1
|
Lints R, Walker CA, Delfi O, Prouse M, PohLui De Silva M, Bohlander SK, Wood AC. Mutational cooperativity of RUNX1::RUNX1T1 isoform 9a and oncogenic NRAS in zebrafish myeloid leukaemia. Biol Open 2024; 13:bio060523. [PMID: 39177514 PMCID: PMC11381922 DOI: 10.1242/bio.060523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/24/2024] Open
Abstract
RUNX1::RUNX1T1 (R::RT1) acute myeloid leukaemia (AML) remains a clinical challenge, and further research is required to model and understand leukaemogenesis. Previous zebrafish R::RT1 models were hampered by embryonic lethality and low penetrance of the malignant phenotype. Here, we overcome this by developing an adult zebrafish model in which the human R::RT1 isoform 9a is co-expressed with the frequently co-occurring oncogenic NRASG12D mutation in haematopoietic stem and progenitor cells (HSPCs), using the Runx1+23 enhancer. Approximately 50% of F0 9a+NRASG12D transgenic zebrafish developed signs of haematological disease between 5 and 14 months, with 27% exhibiting AML-like pathology: myeloid precursor expansion, erythrocyte reduction, kidney marrow hypercellularity and the presence of blasts. Moreover, only 9a+NRASG12D transplant recipients developed leukaemia with high rates of mortality within 40 days, inferring the presence of leukaemia stem cells. These leukaemic features were rare or not observed in animals expressing either the NRAS or 9a oncogenes alone, suggesting 9a and NRAS cooperation drives leukaemogenesis. This novel adult AML zebrafish model provides a powerful new tool for investigating the basis of R::RT1 - NRAS cooperativity with the potential to uncover new therapeutic targets.
Collapse
Affiliation(s)
- Robyn Lints
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand
| | - Christina A. Walker
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand
| | - Omid Delfi
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand
| | - Matthew Prouse
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand
| | | | - Stefan K. Bohlander
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand
| | - Andrew C. Wood
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand
- Starship Child Health, Starship Blood and Cancer Centre, Auckland 1023, New Zealand
| |
Collapse
|
2
|
Joshi P, Keyvani Chahi A, Liu L, Moreira S, Vujovic A, Hope KJ. RNA binding protein-directed control of leukemic stem cell evolution and function. Hemasphere 2024; 8:e116. [PMID: 39175825 PMCID: PMC11339706 DOI: 10.1002/hem3.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/06/2024] [Accepted: 05/26/2024] [Indexed: 08/24/2024] Open
Abstract
Strict control over hematopoietic stem cell decision making is essential for healthy life-long blood production and underpins the origins of hematopoietic diseases. Acute myeloid leukemia (AML) in particular is a devastating hematopoietic malignancy that arises from the clonal evolution of disease-initiating primitive cells which acquire compounding genetic changes over time and culminate in the generation of leukemic stem cells (LSCs). Understanding the molecular underpinnings of these driver cells throughout their development will be instrumental in the interception of leukemia, the enabling of effective treatment of pre-leukemic conditions, as well as the development of strategies to target frank AML disease. To this point, a number of precancerous myeloid disorders and age-related alterations are proving as instructive models to gain insights into the initiation of LSCs. Here, we explore this myeloid dysregulation at the level of post-transcriptional control, where RNA-binding proteins (RBPs) function as core effectors. Through regulating the interplay of a myriad of RNA metabolic processes, RBPs orchestrate transcript fates to govern gene expression in health and disease. We describe the expanding appreciation of the role of RBPs and their post-transcriptional networks in sustaining healthy hematopoiesis and their dysregulation in the pathogenesis of clonal myeloid disorders and AML, with a particular emphasis on findings described in human stem cells. Lastly, we discuss key breakthroughs that highlight RBPs and post-transcriptional control as actionable targets for precision therapy of AML.
Collapse
Affiliation(s)
- Pratik Joshi
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
- Princess Margaret Cancer CenterUniversity Health NetworkTorontoCanada
| | - Ava Keyvani Chahi
- Princess Margaret Cancer CenterUniversity Health NetworkTorontoCanada
| | - Lina Liu
- Princess Margaret Cancer CenterUniversity Health NetworkTorontoCanada
| | - Steven Moreira
- Princess Margaret Cancer CenterUniversity Health NetworkTorontoCanada
| | - Ana Vujovic
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
- Princess Margaret Cancer CenterUniversity Health NetworkTorontoCanada
| | - Kristin J. Hope
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
- Princess Margaret Cancer CenterUniversity Health NetworkTorontoCanada
| |
Collapse
|
3
|
Yan M, Liu M, Davis AG, Stoner SA, Zhang DE. Single-cell RNA sequencing of a new transgenic t(8;21) preleukemia mouse model reveals regulatory networks promoting leukemic transformation. Leukemia 2024; 38:31-44. [PMID: 37838757 PMCID: PMC10776403 DOI: 10.1038/s41375-023-02063-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/22/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023]
Abstract
T(8;21)(q22;q22), which generates the AML1-ETO fusion oncoprotein, is a common chromosomal abnormality in acute myeloid leukemia (AML) patients. Despite having favorable prognosis, 40% of patients will relapse, highlighting the need for innovative models and application of the newest technologies to study t(8;21) leukemogenesis. Currently, available AML1-ETO mouse models have limited utility for studying the pre-leukemic stage because AML1-ETO produces mild hematopoietic phenotypes and no leukemic transformation. Conversely, overexpression of a truncated variant, AML1-ETO9a (AE9a), promotes fully penetrant leukemia and is too potent for studying pre-leukemic changes. To overcome these limitations, we devised a germline-transmitted Rosa26 locus AE9a knock-in mouse model that moderately overexpressed AE9a and developed leukemia with long latency and low penetrance. We observed pre-leukemic alterations in AE9a mice, including skewing of progenitors towards granulocyte/monocyte lineages and replating of stem and progenitor cells. Next, we performed single-cell RNA sequencing to identify specific cell populations that contribute to these pre-leukemic phenotypes. We discovered a subset of common myeloid progenitors that have heightened granulocyte/monocyte bias in AE9a mice. We also observed dysregulation of key hematopoietic transcription factor target gene networks, blocking cellular differentiation. Finally, we identified Sox4 activation as a potential contributor to stem cell self-renewal during the pre-leukemic stage.
Collapse
Affiliation(s)
- Ming Yan
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Mengdan Liu
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Amanda G Davis
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Samuel A Stoner
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Dong-Er Zhang
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
4
|
Shafik NF, Ibraheem D, Selim MM, Allam RM, Fathalla LA. The Prognostic Significance of c-KIT Mutations in Core Binding Factor Acute Myeloid Leukemia. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:e363-e375. [PMID: 34972661 DOI: 10.1016/j.clml.2021.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Many recurrent mutations are encountered in core binding factor acute myeloid leukemia (CBF-AML) which may affect the prognosis. Approximately 20 to 45% of CBF-AML patients have KIT mutations which are having poor prognosis and high incidence of relapse. There is still insufficient data to categorize the patients with c-kit mutation into which risk group and there is a debate around whether Tyrosine kinase inhibitors can decrease the relapse risk and improve the prognosis of those patients. PATIENTS AND METHODS This study was conducted throughout a period of 3 years, where 102 CBF-AML were enrolled in our study. We analyzed the incidence of c-KIT exon 8 and 17 D816V mutations in CBF-AML patients and studied the prognosis. RESULTS The prevalence of CBF-AML was 102 of 989 (10.3%), 13.7% and 8.7% in pediatrics and adults' groups respectively. c-KIT fragment mutation analysis revealed a mutant form in 27 of 102 (26.5%) patients. Exon 8 mutation was found in 4 of 40 pediatric and 2 of 62 adult patients, while exon 17 mutation was found in 9 of 40 pediatric and 12 of 62 adult patients. The c-KIT mutations was more common in t(8;21). There was no significant relationship between c-kit mutation and CR rates, while there was a significant inferior overall, disease free as well as progression free survival in the c-KIT mutant patients as compared to the wild group (P value .045, .036 and .024 respectively) in the pediatric group, however, this significance was not evident in the adults' group. CONCLUSION According to our study, the results may suggest c-KIT mutation as a poor risk factor in pediatric CBF-AML.
Collapse
Affiliation(s)
- Nevine F Shafik
- Clinical Pathology and Oncologic Laboratory Medicine Department, National Cancer Institute, Cairo University, Egypt.
| | - Dalia Ibraheem
- Medical oncology Department, National Cancer Institute, Cairo University, Egypt
| | - Marwa Mahmoud Selim
- Medical oncology Department, National Cancer Institute, Cairo University, Egypt
| | - Rasha Mahmoud Allam
- Cancer Epidemiology and Biostatistics Department, National Cancer Institute, Cairo University, Egypt
| | - Lamiaa A Fathalla
- Clinical Pathology and Oncologic Laboratory Medicine Department, National Cancer Institute, Cairo University, Egypt
| |
Collapse
|
5
|
Bacova B, Sobotka J, Kacirkova P, Rivnacova V, Karlova/Zubata I, Novak J. Acute myeloid leukemia with variant t(8;10;21). Leuk Res Rep 2022; 18:100350. [PMID: 36158314 PMCID: PMC9489803 DOI: 10.1016/j.lrr.2022.100350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
|
6
|
An update on the molecular pathogenesis and potential therapeutic targeting of AML with t(8;21)(q22;q22.1);RUNX1-RUNX1T1. Blood Adv 2021; 4:229-238. [PMID: 31935293 DOI: 10.1182/bloodadvances.2019000168] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023] Open
Abstract
Acute myeloid leukemia (AML) with t(8;21)(q22;q22.1);RUNX1-RUNX1T1, one of the core-binding factor leukemias, is one of the most common subtypes of AML with recurrent genetic abnormalities and is associated with a favorable outcome. The translocation leads to the formation of a pathological RUNX1-RUNX1T1 fusion that leads to the disruption of the normal function of the core-binding factor, namely, its role in hematopoietic differentiation and maturation. The consequences of this alteration include the recruitment of repressors of transcription, thus blocking the expression of genes involved in hematopoiesis, and impaired apoptosis. A number of concurrent and cooperating mutations clearly play a role in modulating the proliferative potential of cells, including mutations in KIT, FLT3, and possibly JAK2. RUNX1-RUNX1T1 also appears to interact with microRNAs during leukemogenesis. Epigenetic factors also play a role, especially with the recruitment of histone deacetylases. A better understanding of the concurrent mutations, activated pathways, and epigenetic modulation of the cellular processes paves the way for exploring a number of approaches to achieve cure. Potential approaches include the development of small molecules targeting the RUNX1-RUNX1T1 protein, the use of tyrosine kinase inhibitors such as dasatinib and FLT3 inhibitors to target mutations that lead to a proliferative advantage of the leukemic cells, and experimentation with epigenetic therapies. In this review, we unravel some of the recently described molecular pathways and explore potential therapeutic strategies.
Collapse
|
7
|
Prospective evaluation of prognostic impact of KIT mutations on acute myeloid leukemia with RUNX1-RUNX1T1 and CBFB-MYH11. Blood Adv 2021; 4:66-75. [PMID: 31899799 DOI: 10.1182/bloodadvances.2019000709] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/07/2019] [Indexed: 01/22/2023] Open
Abstract
The prognostic impact of KIT mutation on core-binding factor acute myeloid leukemia (CBF-AML) remains controversial. We registered 199 newly diagnosed de novo CBF-AML patients, aged 16 to 64 years, who achieved complete remission. They received 3 courses of high-dose cytarabine therapy and no further treatment until hematological relapse. Mutations in exons 8, 10-11, and 17 of the KIT gene were analyzed. Furthermore, we analyzed mutations in 56 genes that are frequently identified in myeloid malignancies and evaluated minimal residual disease (MRD). The primary end point was relapse-free survival (RFS) according to KIT mutations. The RFS in KIT-mutated patients was inferior to that in unmutated patients (hazard ratio, 1.92; 95% confidence interval, 1.23-3.00; P = .003). Based on subgroup analysis, KIT mutations had a prognostic impact in patients with RUNX1-RUNX1T1, but not in those with CBFB-MYH11, and only exon 17 mutation had a significant prognostic impact. Multivariate Cox regression analysis with stepwise selection revealed that the KIT exon 17 mutation and the presence of extramedullary tumors in patients with RUNX1-RUNX1T1, and loss of chromosome X or Y and NRAS mutation in patients with CBFB-MYH11 were poor prognostic factors for RFS. MRD was evaluated in 112 patients, and it was associated with a poorer RFS in the patients with CBFB-MYH11, but not in those with RUNX1-RUNX1T1. These results suggested that it is necessary to separately evaluate AML with RUNX1-RUNX1T1 or CBFB-MYH11 according to appropriate prognostic factors. This study was registered at www.umin.ac.jp/ctr/ as #UMIN000003434.
