1
|
de Souza Freitas M, Nelson DL, de Sousa JVG, Wentz AP, Tada DB, Queiroz RC, Hurtado CR, de Macedo EF, Conceição K, Hurtado GR, Pessoa FLP, S Rodrigues YV, Bueno GDP, Clososki GC, Barbosa SL. Dimethyl Sulfate as Methylation Agent and Solvent in Highly Regioselective Synthesis of Methyl Salicylate Using Sodium Bicarbonate as a Base. ACS OMEGA 2025; 10:13260-13268. [PMID: 40224406 PMCID: PMC11983181 DOI: 10.1021/acsomega.4c10962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/18/2025] [Accepted: 03/25/2025] [Indexed: 04/15/2025]
Abstract
Methyl salicylate (MS), the principal constituent of wintergreen oil, was obtained from salicylic acid (SA) by regioselective methylation of the carboxyl group. A new procedure involved exclusive capture of carboxylic hydrogen (-CO2H) through the use of the selective base, NaHCO3, and methylation via an SN2 mechanism employing the previously formed carboxylate as a nucleophile and the dimethyl sulfate [DMS] as the electrophilic reagent or substrate in a solvent-free reaction process. SA and NaHCO3 were added, followed by DMS after 30 min, and the reaction mixture was stirred at 90 °C for 90 min. The reaction was accompanied by thin-layer chromatography and gas chromatography. The conversion rate via GC was 100%, and the MS yield was 96%. The DMS used in excess was transformed into MeOH and H2SO4 when the mixture was washed with water. The MeOH was stored, and H2SO4 was transformed in Na2SO4 by neutralization with NaOH. The simplicity of the procedure, ready availability of MS, short reaction times, excellent yields, and mild reaction conditions are other advantages of this protocol. MS is being biologically tested as an antibacterial and antitumor agent. The focus of the study is on the search for drugs with greater selectivity for tumor cells so as to reduce adverse effects on normal cells because MS is rarely reported in the literature for this application. Cytotoxicities of 50 and 64% for cultured S. aureus and metastatic melanoma cells, respectively, were observed for a concentration of 0.6 mg/mL of the MS produced, whereas no cytotoxicity against nontumor cells was observed at this concentration. This is considered to be the optimum concentration.
Collapse
Affiliation(s)
- Milton de Souza Freitas
- Department
of Pharmacy, Universidade Federal dos Vales
do Jequitinhonha e Mucuri-UFVJM, Campus JK, Rodovia MGT 367 - Km 583, n° 5.000,
Alto da Jacuba, CEP 39100-000 Diamantina, MG, Brazil
| | - David Lee Nelson
- Department
of Pharmacy, Universidade Federal dos Vales
do Jequitinhonha e Mucuri-UFVJM, Campus JK, Rodovia MGT 367 - Km 583, n° 5.000,
Alto da Jacuba, CEP 39100-000 Diamantina, MG, Brazil
| | - João Victor G. de Sousa
- Department
of Pharmacy, Universidade Federal dos Vales
do Jequitinhonha e Mucuri-UFVJM, Campus JK, Rodovia MGT 367 - Km 583, n° 5.000,
Alto da Jacuba, CEP 39100-000 Diamantina, MG, Brazil
| | - Alexandre P. Wentz
- Department
of Pharmacy, Universidade Federal dos Vales
do Jequitinhonha e Mucuri-UFVJM, Campus JK, Rodovia MGT 367 - Km 583, n° 5.000,
Alto da Jacuba, CEP 39100-000 Diamantina, MG, Brazil
| | - Dayane B. Tada
- Nanomaterials
and Nanotoxicology Laboratory, Institute of Science and Technology, Federal University of São Paulo (UNIFESP), R. Talim, 330, Vila Nair, CEP 12231-280 São José
dos Campos, SP, Brazil
| | - Rafaela C. Queiroz
- Nanomaterials
and Nanotoxicology Laboratory, Institute of Science and Technology, Federal University of São Paulo (UNIFESP), R. Talim, 330, Vila Nair, CEP 12231-280 São José
dos Campos, SP, Brazil
- Federal
Institute of São Paulo (IFSP), Rod. Pres. Dutra, km 145, Jardim Diamante, CEP 12223-201 São José
dos Campos, SP, Brazil
| | - Carolina R. Hurtado
- Nanomaterials
and Nanotoxicology Laboratory, Institute of Science and Technology, Federal University of São Paulo (UNIFESP), R. Talim, 330, Vila Nair, CEP 12231-280 São José
dos Campos, SP, Brazil
- Federal
Institute of São Paulo (IFSP), Rod. Pres. Dutra, km 145, Jardim Diamante, CEP 12223-201 São José
dos Campos, SP, Brazil
| | - Erenilda F. de Macedo
- Nanomaterials
and Nanotoxicology Laboratory, Institute of Science and Technology, Federal University of São Paulo (UNIFESP), R. Talim, 330, Vila Nair, CEP 12231-280 São José
dos Campos, SP, Brazil
| | - Katia Conceição
- Peptide
Biochemistry Laboratory, Institute of Science and Technology, Federal University of São Paulo (Unifesp), R. Talim, 330, Vila Nair, CEP 12231-280 São José
dos Campos, SP, Brazil
| | - Gabriela R. Hurtado
- Institute
of Science and Technology, São Paulo
State University (UNESP), Rod. Pres. Dutra, km 137,8, Eugênio de Melo, CEP 12247-004 São José
dos Campos, SP, Brazil
- Institute
of Advanced Sea Studies (IEAMAr), São
Paulo State University (UNESP), Rod. Pres. Dutra, km 137,8, Eugênio de Melo, CEP 12247-004 São José
dos Campos, SP, Brazil
| | - Fernando L. P. Pessoa
- Centro
Universitário SENAI-CIMATEC, Av. Orlando Gomes, 1845, Piatã, Salvador 41650-010, Brazil
| | - Yan Valdez S Rodrigues
- Centro
Universitário SENAI-CIMATEC, Av. Orlando Gomes, 1845, Piatã, Salvador 41650-010, Brazil
| | - Gabriel de P. Bueno
- Research
Center for Natural and Synthetic Products, Faculty of Pharmaceutical
Sciences of Ribeirão Preto, University
of São Paulo (USP), Av. do Café, CEP, 14040-903 Ribeirão Preto, SP, Brazil
| | - Giuliano C. Clososki
- Research
Center for Natural and Synthetic Products, Faculty of Pharmaceutical
Sciences of Ribeirão Preto, University
of São Paulo (USP), Av. do Café, CEP, 14040-903 Ribeirão Preto, SP, Brazil
| | - Sandro L. Barbosa
- Department
of Pharmacy, Universidade Federal dos Vales
do Jequitinhonha e Mucuri-UFVJM, Campus JK, Rodovia MGT 367 - Km 583, n° 5.000,
Alto da Jacuba, CEP 39100-000 Diamantina, MG, Brazil
| |
Collapse
|
2
|
Alhaddad H, Ospina OE, Khaled ML, Ren Y, Vallebuona E, Boozo MB, Forsyth PA, Pina Y, Macaulay R, Law V, Tsai KY, Cress WD, Fridley B, Smalley I. Spatial transcriptomics analysis identifies a tumor-promoting function of the meningeal stroma in melanoma leptomeningeal disease. Cell Rep Med 2024; 5:101606. [PMID: 38866016 PMCID: PMC11228800 DOI: 10.1016/j.xcrm.2024.101606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/08/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024]
Abstract
Leptomeningeal disease (LMD) remains a rapidly lethal complication for late-stage melanoma patients. Here, we characterize the tumor microenvironment of LMD and patient-matched extra-cranial metastases using spatial transcriptomics in a small number of clinical specimens (nine tissues from two patients) with extensive in vitro and in vivo validation. The spatial landscape of melanoma LMD is characterized by a lack of immune infiltration and instead exhibits a higher level of stromal involvement. The tumor-stroma interactions at the leptomeninges activate tumor-promoting signaling, mediated through upregulation of SERPINA3. The meningeal stroma is required for melanoma cells to survive in the cerebrospinal fluid (CSF) and promotes MAPK inhibitor resistance. Knocking down SERPINA3 or inhibiting the downstream IGR1R/PI3K/AKT axis results in tumor cell death and re-sensitization to MAPK-targeting therapy. Our data provide a spatial atlas of melanoma LMD, identify the tumor-promoting role of meningeal stroma, and demonstrate a mechanism for overcoming microenvironment-mediated drug resistance in LMD.
