1
|
Gao R, Chen K, Wang Y, Guo R, Zhang X, Wu P, Wang W, Huang Q, Xie X, Yang S, Lv Y, Ren Q, Liu F, Chen S, Ma F, Cheng T, Cheng H. FHL2 deficiency aggravates Candida albicans infection through decreased myelopoiesis. SCIENCE CHINA. LIFE SCIENCES 2025; 68:722-733. [PMID: 39815033 DOI: 10.1007/s11427-024-2645-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/06/2024] [Indexed: 01/18/2025]
Abstract
Hematopoiesis is a finely tuned process that generates all blood cell types through self-renewal and differentiation, which is crucial for maintaining homeostasis. Acute infections can prompt a hematopoietic response known as emergency myelopoiesis. In this study, using a Candida albicans (C. albicans) infection model, we demonstrated for the first time that disruption of Fhl2 led to increased fungal burden, heightened inflammatory response and reduced survival rates. Impaired myeloid hematopoiesis and immune cell production were evident, as proved by the decreased numbers of hematopoietic stem and progenitor cells (HSPCs) and granulocytes in the bone marrow of Fhl2-deficient mice. In conclusion, FHL2 regulated emergency myelopoiesis in response to C. albicans, affecting the host's defense against pathogens.
Collapse
Affiliation(s)
- Rongmei Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China
| | - Kanchao Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China
| | - Yimin Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China
| | - Rongxia Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China
| | - Xiaoyu Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China
| | - Peng Wu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China
| | - Weili Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China
| | - Qingxiang Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China
| | - Xuemei Xie
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China
| | - Shangda Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China
| | - Yanling Lv
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China
| | - Qian Ren
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China
| | - Fei Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China
| | - Song Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China
| | - Fengxia Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China.
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- PUMC Department of Stem Cell and Regenerative Medicine, CAMS Center for Stem Cell Medicine, Tianjin, 300020, China.
| |
Collapse
|
2
|
Li A, Wang Y, Wang Y, Xiong Y, Li Y, Liu W, Zhu J, Lin Y. Effects of the FHL2 gene on the development of subcutaneous and intramuscular adipocytes in goats. BMC Genomics 2024; 25:850. [PMID: 39261767 PMCID: PMC11389066 DOI: 10.1186/s12864-024-10755-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 09/02/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Adipose tissue affects not only the meat quality of domestic animals, but also human health. Adipocyte differentiation is regulated by a series of regulatory genes and cyclins. Four and half-LIM protein (FHL2) is positively correlated with the hypertrophy of adipocytes and can cause symptoms such as obesity and diabetes. RESULT In the transcriptome sequencing analysis of intramuscular adipocytes after three days of differentiation, the differentially expressed gene FHL2 was found. To further explore the biological significance of the differentially expressed gene FHL2, which was downregulated in the mature adipocytes. We revealed the function of FHL2 in adipogenesis through the acquisition and loss of function of FHL2. The results showed that the overexpression of FHL2 significantly increased the expression of adipogenic genes (PPARγ, C/EBPβ) and the differentiation of intramuscular and subcutaneous adipocytes. However, silencing FHL2 significantly inhibited adipocyte differentiation. The overexpression of FHL2 increased the number of adipocytes stained with crystal violet and increased the mRNA expression of proliferation marker genes such as CCNE, PCNA, CCND and CDK2. In addition, it significantly increased the rate of EdU positive cells. In terms of apoptosis, overexpression of FHL2 significantly inhibited the expression of P53 and BAX in both intramuscular and subcutaneous adipocytes, which are involved in cell apoptosis. However, overexpression of FHL2 promoted the expression of BCL, but was rescued by the silencing of FHL2. CONCLUSIONS In summary, FHL2 may be a positive regulator of intramuscular and subcutaneous adipocyte differentiation and proliferation, and acts as a negative regulator of intramuscular and subcutaneous adipocyte apoptosis. These findings provide a theoretical basis for the subsequent elucidation of FHL2 in adipocytes.