Collapse
|
8
|
Li X, Dai Y, Chen B, Huang J, Chen S, Jiang L. Clinical significance of CD34 +CD117 dim/CD34 +CD117 bri myeloblast-associated gene expression in t(8;21) acute myeloid leukemia. Front Med 2021; 15:608-620. [PMID: 33754282 DOI: 10.1007/s11684-021-0836-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/09/2020] [Indexed: 01/22/2023]
Abstract
t(8;21)(q22;q22) acute myeloid leukemia (AML) is a highly heterogeneous hematological malignancy with a high relapse rate in China. Two leukemic myeloblast populations (CD34+CD117dim and CD34+CD117bri) were previously identified in t(8;21) AML, and CD34+CD117dim cell proportion was determined as an independent factor for this disease outcome. Here, we examined the impact of CD34+CD117dim/CD34+CD117bri myeloblast-associated gene expression on t(8;21) AML clinical prognosis. In this study, 85 patients with t(8;21) AML were enrolled. The mRNA expression levels of CD34+CD117dim-associated genes (LGALS1, EMP3, and CRIP1) and CD34+CD117bri-associated genes (TRH, PLAC8, and IGLL1) were measured using quantitative reverse transcription PCR. Associations between gene expression and clinical outcomes were determined using Cox regression models. Results showed that patients with high LGALS1, EMP3, or CRIP1 expression had significantly inferior overall survival (OS), whereas those with high TRH or PLAC8 expression showed relatively favorable prognosis. Univariate analysis revealed that CD19, CD34+CD117dim proportion, KIT mutation, minimal residual disease (MRD), and expression levels of LGALS1, EMP3, CRIP1, TRH and PLAC8 were associated with OS. Multivariate analysis indicated that KIT mutation, MRD and CRIP1 and TRH expression levels were independent prognostic variables for OS. Identifying the clinical relevance of CD34+CD117dim/CD34+CD117bri myeloblast-associated gene expression may provide new clinically prognostic markers for t(8;21) AML.
Collapse
Affiliation(s)
- Xueping Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bing Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jinyan Huang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Saijuan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lu Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
9
|
Chin PS, Assi SA, Ptasinska A, Imperato MR, Cockerill PN, Bonifer C. RUNX1/ETO and mutant KIT both contribute to programming the transcriptional and chromatin landscape in t(8;21) acute myeloid leukemia. Exp Hematol 2020; 92:62-74. [PMID: 33152396 DOI: 10.1016/j.exphem.2020.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 11/16/2022]
Abstract
Acute myeloid leukemia development occurs in a stepwise fashion whereby an original driver mutation is followed by additional mutations. The first type of mutations tends to be in genes encoding members of the epigenetic/transcription regulatory machinery (i.e., RUNX1, DNMT3A, TET2), while the secondary mutations often involve genes encoding members of signaling pathways that cause uncontrolled growth of such cells such as the growth factor receptors c-KIT of FLT3. Patients usually present with both types of mutations, but it is currently unclear how both mutational events shape the epigenome in developing AML cells. To this end we generated an in vitro model of t(8;21) AML by expressing its driver oncoprotein RUNX1-ETO with or without a mutated (N822K) KIT protein. Expression of N822K-c-KIT strongly increases the self-renewal capacity of RUNX1-ETO-expressing cells. Global analysis of gene expression changes and alterations in the epigenome revealed that N822K-c-KIT expression profoundly influences the open chromatin landscape and transcription factor binding. However, our experiments also revealed that double mutant cells still differ from their patient-derived counterparts, highlighting the importance of studying patient cells to obtain a true picture of how gene regulatory networks have been reprogrammed during tumorigenesis.
Collapse
Affiliation(s)
- Paulynn Suyin Chin
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Salam A Assi
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Anetta Ptasinska
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Maria Rosaria Imperato
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Peter N Cockerill
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
10
|
Chin PS, Bonifer C. Modelling t(8;21) acute myeloid leukaemia - What have we learned? MedComm (Beijing) 2020; 1:260-269. [PMID: 34766123 PMCID: PMC8491201 DOI: 10.1002/mco2.30] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
Acute myeloid leukaemia (AML) is a heterogeneous haematopoietic malignancy caused by recurrent mutations in haematopoietic stem and progenitor cells that affect both the epigenetic regulatory machinery and signalling molecules. The t(8;21) or RUNX1‐RUNX1T1 translocation generates the RUNX1‐ETO chimeric transcription factor which primes haematopoietic stem cells for further oncogenic mutational events that in their sum cause overt disease. Significant progress has been made in generating both in vitro and in vivo model systems to recapitulate t(8;21) AML which are crucial for the understanding of the biology of the disease and the development of effective treatment. This review provides a comprehensive overview of the in vivo and in vitro model systems that were developed to gain insights into the molecular mechanisms of RUNX1‐ETO oncogenic activity and their contribution to the advancement of knowledge in the t(8;21) AML field. Such models include transgenic mice, patient‐derived xenografts, RUNX1‐ETO transduced human progenitor cells, cell lines and human embryonic stem cell model systems, making the t(8;21) as one of the well‐characterized sub‐type of AML at the molecular level.
Collapse
Affiliation(s)
- Paulynn Suyin Chin
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences University of Birmingham Birmingham UK
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences University of Birmingham Birmingham UK
| |
Collapse
|
11
|
Multidimensional study of the heterogeneity of leukemia cells in t(8;21) acute myelogenous leukemia identifies the subtype with poor outcome. Proc Natl Acad Sci U S A 2020; 117:20117-20126. [PMID: 32747558 DOI: 10.1073/pnas.2003900117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
t(8;21)(q22;q22) acute myelogenous leukemia (AML) is morphologically characterized by a continuum of heterogeneous leukemia cells from myeloblasts to differentiated myeloid elements. Thus, t(8;21) AML is an excellent model for studying heterogeneous cell populations and cellular evolution during disease progression. Using integrative analyses of immunophenotype, RNA-sequencing (RNA-seq), and single-cell RNA-sequencing (scRNA-seq), we identified three distinct intrapatient leukemic cell populations that were arrested at different stages of myeloid differentiation: CD34+CD117dim blasts, CD34+CD117bri blasts, and abnormal myeloid cells with partial maturation (AM). CD117 is also known as c-KIT protein. CD34+CD117dim cells were blocked in the G0/G1 phase at disease onset, presenting with the regular morphology of myeloblasts showing features of granulocyte-monocyte progenitors (GMP), and were drug-resistant to chemotherapy. Genes associated with cell migration and adhesion (LGALS1, EMP3, and ANXA 2) were highly expressed in the CD34+CD117dim population. CD34+CD117bri blasts were blocked a bit later than the CD34+CD117dim population in the hematopoietic differentiation stage and displayed high proliferation ability. AM cells, which bear abnormal myelocyte morphology, especially overexpressed granule genes AZU1, ELANE, and PRTN3 and were sensitive to chemotherapy. scRNA-seq at different time points identified CD34+CD117dim blasts as an important leukemic cluster that expanded at postrelapse refractory stage after several cycles of chemotherapy. Patients with t(8;21) AML with a higher proportion of CD34+CD117dim cells had significantly worse clinical outcomes than those with a lower CD34+CD117dim proportion. Univariate and multivariate analyses identified CD34+CD117dim proportion as an independent factor for poor disease outcome. Our study provides evidence for the multidimensional heterogeneity of t(8;21)AML and may offer new tools for future disease stratification.
Collapse
|
12
|
Myeloid translocation gene CBFA2T3 directs a relapse gene program and determines patient-specific outcomes in AML. Blood Adv 2020; 3:1379-1393. [PMID: 31040112 DOI: 10.1182/bloodadvances.2018028514] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 03/13/2019] [Indexed: 12/17/2022] Open
Abstract
CBFA2T3 is a master transcriptional coregulator in hematopoiesis. In this study, we report novel functions of CBFA2T3 in acute myeloid leukemia (AML) relapse. CBFA2T3 regulates cell-fate genes to establish gene expression signatures associated with leukemia stem cell (LSC) transformation and relapse. Gene set enrichment analysis showed that CBFA2T3 expression marks LSC signatures in primary AML samples. Analysis of paired primary and relapsed samples showed that acquisition of LSC gene signatures involves cell type-specific activation of CBFA2T3 transcription via the NM_005187 promoter by GCN5. Short hairpin RNA-mediated downregulation of CBFA2T3 arrests G1/S cell cycle progression, diminishes LSC gene signatures, and attenuates in vitro and in vivo proliferation of AML cells. We also found that the RUNX1-RUNX1T1 fusion protein transcriptionally represses NM_005187 to confer t(8;21) AML patients a natural resistance to relapse, whereas lacking a similar repression mechanism renders non-core-binding factor AML patients highly susceptible to relapse. These studies show that 2 related primary AML-associated factors, the expression level of CBFA2T3 and the ability of leukemia cells to repress cell type-specific CBFA2T3 gene transcription, play important roles in patient prognosis, providing a paradigm that differential abilities to repress hematopoietic coregulator gene transcription are correlated with patient-specific outcomes in AML.
Collapse
|
13
|
Agrawal M, Schwarz P, Giaimo BD, Bedzhov I, Corbacioglu A, Weber D, Gaidzik VI, Jahn N, Rücker FG, Schroeder T, Kindler T, Wattad M, Götze K, Lübbert M, Salwender H, Ringhoffer M, Lange E, Koller E, Thol F, Heuser M, Ganser A, Bullinger L, Paschka P, Döhner H, Geiger H, Borggrefe T, Döhner K, Oswald F. Functional and clinical characterization of the alternatively spliced isoform AML1-ETO9a in adult patients with translocation t(8;21)(q22;q22.1) acute myeloid leukemia (AML). Leukemia 2019; 34:630-634. [PMID: 31462736 PMCID: PMC7214266 DOI: 10.1038/s41375-019-0551-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/29/2019] [Accepted: 06/06/2019] [Indexed: 12/04/2022]
Affiliation(s)
- Mridul Agrawal
- Klinik für Innere Medizin III, Universitätsklinikum Ulm, Ulm, Germany
| | - Peggy Schwarz
- Klinik für Innere Medizin I, Universitätsklinikum Ulm, Ulm, Germany
| | | | - Ivan Bedzhov
- Embryonic Self-Organization research group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149, Münster, Germany
| | | | - Daniela Weber
- Klinik für Innere Medizin III, Universitätsklinikum Ulm, Ulm, Germany
| | - Verena I Gaidzik
- Klinik für Innere Medizin III, Universitätsklinikum Ulm, Ulm, Germany
| | - Nikolaus Jahn
- Klinik für Innere Medizin III, Universitätsklinikum Ulm, Ulm, Germany
| | - Frank G Rücker
- Klinik für Innere Medizin III, Universitätsklinikum Ulm, Ulm, Germany
| | - Thomas Schroeder
- Klinik für Hämatologie, Onkologie und Klinische Immunologie, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Thomas Kindler
- III. Medizinische Klinik und Poliklinik, Universitätsmedizin Mainz, Mainz, Germany
| | - Mohammed Wattad
- Klinik für Hämatologie, Internistische Onkologie und Stammzellentransplantation, Evangelisches Krankenhaus Essen-Werden, Essen, Germany
| | - Katharina Götze
- III. Medizinische Klinik, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Michael Lübbert
- Klinik für Innere Medizin I, Universitätsklinikum Freiburg, Freiburg, Germany
| | - Hans Salwender
- II. Medizinische Abteilung, Asklepios Klinik Altona, Hamburg, Germany
| | - Mark Ringhoffer
- Medizinische Klinik III, Städtisches Klinikum Karlsruhe, Karlsruhe, Germany
| | - Elisabeth Lange
- Klinik für Hämatologie, Onkologie und Palliativmedizin, Evangelisches Krankenhaus Hamm, Hamm, Germany
| | - Elisabeth Koller
- Medizinische Abteilung, Hanusch-Krankenhaus der WGKK, Wien, Austria
| | - Felicitas Thol
- Klinik für Hämatologie, Hämostaseologie, Onkologie und Stammzelltransplantation, Medizinische Hochschule Hannover, Hannover, Germany
| | - Michael Heuser
- Klinik für Hämatologie, Hämostaseologie, Onkologie und Stammzelltransplantation, Medizinische Hochschule Hannover, Hannover, Germany
| | - Arnold Ganser
- Klinik für Hämatologie, Hämostaseologie, Onkologie und Stammzelltransplantation, Medizinische Hochschule Hannover, Hannover, Germany
| | - Lars Bullinger
- Medizinische Klinik m. S. Hämatologie, Onkologie und Tumorimmunologie, Campus Virchow-Klinikum, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Paschka
- Klinik für Innere Medizin III, Universitätsklinikum Ulm, Ulm, Germany
| | - Hartmut Döhner
- Klinik für Innere Medizin III, Universitätsklinikum Ulm, Ulm, Germany
| | - Hartmut Geiger
- Institut für Molekulare Medizin, Universität Ulm, Ulm, Germany.,Division of Experimental Hematology and Cancer Biology, CCHMC, Cincinnati, OH, USA
| | - Tilman Borggrefe
- Institute of Biochemistry, University of Giessen, Giessen, Germany
| | - Konstanze Döhner
- Klinik für Innere Medizin III, Universitätsklinikum Ulm, Ulm, Germany.