Collapse
Affiliation(s)
- Hasan Alhaddad
- Department of Metabolism and Physiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Oscar E Ospina
- Department of Biostatistics and Bioinformatics at the Moffitt Cancer Center, Tampa, FL, USA
| | - Mariam Lotfy Khaled
- Department of Metabolism and Physiology, Moffitt Cancer Center, Tampa, FL, USA; Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Yuan Ren
- Department of Metabolism and Physiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Ethan Vallebuona
- Department of Metabolism and Physiology, Moffitt Cancer Center, Tampa, FL, USA; Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
| | | | - Peter A Forsyth
- Department of Tumor Biology, Moffitt Cancer Center, Tampa, FL, USA; Department of NeuroOncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Yolanda Pina
- Department of NeuroOncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Robert Macaulay
- Department of Pathology, Moffitt Cancer Center, Tampa, FL, USA
| | - Vincent Law
- Department of Tumor Biology, Moffitt Cancer Center, Tampa, FL, USA; Department of NeuroOncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Kenneth Y Tsai
- Department of Pathology, Moffitt Cancer Center, Tampa, FL, USA
| | - W Douglas Cress
- Department of Molecular Oncology at the Moffitt Cancer Center, Tampa, FL, USA
| | - Brooke Fridley
- Department of Biostatistics and Bioinformatics at the Moffitt Cancer Center, Tampa, FL, USA; Division of Health Services & Outcomes Research, Children's Mercy Hospital, Kansas City, MO 64108, USA.
| | - Inna Smalley
- Department of Metabolism and Physiology, Moffitt Cancer Center, Tampa, FL, USA; Department of Cutaneous Oncology at the Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
3
|
Alhaddad H, Ospina OE, Khaled ML, Ren Y, Forsyth P, Pina Y, Macaulay R, Law V, Tsai KY, Cress WD, Fridley B, Smalley I. Spatial transcriptomics analysis identifies a unique tumor-promoting function of the meningeal stroma in melanoma leptomeningeal disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.572266. [PMID: 38187574 PMCID: PMC10769278 DOI: 10.1101/2023.12.18.572266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Leptomeningeal disease (LMD) remains a rapidly lethal complication for late-stage melanoma patients. The inaccessible nature of the disease site and lack of understanding of the biology of this unique metastatic site are major barriers to developing efficacious therapies for patients with melanoma LMD. Here, we characterize the tumor microenvironment of the leptomeningeal tissues and patient-matched extra-cranial metastatic sites using spatial transcriptomic analyses with in vitro and in vivo validation. We show the spatial landscape of melanoma LMD to be characterized by a lack of immune infiltration and instead exhibit a higher level of stromal involvement. We show that the tumor-stroma interactions at the leptomeninges activate pathways implicated in tumor-promoting signaling, mediated through upregulation of SERPINA3 at the tumor-stroma interface. Our functional experiments establish that the meningeal stroma is required for melanoma cells to survive in the CSF environment and that these interactions lead to a lack of MAPK inhibitor sensitivity in the tumor. We show that knocking down SERPINA3 or inhibiting the downstream IGR1R/PI3K/AKT axis results in re-sensitization of the tumor to MAPK-targeting therapy and tumor cell death in the leptomeningeal environment. Our data provides a spatial atlas of melanoma LMD, identifies the tumor-promoting role of meningeal stroma, and demonstrates a mechanism for overcoming microenvironment-mediated drug resistance unique to this metastatic site.
