1
|
Guerrini V, Prideaux B, Khan R, Subbian S, Wang Y, Sadimin E, Pawar S, Ukey R, Singer EA, Xue C, Gennaro ML. Cryptococcosis, tuberculosis, and a kidney cancer fail to fit the atherosclerosis paradigm for foam cell lipid content. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf038. [PMID: 40156376 DOI: 10.1093/jimmun/vkaf038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 01/12/2025] [Indexed: 04/01/2025]
Abstract
Foam cells are dysfunctional, lipid-laden macrophages associated with chronic inflammation of diverse origin. The long-standing paradigm that foam cells are cholesterol-laden derives from atherosclerosis research. We previously showed that, in tuberculosis, foam cells surprisingly accumulate triglycerides. Here, we utilized bacterial (Mycobacterium tuberculosis), fungal (Cryptococcus neoformans), and human papillary renal cell carcinoma (pRCC) models to address the need for a new explanation of foam cell biogenesis. We applied mass spectrometry-based imaging to assess the spatial distribution of storage lipids relative to foam-cell-rich areas in lesional tissues, and we characterized lipid-laden macrophages generated under corresponding in vitro conditions. The in vivo data and the in vitro findings showed that cryptococcus-infected macrophages accumulate triglycerides, while macrophages exposed to pRCC-conditioned-medium accumulated both triglycerides and cholesterol. Moreover, Cryptococcus- and Mycobacterium-infected macrophages accumulated triglycerides in different ways. Collectively, the data show that the molecular events underlying foam cell formation are specific to disease and microenvironment. Since foam cells are potential therapeutic targets, recognizing that their formation is disease-specific opens new biomedical research directions.
Collapse
Affiliation(s)
- Valentina Guerrini
- Public Health Research Institute, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
- Present address: Boehringer Ingelheim, Ridgefield, CT, United States
| | - Brendan Prideaux
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, United States
| | - Rehan Khan
- Public Health Research Institute, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| | - Selvakumar Subbian
- Public Health Research Institute, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
- Department of Medicine, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| | - Yina Wang
- Public Health Research Institute, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| | - Evita Sadimin
- Section of Urologic Pathology, Rutgers Cancer Institute of New Jersey and Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
- Present address: City of Hope National Medical Center, Duarte, CA, United States
| | - Siddhi Pawar
- Public Health Research Institute, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| | - Rahul Ukey
- Public Health Research Institute, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| | - Eric A Singer
- Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey and Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
- Present address: Division of Urologic Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Chaoyang Xue
- Public Health Research Institute, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
- Department of Microbiology, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| | - Maria Laura Gennaro
- Public Health Research Institute, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
2
|
Grigoraș A, Amalinei C. The Role of Perirenal Adipose Tissue in Carcinogenesis-From Molecular Mechanism to Therapeutic Perspectives. Cancers (Basel) 2025; 17:1077. [PMID: 40227577 PMCID: PMC11987925 DOI: 10.3390/cancers17071077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/15/2025] Open
Abstract
Perirenal adipose tissue (PRAT) exhibits particular morphological features, with its activity being mainly related to thermogenesis. However, an expanded PRAT area seems to play a significant role in cardiovascular diseases, diabetes mellitus, and chronic kidney disease pathogenesis. Numerous studies have demonstrated that PRAT may support cancer progression and invasion, mainly in obese patients. The mechanism underlying these processes is of dysregulation of PRAT's secretion of adipokines and pro-inflammatory cytokines, such as leptin, adiponectin, chemerin, apelin, omentin-1, vistatin, nesfatin-1, and other pro-inflammatory cytokines, modulated by tumor cells. Cancer cells may also induce a metabolic reprogramming of perirenal adipocytes, leading to increased lipids and lactate transfer to the tumor microenvironment, contributing to cancer growth in a hypoxic milieu. In addition, the PRAT browning process has been specifically detected in renal cell carcinoma (RCC), being characterized by upregulated expression of brown/beige adipocytes markers (UCP1, PPAR-ɣ, c/EBPα, and PGC1α) and downregulated white fat cells markers, such as LEPTIN, SHOX2, HOXC8, and HOXC9. Considering its multifaceted role in cancer, modulation of PRAT's role in tumor progression may open new directions for oncologic therapy improvement. Considering the increasing evidence of the relationship between PRAT and tumor cells, our review aims to provide a comprehensive analysis of the perirenal adipocytes' impact on tumor progression and metastasis.
Collapse
Affiliation(s)
- Adriana Grigoraș
- Department of Morphofunctional Sciences I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Department of Histopathology, Institute of Legal Medicine, 700455 Iasi, Romania
| | - Cornelia Amalinei
- Department of Morphofunctional Sciences I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Department of Histopathology, Institute of Legal Medicine, 700455 Iasi, Romania
| |
Collapse
|
3
|
Wu W, Li X, Li X, Zhao J, Gui Y, Luo Y, Wang H, Wang L, Yuan C. The Role of Long Non-Coding RNF144A-AS1 in Cancer Progression. Cell Biochem Biophys 2024; 82:2007-2017. [PMID: 39014185 DOI: 10.1007/s12013-024-01411-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 07/18/2024]
Abstract
RNAs transcribing more than 200 nucleotides without encoding proteins are termed long non-coding RNAs (LncRNAs). LncRNAs can be used as decoy molecules, signal molecules, scaffolds, and guide molecules. Long non-coding RNAs can interact with DNA, chromatin-modifying complexes, and transcriptional regulatory proteins, regulating gene expression in the cell nucleus. It is distributed in cytoplasm; they also participate in mRNA degradation and translational regulation via miRNAs, other transcription products, and proteins. They play a significant role in the development of various diseases, including tumors. Cancer seriously threatens human life and health. Regretfully, a great deal of newly diagnosed cancer patients found to have metastasized. RNF144A-AS1, also referred to as GRASLND, was initially recognized for its regulation of chondrogenic differentiation in MSCs. Focusing on RNF144A-AS1, this review summarizes and discusses the latest progress of RNF144A-AS1 in bladder cancer, glioblastoma, papillary renal cell carcinoma, gastric cancer, osteosarcoma, head and neck squamous cell carcinoma, and ovarian cancer. RNF144A-AS1 has good potential in tumor treatment and diagnosis.
Collapse
Affiliation(s)
- Wei Wu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Xiaolan Li
- The Second People's Hospital of China Three Gorges University, Yichang, 443002, China
- The Second People's Hospital of Yichang, Yichang, 443002, China
| | - Xueqing Li
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Jiale Zhao
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Yibei Gui
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Yiyang Luo
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Hailin Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Lijun Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Chengfu Yuan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China.
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China.
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| |
Collapse
|
4
|
Guerrini V, Prideaux B, Khan R, Subbian S, Wang Y, Sadimin E, Pawar S, Ukey R, Singer EA, Xue C, Gennaro ML. Cryptococcosis, tuberculosis, and a kidney cancer fail to fit the atherosclerosis paradigm for foam cell lipid content. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.08.542766. [PMID: 37333211 PMCID: PMC10274805 DOI: 10.1101/2023.06.08.542766] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Foam cells are dysfunctional, lipid-laden macrophages associated with chronic inflammation of diverse origin. The long-standing paradigm that foam cells are cholesterol-laden derives from atherosclerosis research. We previously showed that, in tuberculosis, foam cells surprisingly accumulate triglycerides. Here, we utilized bacterial ( Mycobacterium tuberculosis ), fungal ( Cryptococcus neoformans ), and human papillary renal cell carcinoma (pRCC) models to address the need for a new explanation of foam cell biogenesis. We applied mass spectrometry-based imaging to assess the spatial distribution of storage lipids relative to foam-cell-rich areas in lesional tissues, and we characterized lipid-laden macrophages generated under corresponding in vitro conditions. The in vivo data and the in vitro findings showed that cryptococcus-infected macrophages accumulate triglycerides, while macrophages exposed to pRCC- conditioned-medium accumulated both triglycerides and cholesterol. Moreover, cryptococcus- and mycobacterium-infected macrophages accumulated triglycerides in different ways. Collectively, the data show that the molecular events underlying foam cell formation are specific to disease and microenvironment. Since foam cells are potential therapeutic targets, recognizing that their formation is disease-specific opens new biomedical research directions.