| | - Franz Oswald
- Klinik für Innere Medizin I, Universitätsklinikum Ulm, Ulm, Germany
| |
Collapse
|
14
|
Weisberg E, Meng C, Case AE, Sattler M, Tiv HL, Gokhale PC, Buhrlage SJ, Liu X, Yang J, Wang J, Gray N, Stone RM, Adamia S, Dubreuil P, Letard S, Griffin JD. Comparison of effects of midostaurin, crenolanib, quizartinib, gilteritinib, sorafenib and BLU-285 on oncogenic mutants of KIT, CBL and FLT3 in haematological malignancies. Br J Haematol 2019; 187:488-501. [PMID: 31309543 DOI: 10.1111/bjh.16092] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/21/2019] [Indexed: 12/27/2022]
Abstract
Mutations in two type-3 receptor tyrosine kinases (RTKs), KIT and FLT3, are common in both acute myeloid leukaemia (AML) and systemic mastocytosis (SM) and lead to hyperactivation of key signalling pathways. A large number of tyrosine kinase inhibitors (TKIs) have been developed that target either FLT3 or KIT and significant clinical benefit has been demonstrated in multiple clinical trials. Given the structural similarity of FLT3 and KIT, it is not surprising that some of these TKIs inhibit both of these receptors. This is typified by midostaurin, which has been approved by the US Food and Drug Administration for mutant FLT3-positive AML and for KIT D816V-positive SM. Here, we compare the in vitro activities of the clinically available FLT3 and KIT inhibitors with those of midostaurin against a panel of cells expressing a variety of oncogenic FLT3 or KIT receptors, including wild-type (wt) FLT3, FLT3-internal tandem duplication (ITD), FLT3 D835Y, the resistance mutant FLT3-ITD+ F691L, KIT D816V, and KIT N822K. We also examined the effects of these inhibitors in vitro and in vivo on cells expressing mutations in c-CBL found in AML that result in hypersensitization of RTKs, such as FLT3 and KIT. The results show a wide spectrum of activity of these various mutations to these clinically available TKIs.
Collapse
Affiliation(s)
- Ellen Weisberg
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Chengcheng Meng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Abigail E Case
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Martin Sattler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Hong L Tiv
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Prafulla C Gokhale
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Sara J Buhrlage
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Xiaoxi Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jing Yang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jinhua Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Nathanael Gray
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Richard M Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Sophia Adamia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Patrice Dubreuil
- CRCM, [Signalling, Haematopoiesis and Mechanism of Oncogenesis, Equipe Labellisée Ligue Contre le Cancer], Inserm, U1068; Institut Paoli-Calmettes; Aix-Marseille University, Marseille, France
| | - Sebastien Letard
- CRCM, [Signalling, Haematopoiesis and Mechanism of Oncogenesis, Equipe Labellisée Ligue Contre le Cancer], Inserm, U1068; Institut Paoli-Calmettes; Aix-Marseille University, Marseille, France
| | - James D Griffin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Zhang W, Lu Y, Zhen T, Chen X, Zhang M, Liu P, Weng X, Chen B, Wang Y. Homoharringtonine synergy with oridonin in treatment of t(8; 21) acute myeloid leukemia. Front Med 2019; 13:388-397. [PMID: 30206768 DOI: 10.1007/s11684-018-0624-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 12/06/2017] [Indexed: 02/07/2023]
Abstract
Collaboration of c-KIT mutations with AML1-ETO (AE) has been demonstrated to induce t(8; 21) acute myeloid leukemia (AML). Targeted therapies designed to eliminate AE and c-KIT oncoproteins may facilitate effective treatment of t(8; 21) AML. Homoharringtonine (HHT) features activity against tumor cells harboring c-KIT mutations, whereas oridonin can induce t(8; 21) AML cell apoptosis and AE cleavage. Therefore, studies should explore the efficacy of combination therapy with oridonin and HHT in t(8; 21) AML. In this study, we investigated the synergistic effects and mechanism of oridonin combined with HHT in t(8; 21) AML cell line and mouse model. The two drugs synergistically inhibited cell viability and induced significant mitochondrial membrane potential loss and apoptosis. Oridonin and HHT induced significant downregulation of c-KIT and its downstream signaling pathways and promoted AE cleavage. HHT increased intracellular oridonin concentration by modulating the expressions of MRP1 and MDR1, thus enhancing the effects of oridonin. The combination of oridonin and HHT prolonged t(8; 21) leukemia mouse survival. In conclusion, oridonin and HHTexert synergistic effects against t(8; 21) leukemia in vivo and in vitro, thereby indicating that their combination may be an effective therapy for t(8; 21) leukemia.
Collapse
Affiliation(s)
- Weina Zhang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ying Lu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tao Zhen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinjie Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ming Zhang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ping Liu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiangqin Weng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bing Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yueying Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
16
|
Chen G, Liu A, Xu Y, Gao L, Jiang M, Li Y, Lv N, Zhou L, Wang L, Yu L, Li Y. The RUNX1-ETO fusion protein trans-activates c-KIT expression by recruiting histone acetyltransferase P300 on its promoter. FEBS J 2019; 286:901-912. [PMID: 30637949 DOI: 10.1111/febs.14751] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/02/2018] [Accepted: 01/11/2019] [Indexed: 01/21/2023]
Abstract
The oncoprotein RUNX1-ETO is the fusion product of t(8;21)(q22;q22) and constitutes one of the most common genetic alterations in acute myeloid leukemia (AML). Abnormal c-KIT overexpression is considered an independent negative prognostic factor for relapse and survival in t(8;21) AML patients. However, the molecular mechanism of high c-KIT expression in t(8;21) AML remains unknown. In this study, we detected RUNX1-ETO and c-KIT gene expression in AML-M2 patients and verified the overexpression of c-KIT in t(8;21) AML patients. We also found that c-KIT overexpression was a poor prognostic indicator in RUNX1-ETO positive AML patients, but not in RUNX1-ETO negative AML patients. We used the dual-luciferase and ChIP assays to demonstrate that the RUNX1-ETO protein epigenetically trans-activates c-KIT by binding to the c-KIT promoter and recruiting the histone acetyltransferase P300 to the c-KIT promoter, elucidating the mechanism of the abnormally increased c-KIT expression in t(8;21) AML patients. Moreover, pharmacological studies revealed that C646, a P300 inhibitor, could inhibit proliferation, induce apoptosis and arrest the cell cycle more effectively in RUNX1-ETO positive cells than in negative ones. The levels of c-KIT and RUNX1-ETO proteins were also decreased with C646 treatment in RUNX1-ETO positive cells. These findings suggested that P300 could be a therapeutic target and that C646 could be used as a potential treatment for RUNX1-ETO positive AML patients. Interestingly, using the dual-luciferase assay, we also found that the binding capacity of RUNX1-ETO9a, a truncated RUNX1-ETO isoform, to the c-KIT promoter was stronger than that of RUNX1-ETO, suggesting RUNX1-ETO9a as another valuable therapeutic target in t(8;21) AML.
Collapse
Affiliation(s)
- Guofeng Chen
- School of Medicine, Nankai University, Tianjin, China
| | - Anqi Liu
- Department of Intensive Care Unit, Beijing Electric Power Hospital, National Electric Net Ltd., Beijing, China
| | - Yihan Xu
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Li Gao
- Department of Hematology, China-Japan Friendship Hospital, Beijing, China
| | - Mengmeng Jiang
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Yan Li
- Department of Hematology, Chinese PLA General Hospital, Beijing, China.,Department of Hematology, Hainan Branch of Chinese PLA General Hospital, Sanya, China
| | - Na Lv
- Department of Hematology, Chinese PLA General Hospital, Beijing, China.,Department of Hematology-Oncology, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Health Science Center, China
| | - Lei Zhou
- Department of Hematology, Chinese PLA General Hospital, Beijing, China.,Department of Hematology, No. 202 Hospital of PLA, Shenyang, China
| | - Lili Wang
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Li Yu
- School of Medicine, Nankai University, Tianjin, China.,Department of Hematology, Chinese PLA General Hospital, Beijing, China.,Department of Hematology-Oncology, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Health Science Center, China
| | - Yonghui Li
- Department of Hematology, Chinese PLA General Hospital, Beijing, China.,Institute of Nephrology, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
17
|
Clinical significance of ASXL2 and ZBTB7A mutations and C-terminally truncated RUNX1-RUNX1T1 expression in AML patients with t(8;21) enrolled in the JALSG AML201 study. Ann Hematol 2018; 98:83-91. [PMID: 30251205 DOI: 10.1007/s00277-018-3492-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 08/31/2018] [Indexed: 10/28/2022]
Abstract
We analyzed the clinical significance and genetic features of ASXL2 and ZBTB7A mutations, and the alternatively spliced isoform of the RUNX1-RUNX1T1 transcript, which is also called AML1-ETO9a (AE9a), in Japanese CBF-AML patients enrolled in the JALSG AML201 study. ASXL2 and ZBTB7A genes were sequenced using bone marrow samples of 41 AML patients with t(8;21) and 14 with inv(16). The relative expression levels of AE9a were quantified using the real-time PCR assay in 23 AML patients with t(8;21). We identified ASXL2 (34.1%) and ZBTB7A (9.8%) mutations in only AML patients with t(8;21). ASXL2-mutated patients had a significantly higher WBC count at diagnosis (P = 0.04) and a lower frequency of sex chromosome loss than wild-type patients (33 vs. 76%, respectively, P = 0.01). KIT mutations were the most frequently accompanied with both ASXL2 (36%) and ZBTB7A (75%) mutations. Neither ASXL2 nor ZBTB7A mutations had an impact on overall or event-free survival. Patients harboring cohesin complex gene mutations expressed significantly higher levels of AE9a than unmutated patients (P = 0.03). In conclusion, ASXL2 and ZBTB7A mutations were frequently identified in Japanese AML patients with t(8;21), but not in those with inv(16). Further analysis is required to clarify the detailed biological mechanism of AE9a regulation of the cohesin complex.