Collapse
Affiliation(s)
- Hasan Alhaddad
- Department of Metabolism and Physiology at the Moffitt Cancer Center, Tampa, Florida, USA
| | - Oscar E. Ospina
- Department of Biostatistics and Bioinformatics at the Moffitt Cancer Center, Tampa, Florida, USA
| | - Mariam Lotfy Khaled
- Department of Metabolism and Physiology at the Moffitt Cancer Center, Tampa, Florida, USA
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Egypt
| | - Yuan Ren
- Department of Metabolism and Physiology at the Moffitt Cancer Center, Tampa, Florida, USA
| | - Peter Forsyth
- Department of Tumor Biology at the Moffitt Cancer Center, Tampa, Florida, USA
- Department of NeuroOncology at the Moffitt Cancer Center, Tampa, Florida, USA
| | - Yolanda Pina
- Department of NeuroOncology at the Moffitt Cancer Center, Tampa, Florida, USA
| | - Robert Macaulay
- Department of Pathology at the Moffitt Cancer Center, Tampa, Florida, USA
| | - Vincent Law
- Department of Tumor Biology at the Moffitt Cancer Center, Tampa, Florida, USA
- Department of NeuroOncology at the Moffitt Cancer Center, Tampa, Florida, USA
| | - Kenneth Y. Tsai
- Department of Pathology at the Moffitt Cancer Center, Tampa, Florida, USA
| | - W Douglas Cress
- Department of Molecular Oncology at the Moffitt Cancer Center, Tampa, Florida, USA
| | - Brooke Fridley
- Department of Biostatistics and Bioinformatics at the Moffitt Cancer Center, Tampa, Florida, USA
- Division of Health Services & Outcomes Research, Children’s Mercy Hospital, Kansas City, MO 64108
| | - Inna Smalley
- Department of Metabolism and Physiology at the Moffitt Cancer Center, Tampa, Florida, USA
- Department of Cutaneous Oncology at the Moffitt Cancer Center, Tampa, Florida, USA
| |
Collapse
|
4
|
de Carvalho Lima EN, Barros Martins GL, Diaz RS, Schechter M, Piqueira JRC, Justo JF. Effects of Carbon Nanomaterials and Aloe vera on Melanomas-Where Are We? Recent Updates. Pharmaceutics 2022; 14:2004. [PMID: 36297440 PMCID: PMC9607275 DOI: 10.3390/pharmaceutics14102004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/29/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Melanoma is an aggressive skin cancer that affects approximately 140,000 people worldwide each year, with a high fatality rate. Available treatment modalities show limited efficacy in more severe cases. Hence, the search for new treatment modalities, including immunotherapies, for curing, mitigating, and/or preventing cancer is important and urgently needed. Carbon nanoparticles associated with some plant materials, such as Aloe vera, have shown appealing antineoplastic activity, derived mainly from the compounds aloin, aloe-emodin, barbaloin acemannan, and octapeptide, thus representing new possibilities as antitumor agents. This systematic review aims to arouse interest and present the possibilities of using Aloe vera combined with carbon-based nanomaterials as an antineoplastic agent in the treatment and prevention of melanoma. Limitations and advances in melanoma treatment using functionalized carbon nanomaterials are discussed here. Moreover, this review provides the basis for further studies designed to fully explore the potential of carbon nanomaterials associated with Aloe vera in the treatment of various cancers, with a focus on melanoma.
Collapse
Affiliation(s)
- Elidamar Nunes de Carvalho Lima
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, Avenida Prof. Luciano Gualberto, Travessa 3, 158, São Paulo 05508-010, Brazil
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo 04023-062, Brazil
- Electronic Systems Engineering Department, Polytechnic School of the University of São Paulo, São Paulo 05508-010, Brazil
| | - Guilherme Leão Barros Martins
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, Avenida Prof. Luciano Gualberto, Travessa 3, 158, São Paulo 05508-010, Brazil
| | - Ricardo Sobhie Diaz
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo 04023-062, Brazil
| | - Mauro Schechter
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo 04023-062, Brazil
| | - José Roberto Castilho Piqueira
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, Avenida Prof. Luciano Gualberto, Travessa 3, 158, São Paulo 05508-010, Brazil
| | - João Francisco Justo
- Electronic Systems Engineering Department, Polytechnic School of the University of São Paulo, São Paulo 05508-010, Brazil
| |
Collapse
|
5
|
Loite U, Raam L, Reimann E, Reemann P, Prans E, Traks T, Vasar E, Silm H, Kingo K, Kõks S. The Expression Pattern of Genes Related to Melanogenesis and Endogenous Opioids in Psoriasis. Int J Mol Sci 2021; 22:ijms222313056. [PMID: 34884858 PMCID: PMC8657874 DOI: 10.3390/ijms222313056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
The melanocortin system is a major regulator of stress responses in the skin and is responsible for the induction of melanin synthesis through activation of melanogenesis enzymes. The expression of both melanocortin system genes and melanogenesis enzyme genes is altered in psoriasis, and the focus here was on twelve genes related to the signal transduction between them. Additionally, five endogenous opioid system genes that are involved in cutaneous inflammation were examined. Quantitative real-time-PCR was utilized to measure mRNA expression in punch biopsies from lesional and non-lesional skin of psoriasis patients and from the skin of healthy control subjects. Most of the genes related to melanogenesis were down-regulated in patients (CREB1, MITF, LEF1, USF1, MAPK14, ICAM1, PIK3CB, RPS6KB1, KIT, and ATRN). Conversely, an up-regulation occurred in the case of opioids (PENK, PDYN, and PNOC). The suppression of genes related to melanogenesis is in agreement with the reported reduction in pigmentation signaling in psoriatic skin and potentially results from the pro-inflammatory environment. The increase in endogenous opioids can be associated with their involvement in inflammatory dysregulation in psoriasis.
Collapse
Affiliation(s)
- Ulvi Loite
- Department of Dermatology and Venerology, University of Tartu, 31 Raja, 50417 Tartu, Estonia; (U.L.); (L.R.); (P.R.); (H.S.); (K.K.)
| | - Liisi Raam
- Department of Dermatology and Venerology, University of Tartu, 31 Raja, 50417 Tartu, Estonia; (U.L.); (L.R.); (P.R.); (H.S.); (K.K.)
- Dermatology Clinic, Tartu University Hospital, 31 Raja, 50417 Tartu, Estonia
| | - Ene Reimann
- Institute of Genomics, University of Tartu, 23b/2 Riia, 51010 Tartu, Estonia;
| | - Paula Reemann
- Department of Dermatology and Venerology, University of Tartu, 31 Raja, 50417 Tartu, Estonia; (U.L.); (L.R.); (P.R.); (H.S.); (K.K.)
| | - Ele Prans
- Department of Anaesthesiology and Intensive Care, Tartu University Hospital, 8 L. Puusepa, 51014 Tartu, Estonia;
| | - Tanel Traks
- Department of Dermatology and Venerology, University of Tartu, 31 Raja, 50417 Tartu, Estonia; (U.L.); (L.R.); (P.R.); (H.S.); (K.K.)
- Correspondence:
| | - Eero Vasar
- Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia;
| | - Helgi Silm
- Department of Dermatology and Venerology, University of Tartu, 31 Raja, 50417 Tartu, Estonia; (U.L.); (L.R.); (P.R.); (H.S.); (K.K.)
- Dermatology Clinic, Tartu University Hospital, 31 Raja, 50417 Tartu, Estonia
| | - Külli Kingo
- Department of Dermatology and Venerology, University of Tartu, 31 Raja, 50417 Tartu, Estonia; (U.L.); (L.R.); (P.R.); (H.S.); (K.K.)