Collapse
|
5
|
Abdulrahman Z, Kortekaas KE, Welters MJP, van Poelgeest MIE, van der Burg SH. Monocyte infiltration is an independent positive prognostic biomarker in vulvar squamous cell carcinoma. Cancer Immunol Immunother 2024; 73:166. [PMID: 38954042 PMCID: PMC11219697 DOI: 10.1007/s00262-024-03755-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 06/03/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Vulvar squamous cell carcinoma (VSCC) arises after an HPV infection or the mutation of p53 or other driver genes and is treated by mutilating surgery and/or (chemo) radiation, with limited success and high morbidity. In-depth information on the immunological make up of VSCC is pivotal to assess whether immunotherapy may form an alternative treatment. METHODS A total of 104 patient samples, comprising healthy vulva (n = 27) and VSCC (n = 77), were analyzed. Multispectral immunofluorescence (15 markers) was used to study both the myeloid and lymphoid immune cell composition, and this was linked to differences in transcriptomics (NanoString nCounter, 1258 genes) and in survival (Kaplan-Meier analyses). RESULTS Healthy vulva and VSCC are both well infiltrated but with different subpopulations of lymphoid and myeloid cells. In contrast to the lymphoid cell infiltrate, the density and composition of the myeloid cell infiltrate strongly differed per VSCC molecular subtype. A relative strong infiltration with epithelial monocytes (HLADR-CD11c-CD14+CD68-CD163-CD33-) was prognostic for improved survival, independent of T cell infiltration, disease stage or molecular subtype. A strong infiltration with T cells and/or monocytes was associated with drastic superior survival: 5-year survival > 90% when either one is high, versus 40% when both are low (p < 0.001). CONCLUSION A hot myeloid and/or lymphoid infiltrate predicts excellent survival in VSCC. Based on the response of similarly high-infiltrated other tumor types, we have started to explore the potential of neoadjuvant checkpoint blockade in VSCC.
Collapse
Affiliation(s)
- Ziena Abdulrahman
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Kim E Kortekaas
- Department of Gynecology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marij J P Welters
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | | | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
6
|
Rakina M, Larionova I, Kzhyshkowska J. Macrophage diversity in human cancers: New insight provided by single-cell resolution and spatial context. Heliyon 2024; 10:e28332. [PMID: 38571605 PMCID: PMC10988020 DOI: 10.1016/j.heliyon.2024.e28332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 04/05/2024] Open
Abstract
M1/M2 paradigm of macrophage plasticity has existed for decades. Now it becomes clear that this dichotomy doesn't adequately reflect the diversity of macrophage phenotypes in tumor microenvironment (TME). Tumor-associated macrophages (TAMs) are a major population of innate immune cells in the TME that promotes tumor cell proliferation, angiogenesis and lymphangiogenesis, invasion and metastatic niche formation, as well as response to anti-tumor therapy. However, the fundamental restriction in therapeutic TAM targeting is the limited knowledge about the specific TAM states in distinct human cancer types. Here we summarized the results of the most recent studies that use advanced technologies (e.g. single-cell RNA sequencing and spatial transcriptomics) allowing to decipher novel functional subsets of TAMs in numerous human cancers. The transcriptomic profiles of these TAM subsets and their clinical significance were described. We emphasized the characteristics of specific TAM subpopulations - TREM2+, SPP1+, MARCO+, FOLR2+, SIGLEC1+, APOC1+, C1QC+, and others, which have been most extensively characterized in several cancers, and are associated with cancer prognosis. Spatial transcriptomics technologies defined specific spatial interactions between TAMs and other cell types, especially fibroblasts, in tumors. Spatial transcriptomics methods were also applied to identify markers of immunotherapy response, which are expressed by macrophages or in the macrophage-abundant regions. We highlighted the perspectives for novel techniques that utilize spatial and single cell resolution in investigating new ligand-receptor interactions for effective immunotherapy based on TAM-targeting.
Collapse
Affiliation(s)
- Militsa Rakina
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, 634050, Russia
- Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia
| | - Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, 634050, Russia
- Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, 634050, Russia
- Institute of Transfusion Medicine and Immunology, Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, 68167, Germany
- German Red Cross Blood Service Baden-Württemberg – Hessen, Mannheim, 68167, Germany
| |
Collapse
|
7
|
Cao H, Jia C, Li Z, Yang H, Fang R, Zhang Y, Cui Y. wMKL: multi-omics data integration enables novel cancer subtype identification via weight-boosted multi-kernel learning. Br J Cancer 2024; 130:1001-1012. [PMID: 38278975 PMCID: PMC10951206 DOI: 10.1038/s41416-024-02587-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND Cancer is a heterogeneous disease driven by complex molecular alterations. Cancer subtypes determined from multi-omics data can provide novel insight into personalised precision treatment. It is recognised that incorporating prior weight knowledge into multi-omics data integration can improve disease subtyping. METHODS We develop a weighted method, termed weight-boosted Multi-Kernel Learning (wMKL) which incorporates heterogeneous data types as well as flexible weight functions, to boost subtype identification. Given a series of weight functions, we propose an omnibus combination strategy to integrate different weight-related P-values to improve subtyping precision. RESULTS wMKL models each data type with multiple kernel choices, thus alleviating the sensitivity and robustness issue due to selecting kernel parameters. Furthermore, wMKL integrates different data types by learning weights of different kernels derived from each data type, recognising the heterogeneous contribution of different data types to the final subtyping performance. The proposed wMKL outperforms existing weighted and non-weighted methods. The utility and advantage of wMKL are illustrated through extensive simulations and applications to two TCGA datasets. Novel subtypes are identified followed by extensive downstream bioinformatics analysis to understand the molecular mechanisms differentiating different subtypes. CONCLUSIONS The proposed wMKL method provides a novel strategy for disease subtyping. The wMKL is freely available at https://github.com/biostatcao/wMKL .
Collapse
Affiliation(s)
- Hongyan Cao
- Division of Health Statistics, Shanxi Provincial Key Laboratory of Major Diseases Risk Assessment, Shanxi Medical University, 030001, Taiyuan, Shanxi, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, 030001, Taiyuan, Shanxi, China
- Division of Mathematics, School of Basic Medical Science, Shanxi Medical University, 030001, Taiyuan, Shanxi, China
| | - Congcong Jia
- Division of Health Statistics, Shanxi Provincial Key Laboratory of Major Diseases Risk Assessment, Shanxi Medical University, 030001, Taiyuan, Shanxi, China
| | - Zhi Li
- Department of Hematology, Taiyuan Central Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, China
| | - Haitao Yang
- Division of Health Statistics, School of Public Health, Hebei Medical University, 050017, Shijiazhuang, China
| | - Ruiling Fang
- Division of Health Statistics, Shanxi Provincial Key Laboratory of Major Diseases Risk Assessment, Shanxi Medical University, 030001, Taiyuan, Shanxi, China
| | - Yanbo Zhang
- Division of Health Statistics, Shanxi Provincial Key Laboratory of Major Diseases Risk Assessment, Shanxi Medical University, 030001, Taiyuan, Shanxi, China
| | - Yuehua Cui
- Department of Statistics and Probability, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
8
|
Ascenti V, Arico FM, Trimarchi R, Cicero G, Ieni A, Rossanese M, Ascenti G. Minimal Fat Content in Papillary Renal Cell Carcinoma Diagnosed with Dual-Layer Dual-Energy CT. Diagnostics (Basel) 2023; 13:diagnostics13101742. [PMID: 37238225 DOI: 10.3390/diagnostics13101742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
A 56-year-old man with a previous right nephrectomy for multiple papillary renal cell carcinomas (pRCC) underwent a follow-up CT scan. Using a dual-layer dual-energy CT (dlDECT), we demonstrated the presence of a small amount of fat in a 2.5 cm pRCC that mimicked the diagnosis of angiomyolipoma (AML). Histological examination demonstrated the absence of macroscopic intratumoral adipose tissue, showing a fair amount of enlarged foam macrophages loaded with intracytoplasmic lipids. The presence of fat density in an RCC is an extremely rare occurrence in the literature. To our knowledge, this is the first description using dlDECT of a minimal amount of fat tissue in a small RCC due to the presence of tumor-associated foam macrophages. Radiologists should be aware of this possibility when characterizing a renal mass with DECT. The option of RCCs must be considered, especially in the case of masses with an aggressive character or a positive history of RCC.
