1
|
Jacqueline C, Finn OJ. Antibodies specific for disease-associated antigens (DAA) expressed in non-malignant diseases reveal potential new tumor-associated antigens (TAA) for immunotherapy or immunoprevention. Semin Immunol 2020; 47:101394. [PMID: 32273212 DOI: 10.1016/j.smim.2020.101394] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Immune responses to a large number of mutated and non-mutated tumor antigens have been studied in an attempt to unravel the highly complex immune response to cancer. Better understanding of both the effectors and the targets of successful immunosurveillance can inform various immunotherapeutic approaches, which can strengthen or replace natural immunosurveillance that a tumor has managed to escape. In this review we highlight targets of antibodies generated in the context of diseases other than cancer, such as asthma, allergies, autoimmune disorders, inflammation and infections, where the antibody presence correlates either with an increased or a reduced lifetime risk of cancer. We focus on their target antigens, self-molecules abnormally expressed on diseased cells or cross-reactive with exogenous antigens and found on cancer cells as tumor associated antigens (TAA). We refer to them as disease-associated antigens (DAA). We review 4 distinct categories of antibodies according to their target DAA, their origin and their reported impact on cancer risk: natural antibodies, autoantibodies, long-term memory antibodies and allergy-associated antibodies. Increased understanding and focus on their specific targets could enable a more rational choice of antigens for both therapeutic and preventative cancer vaccines and other more effective and less toxic cancer immunotherapies.
Collapse
Affiliation(s)
- Camille Jacqueline
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Olivera J Finn
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
2
|
Díaz-Zaragoza M, Hernández-Ávila R, Viedma-Rodríguez R, Arenas-Aranda D, Ostoa-Saloma P. Natural and adaptive IgM antibodies in the recognition of tumor-associated antigens of breast cancer (Review). Oncol Rep 2015; 34:1106-14. [PMID: 26133558 PMCID: PMC4530904 DOI: 10.3892/or.2015.4095] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 05/27/2015] [Indexed: 12/31/2022] Open
Abstract
For early detection of cancer, education and screening are important, but the most critical factor is the development of early diagnostic tools. Methods that recognize the warning signs of cancer and take prompt action lead to an early diagnosis; simple tests can identify individuals in a healthy population who have the disease but have not developed symptoms. Early detection of cancer is significant and is one of the most promising approaches by which to reduce the growing cancer burden and guide curative treatment. The early diagnosis of patients with breast cancer is challenging, since it is the most common cancer in women worldwide. Despite the advent of mammography in screening for breast cancer, low-resource, low-cost alternative tools must be implemented to complement mammography findings. IgM is part of the first line of defense of an organism and is responsible for recognizing and eliminating infectious particles and removing transformed cells. Most studies on breast cancer have focused on the development of IgG-like molecules as biomarkers or as a treatment for the advanced stages of cancer, but autoantibodies (IgM) and tumor-associated antigens (proteins or carbohydrates with aberrant structures) have not been examined as early diagnostic tools for breast cancer. The present review summarizes the function of natural and adaptive IgM in eliminating cancer cells in the early stages of pathology and their value as early diagnostic tools. IgM, as a component of the immune system, is being used to identify tumor-associated antigens and tumor-associated carbohydrate antigens.
