1
|
Zhou Y, Yang G, Liu J, Yao S, Jia J, Tang X, Gong X, Wan F, Wu R, Zhao Z, Liang H, Liu L, Liu Q, Xie S, Long X, Xiang X, Wang G, Xiao B. MBD2 promotes epithelial-to-mesenchymal transition (EMT) and ARDS-related pulmonary fibrosis by modulating FZD2. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167798. [PMID: 40081619 DOI: 10.1016/j.bbadis.2025.167798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 03/02/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
OBJECTIVE To investigate the role and underlying mechanism of Methyl-CpG binding domain protein 2 (MBD2) in the pathogenesis of acute respiratory distress syndrome (ARDS)-related pulmonary fibrosis. METHODS Murine models for ARDS-related pulmonary fibrosis were established in wildtype or MBD2 knockout mice, expressions of MBD2 were determined with immunohistochemistry (IHC), immunofluorescence, and western blot. Epithelial-to-mesenchymal transition (EMT) was detected with determined with decreased expression of E-cadherin and increased expressions of N-cadherin, Vimentin, and α-smooth muscle actin (α-SMA). Transforming growth factor β (TGF-β) treated mouse lung epithelial-12 (MLE-12) cells and primary human type II alveolar epithelial cells were applied to establish in vitro model for EMT. Transcriptional sequencing with RNA-Seq and Chromatin immunoprecipitation (ChIP) assay were used to explore the potential targets of MBD2. Single cell sequencing data and Human pulmonary fibrosis samples were analyzed. RESULTS Bleomycin (BLM) and lipopolysaccharide (LPS) induced EMT, pulmonary fibrosis, and increased expression of MBD2 in alveolar epithelial cells of mice, and MBD2 knockout significantly alleviated BLM- and LPS-induced pulmonary fibrosis and EMT. TGF-β induced EMT and elevated MBD2 expressions in alveolar epithelial cells, which was mitigated by MBD2 knockdown and aggravated by MBD2 overexpression. Frizzled 2 (FZD2) was found to be the potential target of MBD2. Single-cell sequencing analysis of ARDS patients suggested elevated expression of MBD2 in alveolar epithelial cells, and MBD2 expression was elevated in the lungs of patients with pulmonary fibrosis. CONCLUSION Our results indicated that MBD2 could promote EMT and ARDS-related pulmonary fibrosis, potentially by modulating the expression of FZD2.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University, Changsha, Hunan, China; Department of Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Guifang Yang
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University, Changsha, Hunan, China
| | - Jiqiang Liu
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University, Changsha, Hunan, China
| | - Shuo Yao
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University, Changsha, Hunan, China
| | - Jingsi Jia
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University, Changsha, Hunan, China
| | - Xianming Tang
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University, Changsha, Hunan, China
| | - Xun Gong
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University, Changsha, Hunan, China
| | - Fang Wan
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University, Changsha, Hunan, China
| | - Ren Wu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhenyu Zhao
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hengxing Liang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Department of Thoracic Surgery, Guilin Hospital of the Second Xiangya Hospital of Central South University, Guilin, Guangxi, China
| | - Linxia Liu
- Department of Respiratory and Critical Care Medicine, Guilin Hospital of the Second Xiangya Hospital of Central South University, Guilin, Guangxi, China
| | - Qimi Liu
- Department of Respiratory and Critical Care Medicine, Guilin Hospital of the Second Xiangya Hospital of Central South University, Guilin, Guangxi, China
| | - Shanshan Xie
- Department of Emergency Medicine, Guilin Hospital of the Second Xiangya Hospital of Central South University, Guilin, Guangxi, China
| | - Xian Long
- Department of Clinic, Medicine School, Changsha Social Work College, Changsha, Hunan, China
| | - Xudong Xiang
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University, Changsha, Hunan, China; Department of Respiratory and Critical Care Medicine, Guilin Hospital of the Second Xiangya Hospital of Central South University, Guilin, Guangxi, China
| | - Guyi Wang
- Department of Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Bing Xiao
- Department of Emergency Medicine, Guilin Hospital of the Second Xiangya Hospital of Central South University, Guilin, Guangxi, China; Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Li Y, Zheng J, Liu F, Tan X, Jiang H, Wang Y. Discussion of the material basis for prevention and treatment of pulmonary fibrosis using naturally medicinal and edible homologous herbs based on the dynamic process of Nrf2, NF-κB and TGF-β in PF. Biomed Pharmacother 2025; 185:117911. [PMID: 40090283 DOI: 10.1016/j.biopha.2025.117911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/02/2025] [Accepted: 02/07/2025] [Indexed: 03/18/2025] Open
Abstract
Pulmonary fibrosis (PF) is a progressive chronic lung disease with a high incidence and poor prognosis. Despite extensive research into the mechanisms that initiate and drive the progression of pulmonary fibrosis, developing effective treatments remains challenging due to the multiple etiologies, pathogenic links, and signaling pathways involved in PF. Indeed, nuclear factor erythroid 2-related factor 2 (Nrf2), nuclear factor kappa-B (NF-κB), and transforming growth factor-beta (TGF-β) are central players in the pathogenesis of pulmonary fibrosis, and each of these factors influences distinct yet interconnected processes that collectively contribute to disease progression: Nrf2 upregulates antioxidants to mitigate oxidative stress, NF-κB modulates inflammatory responses, and TGF-β promotes fibroblast activation and extracellular matrix (ECM) deposition, leading to fibrosis. Targeting these pathways may offer therapeutic strategies, uncover new insights and provide potential therapeutic targets for PF. Absolutely, the interactions between Nrf2, NF-κB, and TGF-β pathways are complex and can significantly influence the progression of PF, which indicated that targeting a single pathway may show poor efficacy in managing the condition. Moreover, few therapies that effectively intervene in these pathways have been approved. This review focused on the molecular mechanisms of Nrf2, NF-κB, and TGF-β involving in PF and the material basis of the naturally medicinal and edible homologous herbs, which provides a solid foundation for understanding the disease's pathogenesis, and supports the development of therapeutic drugs or treatments for addressing the complex nature of PF.
Collapse
Affiliation(s)
- Yan Li
- Chongqing Academy of Chinese Materia Medica, Chongqing University of Chinese Medicine, Chongqing 400065, PR China; Chongqing Key Laboratory of Chinese Medicine & Health Science, Chongqing 400065, PR China.
| | - Jia Zheng
- Chongqing University of Chinese Medicine, Chongqing 402760, PR China.
| | - Fei Liu
- Chongqing Academy of Chinese Materia Medica, Chongqing University of Chinese Medicine, Chongqing 400065, PR China.
| | - Xianfeng Tan
- Chongqing Baijiahuan Health Technology Co., Ltd, Chongqing 400065, China.
| | - Huiping Jiang
- Chongqing Baijiahuan Health Technology Co., Ltd, Chongqing 400065, China.
| | - Yongde Wang
- Chongqing Academy of Chinese Materia Medica, Chongqing University of Chinese Medicine, Chongqing 400065, PR China; Chongqing Key Laboratory of Chinese Medicine & Health Science, Chongqing 400065, PR China.
| |
Collapse
|
3
|
Feng J, Huang X, Peng Y, Yang W, Yang X, Tang R, Xu Q, Gao Y, He Z, Xing S, Mei S. Pyruvate kinase M2 modulates mitochondrial dynamics and EMT in alveolar epithelial cells during sepsis-associated pulmonary fibrosis. J Transl Med 2025; 23:205. [PMID: 39972351 PMCID: PMC11837412 DOI: 10.1186/s12967-025-06199-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 02/04/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Pulmonary fibrosis (PF) severely impacts both the survival and quality of life of patients with acute respiratory distress syndrome (ARDS) and remains a leading cause of late-stage ARDS-related mortality. The role of epithelial-mesenchymal transition (EMT) in alveolar epithelial cells (AECs) is pivotal in the development of PF. METHODS This study explored the modulation of mitochondrial dynamics and the induction of EMT by pyruvate kinase M2 (PKM2) in AECs, aiming to identify new strategies for the prevention and treatment of sepsis-associated PF. RESULTS The results demonstrated that exposure to LPS increased the levels of PKM2 and the mitochondrial fission marker dynamin-related protein-1 (DRP1), while reducing the levels of the mitochondrial fusion marker mitofusin-2 (MFN2) and the epithelial marker E-cadherin. Moreover, the mesenchymal markers α-SMA and vimentin were upregulated. Treatment with shikonin effectively reversed these alterations, restoring the balance of mitochondrial dynamics, reversing EMT markers, and alleviating the severity of sepsis-associated PF. CONCLUSIONS This study identified PKM2 as a crucial regulator of mitochondrial dynamics and EMT in AECs during sepsis-associated PF. Targeting PKM2 activity offers a promising strategy for developing treatments to mitigate the progression of sepsis-associated PF.
Collapse
Affiliation(s)
- Jinhua Feng
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
| | - Xi Huang
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
| | - Yawen Peng
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
| | - Wenyu Yang
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
| | - Xinyi Yang
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
| | - Ri Tang
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiaoyi Xu
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Gao
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengyu He
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shunpeng Xing
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shuya Mei
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Khidr EG, El-Sayyad GS, Abulsoud AI, Rizk NI, Zaki MB, Raouf AA, Elrebehy MA, Abdel Hady MMM, Elballal MS, Mohammed OA, Abdel-Reheim MA, El-Dakroury WA, Abdel Mageed SS, Al-Noshokaty TM, Doghish AS. Unlocking the Potential of miRNAs in Sepsis Diagnosis and Prognosis: From Pathophysiology to Precision Medicine. J Biochem Mol Toxicol 2025; 39:e70156. [PMID: 39871533 DOI: 10.1002/jbt.70156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/25/2024] [Accepted: 01/16/2025] [Indexed: 01/29/2025]
Abstract
The clinical syndrome appears as a dysregulated host response to infection that results in life-threatening organ dysfunction known as Sepsis. Sepsis is a serious public health concern where for every five deaths in ICU there is one patient who dies with sepsis worldwide. Sepsis is featured as unbalanced inflammation and immunosuppression which is sustained and profound, increasing patient susceptibility to secondary infections and mortality. microRNAs (miRNAs) play a central role in the control of many biological processes, and the deregulation of their expression has been linked to the development of oncological, cardiovascular, neurodegenerative, and metabolic diseases. In this review, we discuss the role of miRNAs in sepsis pathophysiology. Overall, miRNAs are seen as promising biomarkers, and it has been proposed to develop miRNA-based diagnosis and therapies for sepsis. Yet, the picture is not so straightforward because of miRNAs' versatile and dynamic features. More research is needed to clarify the expression and role of miRNAs in sepsis and promote the use of miRNAs for sepsis management. This study provides an extensive, current, and thorough analysis of the involvement of miRNAs in sepsis. Its purpose is to encourage future research in this area, as tiny miRNAs have the potential to be used for rapid diagnosis, prognosis, and treatment of sepsis.
Collapse
Affiliation(s)
- Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Gharieb S El-Sayyad
- Medical Laboratory Technology Department, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC), Cairo, Egypt
- Drug Microbiology Lab., Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Menoufia National University, Menofia, Egypt
| | - Ahmed Amr Raouf
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
| | - Mahmoud A Elrebehy
- Biochemistry Department, Faculty of Pharmacy, Galala University, Suez, Egypt
| | - Manal M M Abdel Hady
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Goyang, Republic of Korea
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | | | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
| | | | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
- Biochemistry Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
5
|
Sen'kova AV, Bishani A, Savin IA, Zenkova MA, Chernolovskaya EL. Effect of immunostimulatory RNA on the fibrosis development in Bleomycin- or LPS-induced mouse models. Biochimie 2025; 229:9-18. [PMID: 39362399 DOI: 10.1016/j.biochi.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Previously, we described a 19-base pair double-stranded RNA with 3'-trinucleotide overhangs, acting as immunostimulatory RNA (isRNA). This molecule demonstrated notable antiproliferative effects on cancer cells, inhibited tumor growth, and elicited immunostimulatory and antiviral responses by inducing cytokine and interferon production. Within this study, we compared the efficiency of lung fibrosis development, initiated in mice by BLM or LPS using different schemes of induction. Then we compared the effect of isRNA used in a preventive or therapeutic regimen on the development of fibrosis in selected BLM- and LPS-induced mouse models and showed that isRNA can be used in pathological conditions accompanied by the development of inflammation and the risk of fibrosis formation, without adverse side effects. Prophylactic regimen of isRNA application is beneficial for prevention of the development of pulmonary fibrosis.
Collapse
Affiliation(s)
- Aleksandra V Sen'kova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Acad. Lavrentiev Ave. 8, 630090, Novosibirsk, Russia
| | - Ali Bishani
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Acad. Lavrentiev Ave. 8, 630090, Novosibirsk, Russia; Faculty of Natural Sciences, Novosibirsk State University, Pirogova Str., 1, 630090, Novosibirsk, Russia
| | - Innokenty A Savin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Acad. Lavrentiev Ave. 8, 630090, Novosibirsk, Russia
| | - Marina A Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Acad. Lavrentiev Ave. 8, 630090, Novosibirsk, Russia
| | - Elena L Chernolovskaya
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Acad. Lavrentiev Ave. 8, 630090, Novosibirsk, Russia.
| |
Collapse
|
6
|
Spagnolo P, Tonelli R, Mura M, Reisman W, Sotiropoulou V, Tzouvelekis A. Investigational gene expression inhibitors for the treatment of idiopathic pulmonary fibrosis. Expert Opin Investig Drugs 2025; 34:61-80. [PMID: 39916340 DOI: 10.1080/13543784.2025.2462592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 01/31/2025] [Indexed: 02/12/2025]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive fibrosing interstitial lung disease of unknown cause that occurs primarily in older adults and is associated with poor quality of life and substantial healthcare utilization. IPF has a dismal prognosis. Indeed, first-line therapy, which includes nintedanib and pirfenidone, does not stop disease progression and is often associated with tolerability issues. Therefore, there remains a high medical need for more efficacious and better tolerated treatments. AREAS COVERED Gene therapy is a relatively unexplored field of research in IPF that has the potential to mitigate a range of profibrotic pathways by introducing genetic material into cells. Here, we summarize and critically discuss publications that have explored the safety and efficacy of gene therapy in experimentally-induced pulmonary fibrosis in animals, as clinical studies in humans have not been published yet. EXPERT OPINION The application of gene therapy in pulmonary fibrosis requires further investigation to address several technical and biological hurdles, improve vectors' design, drug delivery, and target selection, mitigate off-target effects and develop markers of gene penetration into target cells. Long-term clinical data are needed to bring gene therapy in IPF one step closer to practice.