- Dermatology Clinic, Tartu University Hospital, 31 Raja, 50417 Tartu, Estonia
| | - Sulev Kõks
- The Perron Institute for Neurological and Translational Science, 8 Verdun St., Nedlands, WA 6009, Australia;
- Centre for Comparative Genomics, Murdoch University, 90 South St., Murdoch, WA 6150, Australia
| |
Collapse
|
6
|
Sanchez A, Kuras M, Murillo JR, Pla I, Pawlowski K, Szasz AM, Gil J, Nogueira FCS, Perez-Riverol Y, Eriksson J, Appelqvist R, Miliotis T, Kim Y, Baldetorp B, Ingvar C, Olsson H, Lundgren L, Ekedahl H, Horvatovich P, Sugihara Y, Welinder C, Wieslander E, Kwon HJ, Domont GB, Malm J, Rezeli M, Betancourt LH, Marko-Varga G. Novel functional proteins coded by the human genome discovered in metastases of melanoma patients. Cell Biol Toxicol 2020; 36:261-272. [PMID: 31599373 PMCID: PMC7320927 DOI: 10.1007/s10565-019-09494-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/02/2019] [Indexed: 12/18/2022]
Abstract
In the advanced stages, malignant melanoma (MM) has a very poor prognosis. Due to tremendous efforts in cancer research over the last 10 years, and the introduction of novel therapies such as targeted therapies and immunomodulators, the rather dark horizon of the median survival has dramatically changed from under 1 year to several years. With the advent of proteomics, deep-mining studies can reach low-abundant expression levels. The complexity of the proteome, however, still surpasses the dynamic range capabilities of current analytical techniques. Consequently, many predicted protein products with potential biological functions have not yet been verified in experimental proteomic data. This category of 'missing proteins' (MP) is comprised of all proteins that have been predicted but are currently unverified. As part of the initiative launched in 2016 in the USA, the European Cancer Moonshot Center has performed numerous deep proteomics analyses on samples from MM patients. In this study, nine MPs were clearly identified by mass spectrometry in MM metastases. Some MPs significantly correlated with proteins that possess identical PFAM structural domains; and other MPs were significantly associated with cancer-related proteins. This is the first study to our knowledge, where unknown and novel proteins have been annotated in metastatic melanoma tumour tissue.
Collapse
Affiliation(s)
- Aniel Sanchez
- Section for Clinical Chemistry, Department of Translational Medicine, Skåne University Hospital Malmö, Lund University, 205 02, Malmö, Sweden.
| | - Magdalena Kuras
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Jimmy Rodriguez Murillo
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Indira Pla
- Section for Clinical Chemistry, Department of Translational Medicine, Skåne University Hospital Malmö, Lund University, 205 02, Malmö, Sweden
| | - Krzysztof Pawlowski
- Section for Clinical Chemistry, Department of Translational Medicine, Skåne University Hospital Malmö, Lund University, 205 02, Malmö, Sweden
- Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - A Marcell Szasz
- Cancer Center, Semmelweis University, Budapest, 1083, Hungary
| | - Jeovanis Gil
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Fábio C S Nogueira
- Proteomics Unit, Department of Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Proteomics, LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yasset Perez-Riverol
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, CB10 1SD Hinxton, Cambridge, UK
| | - Jonatan Eriksson
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Roger Appelqvist
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | | | - Yonghyo Kim
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Bo Baldetorp
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden
| | - Christian Ingvar
- Department of Surgery, Clinical Sciences, Skåne University Hospital, Lund University, Lund, Sweden
| | - Håkan Olsson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden
| | - Lotta Lundgren
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Henrik Ekedahl
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden
| | - Peter Horvatovich
- Department of Analytical Biochemistry, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Yutaka Sugihara
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden
| | - Charlotte Welinder
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden
| | - Elisabet Wieslander
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden
| | - Ho Jeong Kwon
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Gilberto B Domont
- Proteomics Unit, Department of Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Johan Malm
- Section for Clinical Chemistry, Department of Translational Medicine, Skåne University Hospital Malmö, Lund University, 205 02, Malmö, Sweden
| | - Melinda Rezeli
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Lazaro Hiram Betancourt
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden.
| | - György Marko-Varga
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| |
Collapse
|
7
|
Kim Y, Gil J, Pla I, Sanchez A, Betancourt LH, Lee B, Appelqvist R, Ingvar C, Lundgren L, Olsson H, Baldetorp B, Kwon HJ, Oskolás H, Rezeli M, Doma V, Kárpáti S, Szasz AM, Németh IB, Malm J, Marko-Varga G. Protein Expression in Metastatic Melanoma and the Link to Disease Presentation in a Range of Tumor Phenotypes. Cancers (Basel) 2020; 12:E767. [PMID: 32213878 PMCID: PMC7140007 DOI: 10.3390/cancers12030767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/11/2020] [Accepted: 03/18/2020] [Indexed: 12/31/2022] Open
Abstract
Malignant melanoma is among the most aggressive skin cancers and it has among the highest metastatic potentials. Although surgery to remove the primary tumor is the gold standard treatment, once melanoma progresses and metastasizes to the lymph nodes and distal organs, i.e., metastatic melanoma (MM), the usual outcome is decreased survival. To improve survival rates and life span, advanced treatments have focused on the success of targeted therapies in the MAPK pathway that are based on BRAF (BRAF V600E) and MEK. The majority of patients with tumors that have higher expression of BRAF V600E show poorer prognosis than patients with a lower level of the mutated protein. Based on the molecular basis of melanoma, these findings are supported by distinct tumor phenotypes determined from differences in tumor heterogeneity and protein expression profiles. With these aspects in mind, continued challenges are to: (1) deconvolute the complexity and heterogeneity of MM; (2) identify the signaling pathways involved; and (3) determine protein expression to develop targeted therapies. Here, we provide an overview of the results from protein expression in MM and the link to disease presentation in a variety of tumor phenotypes and how these will overcome the challenges of clinical problems and suggest new promising approaches in metastatic melanoma and cancer therapy.