Collapse
Affiliation(s)
- Mariana Díaz-Zaragoza
- Departamento de Immunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México, DF, México
| | - Ricardo Hernández-Ávila
- Departamento de Immunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México, DF, México
| | - Rubí Viedma-Rodríguez
- Unidad de Investigación Médica en Genética Humana, Centro Médico Nacional, Siglo XXI, Instituto Mexicano del Seguro Social, 06729 México, DF, México
| | - Diego Arenas-Aranda
- Unidad de Investigación Médica en Genética Humana, Centro Médico Nacional, Siglo XXI, Instituto Mexicano del Seguro Social, 06729 México, DF, México
| | - Pedro Ostoa-Saloma
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México, DF, México
| |
Collapse
|
3
|
Díaz-Zaragoza M, Hernández R, Ostoa-Saloma P. 2D immunoblots show differential response of mouse IgG and IgM antibodies to antigens of mammary carcinoma 4 T1 cells. Cancer Cell Int 2014; 14:9. [PMID: 24467921 PMCID: PMC3933067 DOI: 10.1186/1475-2867-14-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 01/24/2014] [Indexed: 01/29/2023] Open
Abstract
Background Immunosuppression in breast cancer has been reported in women and in the highly metastatic mouse mammary tumor model 4 T1. The immunosuppressive environment complicates the use of the humoral response against the tumor as an immunodiagnostic tool. IgM has not been used in immunodiagnostic in part because its antitumor responses, both innate and adaptive, have not been studied in function of time in breast cancer. We show a new approach to analyzing the mouse humoral immune response, and compare the evolution with time of IgG and IgM responses against the antigens of 4 T1 cells. Methods The study is based on 2-dimensional immunoblotting detection of antigens from 4 T1 cells by the IgG and IgM antibodies in the serum of female mice injected with 4 T1 cells. Results There was a high variability in the intra-and inter-mouse response. Variability in the IgM response was manifested as a pattern of spots that could become a multibinomial variable of 0 and 1, which could represent a signature of the immune response. Different numbers of spots was found in the IgG and IgM responses from week 1 to 5. On average, the IgM had more but the IgG response decrease with the time. The natural IgM at t = 0 responds stronger than w1; the adaptive response of both IgM and IgG were elicited where, with the former being stronger better than the latter. Antigens that are recognized by some female mice in the first week are also recognized by other female mice at time 0. Contamination of the natural IgM makes difficult use the adaptive IgM as a tool for immunodiagnostic. Conclusions IgM and IgG response varied with the time and individuals. Spot variation in 2D pattern for the natural IgM could be expressed as a binomial signature, which opens up the way to correlate a particular pattern with resistance or susceptibility. This uncovers a battery of IgMs for each individual to confront cancer or infections. The possibility to differentiate between adaptive IgM antibodies from the natural IgM will allow investigation of the adaptive IgM for early immunodiagnosis.
Collapse
Affiliation(s)
| | | | - Pedro Ostoa-Saloma
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria México D,F C,P, 04510 Mexico City, Mexico.
| |
Collapse
|
4
|
|
5
|
Abstract
The natural or innate immunity is the first-line defense against transformed cells. It guarantees the recognition and removal of malignant cells at an early stage and makes manifest cancers an exceptional event. Natural antibodies, which are predominantly IgM molecules, play a major role in these defense mechanisms and they have some typical features in common. They are coded by specific germline families and equipped mainly with lambda-chains, in contrast to the majority of circulating antibodies. The targets that are recognized by these antibodies are not newly synthesized proteins, but instead post-translationally modified carbohydrate structures on membrane-bound glycoproteins and glycolipids. Another typical feature of these natural IgM antibodies is their ability to induce apoptosis in vitro and in vivo in a death domain-independent manner. These results show that natural IgM antibodies represent a huge reservoir of therapeutic antibodies.
Collapse
Affiliation(s)
- H Peter Vollmers
- Institute of Pathology, University of Würzburg, Josef-Schneider-Street 2, D-97080 Würzburg, Germany.
| | | |
Collapse
|
6
|
Yang T, Mendoza-Londono R, Lu H, Tao J, Li K, Keller B, Jiang MM, Shah R, Chen Y, Bertin TK, Engin F, Dabovic B, Rifkin DB, Hicks J, Jamrich M, Beaudet AL, Lee B. E-selectin ligand-1 regulates growth plate homeostasis in mice by inhibiting the intracellular processing and secretion of mature TGF-beta. J Clin Invest 2010; 120:2474-85. [PMID: 20530870 DOI: 10.1172/jci42150] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 04/28/2010] [Indexed: 02/02/2023] Open
Abstract
The majority of human skeletal dysplasias are caused by dysregulation of growth plate homeostasis. As TGF-beta signaling is a critical determinant of growth plate homeostasis, skeletal dysplasias are often associated with dysregulation of this pathway. The context-dependent action of TFG-beta signaling is tightly controlled by numerous mechanisms at the extracellular level and downstream of ligand-receptor interactions. However, TGF-beta is synthesized as an inactive precursor that is cleaved to become mature in the Golgi apparatus, and the regulation of this posttranslational intracellular processing and trafficking is much less defined. Here, we report that a cysteine-rich protein, E-selectin ligand-1 (ESL-1), acts as a negative regulator of TGF-beta production by binding TGF-beta precursors in the Golgi apparatus in a cell-autonomous fashion, inhibiting their maturation. Furthermore, ESL-1 inhibited the processing of proTGF-beta by a furin-like protease, leading to reduced secretion of mature TGF-beta by primary mouse chondrocytes and HEK293 cells. In vivo loss of Esl1 in mice led to increased TGF-beta/SMAD signaling in the growth plate that was associated with reduced chondrocyte proliferation and delayed terminal differentiation. Gain-of-function and rescue studies of the Xenopus ESL-1 ortholog in the context of early embryogenesis showed that this regulation of TGF-beta/Nodal signaling was evolutionarily conserved. This study identifies what we believe to be a novel intracellular mechanism for regulating TGF-beta during skeletal development and homeostasis.