Collapse
Affiliation(s)
- Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Roberto Tonelli
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, Modena, Italy
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena, Modena, Italy
| | - Marco Mura
- Division of Respirology, Western University, London, Ontario, Canada
| | - William Reisman
- Division of Respirology, Western University, London, Ontario, Canada
| | | | - Argyrios Tzouvelekis
- Department of Respiratory Medicine, University Hospital of Patras, Patras, Greece
| |
Collapse
|
7
|
Wang H, Sun K, Peng H, Wang Y, Zhang L. Emerging roles of noncoding RNAs in idiopathic pulmonary fibrosis. Cell Death Discov 2024; 10:443. [PMID: 39433746 PMCID: PMC11494106 DOI: 10.1038/s41420-024-02170-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 10/23/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrotic lung disease with limited treatment options and efficacy. Evidence suggests that IPF arises from genetic, environmental, and aging-related factors. The pathogenic mechanisms of IPF primarily involve dysregulated repeated microinjuries to epithelial cells, abnormal fibroblast/myofibroblast activation, and extracellular matrix (ECM) deposition, but thus far, the exact etiology remains unclear. Noncoding RNAs (ncRNAs) play regulatory roles in various biological processes and have been implicated in the pathophysiology of multiple fibrotic diseases, including IPF. This review summarizes the roles of ncRNAs in the pathogenesis of IPF and their potential as diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Haitao Wang
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Kai Sun
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Hao Peng
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Yi Wang
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| | - Lei Zhang
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
- Xianning Medical College, Hubei University of Science & Technology, Xianning, 437000, Hubei, China.
| |
Collapse
|
8
|
Zhou Z, Xie Y, Wei Q, Zhang X, Xu Z. Revisiting the role of MicroRNAs in the pathogenesis of idiopathic pulmonary fibrosis. Front Cell Dev Biol 2024; 12:1470875. [PMID: 39479511 PMCID: PMC11521927 DOI: 10.3389/fcell.2024.1470875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a prevalent chronic pulmonary fibrosis disease characterized by alveolar epithelial cell damage, fibroblast proliferation and activation, excessive extracellular matrix deposition, and abnormal epithelial-mesenchymal transition (EMT), resulting in tissue remodeling and irreversible structural distortion. The mortality rate of IPF is very high, with a median survival time of 2-3 years after diagnosis. The exact cause of IPF remains unknown, but increasing evidence supports the central role of epigenetic changes, particularly microRNA (miRNA), in IPF. Approximately 10% of miRNAs in IPF lung tissue exhibit differential expression compared to normal lung tissue. Diverse miRNA phenotypes exert either a pro-fibrotic or anti-fibrotic influence on the progression of IPF. In the context of IPF, epigenetic factors such as DNA methylation and long non-coding RNAs (lncRNAs) regulate differentially expressed miRNAs, which in turn modulate various signaling pathways implicated in this process, including transforming growth factor-β1 (TGF-β1)/Smad, mitogen-activated protein kinase (MAPK), and phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) pathways. Therefore, this review presents the epidemiology of IPF, discusses the multifaceted regulatory roles of miRNAs in IPF, and explores the impact of miRNAs on IPF through various pathways, particularly the TGF-β1/Smad pathway and its constituent structures. Consequently, we investigate the potential for targeting miRNAs as a treatment for IPF, thereby contributing to advancements in IPF research.
Collapse
Affiliation(s)
| | | | | | | | - Zhihao Xu
- The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| |
Collapse
|
9
|
Han SJ, Kim SK, Hong SM. Next-generation Sequencing of MicroRNA in Acquired Middle Ear Cholesteatoma. Laryngoscope 2024; 134:4374-4382. [PMID: 38775212 DOI: 10.1002/lary.31507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/19/2024] [Accepted: 04/22/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVES/HYPOTHESIS The pathophysiology of cholesteatoma is not precisely understood, and research on the associated microRNAs (miRNAs) is also deficient. We demonstrated the expression of miRNA in normal skin and middle ear cholesteatoma by next-generation sequencing (NGS) technology. The profiles of miRNA and relevant molecular interaction pathways were investigated. STUDY DESIGN Case-control experimental study. METHODS Middle ear cholesteatoma and post-auricular skin tissue specimens were collected from 13 adult patients. Total RNA was extracted, and miRNA expression profiles were analyzed by NGS technology. Functional gene classification to predict target genes and relevant biological pathways was performed using DIANA-microT-CDS and the Kyoto Encyclopedia Gene and Genome database (KEGG) pathways. RESULTS The expression of 2588 miRNAs from middle ear cholesteatoma and skin tissue samples was analyzed. The expression of 76 upregulated and 128 downregulated miRNAs was identified in the cholesteatoma samples compared to normal skin (FC ≥2 and p < 0.05). Ninety-nine differentially expressed miRNAs (FC ≥4 and p < 0.05) were used to explore the biological pathways involved in the etiopathogenesis of cholesteatoma. The most predicted pathway in cholesteatoma in the upregulated miRNA group was the ErbB signaling pathway and it was extracellular matrix (ECM)-receptor interaction in the downregulated miRNA group. CONCLUSIONS This was the first study investigating small miRNAs in human acquired cholesteatoma using NGS technique. We were able to identify new miRNAs and pathways related to cholesteatoma. The results of this study are expected to be helpful in revealing new pathophysiologies of cholesteatoma. LEVEL OF EVIDENCE N/A Laryngoscope, 134:4374-4382, 2024.
Collapse
Affiliation(s)
- Sung Jun Han
- Department of Otorhinolaryngology-Head & Neck Surgery, Hallym University College of Medicine, Hwaseong, Korea
| | - Sung Kyun Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, Hallym University College of Medicine, Hwaseong, Korea
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, U.S.A
| | - Seok Min Hong
- Department of Otorhinolaryngology-Head and Neck Surgery, Kyung Hee University School of Medicine, Seoul, Korea
| |
Collapse
|
10
|
Long G, Zhang Q, Yang X, Sun H, Ji C. miR-141-3p attenuates inflammation and oxidative stress-induced pulmonary fibrosis in ARDS via the Keap1/Nrf2/ARE signaling pathway. Immunol Res 2024; 72:1003-1017. [PMID: 38865000 DOI: 10.1007/s12026-024-09503-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024]
Abstract
The present research aimed to investigate the effects and mechanisms of microRNA (miR)-141-3p on pulmonary fibrosis of acute respiratory distress syndrome (ARDS). A rat ARDS model was established by the intratracheal drip of 10 mg/kg lipopolysaccharide (LPS). miR-141-3p and Kelch-like ECH-associated protein 1 (Keap1) expression was detected using RT-qPCR assay. Inflammatory factors in bronchoalveolar lavage fluid (BALF) and lung tissues were measured with enzyme-linked immunosorbent assay (ELISA). Lung fibrosis was evaluated using Masson's trichrome staining and hydroxyproline assay kits. Tissue oxidative stress marker levels were assessed by a commercial kit. Protein variations in the EMT pathway and Keap1/nuclear factor-erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway were investigated by Western blot analysis. Targeting relationship verified by dual-luciferase reporter assay. The expression of miR-141-3p was significantly upregulated in LPS-induced ARDS rats, while Keap1 was downregulated. Overexpression of miR-141-3p decreased the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, superoxide dismutase (SOD), and glutathione (GSH) while elevating malondialdehyde (MDA) expression in LPS-induced ARDS rats. Elevation of miR-141-3p reduced fibrosis scores, enhanced E-cadherin protein expression, and decreased vimentin and α-SMA protein expression in LPS-induced ARDS rats. This elevation of miR-141-3p also upregulated Nrf2, heme oxygenase-1 (HO-1), and NAD(P)H:quinone oxido-reductase-1 (NQO1) proteins levels. Moreover, Keap1 overexpression reversed the inhibitory effects of miR-141-3p on LPS-triggered inflammation, oxidative stress, and fibrosis. miR-141-3p may attenuate inflammation and oxidative stress-induced pulmonary fibrosis in ARDS via the Keap1/Nrf2/ARE signaling pathway. Our study provides new ideas for the treatment of ARDS.
Collapse
Affiliation(s)
- Guangwen Long
- Department of Emergency, Guizhou Provincial People's Hospital, No. 83, Zhongshan East Road, Guiyang, 550002, Guizhou, China.
| | - Qian Zhang
- Department of Emergency, Guizhou Provincial People's Hospital, No. 83, Zhongshan East Road, Guiyang, 550002, Guizhou, China
| | - Xiulin Yang
- Department of Emergency, Guizhou Provincial People's Hospital, No. 83, Zhongshan East Road, Guiyang, 550002, Guizhou, China
| | - Hongpeng Sun
- Department of Emergency, Guizhou Provincial People's Hospital, No. 83, Zhongshan East Road, Guiyang, 550002, Guizhou, China
| | - Chunling Ji
- Department of Emergency, Guizhou Provincial People's Hospital, No. 83, Zhongshan East Road, Guiyang, 550002, Guizhou, China
| |
Collapse
|
11
|
Yin JB, Wang YX, Fan SS, Shang WB, Zhu YS, Peng XR, Zou C, Zhang X. Geniposide ameliorates bleomycin-induced pulmonary fibrosis in mice by inhibiting TGF-β/Smad and p38MAPK signaling pathways. PLoS One 2024; 19:e0309833. [PMID: 39240867 PMCID: PMC11379225 DOI: 10.1371/journal.pone.0309833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/19/2024] [Indexed: 09/08/2024] Open
Abstract
Pulmonary fibrosis (PF) is an interstitial lung disease characterized by inflammation and fibrotic changes, with an unknown cause. In the early stages of PF, severe inflammation leads to the destruction of lung tissue, followed by upregulation of fibrotic factors like Transforming growth factor-β (TGF-β) and connective tissue growth factor (CTGF), which disrupt normal tissue repair. Geniposide, a natural iridoid glycoside primarily derived from the fruits of Gardenia jasminoides Ellis, possesses various pharmacological activities, including liver protection, choleretic effects, and anti-inflammatory properties. In this study, we investigated the effects of Geniposide on chronic inflammation and fibrosis induced by bleomycin (BLM) in mice with pulmonary fibrosis (PF). PF was induced by intratracheal instillation of bleomycin, and Geniposide(100/50/25mg•kg-1) was orally administered to the mice once a day until euthanasia(14 day/28 day). The Raw264.7 cell inflammation induced by LPS was used to evaluate the effect of Geniposide on the activation of macrophage. Our results demonstrated that Geniposide reduced lung coefficients, decreased the content of Hydroxyproline, and improved pathological changes in lung tissue. It also reduced the number of inflammatory cells and levels of pro-inflammatory cytokines in bronchoalveolar lavage fluid (BALF) of bleomycin-induced PF mice. At the molecular level, Geniposide significantly down-regulated the expression of TGF-β1, Smad2/3, p38, and CTGF in lung tissues of PF mice induced by bleomycin. Molecular docking results revealed that Geniposide exhibited good binding activity with TGF-β1, Smad2, Smad3, and p38. In vitro study showed Geniposide directly inhibited the activation of macrophage induced by LPS. In conclusion, our findings suggest that Geniposide can ameliorate bleomycin-induced pulmonary fibrosis in mice by inhibiting the TGF-β/Smad and p38MAPK signaling pathways.
Collapse
Affiliation(s)
- Jian-Bin Yin
- The People's Hospital of ChuXiong Yi Autonomous Prefecture, ChuXiong, China
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products, College of Modern Biomedical Industry, Kunming Medical University, Kunming, China
| | - Ying-Xia Wang
- Department of Pathology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Su-Su Fan
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products, College of Modern Biomedical Industry, Kunming Medical University, Kunming, China
| | - Wen-Bin Shang
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products, College of Modern Biomedical Industry, Kunming Medical University, Kunming, China
| | - Yu-Shan Zhu
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products, College of Modern Biomedical Industry, Kunming Medical University, Kunming, China
| | - Xue-Rong Peng
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products, College of Modern Biomedical Industry, Kunming Medical University, Kunming, China
| | - Cheng Zou
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products, College of Modern Biomedical Industry, Kunming Medical University, Kunming, China
| | - Xuan Zhang
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products, College of Modern Biomedical Industry, Kunming Medical University, Kunming, China
| |
Collapse
|
12
|
Gao L, Bai Y, Liang C, Han T, Liu Y, Zhou J, Guo J, Wu J, Hu D. Celastrol-Ligustrazine compound proven to be a novel drug candidate for idiopathic pulmonary fibrosis by intervening in the TGF-β1 mediated pathways-an experimental in vitro and vivo study. Mol Divers 2024:10.1007/s11030-024-10970-1. [PMID: 39207663 DOI: 10.1007/s11030-024-10970-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a disease characterized by pulmonary interstitial fibrosis and collagen proliferation, currently lacking effective therapeutic options. The combined use of Celastrol and Ligustrazine has been proved to synergistically improve the pathological processes of inflammation and fibrosis. In earlier studies, we designed and synthesized a Celastrol-Ligustrazine compound CL-001, though its role in IPF remains unclear. Here, the effects and mechanisms of CL-001 in bleomycin (BLM)-induced IPF were investigated. In vivo, CL-001 significantly improved lung function, reduced pulmonary inflammation, and decreased collagen deposition, thereby preventing the progression of IPF. In vitro, CL-001 concurrently inhibited both Smad-dependent and Smad-independent pathways, thereby suppressing TGF-β1-induced epithelial-mesenchymal transition (EMT) and epithelial cell migration. This inhibitory effect was superior to that of Celastrol or Ligustrazine administered alone. Additionally, CL-001 significantly increased the level of apoptosis and promoted the expression of apoptosis-related proteins (Caspase-8 and PARP), ultimately leading to widespread apoptosis in activated lung epithelial cells. In summary, CL-001 exhibits excellent anti-IPF effects both in vitro and in vivo, suggesting its potential as a novel candidate drug for IPF, warranting further development.
Collapse
Affiliation(s)
- Lu Gao
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Ying Bai
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China.
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China.
| | - Chao Liang
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Tao Han
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Yafeng Liu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Jiawei Zhou
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Jianqiang Guo
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Jing Wu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China.