Collapse
Affiliation(s)
- Velio Ascenti
- Postgraduate School of Radiodiagnostics, Policlinico Universitario, University of Milan, 20133 Milano, Italy
| | - Francesco M Arico
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital "Policlinico G. Martino", 98124 Messina, Italy
| | - Renato Trimarchi
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital "Policlinico G. Martino", 98124 Messina, Italy
| | - Giuseppe Cicero
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital "Policlinico G. Martino", 98124 Messina, Italy
| | - Antonio Ieni
- Department of Human Pathology of Adult and Evolutive Age "Gaetano Barresi"-Section of Pathological Anatomy, University of Messina, Viale Gazzi, 98125 Messina, Italy
| | - Marta Rossanese
- Gaetano Barresi Department of Human and Paediatric Pathology, Urologic Section, University of Messina, 98166 Messina, Italy
| | - Giorgio Ascenti
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital "Policlinico G. Martino", 98124 Messina, Italy
| |
Collapse
|
9
|
Ozato Y, Kojima Y, Kobayashi Y, Hisamatsu Y, Toshima T, Yonemura Y, Masuda T, Kagawa K, Goto Y, Utou M, Fukunaga M, Gamachi A, Imamura K, Kuze Y, Zenkoh J, Suzuki A, Niida A, Hirose H, Hayashi S, Koseki J, Oki E, Fukuchi S, Murakami K, Tobo T, Nagayama S, Uemura M, Sakamoto T, Oshima M, Doki Y, Eguchi H, Mori M, Iwasaki T, Oda Y, Shibata T, Suzuki Y, Shimamura T, Mimori K. Spatial and single-cell transcriptomics decipher the cellular environment containing HLA-G+ cancer cells and SPP1+ macrophages in colorectal cancer. Cell Rep 2023; 42:111929. [PMID: 36656712 DOI: 10.1016/j.celrep.2022.111929] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/31/2022] [Accepted: 12/14/2022] [Indexed: 01/19/2023] Open
Abstract
The cellular interactions in the tumor microenvironment of colorectal cancer (CRC) are poorly understood, hindering patient treatment. In the current study, we investigate whether events occurring at the invasion front are of particular importance for CRC treatment strategies. To this end, we analyze CRC tissues by combining spatial transcriptomics from patients with a public single-cell transcriptomic atlas to determine cell-cell interactions at the invasion front. We show that CRC cells are localized specifically at the invasion front. These cells induce human leukocyte antigen G (HLA-G) to produce secreted phosphoprotein 1 (SPP1)+ macrophages while conferring CRC cells with anti-tumor immunity, as well as proliferative and invasive properties. Taken together, these findings highlight the signaling between CRC cell populations and stromal cell populations at the cellular level.
Collapse
Affiliation(s)
- Yuki Ozato
- Department of Surgery, Kyushu University Beppu Hospital, Beppu 874-0838, Japan; Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Yasuhiro Kojima
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yuta Kobayashi
- Department of Surgery, Kyushu University Beppu Hospital, Beppu 874-0838, Japan; Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Yuuichi Hisamatsu
- Department of Surgery, Kyushu University Beppu Hospital, Beppu 874-0838, Japan
| | - Takeo Toshima
- Department of Surgery, Kyushu University Beppu Hospital, Beppu 874-0838, Japan
| | - Yusuke Yonemura
- Department of Surgery, Kyushu University Beppu Hospital, Beppu 874-0838, Japan
| | - Takaaki Masuda
- Department of Surgery, Kyushu University Beppu Hospital, Beppu 874-0838, Japan
| | - Kouichi Kagawa
- Department of Gastroenterology, Shinbeppu Hospital, Beppu 874-8538, Japan
| | - Yasuhiro Goto
- Department of Gastroenterology, Shinbeppu Hospital, Beppu 874-8538, Japan
| | - Mitsuaki Utou
- Department of Pathology, Kyushu University Beppu Hospital, Beppu 874-0838, Japan
| | - Mituko Fukunaga
- Department of Surgery, Kyushu University Beppu Hospital, Beppu 874-0838, Japan
| | - Ayako Gamachi
- Department of Pathology, Almeida Memorial Hospital, Oita 870-1195, Japan
| | - Kiyomi Imamura
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa 277-8561, Japan
| | - Yuta Kuze
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa 277-8561, Japan
| | - Junko Zenkoh
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa 277-8561, Japan
| | - Ayako Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa 277-8561, Japan
| | - Atsushi Niida
- Laboratory of Molecular Medicine, the Institute of Medical Science, the University of Tokyo, Tokyo 108-8639, Japan
| | - Haruka Hirose
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shuto Hayashi
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Jun Koseki
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Eiji Oki
- Department of Surgery and Science, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Satoshi Fukuchi
- Department of Gastroenterological Medicine, Almeida Memorial Hospital, Oita 870-1195, Japan
| | - Kazunari Murakami
- Department of Gastroenterology, Oita University Hospital, Yufu 879-5593, Japan
| | - Taro Tobo
- Department of Pathology, Almeida Memorial Hospital, Oita 870-1195, Japan
| | - Satoshi Nagayama
- Gastroenterological Center, Department of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Mamoru Uemura
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Takeharu Sakamoto
- Department of Cancer Biology, Institute of Biomedical Science, Kansai Medical University, Hirakata 573-1010, Japan
| | - Masanobu Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Masaki Mori
- Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Takeshi Iwasaki
- Department of Pathology, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Yoshinao Oda
- Department of Pathology, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Tatsuhiro Shibata
- Laboratory of Molecular Medicine, the Institute of Medical Science, the University of Tokyo, Tokyo 108-8639, Japan
| | - Yutaka Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa 277-8561, Japan
| | - Teppei Shimamura
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Beppu 874-0838, Japan.
| |
Collapse
|
10
|
Miao Y, Deng Y, Liu J, Wang J, Hu B, Hao S, Wang H, Zhang Z, Jin Z, Zhang Y, Li C, Zhang P, Wan H, Zhang S, Feng J, Ji N. Anti-cancer effect of targeting fibroblast activation protein alpha in glioblastoma through remodeling macrophage phenotype and suppressing tumor progression. CNS Neurosci Ther 2022; 29:878-892. [PMID: 36382346 PMCID: PMC9928553 DOI: 10.1111/cns.14024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 09/12/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Glioblastoma (GBM) is the most malignant form of glioma and has a poor median survival time. Fibroblast activation protein alpha (FAP) is a dual-specificity serine protease that is strongly associated with the development and progression of human carcinomas. However, relatively little is known about the function of FAP and its potential as a therapeutic target in GBMs. AIMS In this study, we aimed to explore the role of FAP in GBM through a series of experiments and to evaluate the therapeutic effect of PT100, a small molecule inhibitor of FAP, on GBM. RESULTS Increased FAP expression was associated with poor survival in glioma. In vitro, FAP knockdown inhibited the process of EMT and caused a decrease in the number of M2 macrophages. In vivo, PT100 was confirmed to suppress the progression of GBMs significantly. CONCLUSIONS FAP could serve as a biomarker and novel therapeutic target for the treatment of GBM and that PT100 is a promising drug for the treatment of GBM.