Collapse
Affiliation(s)
- Yonghyo Kim
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (L.L.); (H.O.); (B.B.)
| | - Jeovanis Gil
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (L.L.); (H.O.); (B.B.)
| | - Indira Pla
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden
| | - Aniel Sanchez
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden
| | - Lazaro Hiram Betancourt
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
| | - Boram Lee
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
| | - Roger Appelqvist
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
| | - Christian Ingvar
- Department of Surgery, Clinical Sciences, Lund University, Skåne University Hospital Lund, 222 42 Lund, Sweden;
| | - Lotta Lundgren
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (L.L.); (H.O.); (B.B.)
| | - Håkan Olsson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (L.L.); (H.O.); (B.B.)
| | - Bo Baldetorp
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (L.L.); (H.O.); (B.B.)
| | - Ho Jeong Kwon
- Chemical Genomics Global Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea;
| | - Henriett Oskolás
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
| | - Melinda Rezeli
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
| | - Viktoria Doma
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (V.D.); (S.K.)
| | - Sarolta Kárpáti
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (V.D.); (S.K.)
| | - A. Marcell Szasz
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
- Department of Bioinformatics, Semmelweis University, 1091 Budapest, Hungary
| | - István Balázs Németh
- Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary;
| | - Johan Malm
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden
| | - György Marko-Varga
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
- Chemical Genomics Global Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea;
- Department of Surgery, Tokyo Medical University, 6-7-1 Nishishinjiku Shinjiku-ku, Tokyo 160-0023, Japan
| |
Collapse
|
8
|
Betancourt LH, Szasz AM, Kuras M, Rodriguez Murillo J, Sugihara Y, Pla I, Horvath Z, Pawłowski K, Rezeli M, Miharada K, Gil J, Eriksson J, Appelqvist R, Miliotis T, Baldetorp B, Ingvar C, Olsson H, Lundgren L, Horvatovich P, Welinder C, Wieslander E, Kwon HJ, Malm J, Nemeth IB, Jönsson G, Fenyö D, Sanchez A, Marko-Varga G. The Hidden Story of Heterogeneous B-raf V600E Mutation Quantitative Protein Expression in Metastatic Melanoma-Association with Clinical Outcome and Tumor Phenotypes. Cancers (Basel) 2019; 11:E1981. [PMID: 31835364 PMCID: PMC6966659 DOI: 10.3390/cancers11121981] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/23/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023] Open
Abstract
In comparison to other human cancer types, malignant melanoma exhibits the greatest amount of heterogeneity. After DNA-based detection of the BRAF V600E mutation in melanoma patients, targeted inhibitor treatment is the current recommendation. This approach, however, does not take the abundance of the therapeutic target, i.e., the B-raf V600E protein, into consideration. As shown by immunohistochemistry, the protein expression profiles of metastatic melanomas clearly reveal the existence of inter- and intra-tumor variability. Nevertheless, the technique is only semi-quantitative. To quantitate the mutant protein there is a fundamental need for more precise techniques that are aimed at defining the currently non-existent link between the levels of the target protein and subsequent drug efficacy. Using cutting-edge mass spectrometry combined with DNA and mRNA sequencing, the mutated B-raf protein within metastatic tumors was quantitated for the first time. B-raf V600E protein analysis revealed a subjacent layer of heterogeneity for mutation-positive metastatic melanomas. These were characterized into two distinct groups with different tumor morphologies, protein profiles and patient clinical outcomes. This study provides evidence that a higher level of expression in the mutated protein is associated with a more aggressive tumor progression. Our study design, comprised of surgical isolation of tumors, histopathological characterization, tissue biobanking, and protein analysis, may enable the eventual delineation of patient responders/non-responders and subsequent therapy for malignant melanoma.
Collapse
Affiliation(s)
- Lazaro Hiram Betancourt
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical, Engineering, Lund University, BMC D13, 221 84 Lund, Sweden; (L.H.B.); (Z.H.); (M.R.); (J.G.); (J.E.); (R.A.); (G.M.-V.)
| | - A. Marcell Szasz
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical, Engineering, Lund University, BMC D13, 221 84 Lund, Sweden; (L.H.B.); (Z.H.); (M.R.); (J.G.); (J.E.); (R.A.); (G.M.-V.)
- Cancer Center, Semmelweis University, Budapest 1083, Hungary
| | - Magdalena Kuras
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden; (M.K.); (I.P.); (K.P.); (J.M.); (A.S.)
| | - Jimmy Rodriguez Murillo
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17 177 Stockholm, Sweden; (J.R.M.); (Y.S.)
| | - Yutaka Sugihara
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17 177 Stockholm, Sweden; (J.R.M.); (Y.S.)
| | - Indira Pla
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden; (M.K.); (I.P.); (K.P.); (J.M.); (A.S.)
| | - Zsolt Horvath
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical, Engineering, Lund University, BMC D13, 221 84 Lund, Sweden; (L.H.B.); (Z.H.); (M.R.); (J.G.); (J.E.); (R.A.); (G.M.-V.)
| | - Krzysztof Pawłowski
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden; (M.K.); (I.P.); (K.P.); (J.M.); (A.S.)
- Department of Biochemistry and Microbiology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Melinda Rezeli
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical, Engineering, Lund University, BMC D13, 221 84 Lund, Sweden; (L.H.B.); (Z.H.); (M.R.); (J.G.); (J.E.); (R.A.); (G.M.-V.)
| | - Kenichi Miharada
- Department of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, Sölvegatan 17, 221 84 Lund, Sweden;
| | - Jeovanis Gil
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical, Engineering, Lund University, BMC D13, 221 84 Lund, Sweden; (L.H.B.); (Z.H.); (M.R.); (J.G.); (J.E.); (R.A.); (G.M.-V.)
| | - Jonatan Eriksson
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical, Engineering, Lund University, BMC D13, 221 84 Lund, Sweden; (L.H.B.); (Z.H.); (M.R.); (J.G.); (J.E.); (R.A.); (G.M.-V.)
| | - Roger Appelqvist
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical, Engineering, Lund University, BMC D13, 221 84 Lund, Sweden; (L.H.B.); (Z.H.); (M.R.); (J.G.); (J.E.); (R.A.); (G.M.-V.)
| | - Tasso Miliotis
- Translational Science, Cardiovascular Renal and Metabolism, IMED Biotech Unit, AstraZeneca, 431 50 Gothenburg, Sweden;
| | - Bo Baldetorp
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (B.B.); (H.O.); (L.L.); (C.W.); (E.W.); (G.J.)
| | - Christian Ingvar
- Department of Surgery, Clinical Sciences, Lund University, Skåne University Hospital, 222 42 Lund, Sweden;
| | - Håkan Olsson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (B.B.); (H.O.); (L.L.); (C.W.); (E.W.); (G.J.)
| | - Lotta Lundgren
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (B.B.); (H.O.); (L.L.); (C.W.); (E.W.); (G.J.)
| | - Peter Horvatovich
- Department of Analytical Biochemistry, Faculty of Science and Engineering, University of Groningen, 9712 CP Groningen, The Netherlands;
| | - Charlotte Welinder
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (B.B.); (H.O.); (L.L.); (C.W.); (E.W.); (G.J.)
| | - Elisabet Wieslander
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (B.B.); (H.O.); (L.L.); (C.W.); (E.W.); (G.J.)
| | - Ho Jeong Kwon
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea;
| | - Johan Malm
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden; (M.K.); (I.P.); (K.P.); (J.M.); (A.S.)