Collapse
|
18
|
Tian Y, Wang G, Hu Q, Xiao X, Chen S. AML1/ETO trans-activates c-KIT expression through the long range interaction between promoter and intronic enhancer. J Cell Biochem 2018; 119:3706-3715. [PMID: 29236325 DOI: 10.1002/jcb.26587] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 12/07/2017] [Indexed: 01/21/2023]
Abstract
The AML1/ETO onco-fusion protein is crucial for the genesis of t(8;21) acute myeloid leukemia (AML) and is well documented as a transcriptional repressor through dominant-negative effect. However, little is known about the transactivation mechanism of AML1/ETO. Through large cohort of patient's expression level data analysis and a series of experimental validation, we report here that AML1/ETO transactivates c-KIT expression through directly binding to and mediating the long-range interaction between the promoter and intronic enhancer regions of c-KIT. Gene expression analyses verify that c-KIT expression is significantly high in t(8;21) AML. Further ChIP-seq analysis and motif scanning identify two regulatory regions located in the promoter and intronic enhancer region of c-KIT, respectively. Both regions are enriched by co-factors of AML1/ETO, such as AML1, CEBPe, c-Jun, and c-Fos. Further luciferase reporter assays show that AML1/ETO trans-activates c-KIT promoter activity through directly recognizing the AML1 motif and the co-existence of co-factors. The induction of c-KIT promoter activity is reinforced with the existence of intronic enhancer region. Furthermore, ChIP-3C-qPCR assays verify that AML1/ETO mediates the formation of DNA-looping between the c-KIT promoter and intronic enhancer region through the long-range interaction. Collectively, our data uncover a novel transcriptional activity mechanism of AML1/ETO and enrich our knowledge of the onco-fusion protein mediated transcription regulation.
Collapse
Affiliation(s)
- Ying Tian
- Department of hematology, The First People's Hospital of Shangqiu, Shangqiu, Henan, China
| | - Genjie Wang
- Department of hematology, The First People's Hospital of Shangqiu, Shangqiu, Henan, China
| | - Qingzhu Hu
- Department of hematology, The First People's Hospital of Shangqiu, Shangqiu, Henan, China
| | - Xichun Xiao
- Department of hematology, The First People's Hospital of Shangqiu, Shangqiu, Henan, China
| | - Shuxia Chen
- Department of hematology, The First People's Hospital of Shangqiu, Shangqiu, Henan, China
| |
Collapse
|
19
|
Sorigue M, Juncà J. Reply to Foley et al., "Acute myeloid leukemia with t(14;21) involving RUNX1 and SYNE2: A novel favorable-risk translocation?". Cancer Genet 2017; 220:77. [PMID: 29195903 DOI: 10.1016/j.cancergen.2017.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/07/2017] [Indexed: 10/18/2022]
Affiliation(s)
- Marc Sorigue
- Hematology Laboratory, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Josep Carreras Leukemia Research Institute, Badalona, Spain.
| | - Jordi Juncà
- Hematology Laboratory, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Josep Carreras Leukemia Research Institute, Badalona, Spain
| |
Collapse
|
20
|
Thiel VN, Giaimo BD, Schwarz P, Soller K, Vas V, Bartkuhn M, Blätte TJ, Döhner K, Bullinger L, Borggrefe T, Geiger H, Oswald F. Heterodimerization of AML1/ETO with CBFβ is required for leukemogenesis but not for myeloproliferation. Leukemia 2017; 31:2491-2502. [PMID: 28360416 PMCID: PMC5668496 DOI: 10.1038/leu.2017.105] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 02/18/2017] [Accepted: 03/13/2017] [Indexed: 02/07/2023]
Abstract
The AML1/Runx1 transcription factor and its heterodimerization partner CBFβ are essential regulators of myeloid differentiation. The chromosomal translocation t(8;21), fusing the DNA binding domain of AML1 to the corepressor eight-twenty-one (ETO), is frequently associated with acute myeloid leukemia and generates the AML1/ETO (AE) fusion protein. AE represses target genes usually activated by AML1 and also affects the endogenous repressive function of ETO at Notch target genes. In order to analyze the contribution of CBFβ in AE-mediated leukemogenesis and deregulation of Notch target genes, we introduced two point mutations in a leukemia-initiating version of AE in mice, called AE9a, that disrupt the AML1/CBFβ interaction (AE9aNT). We report that the AE9a/CBFβ interaction is not required for the AE9a-mediated aberrant expression of AML1 target genes, while upregulation/derepression of Notch target genes does require the interaction with CBFβ. Using retroviral transduction to express AE9a in murine adult bone marrow-derived hematopoietic progenitors, we observed that both AE9a and AE9aNT lead to increased myeloproliferation in vivo. However, both development of leukemia and long-term replating capacity are only observed with AE9a but not with AE9aNT. Thus, deregulation of both AML1 and Notch target genes is required for the development of AE9a-driven leukemia.
Collapse
Affiliation(s)
- V N Thiel
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine I, University of Ulm, Ulm, Germany
| | - B D Giaimo
- Institute of Biochemistry, University of Giessen, Giessen, Germany
| | - P Schwarz
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine I, University of Ulm, Ulm, Germany
| | - K Soller
- Institute of Molecular Medicine, University of Ulm, Ulm, Germany
| | - V Vas
- Institute of Molecular Medicine, University of Ulm, Ulm, Germany
| | - M Bartkuhn
- Institute for Genetics, University of Giessen, Giessen, Germany
| | - T J Blätte
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - K Döhner
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - L Bullinger
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - T Borggrefe
- Institute of Biochemistry, University of Giessen, Giessen, Germany
| | - H Geiger
- Institute of Molecular Medicine, University of Ulm, Ulm, Germany
- Division of Experimental Hematology and Cancer Biology, CCHMC, Cincinnati, OH, USA
| | - F Oswald
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine I, University of Ulm, Ulm, Germany
| |
Collapse
|
21
|
Arber DA, Borowitz MJ, Cessna M, Etzell J, Foucar K, Hasserjian RP, Rizzo JD, Theil K, Wang SA, Smith AT, Rumble RB, Thomas NE, Vardiman JW. Initial Diagnostic Workup of Acute Leukemia: Guideline From the College of American Pathologists and the American Society of Hematology. Arch Pathol Lab Med 2017; 141:1342-1393. [PMID: 28225303 DOI: 10.5858/arpa.2016-0504-cp] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT - A complete diagnosis of acute leukemia requires knowledge of clinical information combined with morphologic evaluation, immunophenotyping and karyotype analysis, and often, molecular genetic testing. Although many aspects of the workup for acute leukemia are well accepted, few guidelines have addressed the different aspects of the diagnostic evaluation of samples from patients suspected to have acute leukemia. OBJECTIVE - To develop a guideline for treating physicians and pathologists involved in the diagnostic and prognostic evaluation of new acute leukemia samples, including acute lymphoblastic leukemia, acute myeloid leukemia, and acute leukemias of ambiguous lineage. DESIGN - The College of American Pathologists and the American Society of Hematology convened a panel of experts in hematology and hematopathology to develop recommendations. A systematic evidence review was conducted to address 6 key questions. Recommendations were derived from strength of evidence, feedback received during the public comment period, and expert panel consensus. RESULTS - Twenty-seven guideline statements were established, which ranged from recommendations on what clinical and laboratory information should be available as part of the diagnostic and prognostic evaluation of acute leukemia samples to what types of testing should be performed routinely, with recommendations on where such testing should be performed and how the results should be reported. CONCLUSIONS - The guideline provides a framework for the multiple steps, including laboratory testing, in the evaluation of acute leukemia samples. Some aspects of the guideline, especially molecular genetic testing in acute leukemia, are rapidly changing with new supportive literature, which will require on-going updates for the guideline to remain relevant.
Collapse
|
22
|
D816 mutation of the KIT gene in core binding factor acute myeloid leukemia is associated with poorer prognosis than other KIT gene mutations. Ann Hematol 2017; 96:1641-1652. [PMID: 28762080 DOI: 10.1007/s00277-017-3074-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/13/2017] [Indexed: 01/20/2023]
Abstract
The clinical impact of KIT mutations in core binding factor acute myeloid leukemia (CBF-AML) is still unclear. In the present study, we analyzed the prognostic significance of each KIT mutation (D816, N822K, and other mutations) in Japanese patients with CBF-AML. We retrospectively analyzed 136 cases of CBF-AML that had gone into complete remission (CR). KIT mutations were found in 61 (45%) of the patients with CBF-AML. D816, N822K, D816 and N822K, and other mutations of the KIT gene were detected in 29 cases (21%), 20 cases (15%), 7 cases (5%), and 5 cases (4%), respectively. The rate of relapse-free survival (RFS) and overall survival (OS) in patients with D816 and with both D816 and N822K mutations was significantly lower than in patients with other or with no KIT mutations (RFS: p < 0.001, OS: p < 0.001). Moreover, stratified analysis of the chromosomal abnormalities t(8;21)(q22;q22) and inv(16)(p13.1q22), t(16;16)(p13.1;q22) showed that D816 mutation was associated with a significantly worse prognosis. In a further multivariate analysis of RFS and OS, D816 mutation was found to be an independent risk factor for significantly poorer prognosis. In the present study, we were able to establish that, of all KIT mutations, D816 mutation alone is an unfavorable prognostic factor.
Collapse
|
23
|
Li Y, Ning Q, Shi J, Chen Y, Jiang M, Gao L, Huang W, Jing Y, Huang S, Liu A, Hu Z, Liu D, Wang L, Nervi C, Dai Y, Zhang MQ, Yu L. A novel epigenetic AML1-ETO/THAP10/miR-383 mini-circuitry contributes to t(8;21) leukaemogenesis. EMBO Mol Med 2017; 9:933-949. [PMID: 28539478 PMCID: PMC5577530 DOI: 10.15252/emmm.201607180] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 04/11/2017] [Accepted: 04/21/2017] [Indexed: 02/05/2023] Open
Abstract
DNA methylation patterns are frequently deregulated in t(8;21) acute myeloid leukaemia (AML), but little is known of the mechanisms by which specific gene sets become aberrantly methylated. Here, we found that the promoter DNA methylation signature of t(8;21)+ AML blasts differs from that of t(8;21)- AMLs. This study demonstrated that a novel hypermethylated zinc finger-containing protein, THAP10, is a target gene and can be epigenetically suppressed by AML1-ETO at the transcriptional level in t(8;21) AML. Our findings also show that THAP10 is a bona fide target of miR-383 that can be epigenetically activated by the AML1-ETO recruiting co-activator p300. In this study, we demonstrated that epigenetic suppression of THAP10 is the mechanistic link between AML1-ETO fusion proteins and tyrosine kinase cascades. In addition, we showed that THAP10 is a nuclear protein that inhibits myeloid proliferation and promotes differentiation both in vitro and in vivo Altogether, our results revealed an unexpected and important epigenetic mini-circuit of AML1-ETO/THAP10/miR-383 in t(8;21) AML, in which epigenetic suppression of THAP10 predicts a poor clinical outcome and represents a novel therapeutic target.
Collapse
Affiliation(s)
- Yonghui Li
- Department of Haematology, Chinese PLA General Hospital, Beijing, China
| | - Qiaoyang Ning
- Department of Haematology, Chinese PLA General Hospital, Beijing, China
- Nankai University School of Medicine, Tianjin, China
| | - Jinlong Shi
- Department of Biomedical Engineering, Chinese PLA General Hospital, Beijing, China
| | - Yang Chen
- Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China
| | - Mengmeng Jiang
- Department of Haematology, Chinese PLA General Hospital, Beijing, China
| | - Li Gao
- Department of Haematology, China-Japan Friendship Hospital, Beijing, China
| | - Wenrong Huang
- Department of Haematology, Chinese PLA General Hospital, Beijing, China
| | - Yu Jing
- Department of Haematology, Chinese PLA General Hospital, Beijing, China
| | - Sai Huang
- Department of Haematology, Chinese PLA General Hospital, Beijing, China
| | - Anqi Liu
- Department of Haematology, Chinese PLA General Hospital, Beijing, China
| | - Zhirui Hu
- Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China
| | - Daihong Liu
- Department of Haematology, Chinese PLA General Hospital, Beijing, China
| | - Lili Wang
- Department of Haematology, Chinese PLA General Hospital, Beijing, China
| | - Clara Nervi
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome "La Sapienza" Polo Pontino, Latina, Italy
| | - Yun Dai
- Cancer Centre, The First Hospital of Jilin University, Changchun, China
- Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael Q Zhang
- Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China
| | - Li Yu
- Department of Haematology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
24
|
D816V mutation in the KIT gene activation loop has greater cell-proliferative and anti-apoptotic ability than N822K mutation in core-binding factor acute myeloid leukemia. Exp Hematol 2017; 52:56-64.e4. [PMID: 28506695 DOI: 10.1016/j.exphem.2017.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 04/03/2017] [Accepted: 05/02/2017] [Indexed: 01/09/2023]
Abstract
In core-binding factor acute myeloid leukemia (CBF-AML), there have been conflicting reports regarding the status as an unfavorable prognostic factor of mutation in the KIT gene, the significance of which remains unclear. We previously reported that prognoses differ between the KIT D816V and N822K mutations. In the present study, we compared in vitro the cell-proliferative and anti-apoptotic ability of D816V and N822K. We transduced these KIT mutations into the interleukin-3-dependent cell line TF-1 (TF-1 KITD816V, TF-1 KITN822K). When these KIT mutations were transduced into TF-1 cells, the cells acquired a proliferative ability independent of growth factor, which was significantly higher in TF-1 KITD816V than in TF-1 KITN822K (p = 0.022). When Ara-C was added in the absence of growth factor, Annexin V assay revealed that TF-1 KITD816V was associated with a significantly lower proportion of apoptotic cells than TF-1 KITN822K (p < 0.001). Regarding signal transduction pathways, both KIT D816V and KIT N822K underwent autophosphorylation in the absence of growth factor. This was followed in KIT D816V by downstream activation of the SRC family kinase pathway in addition to the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway, and in KIT N822K by downstream activation of the mitogen-activated protein kinase (MAPK) pathway in addition to the JAK/STAT pathway. These findings establish that D816V and N822K mutations are situated closely on the KIT receptor activation loop, but D816V has greater cell-proliferative and anti-apoptotic ability than N822K.