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China.
- Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institute, Huainan, Anhui, China.
| | - Dong Hu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China.
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China.
- Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institute, Huainan, Anhui, China.
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
13
|
Hui W, Pu S, Gao X, Wang Y, Zha X, Ding K, Zhang X, Cheng D, Shi H, Luo Z. Evaluation of a Positron Emission Tomography Tracer Targeting Colony-Stimulating Factor 1 Receptor for Detecting Pulmonary Inflammation. Mol Pharm 2024; 21:3979-3991. [PMID: 38935927 DOI: 10.1021/acs.molpharmaceut.4c00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Colony-stimulating factor 1 receptor (CSF1R) is a type III receptor tyrosine kinase that is crucial for immune cell activation, survival, proliferation, and differentiation. Its expression significantly increases in macrophages during inflammation, playing a crucial role in regulating inflammation resolution and termination. Consequently, CSF1R has emerged as a critical target for both therapeutic intervention and imaging of inflammatory diseases. Herein, we have developed a radiotracer, 1-[4-((7-(dimethylamino)quinazolin-4-yl)oxy)phenyl]-3-(4-[18F]fluorophenyl)urea ([18F]17), for in vivo positron emission tomography (PET) imaging of CSF1R. Compound 17 exhibits a comparable inhibitory potency against CSF1R as the well-known CSF1R inhibitor PLX647. The radiosynthesis of [18F]17 was successfully performed by radiofluorination of aryltrimethyltin precursor with a yield of approximately 12% at the end of synthesis, maintaining a purity exceeding 98%. In vivo stability and biodistribution studies demonstrate that [18F]17 remains >90% intact at 30 min postinjection, with no defluorination observed even at 60 min postinjection. The PET/CT imaging study in lipopolysaccharide-induced pulmonary inflammation mice indicates that [18F]17 offers a more sensitive characterization of pulmonary inflammation compared to traditional [18F]FDG. Notably, [18F]17 shows a higher discrepancy in uptake ratio between mice with pulmonary inflammation and the sham group. Furthermore, the variations in [18F]17 uptake ratio observed on day 7 and day 14 correspond to lung density changes observed in CT imaging. Moreover, the expression levels of CSF1R on day 7 and day 14 follow a trend similar to the uptake pattern of [18F]17, indicating its potential for accurately characterizing CSF1R expression levels and effectively monitoring the pulmonary inflammation progression. These results strongly suggest that [18F]17 has promising prospects as a CSF1R PET tracer, providing diagnostic opportunities for pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- Wenxue Hui
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Suyun Pu
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xinyan Gao
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yunze Wang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaochuan Zha
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Kezhi Ding
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoyu Zhang
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zonghua Luo
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
14
|
Qian L, Ni J, Zhang Z. ZEB1 interferes with human periodontal ligament stem cell proliferation and differentiation. Oral Dis 2024; 30:2599-2608. [PMID: 37427856 DOI: 10.1111/odi.14673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 05/18/2023] [Accepted: 06/27/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Periodontitis can eventually contribute to tooth loss. Zinc finger E-box binding homeobox 1 (ZEB1) is identified as overexpressed in the gingival tissue of mice with periodontitis. This study is designed to decipher the mechanism of ZEB1's involvement in periodontitis. METHODS Human periodontal mesenchymal stem cells (hPDLSCs) were exposed to LPS to mimic the inflammation in periodontitis. Following ZEB1 silencing, FX1 (an inhibitor of Bcl-6) treatment or ROCK1 overexpression, cell viability, and apoptosis were analyzed. Alkaline phosphatase (ALP) staining, Alizarin red staining, RT-qPCR, and western blot were performed to evaluate osteogenic differentiation and mineralization. hPDLSCs were processed for luciferase reporter assay and ChIP-PCR to confirm the association between ZEB1 and ROCK1. RESULTS The induction of ZEB1 silencing resulted in reduced cell apoptosis, enhanced osteogenic differentiation, and mineralization. Nevertheless, these effects were significantly blunted by FX1. ZEB1 was confirmed to bind to the promoter sites of ROCK1 and regulate the ROCK1/AMPK. Whereas ROCK1 overexpression reversed the effects of ZEB1 silencing on Bcl-6/STAT1, as well as cell proliferation and osteogenesis differentiation. CONCLUSION hPDLSCs displayed decreased proliferation and weakened osteogenesis differentiation in response to LPS. These impacts were mediated by ZEB1 regulating Bcl-6/STAT1 via AMPK/ROCK1.
Collapse
Affiliation(s)
- Liwen Qian
- Department of Orthodontics, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai, China
| | - Jing Ni
- Department of Periodontology, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai, China
| | - Zhechen Zhang
- Department of Orthodontics, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai, China
| |
Collapse
|
15
|
Li D, Yang W, Pang J, Yu G. Differential DNA methylation landscape of miRNAs genes in mice liver fibrosis. Mol Biol Rep 2024; 51:475. [PMID: 38553662 DOI: 10.1007/s11033-024-09416-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/05/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Patients with chronic liver disease were found nearly all to have liver fibrosis, which is characterized by excess accumulation of extracellular matrix (ECM) proteins. While ECM accumulation can prevent liver infection and injury, it can destroy normal liver function and architecture. miRNA's own regulation was involved in DNA methylation change. The purpose of this study is to detect DNA methylation landscape of miRNAs genes in mice liver fibrosis tissues. METHODS Male mice (10-12 weeks) were injected CCl4 from abdominal cavity to induced liver fibrosis. 850 K BeadChips were used to examine DNA methylation change in whole genome. The methylation change of 16 CpG dinucleotides located in promoter regions of 4 miRNA genes were detected by bisulfite sequencing polymerase chain reaction (BSP) to verify chip data accuracy, and these 4 miRNA genes' expressions were detected by RT-qPCR methods. RESULTS There are 769 differential methylation sites (DMS) in total between fibrotic liver tissue and normal mice liver tissue, which were related with 148 different miRNA genes. Chips array data were confirmed by bisulfite sequencing polymerase chain reaction (R = 0.953; P < 0.01). GO analysis of the target genes of 2 miRNA revealed that protein binding, cytoplasm and chromatin binding activity were commonly enriched; KEGG pathway enrichment analysis displayed that TGF-beta signaling pathway was commonly enriched. CONCLUSION The DNA of 148 miRNA genes was found to have methylation change in liver fibrosis tissue. These discoveries in miRNA genes are beneficial to future miRNA function research in liver fibrosis.
Collapse
Affiliation(s)
- Deming Li
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Wentong Yang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Jiaojiao Pang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), College of Life Science, Henan Normal University, Xinxiang, Henan, China.
| |
Collapse
|
16
|
Sun M, Song P, Zhao Y, Li B, Wang P, Cong Z, Hua S. Mechanisms of LPS-induced epithelial mesenchymal transition in bEECs. Theriogenology 2024; 216:30-41. [PMID: 38154204 DOI: 10.1016/j.theriogenology.2023.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
High-concentrate diets cause subacute ruminal acidosis, resulting in increased blood lipopolysaccharide (LPS) levels in cows. We found that the peak LPS in cows fed with high-concentrate diets coincides the period of embryo implantation in a large-scale dairy farm. As epithelial-mesenchymal transition (EMT) should be tightly regulated during normal embryo implantation in cows, we speculated that increased LPS may cause abnormal EMT, thereby inhibiting embryo implantation in cows. To confirm that elevated LPS levels induce abnormal EMT in cows, we treated bovine endometrial epithelial cells (bEECs) with LPS for 48 h and analyzed the protein levels of ZEB1, a major EMT-related transcription factor, which is positively regulated by the TGFβ/SMAD3 pathway. In addition, we analyzed the changes in expression of three EMT-related genes (E-cadherin, N-cadherin, and Vimentin), and examined the morphology and migratory ability of the cells. The results showed that elevated LPS levels increased protein expression of ZEB1, vimentin, and N-cadherin, and reduced that of E-cadherin. Elevated LPS also increased bEECs migration rate, and induced the cells to acquire a mesenchymal phenotype. Furthermore, benzyl butyl phthalate (BBP)-induced ZEB1 overexpression significantly decreased E-cadherin levels and increased N-cadherin levels. As LPS treatment also decreased the expression of Bta-miR-200b, we further found that Bta-miR-200b targets to the 3'UTR of ZEB1 through the confirmation of dual-luciferase reporter system. And the increased level of Bta-miR-200b by mimic enhanced the expression of E-cadherin and yet inhibited the expression of N-cadherin in protein, which exactly opposite to the results induced by LPS. In conclusion, LPS induced EMT in bEECs by upregulating ZEB1, while Bta-miR-200b could inhibit the occurrence of EMT by binding ZEB1 3'UTR. These results provide a new insight for low reproductive rate of dairy cows under the background of high-concentrate diets.
Collapse
Affiliation(s)
- Mingkun Sun
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengjie Song
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Bowen Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Ping Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhipeng Cong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Song Hua
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
17
|
Vaswani CM, Simone J, Pavelick JL, Wu X, Tan GW, Ektesabi AM, Gupta S, Tsoporis JN, Dos Santos CC. Tiny Guides, Big Impact: Focus on the Opportunities and Challenges of miR-Based Treatments for ARDS. Int J Mol Sci 2024; 25:2812. [PMID: 38474059 DOI: 10.3390/ijms25052812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Acute Respiratory Distress Syndrome (ARDS) is characterized by lung inflammation and increased membrane permeability, which represents the leading cause of mortality in ICUs. Mechanical ventilation strategies are at the forefront of supportive approaches for ARDS. Recently, an increasing understanding of RNA biology, function, and regulation, as well as the success of RNA vaccines, has spurred enthusiasm for the emergence of novel RNA-based therapeutics. The most common types of RNA seen in development are silencing (si)RNAs, antisense oligonucleotide therapy (ASO), and messenger (m)RNAs that collectively account for 80% of the RNA therapeutics pipeline. These three RNA platforms are the most mature, with approved products and demonstrated commercial success. Most recently, miRNAs have emerged as pivotal regulators of gene expression. Their dysregulation in various clinical conditions offers insights into ARDS pathogenesis and offers the innovative possibility of using microRNAs as targeted therapy. This review synthesizes the current state of the literature to contextualize the therapeutic potential of miRNA modulation. It considers the potential for miR-based therapeutics as a nuanced approach that incorporates the complexity of ARDS pathophysiology and the multifaceted nature of miRNA interactions.
Collapse
Affiliation(s)
- Chirag M Vaswani
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada
| | - Julia Simone
- Department of Medicine, McMaster University, Hamilton, ON L8V 5C2, Canada
| | - Jacqueline L Pavelick
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Xiao Wu
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada
| | - Greaton W Tan
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada
| | - Amin M Ektesabi
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sahil Gupta
- Faculty of Medicine, School of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| | - James N Tsoporis
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada
| | - Claudia C Dos Santos
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Interdepartmental Division of Critical Care, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada
| |
Collapse
|
18
|
Wu W, Peng Y, Xu M, Yan T, Zhang D, Chen Y, Mei K, Chen Q, Wang X, Qiao Z, Wang C, Wu S, Zhang Q. Deep-Learning-Based Nanomechanical Vibration for Rapid and Label-Free Assay of Epithelial Mesenchymal Transition. ACS NANO 2024; 18:3480-3496. [PMID: 38169507 DOI: 10.1021/acsnano.3c10811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Cancer is a profound danger to our life and health. The classification and related studies of epithelial and mesenchymal phenotypes of cancer cells are key scientific questions in cancer research. Here, we investigated cancer cell colonies from a mechanical perspective and developed an assay for classifying epithelial/mesenchymal cancer cell colonies using the biomechanical fingerprint in the form of "nanovibration" in combination with deep learning. The classification method requires only 1 s of vibration data and has a classification accuracy of nearly 92.5%. The method has also been validated for the screening of anticancer drugs. Compared with traditional methods, the method has the advantages of being nondestructive, label-free, and highly sensitive. Furthermore, we proposed a perspective that subcellular structure influences the amplitude and spectrum of nanovibrations and demonstrated it using experiments and numerical simulation. These findings allow internal changes in the cell colony to be manifested by nanovibrations. This work provides a perspective and an ancillary method for cancer cell phenotype diagnosis and promotes the study of biomechanical mechanisms of cancer progression.
Collapse
Affiliation(s)
- Wenjie Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Yongpei Peng
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Mengjun Xu
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Tianhao Yan
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, People's Republic of China
| | - Duo Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Ye Chen
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Kainan Mei
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Qiubo Chen
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Xiapeng Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Zihan Qiao
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Chen Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Shangquan Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Qingchuan Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| |
Collapse
|
19
|
Wang J, Jian Q, Yan K, Yang J, Yan L, Cheng W. m 6A-modified miR-143-3p inhibits epithelial mesenchymal transition in bronchial epithelial cells and extracellular matrix production in lung fibroblasts by targeting Smad3. Pulm Pharmacol Ther 2023; 83:102251. [PMID: 37666296 DOI: 10.1016/j.pupt.2023.102251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/11/2023] [Accepted: 08/27/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Airway epithelial cells epithelial mesenchymal transition (EMT) and lung fibroblasts extracellular matrix (ECM) production are the key steps in airway remodeling. Our previous study demonstrated that miR-143-3p has the ability to impede airway smooth muscle cell proliferation and ECM deposition. However, the function of miR-143-3p in airway epithelial cells and lung fibroblasts remains unclear. METHODS Cell viability was determined using MTT method, while cell migration was evaluated through scratch assay. EMT and ECM proteins were detected by western blot, RT-qPCR, and ELISA. To determine the level of miR-143-3p m6A methylation, we employed the meRIP-qPCR assay. Additionally, the binding of miR-143-3p with Smad3 were projected by bioinformatics and validated by dual luciferase reporter assays. RESULTS It was discovered that the expression of miR-143-3p were lower in both asthma patients and TGF-β1-treated human bronchial epithelial 16HBE cells and human lung fibroblast HPF cells. Upregulation of miR-143-3p restrained 16HBE cell migration, and decreased EMT mesenchymal markers and increased epithelial markers. And upregulation of miR-143-3p impaired cell viability and ECM protein production in HPF cells. Mechanistically, interfering with METTL3 resulted in decreased m6A modification of miR-143-3p and led to lower levels of miR-143-3p. Moreover, miR-143-3p were verified to directly target and downregulate Smad3. Upregulation of Smad3 attenuated the effects of miR-143-3p on cell EMT and ECM production. CONCLUSION MiR-143-3p inhibits airway epithelial cell EMT as well as lung fibroblast ECM production by downregulating Smad3. Therefore, miR-143-3p may be a promising target to reduce airway remodeling in asthma.