| | - Istvan Balazs Nemeth
- Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary;
| | - Göran Jönsson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (B.B.); (H.O.); (L.L.); (C.W.); (E.W.); (G.J.)
| | - David Fenyö
- Institute for Systems Genetics, NYU School of Medicine, 550 1st Ave, New York, NY 10016, USA;
| | - Aniel Sanchez
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden; (M.K.); (I.P.); (K.P.); (J.M.); (A.S.)
| | - György Marko-Varga
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical, Engineering, Lund University, BMC D13, 221 84 Lund, Sweden; (L.H.B.); (Z.H.); (M.R.); (J.G.); (J.E.); (R.A.); (G.M.-V.)
| |
Collapse
|
9
|
Gil J, Betancourt LH, Pla I, Sanchez A, Appelqvist R, Miliotis T, Kuras M, Oskolas H, Kim Y, Horvath Z, Eriksson J, Berge E, Burestedt E, Jönsson G, Baldetorp B, Ingvar C, Olsson H, Lundgren L, Horvatovich P, Murillo JR, Sugihara Y, Welinder C, Wieslander E, Lee B, Lindberg H, Pawłowski K, Kwon HJ, Doma V, Timar J, Karpati S, Szasz AM, Németh IB, Nishimura T, Corthals G, Rezeli M, Knudsen B, Malm J, Marko-Varga G. Clinical protein science in translational medicine targeting malignant melanoma. Cell Biol Toxicol 2019; 35:293-332. [PMID: 30900145 PMCID: PMC6757020 DOI: 10.1007/s10565-019-09468-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/13/2019] [Indexed: 02/06/2023]
Abstract
Melanoma of the skin is the sixth most common type of cancer in Europe and accounts for 3.4% of all diagnosed cancers. More alarming is the degree of recurrence that occurs with approximately 20% of patients lethally relapsing following treatment. Malignant melanoma is a highly aggressive skin cancer and metastases rapidly extend to the regional lymph nodes (stage 3) and to distal organs (stage 4). Targeted oncotherapy is one of the standard treatment for progressive stage 4 melanoma, and BRAF inhibitors (e.g. vemurafenib, dabrafenib) combined with MEK inhibitor (e.g. trametinib) can effectively counter BRAFV600E-mutated melanomas. Compared to conventional chemotherapy, targeted BRAFV600E inhibition achieves a significantly higher response rate. After a period of cancer control, however, most responsive patients develop resistance to the therapy and lethal progression. The many underlying factors potentially causing resistance to BRAF inhibitors have been extensively studied. Nevertheless, the remaining unsolved clinical questions necessitate alternative research approaches to address the molecular mechanisms underlying metastatic and treatment-resistant melanoma. In broader terms, proteomics can address clinical questions far beyond the reach of genomics, by measuring, i.e. the relative abundance of protein products, post-translational modifications (PTMs), protein localisation, turnover, protein interactions and protein function. More specifically, proteomic analysis of body fluids and tissues in a given medical and clinical setting can aid in the identification of cancer biomarkers and novel therapeutic targets. Achieving this goal requires the development of a robust and reproducible clinical proteomic platform that encompasses automated biobanking of patient samples, tissue sectioning and histological examination, efficient protein extraction, enzymatic digestion, mass spectrometry-based quantitative protein analysis by label-free or labelling technologies and/or enrichment of peptides with specific PTMs. By combining data from, e.g. phosphoproteomics and acetylomics, the protein expression profiles of different melanoma stages can provide a solid framework for understanding the biology and progression of the disease. When complemented by proteogenomics, customised protein sequence databases generated from patient-specific genomic and transcriptomic data aid in interpreting clinical proteomic biomarker data to provide a deeper and more comprehensive molecular characterisation of cellular functions underlying disease progression. In parallel to a streamlined, patient-centric, clinical proteomic pipeline, mass spectrometry-based imaging can aid in interrogating the spatial distribution of drugs and drug metabolites within tissues at single-cell resolution. These developments are an important advancement in studying drug action and efficacy in vivo and will aid in the development of more effective and safer strategies for the treatment of melanoma. A collaborative effort of gargantuan proportions between academia and healthcare professionals has led to the initiation, establishment and development of a cutting-edge cancer research centre with a specialisation in melanoma and lung cancer. The primary research focus of the European Cancer Moonshot Lund Center is to understand the impact that drugs have on cancer at an individualised and personalised level. Simultaneously, the centre increases awareness of the relentless battle against cancer and attracts global interest in the exceptional research performed at the centre.
Collapse
Affiliation(s)
- Jeovanis Gil
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden.
| | - Lazaro Hiram Betancourt
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden.
| | - Indira Pla
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02, Malmö, Sweden
| | - Aniel Sanchez
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02, Malmö, Sweden
| | - Roger Appelqvist
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Tasso Miliotis
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
- Translational Science, Cardiovascular Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Magdalena Kuras
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Henriette Oskolas
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Yonghyo Kim
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Zsolt Horvath
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Jonatan Eriksson
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Ethan Berge
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Elisabeth Burestedt
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Göran Jönsson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden
| | - Bo Baldetorp
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden
| | - Christian Ingvar
- Department of Surgery, Clinical Sciences, Lund University, SUS, Lund, Sweden
| | - Håkan Olsson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden
| | - Lotta Lundgren
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden
- Department of Haematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Peter Horvatovich
- Department of Analytical Biochemistry, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Jimmy Rodriguez Murillo
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Yutaka Sugihara
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Charlotte Welinder
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden
| | - Elisabet Wieslander
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden
| | - Boram Lee
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Henrik Lindberg
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Krzysztof Pawłowski
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
- Department of Experimental Design and Bioinformatics, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Ho Jeong Kwon
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
- Chemical Genomics Global Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Viktoria Doma
- Second Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Jozsef Timar
- Second Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Sarolta Karpati
- Department of Dermatology, Semmelweis University, Budapest, Hungary
| | - A Marcell Szasz
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden
- Cancer Center, Semmelweis University, Budapest, 1083, Hungary
- MTA-TTK Momentum Oncology Biomarker Research Group, Hungarian Academy of Sciences, Budapest, 1117, Hungary
| | - István Balázs Németh
- Department of Dermatology and Allergology, University of Szeged, Szeged, H-6720, Hungary