Collapse
Affiliation(s)
- Yazhou Miao
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina,National Clinical Research Center for Neurological Diseases (China)BeijingChina
| | - Yuxuan Deng
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina,National Clinical Research Center for Neurological Diseases (China)BeijingChina
| | - Jinqiu Liu
- Beijing Neurosurgical InstituteCapital Medical UniversityFengtai, BeijingChina
| | - Jing Wang
- Beijing Neurosurgical InstituteCapital Medical UniversityFengtai, BeijingChina
| | - Boyi Hu
- Beijing Neurosurgical InstituteCapital Medical UniversityFengtai, BeijingChina
| | - Shuyu Hao
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina,National Clinical Research Center for Neurological Diseases (China)BeijingChina
| | - Herui Wang
- Neuro‐Oncology Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Zhe Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina,National Clinical Research Center for Neurological Diseases (China)BeijingChina
| | - Zeping Jin
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina,National Clinical Research Center for Neurological Diseases (China)BeijingChina
| | - Yang Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina,National Clinical Research Center for Neurological Diseases (China)BeijingChina
| | - Chunzhao Li
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina,National Clinical Research Center for Neurological Diseases (China)BeijingChina
| | - Peng Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina,National Clinical Research Center for Neurological Diseases (China)BeijingChina
| | - Hong Wan
- Beijing Neurosurgical InstituteCapital Medical UniversityFengtai, BeijingChina
| | - Shaodong Zhang
- Beijing Neurosurgical InstituteCapital Medical UniversityFengtai, BeijingChina
| | - Jie Feng
- Beijing Neurosurgical InstituteCapital Medical UniversityFengtai, BeijingChina,Beijing Cancer Institute, Beijing Institute for Brain DisordersCapital Medical UniversityBeijingChina
| | - Nan Ji
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina,National Clinical Research Center for Neurological Diseases (China)BeijingChina,Beijing Advanced Innovation Center for Big Data‐Based Precision Medicine, School of Engineering MedicineBeihang UniversityBeijingChina
| |
Collapse
|
11
|
Macrophages promote growth, migration and epithelial-mesenchymal transition of renal cell carcinoma by regulating GSDMD/IL-1β axis. Cytokine 2022; 159:156021. [DOI: 10.1016/j.cyto.2022.156021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022]
|
12
|
Isoda Y, Tanaka T, Suzuki H, Asano T, Nakamura T, Yanaka M, Handa S, Komatsu Y, Okuno S, Takahashi N, Okada Y, Kobayashi H, Li G, Nanamiya R, Goto N, Tateyama N, Yoshikawa T, Kaneko MK, Kato Y. Epitope Mapping of an Anti-Mouse CXCR6 Monoclonal Antibody (Cx 6Mab-1) Using the 2 × Alanine Scanning Method. Monoclon Antib Immunodiagn Immunother 2022; 41:275-278. [DOI: 10.1089/mab.2022.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Yu Isoda
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takuro Nakamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Miyuki Yanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Saori Handa
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yu Komatsu
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Saori Okuno
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nozomi Takahashi
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuki Okada
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiyori Kobayashi
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Guanjie Li
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ren Nanamiya
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nohara Goto
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nami Tateyama
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takeo Yoshikawa
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
13
|
Aguilar-Cazares D, Chavez-Dominguez R, Marroquin-Muciño M, Perez-Medina M, Benito-Lopez JJ, Camarena A, Rumbo-Nava U, Lopez-Gonzalez JS. The systemic-level repercussions of cancer-associated inflammation mediators produced in the tumor microenvironment. Front Endocrinol (Lausanne) 2022; 13:929572. [PMID: 36072935 PMCID: PMC9441602 DOI: 10.3389/fendo.2022.929572] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/01/2022] [Indexed: 12/15/2022] Open
Abstract
The tumor microenvironment is a dynamic, complex, and redundant network of interactions between tumor, immune, and stromal cells. In this intricate environment, cells communicate through membrane-membrane, ligand-receptor, exosome, soluble factors, and transporter interactions that govern cell fate. These interactions activate the diverse and superfluous signaling pathways involved in tumor promotion and progression and induce subtle changes in the functional activity of infiltrating immune cells. The immune response participates as a selective pressure in tumor development. In the early stages of tumor development, the immune response exerts anti-tumor activity, whereas during the advanced stages, the tumor establishes mechanisms to evade the immune response, eliciting a chronic inflammation process that shows a pro-tumor effect. The deregulated inflammatory state, in addition to acting locally, also triggers systemic inflammation that has repercussions in various organs and tissues that are distant from the tumor site, causing the emergence of various symptoms designated as paraneoplastic syndromes, which compromise the response to treatment, quality of life, and survival of cancer patients. Considering the tumor-host relationship as an integral and dynamic biological system, the chronic inflammation generated by the tumor is a communication mechanism among tissues and organs that is primarily orchestrated through different signals, such as cytokines, chemokines, growth factors, and exosomes, to provide the tumor with energetic components that allow it to continue proliferating. In this review, we aim to provide a succinct overview of the involvement of cancer-related inflammation at the local and systemic level throughout tumor development and the emergence of some paraneoplastic syndromes and their main clinical manifestations. In addition, the involvement of these signals throughout tumor development will be discussed based on the physiological/biological activities of innate and adaptive immune cells. These cellular interactions require a metabolic reprogramming program for the full activation of the various cells; thus, these requirements and the by-products released into the microenvironment will be considered. In addition, the systemic impact of cancer-related proinflammatory cytokines on the liver-as a critical organ that produces the leading inflammatory markers described to date-will be summarized. Finally, the contribution of cancer-related inflammation to the development of two paraneoplastic syndromes, myelopoiesis and cachexia, will be discussed.
Collapse
Affiliation(s)
- Dolores Aguilar-Cazares
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| | - Rodolfo Chavez-Dominguez
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
- Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Mario Marroquin-Muciño
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
- Laboratorio de Quimioterapia Experimental, Departamento de Bioquimica, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico City, Mexico
| | - Mario Perez-Medina
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
- Laboratorio de Quimioterapia Experimental, Departamento de Bioquimica, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico City, Mexico
| | - Jesus J. Benito-Lopez
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
- Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Angel Camarena
- Laboratorio de Human Leukocyte Antigen (HLA), Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| | - Uriel Rumbo-Nava
- Clinica de Neumo-Oncologia, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| | - Jose S. Lopez-Gonzalez
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| |
Collapse
|
14
|
Kitamura K, Suzuki H, Kaneko MK, Kato Y. Cx 6Mab-1: A Novel Anti-Mouse CXCR6 Monoclonal Antibody Established by N-Terminal Peptide Immunization. Monoclon Antib Immunodiagn Immunother 2022; 41:133-141. [PMID: 35736626 DOI: 10.1089/mab.2022.0010] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The CXC chemokine receptor 6 (CXCR6) is a member of the G protein-coupled receptor family that is highly expressed in helper T type 1 cells, natural killer cells, cytotoxic T lymphocytes, and various type of cells in tumor microenvironment (TME). CXCR6 has been proposed as a therapeutic target against tumors through regulation of the tumor TME. In this study, we developed specific and sensitive monoclonal antibodies (mAbs) for mouse CXCR6 (mCXCR6), which are useful for flow cytometry and Western blotting by N-terminal peptide immunization into rat. The established anti-mCXCR6 mAb, Cx6Mab-1 (rat IgG1, kappa), reacted with not only mCXCR6-overexpressed Chinese hamster ovary-K1 (CHO/mCXCR6) but also mCXCR6-endogenously expressed cell lines, such as P388 (mouse lymphoid neoplasm) and J774-1 (mouse macrophage-like) through flow cytometry. Kinetic analyses using flow cytometry indicated that the dissociation constants (KD) of Cx6Mab-1 for CHO/mCXCR6, P388, and J774-1 cells were 1.7 × 10-9 M, 3.4 × 10-7 M, and 3.8 × 10-7 M, respectively. Furthermore, Cx6Mab-1 could detect endogenous mCXCR6 in P388 and J774-1 cells by Western blotting. These results indicated that Cx6Mab-1 is useful for detecting mCXCR6 by flow cytometry and Western blotting, and provides a possibility for targeting CXCR6-expressing cells in vivo experiments.