Collapse
Affiliation(s)
- Jing Wang
- Department of Respiratory and Asthma, Xi'an Children's Hospital, Xi'an, Shaanxi, 710003, China
| | - Qiang Jian
- Department of Emergency, Xi'an Children's Hospital, Xi'an, Shaanxi, 710003, China
| | - Kun Yan
- Department of General Surgery, 2nd Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Jiao Yang
- Department of Internal Medicine, Xi'an Children's Hospital, Xi'an, Shaanxi, 710003, China
| | - Liping Yan
- Department of Internal Medicine, Xi'an Children's Hospital, Xi'an, Shaanxi, 710003, China
| | - Wei Cheng
- Department of Internal Medicine, Xi'an Children's Hospital, Xi'an, Shaanxi, 710003, China.
| |
Collapse
|
20
|
Liu J, Li J, Tuo Z, Hu W, Liu J. BATF2 inhibits PD-L1 expression and regulates CD8+ T-cell infiltration in non-small cell lung cancer. J Biol Chem 2023; 299:105302. [PMID: 37777155 PMCID: PMC10641166 DOI: 10.1016/j.jbc.2023.105302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 10/02/2023] Open
Abstract
Immune checkpoint blockades have made huge breakthrough among some cancer types including lung cancer. However, only a small proportion of patients will benefit from immune checkpoint blockades; other patients have no or minor response to immunotherapy. The underlying mechanisms and efficient biomarkers to predict immunotherapy resistances remain unclear and lacking. In this study, BATF2 knockout mice, human xenograft mice, were used for in vivo studies. Relevant RNA and protein levels were analyzed by RT-quantitative PCR and Western blotting. As a result, we found that the expression of BATF2 is negatively correlated with expression of programmed death-ligand 1 in the plasma of patients. Mechanically, we showed that BATF2 inhibits programmed death-ligand 1 expression in cancer cells by inhibiting the PI3K-AKT pathway where ZEB2 plays an important role in this process. Based on bioinformatics analysis, we found that the function of BATF2 in promoting antitumor immune response in patients with non-small cell lung cancer, which is mediated by BATF2, enhances CD8+ T-cell infiltration as well as activation. The expression of BATF2 from circulating tumor cells and tissues can be serve as an efficient biomarker to predict diagnosis, prognosis, and immunotherapy efficacy.
Collapse
Affiliation(s)
- Junwei Liu
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jie Li
- Department of Immunology, University of South Florida, Tampa, Florida, USA
| | - Zhan Tuo
- Department of Immunotherapy, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, P.R. China
| | - Weidong Hu
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Jun Liu
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
21
|
Wan M, Lu C, Liu Y, Luo F, Zhou J, Xu F. Mesenchymal stem cell-derived extracellular vesicles prevent the formation of pulmonary arterial hypertension through a microRNA-200b-dependent mechanism. Respir Res 2023; 24:233. [PMID: 37759281 PMCID: PMC10523762 DOI: 10.1186/s12931-023-02474-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 06/08/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Bone marrow mesenchymal stem cell-derived extracellular vesicles (BMSC-EVs) have been highly studied with their critical roles as carriers of therapeutic targets such as microRNAs (miRNAs) in the treatment of human diseases, including pulmonary arterial hypertension (PAH). Herein, we tried to study the potential of BMSC-EVs to deliver miR-200b for the regulation of macrophage polarization in PAH. METHODS Rat models of PAH were induced with monocrotaline treatment, followed by miR-200b expression detection in lung tissues, pulmonary artery smooth muscle cells (PASMCs) and macrophages. miR-200b-containing BMSCs or miR-200b-deficient BMSCs were selected to extract EVs. Then, we assessed the changes in rats with PAH-associated disorders as well as in vitro macrophage polarization and the functions of PASMCs after treatment with BMSC-EVs. Moreover, the interaction between miR-200b, phosphodiesterase 1 A (PDE1A) was identified with a luciferase assay, followed by an exploration of the downstream pathway, cAMP-dependent protein kinase (PKA). RESULTS miR-200b was reduced in lung tissues, PASMCs and macrophages of rats with PAH-like pathology. BMSC-EVs transferred miR-200b into macrophages, and subsequently accelerated their switch to the M2 phenotype and reversed the PAH-associated disorders. Furthermore, miR-200b carried by BMSC-EVs induced PKA phosphorylation by targeting PDE1A, thereby expediting macrophage polarization. CONCLUSION Our current study highlighted the inhibitory role of BMSC-EV-miR-200b in PAH formation.
Collapse
Affiliation(s)
- Mengzhi Wan
- Department of Respiratory Emergency and Critical Care, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province, 330006, P. R. China
| | - Caiju Lu
- Department of Respiratory Emergency and Critical Care, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province, 330006, P. R. China
| | - Yu Liu
- Department of Respiratory Emergency and Critical Care, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province, 330006, P. R. China
| | - Feng Luo
- Department of Respiratory Emergency and Critical Care, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province, 330006, P. R. China
| | - Jing Zhou
- Department of Respiratory Emergency and Critical Care, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province, 330006, P. R. China.
| | - Fei Xu
- Department of Respiratory Emergency and Critical Care, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province, 330006, P. R. China.
| |
Collapse
|
22
|
Li H, Wang G, Hu M, Dai R, Li C, Cao Y. Specific inhibitor of Smad3 (SIS3) alleviated submandibular gland fibrosis and dysfunction after dominant duct ligation in mice. J Dent Sci 2023; 18:865-871. [PMID: 37021213 PMCID: PMC10068496 DOI: 10.1016/j.jds.2023.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
Background/purpose Chronic obstructive sialadenitis (COS) is a condition that severely reduced patients' quality of life. This study aimed to analyze the effects of SIS3, a specific inhibitor of small mothers against decapentaplegic 3 (SMAD3), on the submandibular gland (SMG) dysfunction, fibrosis, and inflammation. Materials and methods The dominant duct in the SMG was ligated in mice, followed by intraperitoneal injection of SIS3 (2 mg/kg/day) or Dimethyl sulfoxide (DMSO) saline for 7 days. In the sham group, this duct was surgically identified but not ligated. Saliva flow, histological structure, fibrosis, Transforming growth factor-β1 (TGF-β)/SMAD3 signaling, and inflammatory cytokines, were analyzed. Results SIS3 rescued ligation-induced SMG dysfunction and improved the saliva flow rate compared to DMSO. SIS3 alleviated acinar atrophy and ductal dilation and maintained the morphology of the basal membrane. SIS3 reduces interlobular and intralobular fibrosis and collagen deposition. We observed reduced SMAD3 phosphorylation and TGF-β expression. The SIS3 group showed downregulation of np_5318 and miR-21 and upregulation of miR-29 b compared to the DMSO group. Moreover, SIS3 controlled the inflammatory cytokine release, including interleukin-6 and interleukin-1β. Conclusion SIS3 protected duct-ligated SMGs against fibrosis and dysfunction by inhibiting the TGF-β/SMAD3 signaling and inflammatory cytokine expression. SIS3 may serve as a promising treatment for chronic obstructive sialadenitis.
Collapse
|
23
|
Knockdown of lncRNA-ASLNC12002 alleviates epithelial-mesenchymal transition of type II alveolar epithelial cells in sepsis-induced acute respiratory distress syndrome. Hum Cell 2023; 36:568-582. [PMID: 36478088 PMCID: PMC9734367 DOI: 10.1007/s13577-022-00837-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022]
Abstract
Patients with sepsis-induced acute respiratory distress syndrome (ARDS) have higher mortality and poor prognosis than pneumonia-induced ARDS. Pulmonary fibrosis is an irreversible accumulation of connective tissue in the interstitium of the lung and closely associated with the epithelial-mesenchymal transition (EMT) of type II alveolar epithelial cells (AECIIs). Therefore, it is undoubtedly worth studying whether the EMT of AECIIs in sepsis-induced ARDS patients is different from that in patients with pneumonia-induced ARDS in the regulatory mechanism. Here, we will report for the first time that an lncRNA-ASLNC12002 is highly expressed in AECIIs of patients with sepsis-induced pneumonia and promotes EMT in AECIIs. The research results showed that the expression of ASLNC12002 in AECIIs derived from patients with sepsis-induced ARDS is significantly higher than that in normal people and pneumonia-induced ARDS patients. Mechanism research showed that ASLNC12002 can cause the inactivation of the anti-EMT pathway NR2F2/miR128-3p/Snail1 by acting as the sponge of miR128-3p. Functional experiments showed that targeted silencing of ASLNC12002 could effectively inhibit EMT progression in AECIIs of patients with sepsis-induced pneumonia by restoring NR2F2/miR128-3p/Snail1 pathway. In a word, our study shows for the first time that the inactivation of NR2F2/miR128-3p/Snail1 pathway caused by the enhanced expression of ASLNC12002 is the direct reason why AECIIs in sepsis-induced ARDS patients are prone to get EMT progress. ASLNC12002 has the potential to become a biological target for the prevention and treatment of pulmonary fibrosis in patients with sepsis-induced ARDS. At the same time, the expectation that ASLNC12002 and its related products may be used as clinical markers for the evaluation of early pulmonary fibrosis in ARDS patients should not be ignored.
Collapse
|
24
|
Weng C, Li G, Zhang D, Duan Z, Chen K, Zhang J, Li T, Wang J. Nanoscale Porphyrin Metal-Organic Frameworks Deliver siRNA for Alleviating Early Pulmonary Fibrosis in Acute Lung Injury. Front Bioeng Biotechnol 2022; 10:939312. [PMID: 35923570 PMCID: PMC9339993 DOI: 10.3389/fbioe.2022.939312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Acute lung injury (ALI) has high mortality and still lacks novel and efficient therapies. Zinc finger E-box binding homeobox 1 and 2 (ZEB1/2) are highly expressed in the early stage of ALI and are positively correlated with the progression of pulmonary fibrosis. Herein, we developed a nanoscale Zr(IV)-based porphyrin metal-organic (ZPM) framework to deliver small interfering ZEB1/2 (siZEB1/2) to alleviate early pulmonary fibrosis during ALI. This pH-responsive nano-ZPM system could effectively protect siRNAs during lung delivery until after internalization and rapidly trigger siRNA release under the mildly acidic environment of the endo/lysosome (pH 4.0–6.5) for transfection and gene silencing. Furthermore, the in vivo studies confirmed that this nano-ZPM system could anchor in inflamed lungs. Moreover, the ZEB1/2 silencing led to increased E-cadherin and decreased α-SMA levels. Overall, the nano-ZPM system was an excellent non-viral vector system to deliver siRNAs to alleviate early pulmonary fibrosis during ALI.
Collapse
Affiliation(s)
- Changmei Weng
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Guanhua Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dongdong Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhaoxia Duan
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Kuijun Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jieyuan Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tao Li
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, Department of Preventive Medicine, Institute of Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Tao Li, ; Jianmin Wang,
| | - Jianmin Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Tao Li, ; Jianmin Wang,
| |
Collapse
|
25
|
Shen J, Ma X. miR‑374a‑5p alleviates sepsis‑induced acute lung injury by targeting ZEB1 via the p38 MAPK pathway. Exp Ther Med 2022; 24:564. [PMID: 35978929 PMCID: PMC9366279 DOI: 10.3892/etm.2022.11501] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 04/19/2022] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the effects of microRNA (miR)-374a-5p on sepsis-induced acute lung injury (ALI) and the associated mechanism. Lipopolysaccharide (LPS)-induced human pulmonary microvascular endothelial cells (HPMVECs) were used to construct the cellular model of sepsis. A luciferase reporter assay was performed to confirm the association between miR-374a-5p and zinc finger E-box binding homeobox 1 (ZEB1). Reverse transcription-quantitative polymerase chain reaction and western blot analysis were performed to assess the relative expression of miR-374a-5p, ZEB1 and apoptosis-related proteins. Cell viability and apoptosis were determined by Cell Counting Kit-8 assay and flow cytometry, respectively. Enzyme-linked immunosorbent assays were used to evaluate inflammatory cytokines. The results revealed that miR-374a-5p was downregulated in sepsis patients and LPS-treated HPMVECs. Upregulation of miR-374a-5p alleviated LPS-triggered cell injury in HPMVECs, as evidenced by restoration of cell viability, and inhibition of apoptosis and the production of proinflammatory cytokines. In addition, ZEB1 was revealed to be a downstream target of miR-374a-5p, and overexpression of ZEB1 could reverse the anti-apoptotic and anti-inflammatory effects of miR-374a-5p on an LPS-induced sepsis cell model. Moreover, miR-374a-5p-induced protective effects involved the p38 MAPK signaling pathway. Collectively, miR-374a-5p exerted a protective role in sepsis-induced ALI by regulating the ZEB1-mediated p38 MAPK signaling pathway, providing a potential target for the diagnosis and treatment of sepsis.
Collapse
Affiliation(s)
- Jia Shen
- Department of Intensive Care Unit, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750002, P.R. China
| | - Xiaojun Ma
- Department of Orthopedics, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
26
|
Cadena-Suárez AR, Hernández-Hernández HA, Alvarado-Vásquez N, Rangel-Escareño C, Sommer B, Negrete-García MC. Role of MicroRNAs in Signaling Pathways Associated with the Pathogenesis of Idiopathic Pulmonary Fibrosis: A Focus on Epithelial-Mesenchymal Transition. Int J Mol Sci 2022; 23:ijms23126613. [PMID: 35743055 PMCID: PMC9224458 DOI: 10.3390/ijms23126613] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive disease with high mortality and unclear etiology. Previous evidence supports that the origin of this disease is associated with epigenetic alterations, age, and environmental factors. IPF initiates with chronic epithelial lung injuries, followed by basal membrane destruction, which promotes the activation of myofibroblasts and excessive synthesis of extracellular matrix (ECM) proteins, as well as epithelial-mesenchymal transition (EMT). Due to miRNAs’ role as regulators of apoptosis, proliferation, differentiation, and cell-cell interaction processes, some studies have involved miRNAs in the biogenesis and progression of IPF. In this context, the analysis and discussion of the probable association of miRNAs with the signaling pathways involved in the development of IPF would improve our knowledge of the associated molecular mechanisms, thereby facilitating its evaluation as a therapeutic target for this severe lung disease. In this work, the most recent publications evaluating the role of miRNAs as regulators or activators of signal pathways associated with the pathogenesis of IPF were analyzed. The search in Pubmed was made using the following terms: “miRNAs and idiopathic pulmonary fibrosis (IPF)”; “miRNAs and IPF and signaling pathways (SP)”; and “miRNAs and IPF and SP and IPF pathogenesis”. Additionally, we focus mainly on those works where the signaling pathways involved with EMT, fibroblast differentiation, and synthesis of ECM components were assessed. Finally, the importance and significance of miRNAs as potential therapeutic or diagnostic tools for the treatment of IPF are discussed.