| | - Toshihide Nishimura
- Clinical Translational Medicine Informatics, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
- Department of Surgery, Tokyo Medical University, 6-7-1 Nishishinjiku Shinjiku-ku, Tokyo, Japan
| | - Garry Corthals
- Van't Hoff Institute of Molecular Sciences, 1090 GS, Amsterdam, The Netherlands
| | - Melinda Rezeli
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Beatrice Knudsen
- Biomedical Sciences and Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Johan Malm
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02, Malmö, Sweden
| | - György Marko-Varga
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
- Chemical Genomics Global Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
- Department of Surgery, Tokyo Medical University, 6-7-1 Nishishinjiku Shinjiku-ku, Tokyo, Japan
| |
Collapse
|
10
|
Mouse-Derived Isograft (MDI) In Vivo Tumor Models I. Spontaneous sMDI Models: Characterization and Cancer Therapeutic Approaches. Cancers (Basel) 2019; 11:cancers11020244. [PMID: 30791466 PMCID: PMC6406567 DOI: 10.3390/cancers11020244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 01/05/2023] Open
Abstract
Syngeneic in vivo tumor models are valuable for the development and investigation of immune-modulating anti-cancer drugs. In the present study, we established a novel syngeneic in vivo model type named mouse-derived isografts (MDIs). Spontaneous MDIs (sMDIs) were obtained during a long-term observation period (more than one to two years) of naïve and untreated animals of various mouse strains (C3H/HeJ, CBA/J, DBA/2N, BALB/c, and C57BL/6N). Primary tumors or suspicious tissues were assessed macroscopically and re-transplanted in a PDX-like manner as small tumor pieces into sex-matched syngeneic animals. Nine outgrowing primary tumors were histologically characterized either as adenocarcinomas, histiocytic carcinomas, or lymphomas. Growth of the tumor pieces after re-transplantation displayed model heterogeneity. The adenocarcinoma sMDI model JA-0009 was further characterized by flow cytometry, RNA-sequencing, and efficacy studies. M2 macrophages were found to be the main tumor infiltrating leukocyte population, whereas only a few T cells were observed. JA-0009 showed limited sensitivity when treated with antibodies against inhibitory checkpoint molecules (anti-mPD-1 and anti-mCTLA-4), but high sensitivity to gemcitabine treatment. The generated sMDI are spontaneously occurring tumors of low passage number, propagated as tissue pieces in mice without any tissue culturing, and thus conserving the original tumor characteristics and intratumoral immune cell populations.
Collapse
|
11
|
Strauss BE, Silva GRO, de Luna Vieira I, Cerqueira OLD, Del Valle PR, Medrano RFV, Mendonça SA. Perspectives for cancer immunotherapy mediated by p19Arf plus interferon-beta gene transfer. Clinics (Sao Paulo) 2018; 73:e479s. [PMID: 30208166 PMCID: PMC6113850 DOI: 10.6061/clinics/2018/e479s] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/22/2018] [Indexed: 12/13/2022] Open
Abstract
While cancer immunotherapy has gained much deserved attention in recent years, many areas regarding the optimization of such modalities remain unexplored, including the development of novel approaches and the strategic combination of therapies that target multiple aspects of the cancer-immunity cycle. Our own work involves the use of gene transfer technology to promote cell death and immune stimulation. Such immunogenic cell death, mediated by the combined transfer of the alternate reading frame (p14ARF in humans and p19Arf in mice) and the interferon-β cDNA in our case, was shown to promote an antitumor immune response in mouse models of melanoma and lung carcinoma. With these encouraging results, we are now setting out on the road toward translational and preclinical development of our novel immunotherapeutic approach. Here, we outline the perspectives and challenges that we face, including the use of human tumor and immune cells to verify the response seen in mouse models and the incorporation of clinically relevant models, such as patient-derived xenografts and spontaneous tumors in animals. In addition, we seek to combine our immunotherapeutic approach with other treatments, such as chemotherapy or checkpoint blockade, with the goal of reducing dosage and increasing efficacy. The success of any translational research requires the cooperation of a multidisciplinary team of professionals involved in laboratory and clinical research, a relationship that is fostered at the Cancer Institute of Sao Paulo.
Collapse
Affiliation(s)
- Bryan E Strauss
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail: /
| | - Gissele Rolemberg Oliveira Silva
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Igor de Luna Vieira
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Otto Luiz Dutra Cerqueira
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Paulo Roberto Del Valle
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Ruan Felipe Vieira Medrano
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Samir Andrade Mendonça
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| |
Collapse
|
12
|
Hoffman RM. Patient-Derived Orthotopic Xenograft (PDOX) Models of Melanoma. Int J Mol Sci 2017; 18:ijms18091875. [PMID: 28858204 PMCID: PMC5618524 DOI: 10.3390/ijms18091875] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 08/16/2017] [Accepted: 08/23/2017] [Indexed: 01/26/2023] Open
Abstract
Metastatic melanoma is a recalcitrant tumor. Although “targeted” and immune therapies have been highly touted, only relatively few patients have had durable responses. To overcome this problem, our laboratory has established the melanoma patient-derived orthotopic xenograft (PDOX) model with the use of surgical orthotopic implantation (SOI). Promising results have been obtained with regard to identifying effective approved agents and experimental therapeutics, as well as combinations of the two using the melanoma PDOX model.
Collapse
Affiliation(s)
- Robert M Hoffman
- AntiCancer Inc., 7917 Ostrow Street, San Diego, CA 92111, USA.
- Department of Surgery, University of California, San Diego, CA 92103-8220, USA.
| |
Collapse
|
13
|
Jones AM, Ferguson P, Gardner J, Rooker S, Sutton T, Ahn A, Chatterjee A, Bickley VM, Sarwar M, Emanuel P, Kenwright D, Shepherd PR, Eccles MR. NRAS and EPHB6 mutation rates differ in metastatic melanomas of patients in the North Island versus South Island of New Zealand. Oncotarget 2016; 7:41017-41030. [PMID: 27191502 PMCID: PMC5173039 DOI: 10.18632/oncotarget.9351] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/16/2016] [Indexed: 11/25/2022] Open
Abstract
Melanoma, the most aggressive skin cancer type, is responsible for 75% of skin cancer related deaths worldwide. Given that New Zealand (NZ) has the world's highest melanoma incidence, we sought to determine the frequency of mutations in NZ melanomas in recurrently mutated genes. NZ melanomas were from localities distributed between North (35°S-42°S) and South Islands (41°S-47°S). A total of 529 melanomas were analyzed for BRAF exon 15 mutations by Sanger sequencing, and also by Sequenom MelaCarta MassARRAY. While, a relatively low incidence of BRAFV600E mutations (23.4%) was observed overall in NZ melanomas, the incidence of NRAS mutations in South Island melanomas was high compared to North Island melanomas (38.3% vs. 21.9%, P=0.0005), and to The Cancer Genome Atlas database (TCGA) (38.3% vs. 22%, P=0.0004). In contrast, the incidence of EPHB6G404S mutations was 0% in South Island melanomas, and was 7.8% in North Island (P=0.0002). Overall, these data suggest that melanomas from geographically different regions in NZ have markedly different mutation frequencies, in particular in the NRAS and EPHB6 genes, when compared to TCGA or other populations. These data have implications for the causation and treatment of malignant melanoma in NZ.