Collapse
|
25
|
Guitart AV, Panagopoulou TI, Villacreces A, Vukovic M, Sepulveda C, Allen L, Carter RN, van de Lagemaat LN, Morgan M, Giles P, Sas Z, Gonzalez MV, Lawson H, Paris J, Edwards-Hicks J, Schaak K, Subramani C, Gezer D, Armesilla-Diaz A, Wills J, Easterbrook A, Coman D, So CWE, O'Carroll D, Vernimmen D, Rodrigues NP, Pollard PJ, Morton NM, Finch A, Kranc KR. Fumarate hydratase is a critical metabolic regulator of hematopoietic stem cell functions. J Exp Med 2017; 214:719-735. [PMID: 28202494 PMCID: PMC5339674 DOI: 10.1084/jem.20161087] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/29/2016] [Accepted: 01/20/2017] [Indexed: 11/04/2022] Open
Abstract
Strict regulation of stem cell metabolism is essential for tissue functions and tumor suppression. In this study, we investigated the role of fumarate hydratase (Fh1), a key component of the mitochondrial tricarboxylic acid (TCA) cycle and cytosolic fumarate metabolism, in normal and leukemic hematopoiesis. Hematopoiesis-specific Fh1 deletion (resulting in endogenous fumarate accumulation and a genetic TCA cycle block reflected by decreased maximal mitochondrial respiration) caused lethal fetal liver hematopoietic defects and hematopoietic stem cell (HSC) failure. Reexpression of extramitochondrial Fh1 (which normalized fumarate levels but not maximal mitochondrial respiration) rescued these phenotypes, indicating the causal role of cellular fumarate accumulation. However, HSCs lacking mitochondrial Fh1 (which had normal fumarate levels but defective maximal mitochondrial respiration) failed to self-renew and displayed lymphoid differentiation defects. In contrast, leukemia-initiating cells lacking mitochondrial Fh1 efficiently propagated Meis1/Hoxa9-driven leukemia. Thus, we identify novel roles for fumarate metabolism in HSC maintenance and hematopoietic differentiation and reveal a differential requirement for mitochondrial Fh1 in normal hematopoiesis and leukemia propagation.
Collapse
Affiliation(s)
- Amelie V Guitart
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH8 9YL, Scotland, UK
| | - Theano I Panagopoulou
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH8 9YL, Scotland, UK
| | - Arnaud Villacreces
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH8 9YL, Scotland, UK
| | - Milica Vukovic
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH8 9YL, Scotland, UK
| | - Catarina Sepulveda
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH8 9YL, Scotland, UK
| | - Lewis Allen
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH8 9YL, Scotland, UK
| | - Roderick N Carter
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH8 9YL, Scotland, UK
| | - Louie N van de Lagemaat
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH8 9YL, Scotland, UK
- The Roslin Institute, University of Edinburgh, Edinburgh EH8 9YL, Scotland, UK
| | - Marcos Morgan
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH8 9YL, Scotland, UK
| | - Peter Giles
- Wales Gene Park and Wales Cancer Research Centre, Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF10 3XQ, Wales, UK
| | - Zuzanna Sas
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH8 9YL, Scotland, UK
| | - Marta Vila Gonzalez
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH8 9YL, Scotland, UK
| | - Hannah Lawson
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH8 9YL, Scotland, UK
| | - Jasmin Paris
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH8 9YL, Scotland, UK
| | - Joy Edwards-Hicks
- Edinburgh Cancer Research UK Centre, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH8 9YL, Scotland, UK
| | - Katrin Schaak
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH8 9YL, Scotland, UK
| | - Chithra Subramani
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH8 9YL, Scotland, UK
| | - Deniz Gezer
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH8 9YL, Scotland, UK
| | - Alejandro Armesilla-Diaz
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH8 9YL, Scotland, UK
| | - Jimi Wills
- Edinburgh Cancer Research UK Centre, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH8 9YL, Scotland, UK
| | - Aaron Easterbrook
- Mater Children's Private Hospital Brisbane, South Brisbane, Queensland 4101, Australia
| | - David Coman
- Department of Metabolic Medicine, The Lady Cilento Children's Hospital, South Brisbane, Queensland 4101, Australia
| | - Chi Wai Eric So
- Department of Haematological Medicine, Division of Cancer Studies, King's College London, London WC2R 2LS, England, UK
| | - Donal O'Carroll
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH8 9YL, Scotland, UK
| | - Douglas Vernimmen
- The Roslin Institute, University of Edinburgh, Edinburgh EH8 9YL, Scotland, UK
| | - Neil P Rodrigues
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF10 3XQ, Wales, UK
| | - Patrick J Pollard
- Edinburgh Cancer Research UK Centre, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH8 9YL, Scotland, UK
| | - Nicholas M Morton
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH8 9YL, Scotland, UK
| | - Andrew Finch
- Edinburgh Cancer Research UK Centre, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH8 9YL, Scotland, UK
| | - Kamil R Kranc
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH8 9YL, Scotland, UK
- Edinburgh Cancer Research UK Centre, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH8 9YL, Scotland, UK
| |
Collapse
|
26
|
Ayatollahi H, Shajiei A, Sadeghian MH, Sheikhi M, Yazdandoust E, Ghazanfarpour M, Shams SF, Shakeri S. Prognostic Importance of C-KIT Mutations in Core Binding Factor Acute Myeloid Leukemia: A Systematic Review. Hematol Oncol Stem Cell Ther 2016; 10:1-7. [PMID: 27613372 DOI: 10.1016/j.hemonc.2016.08.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 08/07/2016] [Accepted: 08/10/2016] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE/BACKGROUND Acute myeloid leukemia (AML) is defined as leukemic blast reproduction in bone marrow. Chromosomal abnormalities form different subgroups with joint clinical specifications and results. t(8;21)(q22;q22) and inv(16)(p13;q22) form core binding factor-AML (CBF-AML). c-kit mutation activation occurs in 12.8-46.1% of adults with CBF leukemia. These mutations occur in 20-25% of t(8;21) and 30% of inv(16) cases. METHODS In this systematic review, we searched different databases, including PubMed, Scopus, and Embase. Selected articles were measured based on the inclusion criteria of this study and initially compared in terms of titles or abstracts. Finally, articles relevant to the subject of this review were retrieved in full text. Twenty-two articles matched the inclusion criteria and were selected for this review. RESULTS In this study, c-kit mutations were associated with poor prognosis in AML patients with t(8;21) and inv(16). In addition, these mutations had better prognostic effects on AML patients with inv(16) compared with those with t(8;21). CONCLUSION According to the results of this study, c-kit mutations have intense, harmful effects on the relapse and white blood cell increase in CBF-AML adults. However, these mutations have no significant prognostic effects on patients.
Collapse
Affiliation(s)
- Hossein Ayatollahi
- Cancer Molecular Pathology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Shajiei
- Department of Hematology and Blood Bank, Cancer Molecular Pathology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hadi Sadeghian
- Department of Hematology and Blood Bank, Cancer Molecular Pathology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Sheikhi
- Cancer Molecular Pathology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ehsan Yazdandoust
- Department of Hematology and Blood Bank, Cancer Molecular Pathology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masumeh Ghazanfarpour
- Department of Midwifery, School of Nursing and Midwifery, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyyede Fatemeh Shams
- Department of Hematology and Blood Bank, Cancer Molecular Pathology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sepideh Shakeri
- Department of Hematology and Blood Bank, Cancer Molecular Pathology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
27
|
New insights into transcriptional and leukemogenic mechanisms of AML1-ETO and E2A fusion proteins. ACTA ACUST UNITED AC 2016; 11:285-304. [PMID: 28261265 DOI: 10.1007/s11515-016-1415-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Nearly 15% of acute myeloid leukemia (AML) cases are caused by aberrant expression of AML1-ETO, a fusion protein generated by the t(8;21) chromosomal translocation. Since its discovery, AML1-ETO has served as a prototype to understand how leukemia fusion proteins deregulate transcription to promote leukemogenesis. Another leukemia fusion protein, E2A-Pbx1, generated by the t(1;19) translocation, is involved in acute lymphoblastic leukemias (ALLs). While AML1-ETO and E2A-Pbx1 are structurally unrelated fusion proteins, we have recently shown that a common axis, the ETO/E-protein interaction, is involved in the regulation of both fusion proteins, underscoring the importance of studying protein-protein interactions in elucidating the mechanisms of leukemia fusion proteins. OBJECTIVE In this review, we aim to summarize these new developments while also providing a historic overview of the related early studies. METHODS A total of 218 publications were reviewed in this article, a majority of which were published after 2004.We also downloaded 3D structures of AML1-ETO domains from Protein Data Bank and provided a systematic summary of their structures. RESULTS By reviewing the literature, we summarized early and recent findings on AML1-ETO, including its protein-protein interactions, transcriptional and leukemogenic mechanisms, as well as the recently reported involvement of ETO family corepressors in regulating the function of E2A-Pbx1. CONCLUSION While the recent development in genomic and structural studies has clearly demonstrated that the fusion proteins function by directly regulating transcription, a further understanding of the underlying mechanisms, including crosstalk with other transcription factors and cofactors, and the protein-protein interactions in the context of native proteins, may be necessary for the development of highly targeted drugs for leukemia therapy.
Collapse
|
28
|
Supraphysiologic levels of the AML1-ETO isoform AE9a are essential for transformation. Proc Natl Acad Sci U S A 2016; 113:9075-80. [PMID: 27457952 DOI: 10.1073/pnas.1524225113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chromosomal translocation 8;21 is found in 40% of the FAB M2 subtype of acute myeloid leukemia (AML). The resultant in-frame fusion protein AML1-ETO (AE) acts as an initiating oncogene for leukemia development. AE immortalizes human CD34(+) cord blood cells in long-term culture. We assessed the transforming properties of the alternatively spliced AE isoform AE9a (or alternative splicing at exon 9), which is fully transforming in a murine retroviral model, in human cord blood cells. Full activity was realized only upon increased fusion protein expression. This effect was recapitulated in the AE9a murine AML model. Cotransduction of AE and AE9a resulted in a strong selective pressure for AE-expressing cells. In the context of AE, AE9a did not show selection for increased expression, affirming observations of human t(8;21) patient samples where full-length AE is the dominant protein detected. Mechanistically, AE9a showed defective transcriptional regulation of AE target genes that was partially corrected at high expression. Together, these results bring an additional perspective to our understanding of AE function and highlight the contribution of oncogene expression level in t(8;21) experimental models.