Collapse
Affiliation(s)
- Ana Ruth Cadena-Suárez
- Laboratorio de Biología Molecular, Instituto Nacional de Enfermedades Respiratorias (INER) “Ismael Cosío Villegas”, Calz. Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico; (A.R.C.-S.); (H.A.H.-H.)
| | - Hilda Arely Hernández-Hernández
- Laboratorio de Biología Molecular, Instituto Nacional de Enfermedades Respiratorias (INER) “Ismael Cosío Villegas”, Calz. Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico; (A.R.C.-S.); (H.A.H.-H.)
| | - Noé Alvarado-Vásquez
- Departamento de Bioquímica, Instituto Nacional de Enfermedades Respiratorias (INER) “Ismael Cosío Villegas”, Calz. Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico;
| | - Claudia Rangel-Escareño
- Departamento de Genomica Computacional, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Col. Arenal Tepepan, Mexico City 14610, Mexico;
- Escuela de Ingenieria y Ciencias, Tecnológico de Monterrey, Epigmenio González 500, San Pablo 76130, Mexico
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias (INER) “Ismael Cosío Villegas”, Calz. Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico;
| | - María Cristina Negrete-García
- Laboratorio de Biología Molecular, Instituto Nacional de Enfermedades Respiratorias (INER) “Ismael Cosío Villegas”, Calz. Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico; (A.R.C.-S.); (H.A.H.-H.)
- Correspondence:
| |
Collapse
|
27
|
Zhang D, Zhang JT, Pan Y, Liu XF, Xu JW, Cui WJ, Qiao XR, Dong L. Syndecan-1 Shedding by Matrix Metalloproteinase-9 Signaling Regulates Alveolar Epithelial Tight Junction in Lipopolysaccharide-Induced Early Acute Lung Injury. J Inflamm Res 2021; 14:5801-5816. [PMID: 34764672 PMCID: PMC8576260 DOI: 10.2147/jir.s331020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Alveolar epithelial tight junction damage and glycocalyx syndecan-1 (SDC-1) degrading are key factors to pulmonary edema of acute lung injury (ALI). Matrix metalloproteinase-9 (MMP-9) was involved in glycocalyx shedding, which was vital in SDC-1 degrading. This study aimed to investigate the effects of MMP-9-mediated SDC-1 shedding on tight junction in LPS-induced ALI. METHODS Mice were intratracheally atomized with 5 mg/kg LPS to stimulate different periods and LPS stimulation for 6 hours for further studies. A549 cells was stimulated for 6 hours by active MMP-9 protein to assess the effects of active MMP-9 protein on SDC-1 and tight junction. Afterward, the mice treated with MMP-9 shRNA or A549 cells were treated with MMP-9 siRNA before LPS stimulation for 6 hours to explore the effects on glycocalyx SDC-1 and tight junction. Moreover, the mice were treated with recombinant SDC-1 protein or A549 cells were over-expressed by pc-SDC-1 before LPS stimulation for 6 hours to explore the effects of SDC-1 on tight junction. RESULTS The mice persistent exposure to LPS showed that MMP-9 expression, glycocalyx SDC-1 shedding (SDC-1 decreased in alveolar epithelium and increased in the BALF), tight junction impairment, FITC-albumin infiltration, and other phenomena began to appear after 6 hours of LPS treatment in this study. The levels of SDC-1 and tight junction significantly decreased by active MMP-9 protein stimulation for 6 hours in the A549 cells. Therefore, LPS stimulation for six hours was selected for investigating the underlying effects of MMP-9-mediated SDC-1 shedding on the alveolar epithelial tight junction and pulmonary edema. Further vivo analysis showed that down regulation MMP-9 expression by MMP-9 shRNA significantly alleviated glycocalyx SDC-1 shedding (SDC-1 increased in alveolar epithelium and decreased in the BALF), tight junction (occludin and ZO-1) damage, and FITC-albumin infiltration in LPS-induced early ALI mice. The vitro results also showed that MMP-9 siRNA alleviated glycocalyx SDC-1 shedding (SDC-1 increased in cell culture medium and decreased in cell surface) and tight junction damage by downregulating MMP-9 expression in LPS-stimulated A549 cells. In addition, pretreatment with recombinant mouse SDC-1 protein significantly alleviated glycocalyx (SDC-1 increased in alveolar epithelium) and tight junction damage, and FITC-albumin infiltration in LPS-induced early ALI mice. Overexpression SDC-1 by pc-SDC-1 also significantly decreased tight junction damage in LPS-stimulated A549 cells. CONCLUSION Glycocalyx SDC-1 shedding mediated by MMP-9 significantly aggravated tight junction damage, which further increased the pulmonary edema.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Jin-tao Zhang
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Yun Pan
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Xiao-fei Liu
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Jia-wei Xu
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Respiratory Diseases, Jinan, People’s Republic of China
| | - Wen-jing Cui
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Xin-rui Qiao
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Liang Dong
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Respiratory Diseases, Jinan, People’s Republic of China
| |
Collapse
|
28
|
Stewart CA, Gay CM, Ramkumar K, Cargill KR, Cardnell RJ, Nilsson MB, Heeke S, Park EM, Kundu ST, Diao L, Wang Q, Shen L, Xi Y, Zhang B, Della Corte CM, Fan Y, Kundu K, Gao B, Avila K, Pickering CR, Johnson FM, Zhang J, Kadara H, Minna JD, Gibbons DL, Wang J, Heymach JV, Byers LA. Lung Cancer Models Reveal Severe Acute Respiratory Syndrome Coronavirus 2-Induced Epithelial-to-Mesenchymal Transition Contributes to Coronavirus Disease 2019 Pathophysiology. J Thorac Oncol 2021; 16:1821-1839. [PMID: 34274504 PMCID: PMC8282443 DOI: 10.1016/j.jtho.2021.07.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/02/2021] [Accepted: 07/02/2021] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Coronavirus disease 2019 is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which enters host cells through the cell surface proteins ACE2 and TMPRSS2. METHODS Using a variety of normal and malignant models and tissues from the aerodigestive and respiratory tracts, we investigated the expression and regulation of ACE2 and TMPRSS2. RESULTS We find that ACE2 expression is restricted to a select population of epithelial cells. Notably, infection with SARS-CoV-2 in cancer cell lines, bronchial organoids, and patient nasal epithelium induces metabolic and transcriptional changes consistent with epithelial-to-mesenchymal transition (EMT), including up-regulation of ZEB1 and AXL, resulting in an increased EMT score. In addition, a transcriptional loss of genes associated with tight junction function occurs with SARS-CoV-2 infection. The SARS-CoV-2 receptor, ACE2, is repressed by EMT through the transforming growth factor-β, ZEB1 overexpression, and onset of EGFR tyrosine kinase inhibitor resistance. This suggests a novel model of SARS-CoV-2 pathogenesis in which infected cells shift toward an increasingly mesenchymal state, associated with a loss of tight junction components with acute respiratory distress syndrome-protective effects. AXL inhibition and ZEB1 reduction, as with bemcentinib, offer a potential strategy to reverse this effect. CONCLUSIONS These observations highlight the use of aerodigestive and, especially, lung cancer model systems in exploring the pathogenesis of SARS-CoV-2 and other respiratory viruses and offer important insights into the potential mechanisms underlying the morbidity and mortality of coronavirus disease 2019 in healthy patients and patients with cancer alike.
Collapse
Affiliation(s)
- C Allison Stewart
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carl M Gay
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kavya Ramkumar
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kasey R Cargill
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert J Cardnell
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Monique B Nilsson
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Simon Heeke
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elizabeth M Park
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Samrat T Kundu
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Qi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Li Shen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yuanxin Xi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bingnan Zhang
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carminia Maria Della Corte
- Oncology Division, Department of Precision Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Youhong Fan
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kiran Kundu
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Boning Gao
- Department of Internal Medicine and Pharmacology, Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kimberley Avila
- Department of Internal Medicine and Pharmacology, Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Curtis R Pickering
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Faye M Johnson
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jianjun Zhang
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John D Minna
- Department of Internal Medicine and Pharmacology, Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Don L Gibbons
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John V Heymach
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lauren Averett Byers
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
29
|
Yang H, Zhang L, Wang Q. MicroRNA-221-3p alleviates cell apoptosis and inflammatory response by targeting cyclin dependent kinase inhibitor 1B in chronic obstructive pulmonary disease. Bioengineered 2021; 12:5705-5715. [PMID: 34516316 PMCID: PMC8806819 DOI: 10.1080/21655979.2021.1967837] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
As a chronic bronchitis or emphysema featured by airflow obstruction, chronic obstructive pulmonary disease (COPD) can further develop into respiratory failure and pulmonary heart diseases. MicroRNAs (miRNAs) are crucial mediators in COPD. Nevertheless, the specific role and molecular mechanism of microRNA-221-3p (miR-221-3p) in COPD are unclear. This research aimed to probe into the role of miR-221-3p in COPD. Bioinformatics analysis and a series of assays including western blot, luciferase reporter, reverse transcription quantitative polymerase chain reaction, flow cytometry, cell counting kit-8 and enzyme linked immunosorbent assay were used to explore the functions and mechanism of miR-221-3p in COPD. First, miR-221-3p level was validated to be lowly expressed in the lung tissues of COPD patients and 16HBE cells stimulated by cigarette smoke extract (CSE). Functionally, miR-221-3p overexpression inhibited inflammatory response and apoptosis in CSE-treated 16HBE cells. Moreover, we predicted 5 potential targets of miR-221-3p and found that miR-221-3p shared binding site with cyclin dependent kinase inhibitor 1B (CDKN1B). CDKN1B was targeted by miR-221-3p in CSE-treated 16HBE cells. CDKN1B was negatively modulated by miR-221-3p. Finally, rescue experiments demonstrated that overexpressed CDKN1B counteracted the influences of miR-221-3p on apoptosis and inflammatory response in CSE-treated 16HBE cells. Our data showed that miR-221-3p alleviated cell apoptosis and inflammatory response via targeting CDKN1B in an in vitro model of COPD.
Collapse
Affiliation(s)
- Hua Yang
- Department of Gerontology, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Lijuan Zhang
- Department of Gerontology, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Quandong Wang
- Department of Gerontology, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu, China
| |
Collapse
|
30
|
miR-138 inhibits epithelial-mesenchymal transition in silica-induced pulmonary fibrosis by regulating ZEB2. Toxicology 2021; 461:152925. [PMID: 34481903 DOI: 10.1016/j.tox.2021.152925] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/20/2021] [Accepted: 08/31/2021] [Indexed: 11/23/2022]
Abstract
Silica dust is a common pollutant in the occupational environment, such as coal mines. Inhalation of silica dust can cause progressive pulmonary fibrosis and then silicosis. Silicosis is still one of the most harmful occupational diseases in the world, so the study of its pathogenesis is necessary for the treatment of silicosis. In this study, we constructed a mouse model of pulmonary fibrosis via intratracheal instillation of silica particles and identified the decreased expression of miR-138 in fibrotic lung tissues of mice. Moreover, the overexpression of miR-138 retarded the process of epithelial-mesenchymal transition (EMT) in a mouse model of silica particles exposure and epithelial cells stimulated by silica particles. Further studies showed that ZEB2 was one of the potential targets of miR-138, and the up-regulation of miR-138 reduced ZEB2 levels in mouse lung tissues and in epithelial cells. We next found that the expression levels of ɑ-SMA and Vimentin were significantly increased and E-cadherin levels were decreased after transfection with miR-138 inhibitor in epithelial cells. However, these effects were abated by the knockdown of ZEB2. Consistently, the increased migration ability of epithelial cells by miR-138 inhibitor transfection was also reversed by the knockdown of ZEB2. Collectively, we revealed that miR-138 significantly targeted ZEB2, thus inhibited the EMT process and mitigated the development of pulmonary fibrosis. miR-138 may be a potential target for the treatment of pulmonary fibrosis.
Collapse
|
31
|
Ghafouri-Fard S, Abak A, Talebi SF, Shoorei H, Branicki W, Taheri M, Akbari Dilmaghani N. Role of miRNA and lncRNAs in organ fibrosis and aging. Biomed Pharmacother 2021; 143:112132. [PMID: 34481379 DOI: 10.1016/j.biopha.2021.112132] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
Abstract
Fibrosis is the endpoint of pathological remodeling. This process contributes to the pathogenesis of several chronic disorders and aging-associated organ damage. Different molecular cascades contribute to this process. TGF-β, WNT, and YAP/TAZ signaling pathways have prominent roles in this process. A number of long non-coding RNAs and microRNAs have been found to regulate organ fibrosis through modulation of the activity of related signaling pathways. miR-144-3p, miR-451, miR-200b, and miR-328 are among microRNAs that participate in the pathology of cardiac fibrosis. Meanwhile, miR-34a, miR-17-5p, miR-122, miR-146a, and miR-350 contribute to liver fibrosis in different situations. PVT1, MALAT1, GAS5, NRON, PFL, MIAT, HULC, ANRIL, and H19 are among long non-coding RNAs that participate in organ fibrosis. We review the impact of long non-coding RNAs and microRNAs in organ fibrosis and aging-related pathologies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nader Akbari Dilmaghani
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Xu X, Hong P, Wang Z, Tang Z, Li K. MicroRNAs in Transforming Growth Factor-Beta Signaling Pathway Associated With Fibrosis Involving Different Systems of the Human Body. Front Mol Biosci 2021; 8:707461. [PMID: 34381815 PMCID: PMC8350386 DOI: 10.3389/fmolb.2021.707461] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Fibrosis, a major cause of morbidity and mortality, is a histopathological manifestation of many chronic inflammatory diseases affecting different systems of the human body. Two types of transforming growth factor beta (TGF-β) signaling pathways regulate fibrosis: the canonical TGF-β signaling pathway, represented by SMAD-2 and SMAD-3, and the noncanonical pathway, which functions without SMAD-2/3 participation and currently includes TGF-β/mitogen-activated protein kinases, TGF-β/SMAD-1/5, TGF-β/phosphatidylinositol-3-kinase/Akt, TGF-β/Janus kinase/signal transducer and activator of transcription protein-3, and TGF-β/rho-associated coiled-coil containing kinase signaling pathways. MicroRNA (miRNA), a type of non-coding single-stranded small RNA, comprises approximately 22 nucleotides encoded by endogenous genes, which can regulate physiological and pathological processes in fibrotic diseases, particularly affecting organs such as the liver, the kidney, the lungs, and the heart. The aim of this review is to introduce the characteristics of the canonical and non-canonical TGF-β signaling pathways and to classify miRNAs with regulatory effects on these two pathways based on the influenced organ. Further, we aim to summarize the limitations of the current research of the mechanisms of fibrosis, provide insights into possible future research directions, and propose therapeutic options for fibrosis.