Collapse
Affiliation(s)
- Angela M. Jones
- Capital and Coast District Health Board, Wellington, New Zealand
| | - Peter Ferguson
- Capital and Coast District Health Board, Wellington, New Zealand
- Department of Pathology and Molecular Medicine, Wellington School of Medicine and Health Sciences, University of Otago, Wellington, New Zealand
| | - Jacqui Gardner
- Anatomical and Molecular Pathology, Canterbury Health Laboratories, Christchurch, New Zealand
| | - Serena Rooker
- Capital and Coast District Health Board, Wellington, New Zealand
| | - Tim Sutton
- Pathlab Bay of Plenty, Tauranga, New Zealand
| | - Antonio Ahn
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Vivienne M. Bickley
- Anatomical and Molecular Pathology, Canterbury Health Laboratories, Christchurch, New Zealand
| | - Makhdoom Sarwar
- Department of Obstetrics and Gynaecology, Christchurch School of Medicine, University of Otago, Christchurch, New Zealand
| | - Patrick Emanuel
- Anatomic Pathology Services, Auckland District Health Board, New Zealand
- Department of Pathology and Molecular medicine, University of Auckland, Auckland, New Zealand
| | - Diane Kenwright
- Capital and Coast District Health Board, Wellington, New Zealand
- Department of Pathology and Molecular Medicine, Wellington School of Medicine and Health Sciences, University of Otago, Wellington, New Zealand
| | - Peter R. Shepherd
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
- Department of Pathology and Molecular medicine, University of Auckland, Auckland, New Zealand
| | - Michael R. Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
14
|
Abstract
The development of immunotherapy using checkpoint blockade has altered the treatment landscape for patients who had but few options only several years ago. Currently, approved anti-checkpoint agents include ipilimumab, the first approved treatment aimed against the cytotoxic T-lymphocyte antigen-4 (CTLA-4) pathway, and pembrolizumab and nivolumab, which inhibit the programmed death-1 (PD-1) pathway. Careful monitoring and early intervention for immune-mediated side effects is important to mitigate toxicity. Immune-mediated response patterns may differ from response associated with conventional therapies, and so it is important to use caution against early abandonment of treatment. Biomarkers as predictive and prognostic markers of efficacy are still under investigation in an attempt to guide treatment selection in patients with advanced melanoma, and additional studies are needed to provide guidance for selection of checkpoint inhibitors to be used in sequence or combination.
Collapse
Affiliation(s)
- Sanjiv S Agarwala
- Chief of Medical Oncology and Hematology, St Luke's University Hospital and Health Network; Professor of Medicine Temple University, School of Medicine, Philadelphia, PA.
| |
Collapse
|
15
|
Holmes E, Wijeyesekera A, Taylor-Robinson SD, Nicholson JK. The promise of metabolic phenotyping in gastroenterology and hepatology. Nat Rev Gastroenterol Hepatol 2015. [PMID: 26194948 DOI: 10.1038/nrgastro.2015.114] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Disease risk and treatment response are determined, at the individual level, by a complex history of genetic and environmental interactions, including those with our endogenous microbiomes. Personalized health care requires a deep understanding of patient biology that can now be measured using a range of '-omics' technologies. Patient stratification involves the identification of genetic and/or phenotypic disease subclasses that require different therapeutic strategies. Stratified medicine approaches to disease diagnosis, prognosis and therapeutic response monitoring herald a new dimension in patient care. Here, we explore the potential value of metabolic profiling as applied to unmet clinical needs in gastroenterology and hepatology. We describe potential applications in a number of diseases, with emphasis on large-scale population studies as well as metabolic profiling on the individual level, using spectrometric and imaging technologies that will leverage the discovery of mechanistic information and deliver novel health care solutions to improve clinical pathway management.
Collapse
Affiliation(s)
- Elaine Holmes
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Anisha Wijeyesekera
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | | | - Jeremy K Nicholson
- MRC-NIHR National Phenome Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
16
|
Besaratinia A, Tommasi S. Epigenetics of human melanoma: promises and challenges. J Mol Cell Biol 2014; 6:356-67. [PMID: 24895357 DOI: 10.1093/jmcb/mju027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Melanoma is the deadliest form of skin cancer with rising incidence and mortality rates. Although early-stage melanoma is highly curable, advanced-stage melanoma is refractory to treatment. This underscores the importance of prevention and early detection as well as the need to improve treatment and prognostication of human melanoma. Elucidating the underlying mechanisms of the initiation and progression of human melanoma can help identify potential targets of intervention for prevention, diagnosis, therapy, and prognosis of this disease. Aberrant DNA methylation and histone modifications are the best-established epigenetic mechanisms of carcinogenesis. The occurrence of epigenetic changes prior to clinical diagnosis of cancer and their reversibility through pharmacologic/genetic approaches offer a promising avenue for basic and translational research on human melanoma. Candidate gene(s) or genome-wide aberrant DNA methylation and histone modifications have been observed in human melanoma tumor tissues and cell lines, and correlated to cellular and functional characteristics and/or clinicopathological features of this malignancy. The present review summarizes the published researches on aberrant DNA methylation and histone modifications in connection with human melanoma. Representative studies are highlighted to set forth the current state of knowledge, gaps in the knowledgebase, and future directions in these epigenetic fields of research. Examples of epigenetic therapy applied for human melanoma in vitro, and the challenges of its in vivo application for clinical treatment of solid tumors are discussed.
Collapse
Affiliation(s)
- Ahmad Besaratinia
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| | - Stella Tommasi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| |
Collapse
|
17
|
Abstract
Melanoma is a solid tumour with its own specificity from the biological and morphological viewpoint. On one hand, numerous mutations are already known affecting different pathways. They usually concern proliferation rate, apoptosis, cell senescence and cell behaviour. On the other hand, several visual criteria at the tissue level are used by physicians in order to diagnose skin lesions. Nevertheless, the mechanisms between the changes from the mutations at the cell level to the morphology exhibited at the tissue level are still not fully understood. Using physical tools, we develop a simple model. We demonstrate analytically that it contains the necessary ingredients to understand several specificities of melanoma such as the presence of microstructures inside a skin lesion or the absence of a necrotic core. We also explain the importance of senescence for growth arrest in benign skin lesions. Thanks to numerical simulations, we successfully compare this model to biological data.
Collapse
|