Collapse
Affiliation(s)
- Kaishi Kitamura
- Department of Molecular Pharmacology and Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology and Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology and Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
15
|
Xiong X, Liao X, Qiu S, Xu H, Zhang S, Wang S, Ai J, Yang L. CXCL8 in Tumor Biology and Its Implications for Clinical Translation. Front Mol Biosci 2022; 9:723846. [PMID: 35372515 PMCID: PMC8965068 DOI: 10.3389/fmolb.2022.723846] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 02/21/2022] [Indexed: 12/13/2022] Open
Abstract
The chemokine CXCL8 has been found to play an important role in tumor progression in recent years. CXCL8 activates multiple intracellular signaling pathways by binding to its receptors (CXCR1/2), and plays dual pro-tumorigenic roles in the tumor microenvironment (TME) including directly promoting tumor survival and affecting components of TME to indirectly facilitate tumor progression, which include facilitating tumor cell proliferation and epithelial-to-mesenchymal transition (EMT), pro-angiogenesis, and inhibit anti-tumor immunity. More recently, clinical trials indicate that CXCL8 can act as an independently predictive biomarker in patients receiving immune checkpoint inhibitions (ICIs) therapy. Preclinical studies also suggest that combined CXCL8 blockade and ICIs therapy can enhance the anti-tumor efficacy, and several clinical trials are being conducted to evaluate this therapy modality.
Collapse
Affiliation(s)
- Xingyu Xiong
- Department of Urology, National Clinical Research Center for Geriatrics, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China
| | - Xinyang Liao
- Department of Urology, National Clinical Research Center for Geriatrics, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China
| | - Shi Qiu
- Department of Urology, National Clinical Research Center for Geriatrics, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China
- Center of Biomedical Big Data, West China Hospital, Sichuan University, Chengdu, China
| | - Hang Xu
- Department of Urology, National Clinical Research Center for Geriatrics, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China
| | - Shiyu Zhang
- Department of Urology, National Clinical Research Center for Geriatrics, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China
| | - Sheng Wang
- Department of Urology, National Clinical Research Center for Geriatrics, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China
| | - Jianzhong Ai
- Department of Urology, National Clinical Research Center for Geriatrics, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Jianzhong Ai, ; Lu Yang,
| | - Lu Yang
- Department of Urology, National Clinical Research Center for Geriatrics, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Jianzhong Ai, ; Lu Yang,
| |
Collapse
|
16
|
Synnott NC, Poeta ML, Costantini M, Pfeiffer RM, Li M, Golubeva Y, Lawrence S, Mutreja K, Amoreo C, Dabrowska M, Simone G, Pescarmona E, Lenz P, Olanich M, Duggan M, Abubakar M, Fazio VM, Gallucci M, Sentinelli S, Landi MT. Characterizing the tumor microenvironment in rare renal cancer histological types. J Pathol Clin Res 2022; 8:88-98. [PMID: 34618413 PMCID: PMC8682943 DOI: 10.1002/cjp2.241] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/03/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022]
Abstract
The tumor microenvironment (TME), including immune cells, cancer-associated fibroblasts, endothelial cells, adjacent normal cells, and others, plays a crucial role in influencing tumor behavior and progression. Here, we characterized the TME in 83 primary renal tumors and matched metastatic or recurrence tissue samples (n = 15) from papillary renal cell carcinoma (pRCC) types 1 (n = 20) and 2 (n = 49), collecting duct carcinomas (CDC; n = 14), and high-grade urothelial carcinomas (HGUC; n = 5). We investigated 10 different markers of immune infiltration, vasculature, cell proliferation, and epithelial-to-mesenchymal transition by using machine learning image analysis in conjunction with immunohistochemistry. Marker expression was compared by Mann-Whitney and Kruskal-Wallis tests and correlations across markers using Spearman's rank correlation coefficient. Multivariable Poisson regression analysis was used to compare marker expression between histological types, while accounting for variation in tissue size. Several immune markers showed different rates of expression across histological types of renal carcinoma. Using pRCC1 as reference, the incidence rate ratio (IRR) of CD3+ T cells (IRR [95% confidence interval, CI] = 2.48 [1.53-4.01]) and CD20+ B cells (IRR [95% CI] = 4.38 [1.22-5.58]) was statistically significantly higher in CDC. In contrast, CD68+ macrophages predominated in pRCC1 (IRR [95% CI] = 2.35 [1.42-3.9]). Spatial analysis revealed CD3+ T-cell and CD20+ B-cell expressions in CDC to be higher at the proximal (p < 0.0001) and distal (p < 0.0001) tumor periphery than within the central tumor core. In contrast, expression of CD68+ macrophages in pRCC2 was higher in the tumor center compared to the proximal (p = 0.0451) tumor periphery and pRCC1 showed a distance-dependent reduction, from the central tumor, in CD68+ macrophages with the lowest expression of CD68 marker at the distal tumor periphery (p = 0.004). This study provides novel insights into the TME of rare kidney cancer types, which are often understudied. Our findings of differences in marker expression and localization by histological subtype could have implications for tumor progression and response to immunotherapies or other targeted therapies.
Collapse
Affiliation(s)
- Naoise C Synnott
- Division of Cancer Epidemiology and Genetics, National Cancer InstituteNational Institutes of HealthRockvilleMDUSA
- Cancer Prevention Fellowship Program, Division of Cancer Prevention, National Cancer InstituteNational Institutes of HealthRockvilleMDUSA
| | - Maria Luana Poeta
- Department of Bioscience, Biotechnology and BiopharmaceuticsUniversity of BariBariItaly
| | - Manuela Costantini
- Department of UrologyIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Ruth M Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer InstituteNational Institutes of HealthRockvilleMDUSA
| | - Mengying Li
- Division of Cancer Epidemiology and Genetics, National Cancer InstituteNational Institutes of HealthRockvilleMDUSA
| | - Yelena Golubeva
- Cancer Genomics Research Laboratory, Leidos Biomedical ResearchFrederick National Laboratory for Cancer ResearchFrederickMDUSA
| | - Scott Lawrence
- Cancer Genomics Research Laboratory, Leidos Biomedical ResearchFrederick National Laboratory for Cancer ResearchFrederickMDUSA
| | - Karun Mutreja
- Cancer Genomics Research Laboratory, Leidos Biomedical ResearchFrederick National Laboratory for Cancer ResearchFrederickMDUSA
| | - Carla Amoreo
- Department of PathologyIRCCS Regina Elena National Cancer InstituteRomeItaly
| | | | - Giuseppe Simone
- Department of UrologyIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Edoardo Pescarmona
- Department of PathologyIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Petra Lenz
- Cancer Genomics Research Laboratory, Leidos Biomedical ResearchFrederick National Laboratory for Cancer ResearchFrederickMDUSA
| | - Mary Olanich
- Cancer Genomics Research Laboratory, Leidos Biomedical ResearchFrederick National Laboratory for Cancer ResearchFrederickMDUSA
| | - Maire Duggan
- Department of Pathology and Laboratory Medicine, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Mustapha Abubakar
- Division of Cancer Epidemiology and Genetics, National Cancer InstituteNational Institutes of HealthRockvilleMDUSA
| | - Vito Michele Fazio
- Laboratory of Molecular Medicine and BiotechnologyUniversity Campus Bio‐Medico of RomeRomeItaly
| | | | - Steno Sentinelli
- Department of PathologyIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer InstituteNational Institutes of HealthRockvilleMDUSA
| |
Collapse
|
17
|
A novel prognostic cancer-related lncRNA signature in papillary renal cell carcinoma. Cancer Cell Int 2021; 21:545. [PMID: 34663322 PMCID: PMC8525017 DOI: 10.1186/s12935-021-02247-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/05/2021] [Indexed: 01/20/2023] Open
Abstract
Background Papillary renal cell carcinoma (pRCC) ranks second in renal cell carcinoma and the prognosis of pRCC remains poor. Here, we aimed to screen and identify a novel prognostic cancer-related lncRNA signature in pRCC. Methods The RNA-seq profile and clinical feature of pRCC cases were downloaded from TCGA database. Significant cancer-related lncRNAs were obtained from the Immlnc database. Differentially expressed cancer-related lncRNAs (DECRLs) in pRCC were screened for further analysis. Cox regression report was implemented to identify prognostic cancer-related lncRNAs and establish a prognostic risk model, and ROC curve analysis was used to evaluate its precision. The correlation between RP11-63A11.1 and clinical characteristics was further analyzed. Finally, the expression level and role of RP11-63A11.1 were studied in vitro. Results A total of 367 DECRLs were finally screened and 26 prognostic cancer-related lncRNAs were identified. Among them, ten lncRNAs (RP11-573D15.8, LINC01317, RNF144A-AS1, TFAP2A-AS1, LINC00702, GAS6-AS1, RP11-400K9.4, LUCAT1, RP11-63A11.1, and RP11-156L14.1) were independently associated with prognosis of pRCC. These ten lncRNAs were incorporated into a prognostic risk model. In accordance with the median value of the riskscore, pRCC cases were separated into high and low risk groups. Survival analysis indicated that there was a significant difference on overall survival (OS) rate between the two groups. The area under curve (AUC) in different years indicated that the model was of high efficiency in prognosis prediction. RP11-63A11.1 was mainly expressed in renal tissues and it correlated with the tumor stage, T, M, N classifications, OS, PFS, and DSS of pRCC patients. Consistent with the expression in pRCC tissue samples, RP11-63A11.1 was also down-regulated in pRCC cells. More importantly, up-regulation of RP11-63A11.1 attenuated cell survival and induced apoptosis. Conclusions Ten cancer-related lncRNAs were incorporated into a powerful model for prognosis evaluation. RP11-63A11.1 functioned as a cancer suppressor in pRCC and it might be a potential therapeutic target for treating pRCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02247-6.