Collapse
Affiliation(s)
- Xiaoyang Xu
- Department of Oral and Maxillofacial Surgery, Xiangya Stomatological Hospital and School of Stomatology, Central South University, Changsha, China
| | - Pengyu Hong
- Department of Oral and Maxillofacial Surgery, Xiangya Stomatological Hospital and School of Stomatology, Central South University, Changsha, China
| | - Zhefu Wang
- Department of Oral and Maxillofacial Surgery, Xiangya Stomatological Hospital and School of Stomatology, Central South University, Changsha, China
| | - Zhangui Tang
- Department of Oral and Maxillofacial Surgery, Xiangya Stomatological Hospital and School of Stomatology, Central South University, Changsha, China
| | - Kun Li
- Department of Oral and Maxillofacial Surgery, Xiangya Stomatological Hospital and School of Stomatology, Central South University, Changsha, China
| |
Collapse
|
33
|
Duan XY, Sun Y, Zhao ZF, Shi YQ, Ma XY, Tao L, Liu MW. Baicalin attenuates LPS-induced alveolar type II epithelial cell A549 injury by attenuation of the FSTL1 signaling pathway via increasing miR-200b-3p expression. Innate Immun 2021; 27:294-312. [PMID: 34000873 PMCID: PMC8186156 DOI: 10.1177/17534259211013887] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In China, baicalin is the main active component of Scutellaria baicalensis, which has been used in the treatment of inflammation-related diseases, such as inflammation-induced acute lung injury. However, its specific mechanism remains unclear. This study examined the protective effect of baicalin on LPS-induced inflammation injury of alveolar epithelial cell line A549 and explored its protective mechanism. Compared with the LPS-induced group, the proliferation inhibition rates of alveolar type II epithelial cell line A549 intervened by different concentrations of baicalin decreased significantly, as did the levels of inflammatory factors IL-6, IL-1β, prostaglandin 2 and TNF-α in the supernatant. The expression levels of inflammatory proteins inducible NO synthase (iNOS), NF-κB65, phosphorylated ERK (p-ERK1/2), and phosphorylated c-Jun N-terminal kinase (p-JNK1) significantly decreased, as did the protein expression of follistatin-like protein 1 (FSTL1). In contrast, expression of miR-200b-3p significantly increased in a dose-dependent manner. These results suggested that baicalin could significantly inhibit the expression of inflammation-related proteins and improve LPS-induced inflammatory injury in alveolar type II epithelial cells. The mechanism may be related to the inhibition of ERK/JNK inflammatory pathway activation by increasing the expression of miR-200b-3p. Thus, FSTL1 is the regulatory target of miR-200b-3p.
Collapse
Affiliation(s)
- Xin-Ya Duan
- Department of Tuberculosis Diseases, Third People's Hospital of Kunming City, China
| | - Yang Sun
- Department of Nephrology, The Sixth Affiliated Hospital of Kunming Medical University, China
| | - Zhu-Feng Zhao
- Department of Emergency Medicine, First Affiliated Hospital of Kunming Medical University, China
| | - Yao-Qing Shi
- Department of Emergency Medicine, First Affiliated Hospital of Kunming Medical University, China
| | - Xun-Yan Ma
- Department of Emergency Medicine, First Affiliated Hospital of Kunming Medical University, China
| | - Li Tao
- Department of Emergency Medicine, First Affiliated Hospital of Kunming Medical University, China
| | - Ming-Wei Liu
- Department of Emergency Medicine, First Affiliated Hospital of Kunming Medical University, China
| |
Collapse
|
34
|
Wu S, Ye H, Xue T, Wang J. Mechanism of lipopolysaccharide-mediated induction of epithelial-mesenchymal transition of alveolar type II epithelial cells in absence of other inflammatory cells. EUR J INFLAMM 2021. [DOI: 10.1177/20587392211014427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Several studies have shown that gram-negative bacilli infection can cause acute lung injury, and that consequent pulmonary fibrosis is caused when alveolar type-II epithelial cells undergo epithelial-mesenchymal transition (EMT). However, the mechanism underlying this change remains unclear. This study aimed to elucidate whether the main toxin of gram-negative bacteria, lipopolysaccharide (LPS), can induce EMT in human alveolar epithelial cells, and the underlying molecular mechanisms. Human alveolar type-II epithelial cells (A549) were used in EMT induction experiments. Cells were collected after LPS exposure, and changes in the expression levels of epithelial and mesenchymal cell markers were determined. Further, the effect of LPS exposure on the expression of Toll-like Receptor 4 (TLR4), Transforming Growth Factor-beta 1 (TGF-β1) and Smad2/3 was assessed. The expression level of a mesenchymal cell marker was also assessed after pharmacological inhibition of TLR4 and TGF-β1 prior to addition of LPS, to identify downstream pathways involved in EMT induction. Results showed that LPS exposure caused significant downregulation of epithelial marker E-cadherin, and upregulation of mesenchymal marker vimentin, together with increased expression of TGF-β1 and activation of the TGF-β1/Smad2/3 pathway. Furthermore, pretreatment with TGF-β1 and TLR4 inhibitors suppressed EMT, and treatment with the latter also reduced the expression level of TGF-β1. Overall, we conclude that LPS directly induces EMT in A549 cells through upregulation of TLR4 and activation of the TGF-β1/Smad2/3 signalling pathway. Our results suggest that LPS-mediated pulmonary fibrosis may occur in ALI patients even if the LPS-induced inflammatory response is inhibited.
Collapse
Affiliation(s)
- Shuai Wu
- Department of Infectious Diseases, Fuxing Hospital, Capital Medical University, Beijing, China
| | - Huan Ye
- Department of Infectious Diseases, Fuxing Hospital, Capital Medical University, Beijing, China
| | - TianJiao Xue
- Department of Infectious Diseases, Fuxing Hospital, Capital Medical University, Beijing, China
| | - Jiali Wang
- Department of Infectious Diseases, Fuxing Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
35
|
Liu Y, Nie H, Ding Y, Hou Y, Mao K, Cui Y. MiRNA, a New Treatment Strategy for Pulmonary Fibrosis. Curr Drug Targets 2021; 22:793-802. [PMID: 32988351 DOI: 10.2174/1874609813666200928141822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 11/22/2022]
Abstract
Pulmonary fibrosis (PF) is the most common chronic, progressive interstitial lung disease, mainly occurring in the elderly, with a median survival of 2-4 years after diagnosis. Its high mortality rate attributes to the delay in diagnosis due to its generic symptoms, and more importantly, to the lack of effective treatments. MicroRNAs (miRNAs) are a class of small non-coding RNAs that are involved in many essential cellular processes, including extracellular matrix remodeling, alveolar epithelial cell apoptosis, epithelial-mesenchymal transition, etc. We summarized the dysregulated miRNAs in TGF-β signaling pathway-mediated PF in recent years with dual effects, such as anti-fibrotic let-7 family and pro-fibrotic miR-21 members. Therefore, this review will set out the latest application of miRNAs to provide a new direction for PF treatment.
Collapse
Affiliation(s)
- Yanhong Liu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yapeng Hou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Kejun Mao
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yong Cui
- Department of Anesthesiology, the First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
36
|
Jamalkhah M, Asaadi Y, Azangou-Khyavy M, Khanali J, Soleimani M, Kiani J, Arefian E. MSC-derived exosomes carrying a cocktail of exogenous interfering RNAs an unprecedented therapy in era of COVID-19 outbreak. J Transl Med 2021; 19:164. [PMID: 33888147 PMCID: PMC8061879 DOI: 10.1186/s12967-021-02840-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/16/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The onset of the SARS-CoV-2 pandemic has resulted in ever-increasing casualties worldwide, and after 15 months, standard therapeutic regimens are yet to be discovered. MAIN BODY Due to the regenerative and immunomodulatory function of MSCs, they can serve as a suitable therapeutic option in alleviating major COVID-19 complications like acute respiratory distress syndrome. However, the superior properties of their cognate exosomes as a cell-free product make them preferable in the clinic. Herein, we discuss the current clinical status of these novel therapeutic strategies in COVID-19 treatment. We then delve into the potential of interfering RNAs incorporation as COVID-19 gene therapy and introduce targets involved in SARS-CoV-2 pathogenesis. Further, we present miRNAs and siRNAs candidates with promising results in targeting the mentioned targets. CONCLUSION Finally, we present a therapeutic platform of mesenchymal stem cell-derived exosomes equipped with exogenous iRNAs, that can be employed as a novel therapeutic modality in COVID-19 management aiming to prevent further viral spread within the lung, hinder the virus life cycle and pathogenesis such as immune suppression, and ultimately, enhance the antiviral immune response.
Collapse
Affiliation(s)
- Monire Jamalkhah
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Yasaman Asaadi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | | | - Javad Khanali
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jafar Kiani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
37
|
Ruigrok MJ, Frijlink HW, Melgert BN, Olinga P, Hinrichs WL. Gene therapy strategies for idiopathic pulmonary fibrosis: recent advances, current challenges, and future directions. Mol Ther Methods Clin Dev 2021; 20:483-496. [PMID: 33614824 PMCID: PMC7868939 DOI: 10.1016/j.omtm.2021.01.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic disease in which the lungs become irreversibly scarred, leading to declining lung function. As currently available drugs do not cure IPF, there remains a great medical need for more effective treatments. Perhaps this need could be addressed by gene therapies, which offer powerful and versatile ways to attenuate a wide range of processes involved in fibrosis. Despite the potential benefits of gene therapy, no one has reviewed the current state of knowledge regarding its application for treating IPF. We therefore analyzed publications that reported the use of gene therapies to treat pulmonary fibrosis in animals, as clinical studies have not been published yet. In this review, we first provide an introduction on the pathophysiology of IPF and the most well-established gene therapy approaches. We then present a comprehensive evaluation of published animal studies, after which we provide recommendations for future research to address challenges with respect to the selection and use of animal models as well as the development of delivery vectors and dosage forms. Addressing these considerations will bring gene therapies one step closer to clinical testing and thus closer to patients.
Collapse
Affiliation(s)
- Mitchel J.R. Ruigrok
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen Research Institute of Pharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Henderik W. Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen Research Institute of Pharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Barbro N. Melgert
- Department of Molecular Pharmacology, University of Groningen, Groningen Research Institute of Pharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
- University of Groningen, Groningen Research Institute for Asthma and COPD, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen Research Institute of Pharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Wouter L.J. Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen Research Institute of Pharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| |
Collapse
|
38
|
Mu X, Wang H, Li H. Silencing of long noncoding RNA H19 alleviates pulmonary injury, inflammation, and fibrosis of acute respiratory distress syndrome through regulating the microRNA-423-5p/FOXA1 axis. Exp Lung Res 2021; 47:183-197. [PMID: 33629893 DOI: 10.1080/01902148.2021.1887967] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE This study aimed to explore the regulatory effects and mechanisms of long noncoding RNA H19 (H19) on pulmonary injury, inflammation, and fibrosis of acute respiratory distress syndrome (ARDS). MATERIALS AND METHODS A rat model of ARDS was established by intratracheal instillation of 2 mg/kg lipopolysaccharide (LPS). qRT-PCR was performed to detect the expression of H19, miR-423-5p, tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, monocyte chemoattractant protein (MCP)-1, and vascular endothelial growth factor (VEGF). Histology score was assessed by hematoxylin-eosin (HE) staining. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of proinflammatory cytokines and the content of VEGF in bronchoalveolar lavage fluid (BALF). The lung fibrosis was evaluated using western blot and Masson's trichrome staining. Dual-luciferase reporter gene assay was used for confirming the relationship between miR-423-5p and H19/FOXA1 in alveolar macrophage cells (MH-S) and alveolar epithelial cells (MLE-12). The regulatory effects of H19/miR-423-5p/FOXA1 axis on the inflammation and fibrosis were further analyzed in LPS-induced MH-S cells. RESULTS The expression of H19 and FOXA1 was significantly up-regulated, while the expression of miR-423-5p was down-regulated in LPS-induced ARDS rats. Silencing of H19 decreased the mRNA expression of TNF-α, IL-1β, IL-6, MCP-1, and VEGF, the contents of TNF-α, IL-1β, IL-6, and VEGF in BALF, and histology score in LPS-induced ARDS rats. H19 knockdown also reduced the fibrosis scores and the protein expression of vimentin and α-SMA, and elevated the protein expression of E-cadherin in LPS-induced ARDS rats. Furthermore, silencing of miR-423-5p and overexpression of FOXA1 reversed the inhibitory effects of si-H19 on the inflammation and fibrosis of LPS-induced MH-S cells. CONCLUSIONS Silencing of H19 relieved the pulmonary injury, inflammation and fibrosis of LPS-induced ARDS in rats. Silencing of H19 also alleviated the inflammation and fibrosis of LPS-induced MH-S cells through regulating the miR-423-5p/FOXA1 axis.