Collapse
Affiliation(s)
- Tao Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Schatz N, Brändlein S, Rückl K, Hensel F, Vollmers HP. Diagnostic and therapeutic potential of a human antibody cloned from a cancer patient that binds to a tumor-specific variant of transcription factor TAF15. Cancer Res 2010; 70:398-408. [PMID: 20048082 DOI: 10.1158/0008-5472.can-09-2186] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human hybridoma technologies permit the cloning of patient antibodies that may have desirable qualities. In this study, we report the isolation of a natural IgG antibody from a stomach cancer patient that illustrates novel diagnostic and therapeutic uses. Human antibody PAT-BA4 recognizes a tumor-specific variant of the transcription factor TATA-binding protein-associated factor 15 (TAF15) that is expressed on the plasma membrane of stomach cancer and melanoma cells but not healthy tissues. TAF15 is a member of the multifunctional TET protein family involved in mRNA transcription, splicing, and transport that is normally expressed only in the cytoplasm and nucleus of fetal or adult tissue cells. However, in malignant cells, TET family members including TAF15 seem to be involved in cell adhesion and spreading. In support of this likelihood, we found that PAT-BA4 inhibited tumor cell motility and tumor cell adhesion. Our findings define a role for a tumor-specific TAF15 antigen in malignant processes.
Collapse
Affiliation(s)
- Nicole Schatz
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | | | | | | | | |
Collapse
|
8
|
Abstract
The innate or natural immunity is the basis and key for all immune processes. Specific receptors on macrophages, dendrites, NK cells and natural antibodies producing B cells act as a first line defense and remove all 'foreign' and potentially harmful substances, that is, bacteria, viruses, cellular waste, modified molecules and, most importantly, cancer cells. Recognition and removal of transformed cells is a lifelong task of immune surveillance processes. Antibodies are hallmark components of this anti-cancer activity. To investigate their nature, specificity, and function, we used the human hybridoma technology for isolating antibodies from cancer patients. These were then tested with a panel of assays against cancer cell lines in vitro and in vivo. Interestingly, all the tumor-specific antibodies we found were germ-line coded and belonged nearly exclusively to the IgM class. Furthermore, they all bound to new carbohydrates on post-translationally modified cell surface receptors on malignant cells. So far no affinity maturated immunoglobulins detecting tumor-specific peptides were found. However, only the presentation of peptide motifs can create an immunological memory. In general malignant cells are detected at very early precursor stages and manifest tumors can be considered as exceptional events. In addition, malignant cells are neither infectious nor hide intracellularly like viruses and some bacteria. Therefore, it makes sense that anti-tumor immunity seems to be solely a part of the natural immunity and a memory is not needed and therefore not induced. This indicates that the tumor immunity seems to be restricted to innate immune mechanisms and the instruments used by nature, like natural antibodies, are obviously excellent therapeutics.
Collapse
|
9
|
Abstract
The chaperone GRP78 is a member of the heat-shock protein 70 (HSP70) family and is responsible for cellular homeostasis by preventing stress-induced apoptosis. GRP78 is expressed in all cells of the body. In malignant cells, which are permanently exposed to environmental stress, GRP78 is overexpressed and increased levels can be found in the cytoplasm and on the cell membrane. Thus, GRP78 promotes tumor proliferation, survival, metastases and resistance to a wide variety of therapies. Like other tumor-specific membrane molecules, GRP78 can also be present on cancer cells in a variant form. This modification qualifies it as a target for immune surveillance and antibody responses. The fully human monoclonal IgM antibody, SAM-6, was isolated from a gastric cancer patient and it binds to a new variant of GRP78 with a molecular weight of 82 kDa. The epitope is an O-linked carbohydrate moiety and is specific for malignant cells. These data show that cancer-specific modifications of cell-surface protection molecules are (a) subject of an immune response and (b) ideal targets for new therapeutical approaches.
Collapse
|
10
|
Vollmers HP, Brändlein S. Tumors: too sweet to remember? Mol Cancer 2007; 6:78. [PMID: 18053197 PMCID: PMC2217531 DOI: 10.1186/1476-4598-6-78] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 12/04/2007] [Indexed: 01/09/2023] Open
Abstract
Immunity, based on a natural and an educated system, is responsible for recognition and elimination of infectious particles, cellular waste, modified self and transformed cells. This dual system guarantees that dangerous particles are removed immediately after appearance and that a memory with maturated weapons exists, if the organism is re-infected by the same particle. For malignant cells, however, the immune response seems to be restricted to innate immunity, because at least for the humoral response, all so far detected tumor-specific antibodies belong to the natural immunity. In this review we try to explain why malignant cells might be "too sweet" to induce a memory.