Collapse
|
18
|
Huggins DN, LaRue RS, Wang Y, Knutson TP, Xu Y, Williams JW, Schwertfeger KL. Characterizing macrophage diversity in metastasis-bearing lungs reveals a lipid-associated macrophage subset. Cancer Res 2021; 81:5284-5295. [PMID: 34389631 DOI: 10.1158/0008-5472.can-21-0101] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 07/15/2021] [Accepted: 08/12/2021] [Indexed: 11/16/2022]
Abstract
While macrophages are among the most abundant immune cell type found within primary and metastatic mammary tumors, how their complexity and heterogeneity change with metastatic progression remains unknown. Here, macrophages were isolated from the lungs of mice bearing orthotopic mammary tumors for single-cell RNA sequencing. Seven distinct macrophage clusters were identified, including populations exhibiting enhanced differential expression of genes related to antigen presentation (H2-Aa, Cd74), cell cycle (Stmn1, Cdk1), and interferon signaling (Isg15, Ifitm3). Interestingly, one cluster demonstrated a profile concordant with lipid-associated macrophages (Lgals3, Trem2). Compared to non-tumor-bearing controls, the number of these cells per gram of tissue was significantly increased in lungs from tumor-bearing mice, with the vast majority co-staining positively with the alveolar macrophage marker Siglec-F. Enrichment of genes implicated in pathways related to lipid metabolism as well extracellular matrix remodeling and immunosuppression was observed. Additionally, these cells displayed reduced capacity for phagocytosis. Collectively, these findings highlight the diversity of macrophages present within metastatic lesions and characterize a lipid-associated macrophage subset previously unidentified in lung metastases.
Collapse
Affiliation(s)
- Danielle N Huggins
- Department of Laboratory Medicine and Pathology, University of Minnesota
| | - Rebecca S LaRue
- Genetics, Cell Biology and Development, University of Minnesota
| | - Ying Wang
- Masonic Cancer Center, University of Minnesota
| | | | | | | | | |
Collapse
|
19
|
Abstract
Today, cancer is one of the leading causes of death worldwide. Lately, cytokine and chemokine imbalances have gained attention amongst different involved pathways in cancer development and attracted much consideration in cancer research. CXCL16, as a member of the CXC subgroup of chemokines, has been attributed to be responsible for immune cell infiltration into the tumour microenvironment. The aberrant expression of CXCL16 has been observed in various cancers. This chemokine has been shown to play a conflicting role in tumour development through inducing pro-inflammatory conditions. The infiltration of various immune and non-immune cells such as lymphocytes, cancer-associated fibroblasts and myeloid-derived suppressor cells by CXCL16 into the tumour microenvironment has complicated the tumour fate. Given this diverse role of CXCL16 in cancer, a better understanding of its function might build-up our knowledge about tumour biology. Hence, this study aimed to review the impact of CXCL16 in cancer and explored its therapeutic application. Consideration of these findings might provide opportunities to achieve novel approaches in cancer treatment and its prognosis.
Collapse
|
20
|
The Role of CXCL16 in the Pathogenesis of Cancer and Other Diseases. Int J Mol Sci 2021; 22:ijms22073490. [PMID: 33800554 PMCID: PMC8036711 DOI: 10.3390/ijms22073490] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/15/2022] Open
Abstract
CXCL16 is a chemotactic cytokine belonging to the α-chemokine subfamily. It plays a significant role in the progression of cancer, as well as the course of atherosclerosis, renal fibrosis, and non-alcoholic fatty liver disease (NAFLD). Since there has been no review paper discussing the importance of this chemokine in various diseases, we have collected all available knowledge about CXCL16 in this review. In the first part of the paper, we discuss background information about CXCL16 and its receptor, CXCR6. Next, we focus on the importance of CXCL16 in a variety of diseases, with an emphasis on cancer. We discuss the role of CXCL16 in tumor cell proliferation, migration, invasion, and metastasis. Next, we describe the role of CXCL16 in the tumor microenvironment, including involvement in angiogenesis, and its significance in tumor-associated cells (cancer associated fibroblasts (CAF), microglia, tumor-associated macrophages (TAM), tumor-associated neutrophils (TAN), mesenchymal stem cells (MSC), myeloid suppressor cells (MDSC), and regulatory T cells (Treg)). Finally, we focus on the antitumor properties of CXCL16, which are mainly caused by natural killer T (NKT) cells. At the end of the article, we summarize the importance of CXCL16 in cancer therapy.
Collapse
|
21
|
Korbecki J, Kojder K, Kapczuk P, Kupnicka P, Gawrońska-Szklarz B, Gutowska I, Chlubek D, Baranowska-Bosiacka I. The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors-A Review of Literature. Int J Mol Sci 2021; 22:ijms22020843. [PMID: 33467722 PMCID: PMC7830156 DOI: 10.3390/ijms22020843] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 12/26/2022] Open
Abstract
Hypoxia is an integral component of the tumor microenvironment. Either as chronic or cycling hypoxia, it exerts a similar effect on cancer processes by activating hypoxia-inducible factor-1 (HIF-1) and nuclear factor (NF-κB), with cycling hypoxia showing a stronger proinflammatory influence. One of the systems affected by hypoxia is the CXC chemokine system. This paper reviews all available information on hypoxia-induced changes in the expression of all CXC chemokines (CXCL1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8 (IL-8), CXCL9, CXCL10, CXCL11, CXCL12 (SDF-1), CXCL13, CXCL14, CXCL15, CXCL16, CXCL17) as well as CXC chemokine receptors—CXCR1, CXCR2, CXCR3, CXCR4, CXCR5, CXCR6, CXCR7 and CXCR8. First, we present basic information on the effect of these chemoattractant cytokines on cancer processes. We then discuss the effect of hypoxia-induced changes on CXC chemokine expression on the angiogenesis, lymphangiogenesis and recruitment of various cells to the tumor niche, including myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), regulatory T cells (Tregs) and tumor-infiltrating lymphocytes (TILs). Finally, the review summarizes data on the use of drugs targeting the CXC chemokine system in cancer therapies.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (P.K.); (P.K.); (D.C.)
| | - Klaudyna Kojder
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-281 Szczecin, Poland;
| | - Patrycja Kapczuk
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (P.K.); (P.K.); (D.C.)
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (P.K.); (P.K.); (D.C.)
| | - Barbara Gawrońska-Szklarz
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland;
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (P.K.); (P.K.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (P.K.); (P.K.); (D.C.)
