective effect of Ang II was related to AT1R-induced ERK1/2 MAPKinase activation. HP-induced calcification was also associated with the upregulation of the canonical Wnt/beta-catenin pathway, while its downregulation was related to attenuation of calcification by Ang II. CONCLUSION As hypothesized, Ang II prevented phosphate-induced calcification in VSMCs, which appears mediated by the increase of magnesium influx and by the activation of the ERK1/2 and the inhibition of the canonical Wnt/beta-catenin signalling pathways.
Collapse
Affiliation(s)
- Carmen Herencia
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital/University of Cordoba, Cordoba, Spain
| | | | - Juan R Muñoz-Castañeda
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital/University of Cordoba, Cordoba, Spain
| | - Julio Manuel Martinez-Moreno
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital/University of Cordoba, Cordoba, Spain
| | - Rocío Canalejo
- Department of Environmental Biology and Public Health, University of Huelva, Huelva, Spain
| | - Addy Montes de Oca
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital/University of Cordoba, Cordoba, Spain
| | - Juan M Díaz-Tocados
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital/University of Cordoba, Cordoba, Spain
| | - Esther Peralbo-Santaella
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital/University of Cordoba, Cordoba, Spain
| | - Carmen Marín
- Lipid and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, Cordoba, Spain
- CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Cordoba, Spain
| | - Antonio Canalejo
- Department of Environmental Biology and Public Health, University of Huelva, Huelva, Spain
| | - Mariano Rodriguez
- REDinREN, Madrid, Spain
- Nefrology Service, Instituto Maimonides de Investigacion Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital/University of Cordoba, Cordoba, Spain
| | - Yolanda Almaden
- Lipid and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, Cordoba, Spain
- CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Cordoba, Spain
| |
Collapse
|
47
|
Liu C, Zhao L, Han S, Li J, Li D. Identification and Functional Analysis of MicroRNAs in Mice following Focal Cerebral Ischemia Injury. Int J Mol Sci 2015; 16:24302-24318. [PMID: 26473853 PMCID: PMC4632751 DOI: 10.3390/ijms161024302] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 01/09/2023] Open
Abstract
Numerous studies have demonstrated that genes, RNAs, and proteins are involved in the occurrence and development of stroke. In addition, previous studies concluded that microRNAs (miRNAs or miRs) are closely related to the pathological process of ischemic and hypoxic disease. Therefore, the aims of this study were to quantify the altered expression levels of miRNAs in the infarct region 6 h after middle cerebral artery occlusion (MCAO)-induced focal cerebral ischemia in mice using a large-scale miRNAs microarray. Firstly, MCAO-induced cerebral ischemic injuries were investigated by observing the changes of neurological deficits, infarct volume and edema ratio. One hundred and eighteen differentially expressed miRNAs were identified in the infarct region of mice following the MCAOs compared with sham group (p<0.05 was considered as significant). Among these 118 significantly expressed microRNAs, we found that 12 miRNAs were up-regulated with fold changes lager than two, and 18 miRNAs were down-regulated with fold changes less than 0.5 in the infarct region of mice following the 6 h MCAOs, compared with the sham group. Then, these 30 miRNAs with expression in fold change larger than two or less than 0.5 was predicted, and the functions of the target genes of 30 miRNAs were analyzed using a bioinformatics method. Finally, the miRNA-gene network was established and the functional miRNA-mRNA pairs were identified, which provided insight into the roles of the specific miRNAs that regulated specified genes in the ischemic injuries. The miRNAs identified in this study may represent effective therapeutic targets for stroke, and further study of the role of these targets may increase our understanding of the mechanisms underlying ischemic injuries.
Collapse
Affiliation(s)
- Cuiying Liu
- Institute of Biomedical Engineering, Capital Medical University, Beijing 100069, China.
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China.
| | - Lei Zhao
- Department of Anesthesiology Xuan Wu Hospital, Capital Medical University, Beijing 100053, China.
| | - Song Han
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| | - Junfa Li
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| | - Dongguo Li
- Institute of Biomedical Engineering, Capital Medical University, Beijing 100069, China.
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
48
|
Mammalian target of rapamycin signaling inhibition ameliorates vascular calcification via Klotho upregulation. Kidney Int 2015; 88:711-21. [DOI: 10.1038/ki.2015.160] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 04/02/2015] [Accepted: 04/09/2015] [Indexed: 11/09/2022]
|
49
|
Abstract
Arterial calcification is highly prevalent and correlated with cardiovascular mortality, especially in patients with ESRD or diabetes. The pathogenesis of arterial calcification is multifactorial, with both genetic and environmental factors being implicated. In recent years, several mechanisms contributing to arterial calcification have been proposed. However, these can only explain a small proportion of the variability in arterial calcification, which is a major obstacle for its prevention and management. Epigenetics has emerged as one of the most promising areas that may fill in some of the gaps in our current knowledge of the interaction between the environmental insults with gene regulation in the development of diseases. Epigenetics refers to heritable and acquired changes in gene transcription that occur independently of the DNA sequence. Well-known components of epigenetic regulation include DNA methylation, histone modifications, and microRNAs. Epigenetics research in the regulation of arterial calcification has only recently been elucidated. In this review, we will summarise recent progress in epigenetic pathways involved in arterial calcification and discuss potential therapeutic interventions based on epigenetic mechanisms.
Collapse
|
50
|
Li M, Wu P, Shao J, Ke Z, Li D, Wu J. Losartan Inhibits Vascular Calcification by Suppressing the BMP2 and Runx2 Expression in Rats In Vivo. Cardiovasc Toxicol 2015; 16:172-81. [DOI: 10.1007/s12012-015-9326-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|