Collapse
|
29
|
Yu G, Yin C, Jiang L, Zheng Z, Wang Z, Wang C, Zhou H, Jiang X, Liu Q, Meng F. Amyloid precursor protein cooperates with c-KIT mutation/overexpression to regulate cell apoptosis in AML1-ETO-positive leukemia via the PI3K/AKT signaling pathway. Oncol Rep 2016; 36:1626-32. [PMID: 27460334 DOI: 10.3892/or.2016.4963] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 04/22/2016] [Indexed: 11/06/2022] Open
Abstract
It has been reported that amyloid precursor protein (APP) promotes cell proliferation and metastasis in various types of solid cancers. In our previous study, we showed that APP is highly expressed and regulates leukemia cell migration in AML1‑ETO-positive (AE) leukemia. Whether APP is involved in the regulation of AE leukemia cell proliferation or apoptosis is unclear. In the present study we focused on the correlation of APP with c-KIT mutation/overexpression and cell proliferation and apoptosis in AE leukemia. APP and c-KIT expression detected by quantitative real-time (qPCR) method, and c-KIT mutations screened using PCR in bone marrow cells from 65 patients with AE leukemia before their first chemotherapy, were simultaneously assessed. Furthermore, the Kasumi-1 cell line was chosen as the cell model, and the APP gene was knocked down using siRNA technology. The correlation of cell cycle distribution and apoptosis and c-Kit expression with APP expression levels, as well as the regulation of the PI3K/AKT signaling pathway by APP were analyzed in the Kasumi-1 cell line. The results showed that peripheral white blood cell counts (P=0.008) and bone marrow cellularity (P=0.031), but not bone marrow blasts, were correlated with APP expression. Moreover, the patients with APP high expression had a significantly higher incidence of c-KIT mutations (P<0.001) and increased levels of c-KIT expression (P=0.001) and poorer disease outcome. In the Kasumi-1 cell line, as compared with the wild-type and negative control cells, cell apoptosis, both early (P<0.001) and late (P<0.001), was significantly increased when the APP gene was knocked down, concomitant with reduced levels of anti-apoptotic protein Bcl-2 and increased levels of caspase-3 and -9, however, no apparent change was observed in the cell cycle distribution (P>0.05). Moreover, the knockdown of APP markedly decreased c-KIT expression at both the transcription (as evidenced by qPCR analysis) and translation (as confirmed by CD117 assay and western blot analysis) levels, as well as p-AKT and its downstream targets including NF-κB, p53 and Bcl-2. In conclusion, APP may cooperate with c-KIT mutation/overexpression in the regulation of cell apoptosis but not proliferation in AE leukemia via the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Guopan Yu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Changxin Yin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Ling Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhongxin Zheng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhixiang Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Chunli Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Hongsheng Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xuejie Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Fanyi Meng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
30
|
Yu X, Ruan X, Zhang J, Zhao Q. Celastrol Induces Cell Apoptosis and Inhibits the Expression of the AML1-ETO/C-KIT Oncoprotein in t(8;21) Leukemia. Molecules 2016; 21:molecules21050574. [PMID: 27144550 PMCID: PMC6274014 DOI: 10.3390/molecules21050574] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/22/2016] [Accepted: 04/25/2016] [Indexed: 11/16/2022] Open
Abstract
Resistance to chemotherapy is a major challenge to improving overall survival in Acute Myeloid Leukemia (AML). Therefore, the development of innovative therapies and the identification of more novel agents for AML are urgently needed. Celastrol, a compound extracted from the Chinese herb Tripterygium wilfordii Hook, exerts anticancer activity. We investigated the effect of celastrol in the t(8;21) AML cell lines Kasumi-1 and SKNO-1. We demonstrated that inhibition of cell proliferation activated caspases and disrupted mitochondrial function. In addition, we found that celastrol downregulated the AML1-ETO fusion protein, therefore downregulating C-KIT kinases and inhibiting AKT, STAT3 and Erk1/2. These findings provide clear evidence that celastrol might provide clinical benefits to patients with t(8;21) leukemia.
Collapse
MESH Headings
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Chromosomes, Human, Pair 21
- Chromosomes, Human, Pair 8
- Core Binding Factor Alpha 2 Subunit/biosynthesis
- Down-Regulation/drug effects
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Pentacyclic Triterpenes
- Proto-Oncogene Proteins/biosynthesis
- Proto-Oncogene Proteins c-kit/biosynthesis
- RUNX1 Translocation Partner 1 Protein
- Transcription Factors/biosynthesis
- Translocation, Genetic
- Triterpenes/therapeutic use
Collapse
Affiliation(s)
- Xianjun Yu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China.
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, China.
| | - Xuzhi Ruan
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China.
| | - Jingxuan Zhang
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China.
| | - Qun Zhao
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
31
|
Kohrs N, Kolodziej S, Kuvardina ON, Herglotz J, Yillah J, Herkt S, Piechatzek A, Salinas Riester G, Lingner T, Wichmann C, Bonig H, Seifried E, Platzbecker U, Medyouf H, Grez M, Lausen J. MiR144/451 Expression Is Repressed by RUNX1 During Megakaryopoiesis and Disturbed by RUNX1/ETO. PLoS Genet 2016; 12:e1005946. [PMID: 26990877 PMCID: PMC4798443 DOI: 10.1371/journal.pgen.1005946] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/01/2016] [Indexed: 01/22/2023] Open
Abstract
A network of lineage-specific transcription factors and microRNAs tightly regulates differentiation of hematopoietic stem cells along the distinct lineages. Deregulation of this regulatory network contributes to impaired lineage fidelity and leukemogenesis. We found that the hematopoietic master regulator RUNX1 controls the expression of certain microRNAs, of importance during erythroid/megakaryocytic differentiation. In particular, we show that the erythorid miR144/451 cluster is epigenetically repressed by RUNX1 during megakaryopoiesis. Furthermore, the leukemogenic RUNX1/ETO fusion protein transcriptionally represses the miR144/451 pre-microRNA. Thus RUNX1/ETO contributes to increased expression of miR451 target genes and interferes with normal gene expression during differentiation. Furthermore, we observed that inhibition of RUNX1/ETO in Kasumi1 cells and in RUNX1/ETO positive primary acute myeloid leukemia patient samples leads to up-regulation of miR144/451. RUNX1 thus emerges as a key regulator of a microRNA network, driving differentiation at the megakaryocytic/erythroid branching point. The network is disturbed by the leukemogenic RUNX1/ETO fusion product.
Collapse
Affiliation(s)
- Nicole Kohrs
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, Frankfurt, Germany
| | - Stephan Kolodziej
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, Frankfurt, Germany
| | - Olga N. Kuvardina
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, Frankfurt, Germany
| | - Julia Herglotz
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Jasmin Yillah
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, Frankfurt, Germany
| | - Stefanie Herkt
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, Frankfurt, Germany
| | - Alexander Piechatzek
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, Frankfurt, Germany
| | | | - Thomas Lingner
- Medical-University Goettingen, Transcriptome Analysis Laboratory, Goettingen, Germany
| | - Christian Wichmann
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, Ludwig-Maximilian University Hospital, Munich, Germany
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, Johann-Wolfgang-Goethe University and German Red Cross Blood Service, Frankfurt am Main, Germany
| | - Erhard Seifried
- Institute for Transfusion Medicine and Immunohematology, Johann-Wolfgang-Goethe University and German Red Cross Blood Service, Frankfurt am Main, Germany
| | - Uwe Platzbecker
- Department of Hematology, Medical Clinic and Polyclinic I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Hind Medyouf
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, Frankfurt, Germany
| | - Manuel Grez
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, Frankfurt, Germany
| | - Jörn Lausen
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, Frankfurt, Germany
- Institute for Transfusion Medicine and Immunohematology, Johann-Wolfgang-Goethe University and German Red Cross Blood Service, Frankfurt am Main, Germany
- * E-mail:
| |
Collapse
|
32
|
Testa U, Lo-Coco F. Prognostic factors in acute promyelocytic leukemia: strategies to define high-risk patients. Ann Hematol 2016; 95:673-80. [DOI: 10.1007/s00277-016-2622-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 02/15/2016] [Indexed: 12/13/2022]
|
33
|
Overexpression and knockout of miR-126 both promote leukemogenesis. Blood 2015; 126:2005-15. [PMID: 26361793 DOI: 10.1182/blood-2015-04-639062] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 09/04/2015] [Indexed: 12/16/2022] Open
Abstract
It is generally assumed that gain- and loss-of-function manipulations of a functionally important gene should lead to the opposite phenotypes. We show in this study that both overexpression and knockout of microRNA (miR)-126 surprisingly result in enhanced leukemogenesis in cooperation with the t(8;21) fusion genes AML1-ETO/RUNX1-RUNX1T1 and AML1-ETO9a (a potent oncogenic isoform of AML1-ETO). In accordance with our observation that increased expression of miR-126 is associated with unfavorable survival in patients with t(8;21) acute myeloid leukemia (AML), we show that miR-126 overexpression exhibits a stronger effect on long-term survival and progression of AML1-ETO9a-mediated leukemia stem cells/leukemia initiating cells (LSCs/LICs) in mice than does miR-126 knockout. Furthermore, miR-126 knockout substantially enhances responsiveness of leukemia cells to standard chemotherapy. Mechanistically, miR-126 overexpression activates genes that are highly expressed in LSCs/LICs and/or primitive hematopoietic stem/progenitor cells, likely through targeting ERRFI1 and SPRED1, whereas miR-126 knockout activates genes that are highly expressed in committed, more differentiated hematopoietic progenitor cells, presumably through inducing FZD7 expression. Our data demonstrate that miR-126 plays a critical but 2-faceted role in leukemia and thereby uncover a new layer of miRNA regulation in cancer. Moreover, because miR-126 depletion can sensitize AML cells to standard chemotherapy, our data also suggest that miR-126 represents a promising therapeutic target.
Collapse
|
34
|
High expression of c-kit mRNA predicts unfavorable outcome in adult patients with t(8;21) acute myeloid leukemia. PLoS One 2015; 10:e0124241. [PMID: 25860287 PMCID: PMC4393018 DOI: 10.1371/journal.pone.0124241] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/27/2015] [Indexed: 11/22/2022] Open
Abstract
The reason that a certain subgroup of acute myeloid leukemia (AML) patients with t(8;21) translocation (generating the AML1/ETO fusion gene) displays a poor survival remains elusive. The proto-oncogene c-kit is expressed in approximately 80% of AML cases. The kinase domain mutation of the c-kit gene, one of the most common gain-of-function mutations associated with t(8;21) AML, predicts higher relapse risk and poor prognosis. However, the role of c-kit high expression in t(8;21) AML remains poorly understood. Here we evaluated the prognostic significance of c-kit expression levels in AML patients. The mRNA expression of c-kit was determined by real-time quantitative reverse transcription PCR in 132 adult AML patients. Patients were grouped into quartiles according to c-kit expression levels (Q1–Q4, each quartile containing 25% of patients) and divided into c-kit high (Q4; n = 33) and c-kit low (Q1–Q3; n = 99). High c-kit expression was associated with AML1/ETO-positive and with c-kit mutation. Of note, 35.8% of the AML1/ETO-positive AML patients carrying wild-type c-kit expressed high levels of c-kit, suggesting that other factors are involved in c-kit overexpression. High c-kit expression was associated with inferior overall and event-free survival in AML1/ETO-positive patients and was independently predictive for overall and event-free survival in multivariate analyses in a c-kit mutation-independent manner. Thus, high c-kit expression serves as a reliable molecular marker for poor prognosis, supporting a pathogenetic role of c-kit signaling in AML1/ETO-positive AML. AML1/ETO-positive patients with high c-kit expression might benefit from early treatment modifications and molecular target therapies.