- Correspondence: ; Tel.: +48-914661515
| |
Collapse
|
22
|
Bian W, Chen W, Jiang X, Qu H, Jiang J, Yang J, Liang X, Zhao B, Sun Y, Zhang C. Downregulation of Long Non-coding RNA Nuclear Paraspeckle Assembly Transcript 1 Inhibits MEG-01 Differentiation and Platelet-Like Particles Activity. Front Genet 2020; 11:571467. [PMID: 33193674 PMCID: PMC7596361 DOI: 10.3389/fgene.2020.571467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/22/2020] [Indexed: 01/22/2023] Open
Abstract
Platelets are derived from megakaryocytes and play an important role in blood coagulation. By using high throughput sequencing, we have found that the long non-coding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) is abundant in platelets (GEO ID: 200097348). However, little is known about its role in regulating megakaryocyte differentiation and platelet activity. This study aims to clarify the effect of NEAT1 on MEG-01 differentiation and platelet-like particle (PLP) activity. NEAT1 in MEG-01 cells was knocked down by siRNA transfection. The adhesion of MEG-01 and PLP to collagen-coated coverslips was observed under a fluorescence microscope. Flow cytometry was used to investigate cell apoptosis, cell cycle, the levels of D41/CD42b on MEG-01 cells and CD62P on PLPs. Quantitative real-time polymerase chain reaction was used to detect NEAT1 and IL-8 expression levels. Western blot was used to measure the protein levels of Bcl-2, Bax, cleaved caspase-3, and IL-8. RNA-binding protein immunoprecipitation was used to detect the interaction of NEAT1 and splicing factor proline/glutamine-rich (SFPQ). Results showed that NEAT1 knockdown decreased the adhesion ability of thrombin-stimulated MEG-01 and PLP. The expression of CD62P on PLPs and CD41/CD42b on MEG-01 cells was inhibited by NEAT1 knockdown. In addition, NEAT1 knockdown inhibited cell apoptosis with increased Bcl2/Bax ratio and decreased cleaved caspase-3, and reduced the percentage of cells in the G0/G1 phase. Meanwhile, NEAT1 knockdown inhibited the expression of IL-8. A strong interaction of NEAT1 and SFPQ, a transcriptional repressor of IL-8, was identified. NEAT1 knockdown reduced the interaction between SFPQ and NEAT1.The results suggest that lncRNA NEAT1 knockdown decreases MEG-01 differentiation, PLP activity, and IL-8 level. The results also indicate that the regulation of NEAT1 on IL-8 may be realized via a direct interaction between NEAT1 and SFPQ.
Collapse
Affiliation(s)
- Weihua Bian
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Wangping Chen
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoli Jiang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Huiqing Qu
- Department of Blood Transfusion, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Jing Jiang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Jinfu Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xinyue Liang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Bingrui Zhao
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yeying Sun
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Chunxiang Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|
23
|
Zhang X, Tretiakova M. Biphasic Squamoid Alveolar Renal Cell Carcinoma of the Kidney Involved by Atypical CD5-Positive B-Cells. Int J Surg Pathol 2020; 29:427-432. [PMID: 32909465 DOI: 10.1177/1066896920957089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biphasic squamoid alveolar renal cell carcinoma (BSARCC) is a recently described kidney cancer entity with <60 published cases so far. Some unique features of BSARCC include distinct squamoid and alveolar morphology forming glomeruloid configurations and 2 types of tumor cells with different immunoprofiles. Although the mechanism is unknown, neutrophils and cellular materials engulfed by larger tumor cells (described as "emperipolesis") are observed in all reported cases including the current one. In this article, we report a case of a 70-year-old man who presented with an incidental renal mass during workup for immunoglobulin M monoclonal gammopathy of unknown significance and cold agglutinin autoimmune hemolytic anemia. A detailed pathologic evaluation and immunohistochemical studies revealed BSARCC colliding with atypical CD5+ monoclonal B-cells.
Collapse
|
24
|
Simon AG, Esser LK, Ellinger J, Branchi V, Tolkach Y, Müller S, Ritter M, Kristiansen G, Muders MH, Mayr T, Toma MI. Targeting glycolysis with 2-deoxy-D-glucose sensitizes primary cell cultures of renal cell carcinoma to tyrosine kinase inhibitors. J Cancer Res Clin Oncol 2020; 146:2255-2265. [PMID: 32533404 DOI: 10.1007/s00432-020-03278-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 05/30/2020] [Indexed: 12/23/2022]
Abstract
PURPOSE To investigate the synergistic effect of glycolysis inhibition on therapy answer to tyrosine kinase inhibitors in renal carcinoma. METHODS Primary cell cultures from 33 renal tumors including clear cell RCC (ccRCC), papillary RCC and the rare subtype chromophobe RCC as well as two metastases of ccRCC were obtained and cultivated. The patient-derived cells were verified by immunohistochemistry. CcRCC cells were further examined by exon sequencing of the von Hippel-Lindau gene (VHL) and by RNA-sequencing. Next, cell cultures of all subtypes of RCC were exposed to increasing doses of various tyrosine kinase inhibitors (axitinib, cabozantinib and pazopanib) and the glycolysis inhibitor 2-deoxy-D-glucose, alone or combined. CellTiter-Glo® Luminescence assay and Crystal Violet staining were used to assess the inhibition of glycolysis and the viability of the cultured primary cells. RESULTS The cells expressed characteristic tissue markers and, in case of ccRCC cultures, the VHL status of the tumor they derived from. An upregulation of HK1, PFKP and SLC2A1 was observed, while components of the respiratory chain were downregulated, confirming a metabolic shift towards aerobic glycolysis. The tumors displayed variable individual responses for the therapeutics. All subtypes of RCC were susceptible to cabozantinib treatment indicated by decreased proliferation. Adding 2-deoxy-D-glucose to tyrosine kinase inhibitors decreased ATP production and increased the susceptibility of ccRCC to pazopanib treatment. CONCLUSION This study presents a valuable tool to cultivate even uncommon and rare renal cancer subtypes and allows testing of targeted therapies as a personalized approach as well as testing new therapies such as glycolysis inhibition in an in vitro model.
Collapse
Affiliation(s)
- Adrian Georg Simon
- Department of Pathology, Institute of Pathology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Laura Kristin Esser
- Department of Pathology, Institute of Pathology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Jörg Ellinger
- Department of Urology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Vittorio Branchi
- Department of General, Visceral, Thoracic and Vascular Surgery, Institute of General, Visceral, Thoracic and Vascular Surgery, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Yuri Tolkach
- Department of Pathology, Institute of Pathology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Stefan Müller
- Department of Urology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Manuel Ritter
- Department of Urology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Glen Kristiansen
- Department of Pathology, Institute of Pathology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Michael Helmut Muders
- Department of Pathology, Institute of Pathology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Thomas Mayr
- Department of Pathology, Institute of Pathology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Marieta Ioana Toma
- Department of Pathology, Institute of Pathology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
25
|
López González M, van de Ven R, de Haan H, van Eck van der Sluijs J, Dong W, van Beusechem VW, de Gruijl TD. Oncolytic adenovirus ORCA-010 increases the type 1 T cell stimulatory capacity of melanoma-conditioned dendritic cells. Clin Exp Immunol 2020; 201:145-160. [PMID: 32301504 PMCID: PMC7366753 DOI: 10.1111/cei.13442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/16/2022] Open
Abstract
Immune checkpoint blockade has resulted in durable responses in patients with metastatic melanoma, but only in a fraction of treated patients. For immune checkpoint inhibitors (ICI) to be effective, sufficient infiltration with tumor‐reactive T cells is essential. Oncolytic viruses (OV) selectively replicate in and lyse tumor cells and so induce an immunogenic form of cell death, providing at once a source of tumor‐associated (neo)antigens and of danger signals that together induce effective T cell immunity and tumor infiltration. Melanoma‐associated suppression of dendritic cell (DC) differentiation effectively hampers OV‐ or immune checkpoint inhibitor (ICI)‐induced anti‐tumor immunity, due to a consequent inability to prime and attract anti‐tumor effector T cells. Here, we set out to study the effect of ORCA‐010, a clinical stage oncolytic adenovirus, on DC differentiation and functionality in the context of human melanoma. In melanoma and monocyte co‐cultures, employing a panel of five melanoma cell lines with varying origins and oncogenic mutation status, we observed clear suppression of DC development with apparent skewing of monocyte differentiation to a more M2‐macrophage‐like state. We established the ability of ORCA‐010 to productively infect and lyse the melanoma cells. Moreover, although ORCA‐010 was unable to restore DC differentiation, it induced activation and an increased co‐stimulatory capacity of monocyte‐derived antigen‐presenting cells. Their subsequent ability to prime effector T cells with a type I cytokine profile was significantly increased in an allogeneic mixed leukocyte reaction. Our findings suggest that ORCA‐010 is a valuable immunotherapeutic agent for melanoma.