Collapse
Affiliation(s)
- Xianyu Mu
- Department of Emergency, Yantai Yuhuangding Hospital, Yantai City, China Shandong Province, China
| | - Hongrong Wang
- Department of Emergency, Yantai Yuhuangding Hospital, Yantai City, China Shandong Province, China
| | - Haiyong Li
- Department of Emergency, Yantai Yuhuangding Hospital, Yantai City, China Shandong Province, China
| |
Collapse
|
39
|
Krongbaramee T, Zhu M, Qian Q, Zhang Z, Eliason S, Shu Y, Qian F, Akkouch A, Su D, Amendt BA, Yang L, Hong L. Plasmid encoding microRNA-200c ameliorates periodontitis and systemic inflammation in obese mice. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 23:1204-1216. [PMID: 33664998 PMCID: PMC7899952 DOI: 10.1016/j.omtn.2021.01.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/28/2021] [Indexed: 02/08/2023]
Abstract
The present study was conducted to characterize microRNA-200c (miR-200c) and its regulators in adipogenic differentiation, obesity, and periodontitis in obese subjects (PiOSs), and to determine the therapeutic efficacy of plasmid DNA encoding miR-200c as a treatment for PiOSs. We report that highly expressed miR-200c in gingival tissues was downregulated in diet-induced obese (DIO) mice and during adipogenic differentiation of human bone marrow mesenchymal stromal cells (hBMSCs). Local injection of Porphyromonas gingivalis lipopolysaccharide (Pg-LPS) in the maxilla interdental gingiva of DIO mice reduced miR-200c in gingival and adipose tissues and induced periodontal inflammation associated with systemic elevation of interleukin-6 (IL-6) and impaired glucose tolerance. The inhibitory functions of Pg-LPS and IL-6 on miR-200c and their effectiveness on Zeb1 were confirmed in vitro. Injection of naked plasmid DNA encoding miR-200c into the gingiva effectively rescued miR-200c downregulation, prevented periodontal and systemic inflammation, and alleviated the impaired glucose metabolism in obese mice with LPS-induced periodontitis. Increased circulating exosomal miR-200c and its function on suppressing proinflammatory cytokines and adipogenesis explained the mechanism(s) of gingival application of miR-200c in attenuating systemic inflammation in PiOSs. These results demonstrated that miR-200c reduced by Pg-LPS and IL-6 in periodontitis and obesity might lead to the pathogenesis of PiOSs, and upregulation of miR-200c in the gingiva presents a therapeutic approach for PiOSs.
Collapse
Affiliation(s)
- Tadkamol Krongbaramee
- Iowa Institute for Oral Health Research, College of Dentistry, the University of Iowa, Iowa City, IA, USA
| | - Min Zhu
- Iowa Institute for Oral Health Research, College of Dentistry, the University of Iowa, Iowa City, IA, USA
| | - Qingwen Qian
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Zeyuan Zhang
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Steven Eliason
- Department of Anatomy and Cell Biology, Carver College of Medicine, the University of Iowa, Iowa City, IA, USA
| | - Yi Shu
- Iowa Institute for Oral Health Research, College of Dentistry, the University of Iowa, Iowa City, IA, USA
| | - Fang Qian
- Iowa Institute for Oral Health Research, College of Dentistry, the University of Iowa, Iowa City, IA, USA
| | - Adil Akkouch
- Iowa Institute for Oral Health Research, College of Dentistry, the University of Iowa, Iowa City, IA, USA
| | - Dan Su
- Department of Anatomy and Cell Biology, Carver College of Medicine, the University of Iowa, Iowa City, IA, USA
| | - Brad A Amendt
- Iowa Institute for Oral Health Research, College of Dentistry, the University of Iowa, Iowa City, IA, USA.,Department of Anatomy and Cell Biology, Carver College of Medicine, the University of Iowa, Iowa City, IA, USA.,Center for Craniofacial Anomalies Research, Carver College of Medicine, the University of Iowa, Iowa City, IA, USA
| | - Ling Yang
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Liu Hong
- Iowa Institute for Oral Health Research, College of Dentistry, the University of Iowa, Iowa City, IA, USA.,Center for Craniofacial Anomalies Research, Carver College of Medicine, the University of Iowa, Iowa City, IA, USA
| |
Collapse
|
40
|
Stewart CA, Gay CM, Ramkumar K, Cargill KR, Cardnell RJ, Nilsson MB, Heeke S, Park EM, Kundu ST, Diao L, Wang Q, Shen L, Xi Y, Zhang B, Della Corte CM, Fan Y, Kundu K, Gao B, Avila K, Pickering CR, Johnson FM, Zhang J, Kadara H, Minna JD, Gibbons DL, Wang J, Heymach JV, Byers LA. Lung cancer models reveal SARS-CoV-2-induced EMT contributes to COVID-19 pathophysiology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2020.05.28.122291. [PMID: 32577652 PMCID: PMC7302206 DOI: 10.1101/2020.05.28.122291] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
COVID-19 is an infectious disease caused by SARS-CoV-2, which enters host cells via the cell surface proteins ACE2 and TMPRSS2. Using a variety of normal and malignant models and tissues from the aerodigestive and respiratory tracts, we investigated the expression and regulation of ACE2 and TMPRSS2. We find that ACE2 expression is restricted to a select population of highly epithelial cells. Notably, infection with SARS-CoV-2 in cancer cell lines, bronchial organoids, and patient nasal epithelium, induces metabolic and transcriptional changes consistent with epithelial to mesenchymal transition (EMT), including upregulation of ZEB1 and AXL, resulting in an increased EMT score. Additionally, a transcriptional loss of genes associated with tight junction function occurs with SARS-CoV-2 infection. The SARS-CoV-2 receptor, ACE2, is repressed by EMT via TGFbeta, ZEB1 overexpression and onset of EGFR TKI inhibitor resistance. This suggests a novel model of SARS-CoV-2 pathogenesis in which infected cells shift toward an increasingly mesenchymal state, associated with a loss of tight junction components with acute respiratory distress syndrome-protective effects. AXL-inhibition and ZEB1-reduction, as with bemcentinib, offers a potential strategy to reverse this effect. These observations highlight the utility of aerodigestive and, especially, lung cancer model systems in exploring the pathogenesis of SARS-CoV-2 and other respiratory viruses, and offer important insights into the potential mechanisms underlying the morbidity and mortality of COVID-19 in healthy patients and cancer patients alike.
Collapse
Affiliation(s)
- C Allison Stewart
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carl M Gay
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kavya Ramkumar
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kasey R Cargill
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert J Cardnell
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Monique B Nilsson
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Simon Heeke
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth M Park
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samrat T Kundu
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Shen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuanxin Xi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bingnan Zhang
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carminia Maria Della Corte
- Department of Precision Medicine, Oncology Division, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Youhong Fan
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kiran Kundu
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Boning Gao
- Department of Internal Medicine and Pharmacology, Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kimberley Avila
- Department of Internal Medicine and Pharmacology, Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Curtis R Pickering
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Faye M Johnson
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Zhang
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John D Minna
- Department of Internal Medicine and Pharmacology, Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Don L Gibbons
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John V Heymach
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lauren Averett Byers
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
41
|
Omote N, Sauler M. Non-coding RNAs as Regulators of Cellular Senescence in Idiopathic Pulmonary Fibrosis and Chronic Obstructive Pulmonary Disease. Front Med (Lausanne) 2020; 7:603047. [PMID: 33425948 PMCID: PMC7785852 DOI: 10.3389/fmed.2020.603047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
Cellular senescence is a cell fate implicated in the pathogenesis of idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD). Cellular senescence occurs in response to cellular stressors such as oxidative stress, DNA damage, telomere shortening, and mitochondrial dysfunction. Whether these stresses induce cellular senescence or an alternative cell fate depends on the type and magnitude of cellular stress, but also on intrinsic factors regulating the cellular stress response. Non-coding RNAs, including both microRNAs and long non-coding RNAs, are key regulators of cellular stress responses and susceptibility to cellular senescence. In this review, we will discuss cellular mechanisms that contribute to senescence in IPF and COPD and highlight recent advances in our understanding of how these processes are influenced by non-coding RNAs. We will also discuss the potential therapeutic role for targeting non-coding RNAs to treat these chronic lung diseases.
Collapse
Affiliation(s)
- Norihito Omote
- Pulmonary, Critical Care and Sleep Medicine Section, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Maor Sauler
- Pulmonary, Critical Care and Sleep Medicine Section, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
42
|
Shomali N, Mahmoodpoor A, Abbas Abad AN, Marofi F, Akbari M, Xu H, Sandoghchian Shotorbani S. The Relationship between Extracellular/intracellular microRNAs and TLRs May Be Used as a Diagnostic and Therapeutic Approach in Sepsis. Immunol Invest 2020; 51:154-169. [PMID: 33054447 DOI: 10.1080/08820139.2020.1817067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
One of the leading causes of death in the intensive care unit (ICU) is sepsis. Different studies have been performed on different markers to determine the cause of sepsis. microRNAs (miRNAs) are non-coding RNAs that can be released both inside and outside the cell and regulate the target gene expression by binding to the 3' untranslated region (3'UTR) of the target genes. TLRs play an important role in innate immunity that can be modulated by biological markers such as microRNAs. In this study, we summarized the recent progress on the role of extracellular and intracellular microRNAs in sepsis. It has also been focused on the association of TLRs with extracellular and intracellular micro RNAs in the regulation of sepsis. In conclusion, this study has provided new insight into the role of microRNAs as a regulator of the TLRs which may lead to the aberrant inflammatory response in sepsis. Therefore, it suggests that both intracellular and extracellular microRNAs may play a therapeutic role in the treatment of sepsis via regulating TLRs. However, yet sepsis and septic shock are medical emergencies and further studies are needed to specify the exact role of microRNAs and TLRs in sepsis.
Collapse
Affiliation(s)
- Navid Shomali
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ata Mahmoodpoor
- Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Huaxi Xu
- Department of Immunology, Jiangsu University, Zhenjiang, China
| | - Siamak Sandoghchian Shotorbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Jiangsu University, Zhenjiang, China
| |
Collapse
|
43
|
Matsuda S, Kim JD, Sugiyama F, Matsuo Y, Ishida J, Murata K, Nakamura K, Namiki K, Sudo T, Kuwaki T, Hatano M, Tatsumi K, Fukamizu A, Kasuya Y. Transcriptomic Evaluation of Pulmonary Fibrosis-Related Genes: Utilization of Transgenic Mice with Modifying p38 Signal in the Lungs. Int J Mol Sci 2020; 21:E6746. [PMID: 32937976 PMCID: PMC7555042 DOI: 10.3390/ijms21186746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 12/20/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrosing lung disease that is caused by the dysregulation of alveolar epithelial type II cells (AEC II). The mechanisms involved in the progression of IPF remain incompletely understood, although the immune response accompanied by p38 mitogen-activated protein kinase (MAPK) activation may contribute to some of them. This study aimed to examine the association of p38 activity in the lungs with bleomycin (BLM)-induced pulmonary fibrosis and its transcriptomic profiling. Accordingly, we evaluated BLM-induced pulmonary fibrosis during an active fibrosis phase in three genotypes of mice carrying stepwise variations in intrinsic p38 activity in the AEC II and performed RNA sequencing of their lungs. Stepwise elevation of p38 signaling in the lungs of the three genotypes was correlated with increased severity of BLM-induced pulmonary fibrosis exhibiting reduced static compliance and higher collagen content. Transcriptome analysis of these lung samples also showed that the enhanced p38 signaling in the lungs was associated with increased transcription of the genes driving the p38 MAPK pathway and differentially expressed genes elicited by BLM, including those related to fibrosis as well as the immune system. Our findings underscore the significance of p38 MAPK in the progression of pulmonary fibrosis.
Collapse
Affiliation(s)
- Shuichi Matsuda
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba City, Chiba 260-8670, Japan; (S.M.); (M.H.)
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba City, Chiba 260-8670, Japan; (Y.M.); (K.T.)
| | - Jun-Dal Kim
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan; (J.-D.K.); (J.I.); (K.M.); (A.F.)
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center and Trans-Border Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan;
| | - Yuji Matsuo
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba City, Chiba 260-8670, Japan; (Y.M.); (K.T.)
| | - Junji Ishida
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan; (J.-D.K.); (J.I.); (K.M.); (A.F.)
| | - Kazuya Murata
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan; (J.-D.K.); (J.I.); (K.M.); (A.F.)
- Laboratory Animal Resource Center and Trans-Border Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan;
| | - Kanako Nakamura
- Graduate School of Sciences and Technology, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan;
| | - Kana Namiki
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, Chiba City, Chiba 260-8670, Japan;
| | - Tatsuhiko Sudo
- Chemical Biology Core Facility and Antibiotics Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan;
| | - Tomoyuki Kuwaki
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Kagoshima 890-8544, Japan;
| | - Masahiko Hatano
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba City, Chiba 260-8670, Japan; (S.M.); (M.H.)
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba City, Chiba 260-8670, Japan; (Y.M.); (K.T.)
| | - Akiyoshi Fukamizu
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan; (J.-D.K.); (J.I.); (K.M.); (A.F.)
| | - Yoshitoshi Kasuya
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba City, Chiba 260-8670, Japan; (S.M.); (M.H.)