Collapse
|
35
|
Activating c-KIT mutations confer oncogenic cooperativity and rescue RUNX1/ETO-induced DNA damage and apoptosis in human primary CD34+ hematopoietic progenitors. Leukemia 2014; 29:279-89. [PMID: 24897507 PMCID: PMC4320295 DOI: 10.1038/leu.2014.179] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/08/2014] [Accepted: 06/02/2014] [Indexed: 02/06/2023]
Abstract
The RUNX1/ETO (RE) fusion protein, which originates from the t(8;21) chromosomal rearrangement, is one of the most frequent translocation products found in de novo acute myeloid leukemia (AML). In RE leukemias, activated forms of the c-KIT tyrosine kinase receptor are frequently found, thereby suggesting oncogenic cooperativity between these oncoproteins in the development and maintenance of t(8;21) malignancies. In this report, we show that activated c-KIT cooperates with a C-terminal truncated variant of RE, REtr, to expand human CD34+ hematopoietic progenitors ex vivo. CD34+ cells expressing both oncogenes resemble the AML-M2 myeloblastic cell phenotype, in contrast to REtr-expressing cells which largely undergo granulocytic differentiation. Oncogenic c-KIT amplifies REtr-depended clonogenic growth and protects cells from exhaustion. Activated c-KIT reverts REtr-induced DNA damage and apoptosis. In the presence of activated c-KIT, REtr-downregulated DNA-repair genes are re-expressed leading to an enhancement of DNA-repair efficiency via homologous recombination. Together, our results provide new mechanistic insight into REtr and c-KIT oncogenic cooperativity and suggest that augmented DNA repair accounts for the increased chemoresistance observed in t(8;21)-positive AML patients with activated c-KIT mutations. This cell-protective mechanism might represent a new therapeutic target, as REtr cells with activated c-KIT are highly sensitive to pharmacological inhibitors of DNA repair.
Collapse
|
36
|
Bäumer N, Krause A, Köhler G, Lettermann S, Evers G, Hascher A, Bäumer S, Berdel WE, Müller-Tidow C, Tickenbrock L. Proteinase-Activated Receptor 1 (PAR1) regulates leukemic stem cell functions. PLoS One 2014; 9:e94993. [PMID: 24740120 PMCID: PMC3989293 DOI: 10.1371/journal.pone.0094993] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/21/2014] [Indexed: 12/30/2022] Open
Abstract
External signals that are mediated by specific receptors determine stem cell fate. The thrombin receptor PAR1 plays an important role in haemostasis, thrombosis and vascular biology, but also in tumor biology and angiogenesis. Its expression and function in hematopoietic stem cells is largely unknown. Here, we analyzed expression and function of PAR1 in primary hematopoietic cells and their leukemic counterparts. AML patients' blast cells expressed much lower levels of PAR1 mRNA and protein than CD34+ progenitor cells. Constitutive Par1-deficiency in adult mice did not affect engraftment or stem cell potential of hematopoietic cells. To model an AML with Par1-deficiency, we retrovirally introduced the oncogene MLL-AF9 in wild type and Par1−/− hematopoietic progenitor cells. Par1-deficiency did not alter initial leukemia development. However, the loss of Par1 enhanced leukemic stem cell function in vitro and in vivo. Re-expression of PAR1 in Par1−/− leukemic stem cells delayed leukemogenesis in vivo. These data indicate that Par1 contributes to leukemic stem cell maintenance.
Collapse
Affiliation(s)
- Nicole Bäumer
- Department of Medicine, Hematology/Oncology, University of Muenster, Muenster, Germany
| | - Annika Krause
- Department of Medicine, Hematology/Oncology, University of Muenster, Muenster, Germany
| | - Gabriele Köhler
- Gerhard Domagk Institute for Pathology, University of Muenster, Muenster, Germany
| | - Stephanie Lettermann
- Department of Medicine, Hematology/Oncology, University of Muenster, Muenster, Germany
| | - Georg Evers
- Department of Medicine, Hematology/Oncology, University of Muenster, Muenster, Germany
| | - Antje Hascher
- Hochschule Hamm-Lippstadt, University of Applied Science, Hamm, Germany
| | - Sebastian Bäumer
- Department of Medicine, Hematology/Oncology, University of Muenster, Muenster, Germany
| | - Wolfgang E. Berdel
- Department of Medicine, Hematology/Oncology, University of Muenster, Muenster, Germany
| | - Carsten Müller-Tidow
- Department of Medicine, Hematology/Oncology, University of Muenster, Muenster, Germany
- Interdisciplinary Center for Clinical Research IZKF, University of Muenster, Muenster, Germany
- Dept. of Medicine IV, Hematology and Oncology, University of Halle, Halle, Germany
- * E-mail: (CMT); (LT)
| | - Lara Tickenbrock
- Department of Medicine, Hematology/Oncology, University of Muenster, Muenster, Germany
- Hochschule Hamm-Lippstadt, University of Applied Science, Hamm, Germany
- * E-mail: (CMT); (LT)
| |
Collapse
|
37
|
Zhao J, Quan H, Xu Y, Kong X, Jin L, Lou L. Flumatinib, a selective inhibitor of BCR-ABL/PDGFR/KIT, effectively overcomes drug resistance of certain KIT mutants. Cancer Sci 2014; 105:117-25. [PMID: 24205792 PMCID: PMC4317885 DOI: 10.1111/cas.12320] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/22/2013] [Accepted: 11/05/2013] [Indexed: 12/14/2022] Open
Abstract
Activating mutations in KIT have been associated with gastrointestinal stromal tumors (GISTs). The tyrosine kinase inhibitor imatinib mesylate has revolutionized the treatment of GISTs. Unfortunately, primary or acquired resistance to imatinib does occur in GISTs and forms a major problem. Although sunitinib malate, a multi-kinase inhibitor, has shown effectiveness against imatinib-resistant GISTs, recent studies have indicated that some imatinib-resistant GISTs harboring secondary mutations in the KIT activation loop were also resistant to sunitinib. Therefore, new drugs capable of overcoming the dual drug resistance of GISTs probably have potential clinical utility. In this study, we investigated the efficacy of flumatinib, an inhibitor of BCR-ABL/PDGFR/KIT, against 32D cells transformed by various KIT mutants and evaluated its potency to overcome the drug resistance of certain mutants. Interestingly, our in vitro study revealed that flumatinib effectively overcame the drug resistance of certain KIT mutants with activation loop mutations (i.e., D820G, N822K, Y823D, and A829P). Our in vivo study consistently suggested that flumatinib had superior efficacy compared with imatinib or sunitinib against 32D cells with the secondary mutation Y823D. Molecular modeling of flumatinib docked to the KIT kinase domain suggested a special mechanism underlying the capability of flumatinib to overcome the drug-resistance conferred by activation loop mutations. These findings suggest that flumatinib could be a promising therapeutic agent against GISTs resistant to both imatinib and sunitinib because of secondary mutations in the activation loop.
Collapse
Affiliation(s)
- Jie Zhao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | |
Collapse
|
38
|
Hoyos M, Nomdedeu JF, Esteve J, Duarte R, Ribera JM, Llorente A, Escoda L, Bueno J, Tormo M, Gallardo D, de Llano MPQ, Martí JM, Aventín A, Mangues R, Brunet S, Sierra J. Core binding factor acute myeloid leukemia: the impact of age, leukocyte count, molecular findings, and minimal residual disease. Eur J Haematol 2013; 91:209-218. [PMID: 23646898 DOI: 10.1111/ejh.12130] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2013] [Indexed: 12/31/2022]
Abstract
PURPOSE Most patients with acute myeloid leukemia (AML) and genetic rearrangements involving the core binding factor (CBF) have favorable prognosis. In contrast, a minority of them still have a high risk of leukemia recurrence. This study investigated the adverse features of CBF AML that could justify investigational therapeutic approaches. PATIENTS AND METHODS One hundred and fifty patients (median age 42 yr, range 16-69) with CBF AML (RUNX1-RUNX1T1 n = 74; CBFB-MYH11 n = 76) were prospectively enrolled into two consecutive CETLAM protocols at 19 Spanish institutions. Main clinic and biologic parameters were analyzed in the whole series. In non-selected cases with available DNA samples, the impact of molecular characterization and minimal residual disease (MRD) was also studied. RESULTS Overall, complete remission (CR) rate was 89% (94% in ≤50 yr old and 72% in >50 yr, P = 0.002). At 5 yr, cumulative incidence of relapse (CIR) was 26 ± 1%, disease-free survival (DFS) 62 ± 6%, and overall survival (OS) 66 ± 4%. In multivariate analyses, leukocyte count above 20 × 10(9) /L, BAALC over-expression, and high copy numbers of RUNX1-RUNXT1 or CBFB-MYH11 after induction chemotherapy (CT) led to increased relapse rate. Regarding OS, age >50 yr, leukocyte count above 20 × 10(9) /L, and increased MN1 expression were adverse features. CONCLUSION Age, leukocyte counts, BAALC, and MN1 gene expressions as well as high copy numbers of RUNX1-RUNXT1 or CBFB-MYH11 after induction chemotherapy are useful tools to predict the outcome and should be considered for risk-adapted therapy.
Collapse
Affiliation(s)
- Montserrat Hoyos
- Spanish CETLAM Group Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona Spanish Cancer Network (RTICC), Institut d'Investigació Biomèdica Sant Pau, Barcelona, Spain; University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Effects of c-KIT mutations on expression of the RUNX1/RUNX1T1 fusion transcript in t(8;21)-positive acute myeloid leukemia patients. Leuk Res 2013; 37:784-9. [PMID: 23528260 DOI: 10.1016/j.leukres.2013.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 02/09/2013] [Accepted: 02/11/2013] [Indexed: 11/23/2022]
Abstract
The aim of this study was to evaluate effect of c-KIT mutations on RUNX1/RUNX1T1 fusion transcript expression in patients with t(8;21)-positive AML. Fifty patients diagnosed with t(8;21)-positive AML for recent 10 years were enrolled. Patients with c-KIT mutations tended to achieve a greater than 3-log reduction in RUNX1/RUNX1T1 fusion transcript expression less frequently than patients without mutations from 6 to 12 months of follow-up. They have difficulties to obtain molecular complete remission and experience molecular relapse more frequently and rapidly than those without mutations. These results support poor prognostic impact of c-KIT mutations in t(8;21)-positive AML.
Collapse
|
40
|
Paschka P, Döhner K. Core-binding factor acute myeloid leukemia: can we improve on HiDAC consolidation? HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2013; 2013:209-219. [PMID: 24319183 DOI: 10.1182/asheducation-2013.1.209] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Acute myeloid leukemia (AML) with t(8;21) or inv(16) is commonly referred to as core-binding factor AML (CBF-AML). The incorporation of high-dose cytarabine for postremission therapy has substantially improved the outcome of CBF-AML patients, especially when administered in the setting of repetitive cycles. For many years, high-dose cytarabine was the standard treatment in CBF-AML resulting in favorable long-term outcome in approximately half of the patients. Therefore, CBF-AML patients are generally considered to be a favorable AML group. However, a substantial proportion of patients cannot be cured by the current treatment. Additional genetic alterations discovered in CBF-AML help in our understanding of the process of leukemogenesis and some of them may refine the risk assessment in CBF-AML and, importantly, also serve as targets for novel therapeutic approaches. We discuss the clinical and genetic heterogeneity of CBF-AML, with a particular focus on the role of KIT mutations as a prognosticator, and also discuss recent efforts to target the KIT kinase in the context of existing therapeutic regimens.
Collapse
MESH Headings
- Antimetabolites, Antineoplastic/therapeutic use
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Chromosome Inversion
- Chromosomes, Human
- Cytarabine/therapeutic use
- Drug Delivery Systems/methods
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/therapy
- Proto-Oncogene Proteins c-kit/genetics
- Proto-Oncogene Proteins c-kit/metabolism
- Translocation, Genetic
Collapse
Affiliation(s)
- Peter Paschka
- 1Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | | |
Collapse
|
41
|
Wang D, Qiao C, Xiao M, Geng Z, Shang Z, He J, Huang M, Yang Y, Zhang N, Liu Y, Li J, Li C, Zhou J. Integrative analysis of prognostic factors in Chinese core binding factor leukemia. Biochem Biophys Res Commun 2012; 428:411-5. [PMID: 23107788 DOI: 10.1016/j.bbrc.2012.10.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 10/19/2012] [Indexed: 10/27/2022]
Abstract
The characteristics of core binding factor (CBF) leukemia appear to differ between Chinese and Caucasian patients. In this study, we analyzed the biological and clinical characteristics of 76 Chinese CBF leukemia patients out of 425 newly diagnosed acute myeloid leukemia (AML) patients. The frequency of CBF AML was 17.9%. Patients harboring t(8;21) were predominant in CBF AML. The incidence of c-kit mutation in CBF AML was 28.9%. The N822K mutation appeared to be more prevalent in Chinese CBF AML patients. Multivariate analysis showed that c-kit mutation and high white blood cell count could negatively impact overall survival (OS) (HR=2.74 and 6.24, P=0.007 and 0.022, respectively) but did not affect relapse-free survival (RFS). Kaplan-Meier analysis showed a significant difference in both OS and RFS between wild-type and mutated c-kit patients. Although we had included recently reported prognostic indicators in our analysis, our results demonstrated that only c-kit mutation and high white blood cell count had prognostic impact on Chinese CBF AML patients.