Collapse
Affiliation(s)
- H Peter Vollmers
- Institute of Pathology, University of Würzburg, Josef-Schneider-Str, 2, D-97080 Würzburg, Germany.
| | | |
Collapse
|
11
|
Abstract
Immunity is not only responsible for recognition and elimination of infectious particles, but also for removal of cellular waste, modified self structures and transformed cells. Innate or natural immunity acts as a first line defense and is also the link to acquired immunity and memory. A striking phenomenon of immunity against malignant cells is that neither in animals nor in humans affinity-maturated tumor-specific IgG antibodies have been detected so far. All tumor-specific isolated antibodies were germ-line coded natural IgM antibodies. It's also a fact that these IgM's preferentially bind to carbohydrate epitopes on post-transcriptionally modified surface receptors and that they all induce a cancer-specific apoptosis, by triggering the intrinsic apoptotic pathway. From an evolutionary point of view, this makes sense because cancer cells are not infectious, so there is no need for memory. Natural IgMs bind to conservative structures because they are coded by a limited set of genes and they use apoptosis, the "clean" way of killing, to avoid inflammatory processes.
Collapse
Affiliation(s)
- H Peter Vollmers
- Institute of Pathology, University of Würzburg, Josef-Schneider-Str. 2, D-97080 Würzburg, Germany.
| | | |
Collapse
|
12
|
Brändlein S, Rauschert N, Rasche L, Dreykluft A, Hensel F, Conzelmann E, Müller-Hermelink HK, Vollmers HP. The human IgM antibody SAM-6 induces tumor-specific apoptosis with oxidized low-density lipoprotein. Mol Cancer Ther 2007; 6:326-33. [PMID: 17237291 DOI: 10.1158/1535-7163.mct-06-0399] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lipids are essential for normal and malignant cells during growth and differentiation. The turnover is strictly regulated because an uncontrolled uptake and accumulation is cytotoxic and can lead to lipoapoptosis: lipoptosis. The human monoclonal antibody SAM-6 binds to a cell surface receptor on malignant cells and to oxidized low-density lipoprotein (LDL). SAM-6 induces an excess of intracellular lipids, by overfeeding malignant cells with oxidized LDL, via a receptor-mediated endocytosis. The treated cells overaccumulate depots of cholesteryl esters and triglycerides. This lipid overaccumulation is tumor specific; nonmalignant cells neither bind the antibody nor harvest lipids after incubation. Because for both forms of apoptosis, the death domain dependent ("extrinsic") and independent ("intrinsic"), the activation of proteases is crucial, we also investigated this pathway in more detail. It was found that shortly after internalization of antibody/oxidized LDL/receptor complex and formation of lipid depots, cytochrome c is released by mitochondria. Followed by this, initiator caspase-8 and caspase-9 and effector caspase-3 and caspase-6 are activated. The mechanism of mitochondrial trigger (e.g., by free fatty acids) is under investigation. However, the present data indicate that the SAM-6 antibody induces an intrinsic-like form of apoptosis by overfeeding malignant cells with lipoproteins.
Collapse
|
13
|
Vollmers HP, Brändlein S. Natural IgM antibodies: the orphaned molecules in immune surveillance. Adv Drug Deliv Rev 2006; 58:755-65. [PMID: 16820243 DOI: 10.1016/j.addr.2005.08.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Accepted: 05/06/2006] [Indexed: 12/21/2022]
Abstract
Natural IgM antibodies are typical victims of prejudices which originated in the mid 80 s. Over the years, these molecules were considered as the pariahs among the immune competent molecules and their characteristic properties, like low affinity, cross-reactivity and pentameric structure, were assessed as useless, difficult, nebulous, etc. Today, mainly based on a few scientists' persistent work and the key discoveries on innate immune recognition, natural IgM antibodies are "back on stage". Their role in the immune response against bacteria, viruses, fungi and possibly modified self-components as well as in therapy and diagnosis of malignancies is accepted. All the so far negatively judged features are seen in a different light, e.g. low affinity seems to be good for function and does not exclude specificity, and cross-reactivity is no longer judged as unspecific, but instead as a very economic way of immune recognition. And at last, with the use of natural IgM antibodies, a new field of tumor-specific targets has been encountered, the carbo-neo-epitopes. Therefore, by having learned from nature, the renaissance of natural IgM antibodies opens a new area of cancer therapeutics and diagnostics.