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, Chiba City, Chiba 260-8670, Japan;
| |
Collapse
|
44
|
Zhang X, Chen Q, Song H, Jiang W, Xie S, Huang J, Kang G. MicroRNA‑375 prevents TGF‑β‑dependent transdifferentiation of lung fibroblasts via the MAP2K6/P38 pathway. Mol Med Rep 2020; 22:1803-1810. [PMID: 32582987 PMCID: PMC7411355 DOI: 10.3892/mmr.2020.11261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023] Open
Abstract
Transdifferentiation of lung fibroblasts to myofibroblasts is a crucial pathophysiological process in pulmonary fibrosis. MicroRNA‑375 (miR‑375) was initially identified as a tumor‑suppressive factor, and its expression was negatively associated with the severity of lung cancer; however, its role and potential mechanism in myofibroblast transdifferentiation and pulmonary fibrosis remain unclear. In the present study, human lung fibroblasts were stimulated with transforming growth factor‑β (TGF‑β) to induce myofibroblast transdifferentiation. A mimic and inhibitor of miR‑375, and their negative controls, were used to overexpress or suppress miR‑375 in lung fibroblasts, respectively. The mRNA expression levels of fibrotic markers, and protein expression of α‑smooth muscle actin and periostin, were subsequently detected by reverse transcription‑quantitative PCR and western blotting, to assess myofibroblast transdifferentiation. miR‑375 was markedly upregulated in human lung fibroblasts after TGF‑β stimulation. The miR‑375 mimic alleviated, whereas the miR‑375 inhibitor aggravated TGF‑β‑dependent transdifferentiation of lung fibroblasts. Mechanistically, miR‑375 prevented myofibroblast transdifferentiation and collagen synthesis by blocking the P38 mitogen‑activated protein kinases (P38) pathway, and P38 suppression abrogated the deleterious effect of the miR‑375 inhibitor on myofibroblast transdifferentiation. Furthermore, the present study revealed that mitogen‑activated protein kinase kinase 6 was involved in P38 inactivation by miR‑375. In conclusion, miR‑375 was implicated in modulating TGF‑β‑dependent transdifferentiation of lung fibroblasts, and targeting miR‑375 expression may help to develop therapeutic approaches for treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Xinghua Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qian Chen
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hengya Song
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wanli Jiang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Songping Xie
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jie Huang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ganjun Kang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
45
|
Bai L, Li A, Gong C, Ning X, Wang Z. Protective effect of rutin against bleomycin induced lung fibrosis: Involvement of TGF-β1/α-SMA/Col I and III pathway. Biofactors 2020; 46:637-644. [PMID: 32233122 DOI: 10.1002/biof.1629] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/11/2020] [Accepted: 03/14/2020] [Indexed: 12/12/2022]
Abstract
Lung fibrosis is a progressive fatal lung disorder with significantly high mortality rates. Bleomycin (BLM) is one of the most commonly used chemotherapeutic agents for the treatment of several carcinomas. The most severe adverse effect of BLM is lung toxicity; therefore, BLM has been repeatedly reported to be considered amongst the most widely used agents for the induction of experimental lung fibrosis. In the current study, rutin has been investigated for its ability to ameliorate BLM-induced pulmonary fibrosis. BLM was instilled intratracheally and rutin was administered orally (50 and 100 mg/kg) for 3 weeks. Rutin significantly decreased lung/body weight index, bronchoalveolar lavage fluid lactate dehydrogenase activity, total cell count, macrophages, and lymphocyte counts. Rutin significantly decreased lung malondialdehyde content, increased lung glutathione content, superoxide dismutase activity, serum total antioxidant capacity, and decreased lung nitric oxide content. Moreover, rutin reduced expressions of transforming growth factor beta 1 and other fibrosis-related biomarkers (Col I, Col III, and α-SMA). In addition, rutin significantly ameliorated histological changes and prevented collagen deposition with the paralleled decrease in lung hydroxyproline content. In conclusion, rutin can be proposed to be a potential therapeutic agent for the management of lung fibrosis.
Collapse
Affiliation(s)
- Linlin Bai
- Respiratory Medicine, Xingtai People's Hospital, Xingtai City, China
| | - Aimin Li
- Respiratory Medicine, Xingtai People's Hospital, Xingtai City, China
| | - Cuike Gong
- Respiratory Medicine, Xingtai People's Hospital, Xingtai City, China
| | - Xuecong Ning
- Respiratory Medicine, Xingtai People's Hospital, Xingtai City, China
| | - Zhihua Wang
- Respiratory Medicine, Xingtai People's Hospital, Xingtai City, China
| |
Collapse
|
46
|
Sun D, Cao H, Yang L, Lin L, Hou B, Zheng W, Shen Z, Song H. MiR-200b in heme oxygenase-1-modified bone marrow mesenchymal stem cell-derived exosomes alleviates inflammatory injury of intestinal epithelial cells by targeting high mobility group box 3. Cell Death Dis 2020; 11:480. [PMID: 32587254 PMCID: PMC7316799 DOI: 10.1038/s41419-020-2685-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023]
Abstract
Heme Oxygen-1 (HO-1)-modified bone marrow mesenchymal stem cells (BMMSCs) are effective to protect and repair transplanted small bowel and intestinal epithelial cells (IECs); however, the mechanism and the role of HO-1/BMMSCs-derived exosomes is unclear. In the present study, we aimed to verify that exosomes from a HO-1/BMMSCs and IEC-6 cells (IEC-6s) co-culture system could reduce the apoptosis of IEC-6s and decrease the expression of the tight junction protein, zona occludens 1, in the inflammatory environment. Using mass spectrometry, we revealed that high mobility group box 3 (HMGB3) and phosphorylated c-Jun NH2-terminal kinase (JNK), under the influence of differentially abundant proteins identified through proteomic analysis, play critical roles in the mechanism. Further studies indicated that microRNA miR-200b, which was upregulated in exosomes derived from the co-culture of HO-1/BMMSCs and IEC-6s, exerted its role by targeting the 3′ untranslated region of Hmgb3 in this biological process. Functional experiments confirmed that miR-200b overexpression could reduce the inflammatory injury of IEC-6s, while intracellular miR-200b knockdown could significantly block the protective effect of HO-1/BMMSCs exosomes on the inflammatory injury of IEC-6s. In addition, the level of miR-200b in cells and exosomes derived from HO-1/BMMSCs stimulated by tumor necrosis factor alpha was significantly upregulated. In a rat small bowel transplantation model of allograft rejection treated with HO-1/BMMSCs, we confirmed that the level of miR-200b in the transplanted small bowel tissue was increased significantly, while the level of HMGB3/JNK was downregulated significantly. In conclusion, we identified that exosomes derived from HO-1/BMMSCs play an important role in alleviating the inflammatory injury of IECs. The mechanism is related to miR-200b targeting the abnormally increased expression of the Hmgb3 gene in IECs induced by inflammatory injury. The reduced level of HMGB3 then decreases the inflammatory injury.
Collapse
Affiliation(s)
- Dong Sun
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, 300070, Tianjin, P.R. China.,Department of Organ Transplantation, Tianjin First Central Hospital, 300192, Tianjin, P.R. China
| | - Huan Cao
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, 300070, Tianjin, P.R. China
| | - Liu Yang
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, 300070, Tianjin, P.R. China.,NHC Key Laboratory of Critical Care Medicine, 300192, Tianjin, P.R. China
| | - Ling Lin
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, 300070, Tianjin, P.R. China.,Tianjin Clinical Research Center for Organ Transplantation, Tianjin, P.R. China
| | - Bin Hou
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, 300070, Tianjin, P.R. China
| | - Weiping Zheng
- Department of Organ Transplantation, Tianjin First Central Hospital, 300192, Tianjin, P.R. China.,Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin, P.R. China
| | - Zhongyang Shen
- Department of Organ Transplantation, Tianjin First Central Hospital, 300192, Tianjin, P.R. China.,Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin, P.R. China
| | - Hongli Song
- Department of Organ Transplantation, Tianjin First Central Hospital, 300192, Tianjin, P.R. China. .,Tianjin Key Laboratory of Organ Transplantation, Tianjin, P.R. China.
| |
Collapse
|
47
|
Hu X, Xu Q, Wan H, Hu Y, Xing S, Yang H, Gao Y, He Z. PI3K-Akt-mTOR/PFKFB3 pathway mediated lung fibroblast aerobic glycolysis and collagen synthesis in lipopolysaccharide-induced pulmonary fibrosis. J Transl Med 2020; 100:801-811. [PMID: 32051533 DOI: 10.1038/s41374-020-0404-9] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/11/2020] [Accepted: 01/28/2020] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming plays a critical role in many diseases. A recent study revealed that aerobic glycolysis in lung tissue is closely related to pulmonary fibrosis, and also occurs during lipopolysaccharide (LPS)-induced sepsis. However, whether LPS induces aerobic glycolysis in lung fibroblasts remains unknown. The present study demonstrated that LPS promotes collagen synthesis in the lung fibroblasts through aerobic glycolysis via the activation of the PI3K-Akt-mTOR/PFKFB3 pathway. Challenging the human lung fibroblast MRC-5 cell line with LPS activated the PI3K-Akt-mTOR pathway, significantly upregulated the expression of 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3 (PFKFB3), enhanced the aerobic glycolysis, and promoted collagen synthesis. These phenomena could be reversed by the PI3K-Akt inhibitor LY294002, mTOR inhibitor rapamycin, PFKFB3 inhibitor 3PO, or PFKFB3 silencing by specific shRNA, or aerobic glycolysis inhibitor 2-DG. In addition, PFKFB3 expression and aerobic glycolysis were also detected in the mouse model of LPS-induced pulmonary fibrosis, which could be reversed by the intraperitoneal injection of PFKFB3 inhibitor 3PO. Taken together, this study revealed that in LPS-induced pulmonary fibrosis, LPS might mediate lung fibroblast aerobic glycolysis through the activation of the PI3K-Akt-mTOR/PFKFB3 pathway.
Collapse
Affiliation(s)
- Xiaoting Hu
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Qiaoyi Xu
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Hanxi Wan
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Yue Hu
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Shunpeng Xing
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Hao Yang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Yuan Gao
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China.
| | - Zhengyu He
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China.
| |
Collapse
|
48
|
Zhang L, Liu Y, Chen XG, Zhang Y, Chen J, Hao ZY, Fan S, Zhang LG, Du HX, Liang CZ. MicroRNA expression profile in chronic nonbacterial prostatitis revealed by next-generation small RNA sequencing. Asian J Androl 2020; 21:351-359. [PMID: 30604696 PMCID: PMC6628738 DOI: 10.4103/aja.aja_97_18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are considered to be involved in the pathogenic initiation and progression of chronic nonbacterial prostatitis (CNP); however, the comprehensive expression profile of dysregulated miRNAs, relevant signaling pathways, and core machineries in CNP have not been fully elucidated. In the current research, CNP rat models were established through the intraprostatic injection of carrageenan into the prostate. Then, next-generation sequencing was performed to explore the miRNA expression profile in CNP. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) bioinformatical analyses were conducted to reveal the enriched biological processes, molecular functions, and cellular components and signaling pathways. As a result, 1224, 1039, and 1029 known miRNAs were annotated in prostate tissues from the blank control (BC), normal saline injection (NS), and carrageenan injection (CAR) groups (n = 3 for each group), respectively. Among them, 84 miRNAs (CAR vs BC) and 70 miRNAs (CAR vs NS) with significantly different expression levels were identified. Compared with previously reported miRNAs with altered expression in various inflammatory diseases, the majority of deregulated miRNAs in CNP, such as miR-146b-5p, miR-155-5p, miR-150-5p, and miR-139-5p, showed similar expression patterns. Moreover, bioinformatics analyses have enriched mitogen-activated protein kinase (MAPK), cyclic adenosine monophosphate (cAMP), endocytosis, mammalian target of rapamycin (mTOR), and forkhead box O (FoxO) signaling pathways. These pathways were all involved in immune response, which indicates the critical regulatory role of the immune system in CNP initiation and progression. Our investigation has presented a global view of the differentially expressed miRNAs and potential regulatory networks containing their target genes, which may be helpful for identifying the novel mechanisms of miRNAs in immune regulation and effective target-specific theragnosis for CNP.
Collapse
Affiliation(s)
- Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Institute of Urology, Anhui Medical University, Hefei 230022, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Yi Liu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Institute of Urology, Anhui Medical University, Hefei 230022, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Xian-Guo Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Institute of Urology, Anhui Medical University, Hefei 230022, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Yong Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Jing Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Zong-Yao Hao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Institute of Urology, Anhui Medical University, Hefei 230022, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Song Fan
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Institute of Urology, Anhui Medical University, Hefei 230022, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Li-Gang Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - He-Xi Du
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Chao-Zhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Institute of Urology, Anhui Medical University, Hefei 230022, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| |
Collapse
|
49
|
Yang H, Hua C, Yang X, Fan X, Song H, Peng L, Ci X. Pterostilbene prevents LPS-induced early pulmonary fibrosis by suppressing oxidative stress, inflammation and apoptosis in vivo. Food Funct 2020; 11:4471-4484. [PMID: 32377661 DOI: 10.1039/c9fo02521a] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Early pulmonary fibrosis after acute lung injury leads to poor prognosis and high mortality. Pterostilbene (Pts), a bioactive component in blueberries, possesses anti-inflammatory, antioxidative and antifibrotic properties. However, the effects of Pts on lipopolysaccharide (LPS)-induced pulmonary fibrosis are still unknown. In our study, the Pts group showed lower lung injury and fibrosis scores, and lower levels of hydroxyproline and protein (collagen I and transforming growth factor-β) than the scores and levels in mice treated with LPS. MMP-1 was the degrading enzyme of collagen I and LPS caused the inhibition of MMP-1, disturbing the degradation of collagen. Additionally, Pts remarkably reversed the LPS-induced inhibition of interleukin-10 and the release of tumor necrosis factor-α, interleukin-6 and interleukin-1β. In terms of cellular pathways, Pts treatment ameliorated LPS-activated nuclear factor kappa B (NF-κB) and NOD-like receptor NLRP3 signaling. Besides, LPS-induced low levels of A20 could be activated by Pts. In addition, Pts treatment reversed the high levels of Caspase-3, poly ADP-ribose polymerase (PARP) and Bcl2-associated X protein (Bax) expression and the low levels of B cell lymphoma/lewkmia-2 (Bcl2) that had been induced by LPS. Moreover, oxidative stress is also involved in the pathogenesis of fibrosis. Our findings indicate that LPS injection triggered the production of myeloperoxidase (MPO) and malondialdehyde (MDA) and the depletion of superoxide dismutase (SOD) and glutathione (GSH), and that these effects were notably reversed by treatment with Pts. In addition, Pts induced the dissociation of Kelch-like epichlorohydrin-associated protein-1 (Keap-1) and NF-E2 related factor-2 (Nrf2) and the activation of downstream genes (heme oxygenase-1, NAD(P)H:quinine oxidoreductase, glutamate-cysteine ligase catalytic subunit and glutamate-cysteine ligase modifier). In conclusion, oxidative stress, apoptosis and inflammation are involved in early pulmonary fibrosis and Pts exerts a protective effect by activating Keap-1/Nrf2, inhibiting caspase-dependent A20/NF-κB and NLRP3 signaling pathways.
Collapse
Affiliation(s)
- Huahong Yang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China.
| | | | | | | | | | | | | |
Collapse
|
50
|
Diazepam inhibited lipopolysaccharide (LPS)-induced pyroptotic cell death and alleviated pulmonary fibrosis in mice by specifically activating GABAA receptor α4-subunit. Biomed Pharmacother 2019; 118:109239. [DOI: 10.1016/j.biopha.2019.109239] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 12/27/2022] Open
|