Collapse
Affiliation(s)
- Di Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hatlen MA, Wang L, Nimer SD. AML1-ETO driven acute leukemia: insights into pathogenesis and potential therapeutic approaches. Front Med 2012; 6:248-62. [PMID: 22875638 DOI: 10.1007/s11684-012-0206-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 04/16/2012] [Indexed: 11/30/2022]
Abstract
The AML1-ETO fusion transcription factor is generated by the t(8;21) translocation, which is present in approximately 4%-12% of adult and 12%-30% of pediatric acute myeloid leukemia (AML) patients. Both human and mouse models of AML have demonstrated that AML1-ETO is insufficient for leukemogenesis in the absence of secondary events. In this review, we discuss the pathogenetic insights that have been gained from identifying the various events that can cooperate with AML1-ETO to induce AML in vivo. We also discuss potential therapeutic strategies for t(8;21) positive AML that involve targeting the fusion protein itself, the proteins that bind to it, or the genes that it regulates. Recently published studies suggest that a targeted therapy for t(8;21) positive AML is feasible and may be coming sometime soon.
Collapse
Affiliation(s)
- Megan A Hatlen
- Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | |
Collapse
|
43
|
Abstract
The prognostic factors in acute leukemia have undergone a major change over the past decade and are likely to be further refined in the coming years. While age is the single most important prognostic factor in both AML and in ALL, recurring cytogenetic abnormalities and molecular markers have become crucial for the prognosis of patients and for new directions in the development of targeted therapies. No less important is the development of a personalized approach for therapy as determined by the response to therapy using increasingly sensitive technologies. The assessment of MRD is rapidly superseding other prognostic factors in ALL and, somewhat lacking behind, coming into its own in AML. The next decade should see further refinement of response-driven prognostication, to include epigenetics as well as pharmacogenetics and pharmacodynamics of individual drugs used and the responses to them. It is hoped that these refinements and better predictors of response will also lead to a significantly improved overall outcome of patients with both AML and ALL.
Collapse
Affiliation(s)
- Chezi Ganzel
- Department of Hematology, Shaare Zedek Medical Center, PO Box 3235, Jerusalem 91031, Israel.
| | | |
Collapse
|
44
|
Zhen T, Wu CF, Liu P, Wu HY, Zhou GB, Lu Y, Liu JX, Liang Y, Li KK, Wang YY, Xie YY, He MM, Cao HM, Zhang WN, Chen LM, Petrie K, Chen SJ, Chen Z. Targeting of AML1-ETO in t(8;21) Leukemia by Oridonin Generates a Tumor Suppressor-Like Protein. Sci Transl Med 2012; 4:127ra38. [DOI: 10.1126/scitranslmed.3003562] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
45
|
Glaser SP, Lee EF, Trounson E, Bouillet P, Wei A, Fairlie WD, Izon DJ, Zuber J, Rappaport AR, Herold MJ, Alexander WS, Lowe SW, Robb L, Strasser A. Anti-apoptotic Mcl-1 is essential for the development and sustained growth of acute myeloid leukemia. Genes Dev 2012; 26:120-5. [PMID: 22279045 DOI: 10.1101/gad.182980.111] [Citation(s) in RCA: 342] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Acute myeloid leukemia (AML) frequently relapses after initial treatment. Drug resistance in AML has been attributed to high levels of the anti-apoptotic Bcl-2 family members Bcl-x(L) and Mcl-1. Here we report that removal of Mcl-1, but not loss or pharmacological blockade of Bcl-x(L), Bcl-2, or Bcl-w, caused the death of transformed AML and could cure disease in AML-afflicted mice. Enforced expression of selective inhibitors of prosurvival Bcl-2 family members revealed that Mcl-1 is critical for survival of human AML cells. Thus, targeting of Mcl-1 or regulators of its expression may be a useful strategy for the treatment of AML.
Collapse
Affiliation(s)
- Stefan P Glaser
- The Walter and Eliza Hall Institute, Parkville, Melbourne, Victoria 3052, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
p85β regulatory subunit of class IA PI3 kinase negatively regulates mast cell growth, maturation, and leukemogenesis. Blood 2012; 119:3951-61. [PMID: 22378847 DOI: 10.1182/blood-2011-05-355602] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We show that loss of p85α inhibits the growth and maturation of mast cells, whereas loss of p85β enhances this process. Whereas restoring the expression of p85α in P85α(-/-) cells restores these functions, overexpression of p85β has the opposite effect. Consistently, overexpression of p85β in WT mast cells represses KIT-induced proliferation and IL-3-mediated maturation by inhibiting the expression of Microphthalmia transcription factor. Because p85α and p85β differ in their N-terminal sequences, chimeric proteins consisting of amino or carboxy-terminal of p85α and/or p85β do not rescue the growth defects of p85α(-/-) cells, suggesting cooperation between these domains for normal mast cell function. Loss of p85β impaired ligand induced KIT receptor internalization and its overexpression enhanced this process, partly because of increased binding of c-Cbl to p85β relative to p85α. In vivo, loss of p85β resulted in increased mast cells, and bone marrow transplantation of cells overexpressing p85β resulted in significant reduction in some tissue mast cells. Overexpression of p85β suppressed the growth of oncogenic KIT-expressing cells in vitro and prolonged the survival of leukemic mice in vivo. Thus, p85α and p85β differentially regulate SCF and oncogenic KIT-induced signals in myeloid lineage-derived mast cells.
Collapse
|
47
|
Bortezomib interferes with C-KIT processing and transforms the t(8;21)-generated fusion proteins into tumor-suppressing fragments in leukemia cells. Proc Natl Acad Sci U S A 2012; 109:2521-6. [PMID: 22308476 DOI: 10.1073/pnas.1121341109] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The boronic acid dipeptide bortezomib inhibits the chymotrypsin-like activity of the 26S proteasome and shows significant therapeutic efficacy in multiple myeloma. However, recent studies suggest that bortezomib may have more complex mechanisms of action in treating cancer. We report here that the endocytosis and lysosomal degradation of the receptor tyrosine kinase C-KIT are required for bortezomib- but not tyrosine kinase inhibitor imatinib-caused apoptosis of t(8;21) leukemia and gastrointestinal stromal tumor cells, suggesting that C-KIT may recruit an apoptosis initiator. We show that C-KIT binds and phosphorylates heat shock protein 90β (Hsp90β), which sequestrates apoptotic protease activating factor 1 (Apaf-1). Bortezomib dephosphorylates pHsp90β and releases Apaf-1. Although the activated caspase-3 is not sufficient to cause marked apoptosis, it cleaves the t(8;21) generated acute myeloid leukemia 1-eight twenty one (AML1-ETO) and AML1-ETO9a fusion proteins, with production of cleavage fragments that perturb the functions of the parental oncoproteins and further contribute to apoptosis. Notably, bortezomib exerts potent therapeutic efficacy in mice bearing AML1-ETO9a-driven leukemia. These data show that C-KIT-pHsp90β-Apaf-1 cascade is critical for some malignant cells to evade apoptosis, and the clinical therapeutic potentials of bortezomib in C-KIT-driven neoplasms should be further explored.
Collapse
|
48
|
Dynamic ligand modulation of EPO receptor pools, and dysregulation by polycythemia-associated EPOR alleles. PLoS One 2012; 7:e29064. [PMID: 22253704 PMCID: PMC3257245 DOI: 10.1371/journal.pone.0029064] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 11/20/2011] [Indexed: 12/13/2022] Open
Abstract
Erythropoietin (EPO) and its cell surface receptor (EPOR) are essential for erythropoiesis; can modulate non-erythroid target tissues; and have been reported to affect the progression of certain cancers. Basic studies of EPOR expression and trafficking, however, have been hindered by low-level EPOR occurrence, and the limited specificity of anti-EPOR antibodies. Consequently, these aspects of EPOR biology are not well defined, nor are actions of polycythemia- associated mutated EPOR alleles. Using novel rabbit monoclonal antibodies to intracellular, PY- activated and extracellular EPOR domains, the following properties of the endogenous hEPOR in erythroid progenitors first are unambiguously defined. 1) High- Mr EPOR forms become obviously expressed only when EPO is limited. 2) EPOR-68K plus -70K species sequentially accumulate, and EPOR-70K comprises an apparent cell surface EPOR population. 3) Brefeldin A, N-glycanase and associated analyses point to EPOR-68K as a core-glycosylated intracellular EPOR pool (of modest size). 4) In contrast to recent reports, EPOR inward trafficking is shown (in UT7epo cells, and primary proerythroblasts) to be sharply ligand-dependent. Beyond this, when C-terminal truncated hEPOR-T mutant alleles as harbored by polycythemia patients are co-expressed with the wild-type EPOR in EPO-dependent erythroid progenitors, several specific events become altered. First, EPOR-T alleles are persistently activated upon EPO- challenge, yet are also subject to apparent turn-over (to low-Mr EPOR products). Furthermore, during exponential cell growth EPOR-T species become both over-represented, and hyper-activated. Interestingly, EPOR-T expression also results in an EPO dose-dependent loss of endogenous wild-type EPOR's (and, therefore, a squelching of EPOR C-terminal- mediated negative feedback effects). New knowledge concerning regulated EPOR expression and trafficking therefore is provided, together with new insight into mechanisms via which mutated EPOR-T polycythemia alleles dysregulate the erythron. Notably, specific new tools also are characterized for studies of EPOR expression, activation, action and metabolism.
Collapse
|
49
|
Abstract
KIT mutations are the most common secondary mutations in inv(16) acute myeloid leukemia (AML) patients and are associated with poor prognosis. It is therefore important to verify that KIT mutations cooperate with CBFB-MYH11, the fusion gene generated by inv(16), for leukemogenesis. Here, we transduced wild-type and conditional Cbfb-MYH11 knockin (KI) mouse bone marrow (BM) cells with KIT D816V/Y mutations. KIT transduction caused massive BM Lin(-) cell death and fewer colonies in culture that were less severe in the KI cells. D816Y KIT but not wild-type KIT enhanced proliferation in Lin(-) cells and led to more mixed lineage colonies from transduced KI BM cells. Importantly, 60% and 80% of mice transplanted with KI BM cells expressing D816V or D816Y KIT, respectively, died from leukemia within 9 months, whereas no control mice died. Results from limiting dilution transplantations indicate higher frequencies of leukemia-initiating cells in the leukemia expressing mutated KIT. Signaling pathway analysis revealed that p44/42 MAPK and Stat3, but not AKT and Stat5, were strongly phosphorylated in the leukemia cells. Finally, leukemia cells carrying KIT D816 mutations were sensitive to the kinase inhibitor PKC412. Our data provide clear evidence for cooperation between mutated KIT and CBFB-MYH11 during leukemogenesis.
Collapse
|
50
|
Abstract
Core-binding factor acute myeloid leukemia (AML) is cytogenetically defined by the presence of t(8;21)(q22;q22) or inv(16)(p13q22)/t(16;16)(p13;q22), commonly abbreviated as t(8;21) and inv(16), respectively. In both subtypes, the cytogenetic rearrangements disrupt genes that encode subunits of core-binding factor, a transcription factor that functions as an essential regulator of normal hematopoiesis. The rearrangements t(8;21) and inv(16) involve the RUNX1/RUNX1T1 (AML1-ETO) and CBFB/MYH11 genes, respectively. These 2 subtypes are categorized as AML with recurrent genetic abnormalities, and hence the cytogenetic fusion transcripts are considered diagnostic of acute leukemia even when the marrow blast count is less than 20%. The t(8;21) and inv(16) subtypes of AML have been usually grouped and reported together in clinical studies; however, recent studies have demonstrated genetic, clinical, and prognostic differences, supporting the notion that they represent 2 distinct biologic and clinical entities. This review summarizes the spectrum of this subset of AMLs, with particular emphasis on molecular genetics and pathologic findings.
Collapse
|