Collapse
Affiliation(s)
- H Peter Vollmers
- Institute for Pathology, University Würzburg, Josef-Schneider-Str. 2, D-97080 Würzburg, Germany.
| | | |
Collapse
|
14
|
Ahn J, Febbraio M, Silverstein RL. A novel isoform of human Golgi complex-localized glycoprotein-1 (also known as E-selectin ligand-1, MG-160 and cysteine-rich fibroblast growth factor receptor) targets differential subcellular localization. J Cell Sci 2005; 118:1725-31. [PMID: 15797922 DOI: 10.1242/jcs.02310] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The initial step in trafficking of leukocytes through the vascular endothelium is mediated by an adhesive interaction between molecules of the selectin family and their cognate receptors. Previously, a putative murine E-selectin ligand-1 (ESL-1) was identified and found to be identical to Golgi complex-localized glycoprotein-1 (GLG1), also known as MG-160, and to a previously identified basic fibroblast growth factor (bFGF)-binding protein known as cysteine-rich FGF receptor (CFR). We report here a novel variant of the human GLG1 gene product that we call GLG2, cloned from a human monocyte cDNA library. GLG2 encodes a polypeptide identical to GLG1 except with a unique 24-amino-acid extension at the C-terminus of its cytoplasmic domain. Transfection of chimeric constructs into human embryonic kidney epithelial 293 cells revealed that the cytoplasmic domains of GLG1 and GLG2 targeted the expression of each chimeric protein differentially, GLG1 to the cell surface and GLG2 to the Golgi. Genetic analysis suggests that GLG1 and GLG2 are the products of a single gene, the mRNA of which can be processed by alternative splicing to generate two different transcripts encoding either GLG1 or GLG2. Northern blot analysis showed that the relative amounts of the mRNAs for either isoform differ in a cell- and species-specific manner. These data suggest that alternative splicing of the GLG1 gene transcript might regulate the function of its product.
Collapse
MESH Headings
- Alternative Splicing/genetics
- Animals
- COS Cells
- Cell Compartmentation/genetics
- Cell Line
- Cell Membrane/metabolism
- Chemotaxis, Leukocyte/genetics
- Chlorocebus aethiops
- Chromosomes, Human, Pair 11/genetics
- DNA, Complementary/analysis
- DNA, Complementary/genetics
- Genomic Library
- Golgi Apparatus/metabolism
- HL-60 Cells
- HeLa Cells
- Humans
- Mice
- Molecular Sequence Data
- Monocytes/metabolism
- Protein Isoforms/genetics
- Protein Isoforms/isolation & purification
- Protein Isoforms/metabolism
- Protein Structure, Tertiary/physiology
- Protein Transport/physiology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/isolation & purification
- Receptors, Cell Surface/metabolism
- Receptors, Fibroblast Growth Factor
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Sialoglycoproteins/genetics
- Sialoglycoproteins/metabolism
Collapse
Affiliation(s)
- Jongcheol Ahn
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | |
Collapse
|
15
|
Pohle T, Brändlein S, Ruoff N, Müller-Hermelink HK, Vollmers HP. Lipoptosis: tumor-specific cell death by antibody-induced intracellular lipid accumulation. Cancer Res 2004; 64:3900-6. [PMID: 15173000 DOI: 10.1158/0008-5472.can-03-3149] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A balanced lipid metabolism is crucial for all cells. Disturbance of this homeostasis by nonphysiological intracellular accumulation of fatty acids can result in apoptosis. This was proven in animal studies and was correlated to some human diseases, like lipotoxic cardiomyopathy. Some metabolic mechanisms of lipo-apoptosis were described, and some causes were discussed, but reagents, which directly induce lipo-apoptosis, have thus far not been identified. The human monoclonal IgM antibody SAM-6 was isolated from a stomach cancer patient by using the conventional human hybridoma technology (trioma technique). The addition of SAM-6 to tumor cells leads to an increase in the intracellular accumulation of neutral lipids, followed by tumor cell apoptosis. The antibody SAM-6 does not react with noncancerous human epithelial and fibroblastic cells, because the M(r) 140000 membrane molecule, recognized by the antibody, is specifically expressed on human malignant cells. The antibody is coded by the germ-line genes IgHV3-30.3*01 and IgLV3-1*01 and is a component of the innate immunity to cancer. In this article, we describe an antibody-induced tumor-specific cell death, named lipoptosis. This is, to our knowledge, the first description of this specific form of lipo-apoptosis as an antibody-mediated mechanism of tumor cell killing.
Collapse
Affiliation(s)
- Tina Pohle
- Institute of Pathology, University Würzburg, Würzburg, Germany
| | | | | | | | | |
Collapse
|