Collapse
Affiliation(s)
- M López González
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - R van de Ven
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands.,Otolaryngology/Head-Neck Surgery, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - H de Haan
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - J van Eck van der Sluijs
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - W Dong
- ORCA Therapeutics, 's-Hertogenbosch, the Netherlands
| | - V W van Beusechem
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands.,ORCA Therapeutics, 's-Hertogenbosch, the Netherlands
| | - T D de Gruijl
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| |
Collapse
|
26
|
Shi JW, Yang HL, Fan DX, Yang SL, Qiu XM, Wang Y, Lai ZZ, Ha SY, Ruan LY, Shen HH, Zhou WJ, Li MQ. The role of CXC chemokine ligand 16 in physiological and pathological pregnancies. Am J Reprod Immunol 2020; 83:e13223. [PMID: 31972050 DOI: 10.1111/aji.13223] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 12/15/2022] Open
Abstract
The survival and development of a semi-allogeneic fetus during pregnancy require the involvement of a series of cytokines and immune cells. Chemokines are a type of special cytokine those were originally described as having a role in leukocyte trafficking. CXC chemokine ligand (CXCL) 16 is a member of the chemokine family, and CXC chemokine receptor (CXCR) 6 is its sole receptor. Emerging evidence has shown that CXCL16/CXCR6 is expressed at the maternal-fetal interface, by cell types that include trophoblast cells, decidual stroma cells, and decidual immune cells (eg, monocytes, γδT cells, and natural killer T (NKT) cells). The regulation of expression of CXCL16 is quite complex, and this process involves a multitude of factors. CXCL16 exerts a critical role in the establishment of a successful pregnancy through a series of molecular interactions at the maternal-fetal interface. However, an abnormal expression of CXCL16 is associated with certain pathological states associated with pregnancy, including recurrent miscarriage, pre-eclampsia, and gestational diabetes mellitus (GDM). In the present review, the expression and pleiotropic roles of CXCL16 under conditions of physiological and pathological pregnancy are systematically discussed.
Collapse
Affiliation(s)
- Jia-Wei Shi
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Hui-Li Yang
- Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Deng-Xuan Fan
- Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Shao-Liang Yang
- Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Xue-Min Qiu
- Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Yan Wang
- Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Zhen-Zhen Lai
- Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Si-Yao Ha
- Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Lu-Yu Ruan
- Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Hui-Hui Shen
- Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Wen-Jie Zhou
- Center of Reproductive Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming-Qing Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Guerrini V, Gennaro ML. Foam Cells: One Size Doesn't Fit All. Trends Immunol 2019; 40:1163-1179. [PMID: 31732284 DOI: 10.1016/j.it.2019.10.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/10/2019] [Accepted: 10/12/2019] [Indexed: 02/07/2023]
Abstract
Chronic inflammation in many infectious and metabolic diseases, and some cancers, is accompanied by the presence of foam cells. These cells form when the intracellular lipid content of macrophages exceeds their capacity to maintain lipid homeostasis. Concurrently, critical macrophage immune functions are diminished. Current paradigms of foam cell formation derive from studies of atherosclerosis. However, recent studies indicate that the mechanisms of foam cell biogenesis during tuberculosis differ from those operating during atherogenesis. Here, we review how foam cell formation and function vary with disease context. Since foam cells are therapeutic targets in atherosclerosis, further research on the disease-specific mechanisms of foam cell biogenesis and function is needed to explore the therapeutic consequences of targeting these cells in other diseases.
Collapse
Affiliation(s)
- Valentina Guerrini
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Maria Laura Gennaro
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA.
| |
Collapse
|
28
|
More Than an Adipokine: The Complex Roles of Chemerin Signaling in Cancer. Int J Mol Sci 2019; 20:ijms20194778. [PMID: 31561459 PMCID: PMC6801800 DOI: 10.3390/ijms20194778] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 12/24/2022] Open
Abstract
Chemerin is widely recognized as an adipokine, with diverse biological roles in cellular differentiation and metabolism, as well as a leukocyte chemoattractant. Research investigating the role of chemerin in the obesity-cancer relationship has provided evidence both for pro- and anti-cancer effects. The tumor-promoting effects of chemerin primarily involve direct effects on migration, invasion, and metastasis as well as growth and proliferation of cancer cells. Chemerin can also promote tumor growth via the recruitment of tumor-supporting mesenchymal stromal cells and stimulation of angiogenesis pathways in endothelial cells. In contrast, the majority of evidence supports that the tumor-suppressing effects of chemerin are immune-mediated and result in a shift from immunosuppressive to immunogenic cell populations within the tumor microenvironment. Systemic chemerin and chemerin produced within the tumor microenvironment may contribute to these effects via signaling through CMKLR1 (chemerin1), GPR1 (chemerin2), and CCLR2 on target cells. As such, inhibition or activation of chemerin signaling could be beneficial as a therapeutic approach depending on the type of cancer. Additional studies are required to determine if obesity influences cancer initiation or progression through increased adipose tissue production of chemerin and/or altered chemerin processing that leads to changes in chemerin signaling in the tumor microenvironment.
Collapse
|
29
|
Krawczyk KM, Nilsson H, Nyström J, Lindgren D, Leandersson K, Swärd K, Johansson ME. Localization and Regulation of Polymeric Ig Receptor in Healthy and Diseased Human Kidney. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1933-1944. [PMID: 31404540 DOI: 10.1016/j.ajpath.2019.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/29/2019] [Accepted: 06/28/2019] [Indexed: 12/11/2022]
Abstract
The polymeric Ig receptor (PIgR) constitutes an important part of the immune system by mediating transcytosis of dimeric IgA into mucosal fluids. Although well studied in organs such as the intestine, the regulation and localization of PIgR in human kidney are incompletely characterized. Herein, using immunohistochemistry, we show that in healthy human kidneys, PIgR is expressed by the progenitor-like tubular scattered cells of the proximal tubules and by parietal epithelial cells of glomeruli. We further show that proximal tubular expression of PIgR becomes widespread during kidney disease, correlating to elevated levels of urinary secretory IgA. Urinary secretory IgA levels also correlated to the degree of tubular fibrosis, plasma creatinine, and urea levels. In addition, primary tubular cells were cultured to study the function and regulation of PIgR in vitro. Cellular PIgR expression was induced by conditioned medium from activated human leukocytes, as well as by inflammatory cytokines, whereas transforming growth factor-β1 caused decreased expression. Furthermore, interferon-γ increased the transcytosis of dimeric IgA in cultured tubular cells. Finally, a correlation study of mRNA data from the Genotype-Tissue Expression portal indicated that PIGR mRNA expression in kidney correlates to the expression of TNFSF13, a cytokine involved in plasma cell class switching to IgA. These results indicate that PIgR induction is an integral part of the injury phenotype of renal tubular cells.
Collapse
Affiliation(s)
- Krzysztof M Krawczyk
- Center for Molecular Pathology, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Helén Nilsson
- Center for Molecular Pathology, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Jenny Nyström
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - David Lindgren
- Center for Translational Cancer Research, the Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Karin Leandersson
- Center for Cancer Immunology, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Karl Swärd
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Martin E Johansson
- Center for Molecular Pathology, Department of Translational Medicine, Lund University, Malmö, Sweden; Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|