Collapse
Affiliation(s)
- An Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu, China
- College of Animal & Veterinary Science, Southwest Minzu University, Chengdu, China
| | - Youli Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- College of Animal & Veterinary Science, Southwest Minzu University, Chengdu, China
| | - Yong Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu, China
- College of Animal & Veterinary Science, Southwest Minzu University, Chengdu, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu, China
- College of Animal & Veterinary Science, Southwest Minzu University, Chengdu, China
| | - Yanyan Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu, China
- College of Animal & Veterinary Science, Southwest Minzu University, Chengdu, China
| | - Wei Liu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- College of Animal & Veterinary Science, Southwest Minzu University, Chengdu, China
| | - Jiangjiang Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China.
| |
Collapse
|
3
|
Sun X, Alushin GM. Cellular force-sensing through actin filaments. FEBS J 2022; 290:2576-2589. [PMID: 35778931 PMCID: PMC9945651 DOI: 10.1111/febs.16568] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/17/2022] [Accepted: 06/30/2022] [Indexed: 02/05/2023]
Abstract
The actin cytoskeleton orchestrates cell mechanics and facilitates the physical integration of cells into tissues, while tissue-scale forces and extracellular rigidity in turn govern cell behaviour. Here, we discuss recent evidence that actin filaments (F-actin), the core building blocks of the actin cytoskeleton, also serve as molecular force sensors. We delineate two classes of proteins, which interpret forces applied to F-actin through enhanced binding interactions: 'mechanically tuned' canonical actin-binding proteins, whose constitutive F-actin affinity is increased by force, and 'mechanically switched' proteins, which bind F-actin only in the presence of force. We speculate mechanically tuned and mechanically switched actin-binding proteins are biophysically suitable for coordinating cytoskeletal force-feedback and mechanical signalling processes, respectively. Finally, we discuss potential mechanisms mediating force-activated actin binding, which likely occurs both through the structural remodelling of F-actin itself and geometric rearrangements of higher-order actin networks. Understanding the interplay of these mechanisms will enable the dissection of force-activated actin binding's specific biological functions.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University. New York, NY, USA.,Correspondence: ;
| | - Gregory M. Alushin
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University. New York, NY, USA.,Correspondence: ;
| |
Collapse
|
4
|
Habibe JJ, Clemente-Olivo MP, de Vries CJ. How (Epi)Genetic Regulation of the LIM-Domain Protein FHL2 Impacts Multifactorial Disease. Cells 2021; 10:2611. [PMID: 34685595 PMCID: PMC8534169 DOI: 10.3390/cells10102611] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 01/13/2023] Open
Abstract
Susceptibility to complex pathological conditions such as obesity, type 2 diabetes and cardiovascular disease is highly variable among individuals and arises from specific changes in gene expression in combination with external factors. The regulation of gene expression is determined by genetic variation (SNPs) and epigenetic marks that are influenced by environmental factors. Aging is a major risk factor for many multifactorial diseases and is increasingly associated with changes in DNA methylation, leading to differences in gene expression. Four and a half LIM domains 2 (FHL2) is a key regulator of intracellular signal transduction pathways and the FHL2 gene is consistently found as one of the top hyper-methylated genes upon aging. Remarkably, FHL2 expression increases with methylation. This was demonstrated in relevant metabolic tissues: white adipose tissue, pancreatic β-cells, and skeletal muscle. In this review, we provide an overview of the current knowledge on regulation of FHL2 by genetic variation and epigenetic DNA modification, and the potential consequences for age-related complex multifactorial diseases.
Collapse
Affiliation(s)
- Jayron J. Habibe
- Department of Medical Biochemistry, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, and Amsterdam Gastroenterology, Endocrinology and Metabolism, 1105 AZ Amsterdam, The Netherlands; (J.J.H.); (M.P.C.-O.)
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, 1081 HV Amsterdam, The Netherlands
| | - Maria P. Clemente-Olivo
- Department of Medical Biochemistry, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, and Amsterdam Gastroenterology, Endocrinology and Metabolism, 1105 AZ Amsterdam, The Netherlands; (J.J.H.); (M.P.C.-O.)
| | - Carlie J. de Vries
- Department of Medical Biochemistry, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, and Amsterdam Gastroenterology, Endocrinology and Metabolism, 1105 AZ Amsterdam, The Netherlands; (J.J.H.); (M.P.C.-O.)
| |
Collapse
|
5
|
Wan Y, Cheng Y, Liu Y, Shen L, Hou J. Screening and identification of a novel FHL2 mutation by whole exome sequencing in twins with familial Waldenström macroglobulinemia. Cancer 2021; 127:2039-2048. [PMID: 33764527 DOI: 10.1002/cncr.33454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/20/2020] [Accepted: 01/04/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Waldenström macroglobulinemia (WM) is a rare chronic B-cell lymphoma. Familial clustering of WM has been observed over the years. However, little is known about the contribution of inherited genetic variants to familial WM cases. METHODS The authors performed whole exome sequencing (WES) of germline DNA samples from twins, one diagnosed with WM and the other diagnosed with immunoglobulin M monoclonal gammopathy of undetermined significance, and their healthy siblings. Bioinformatics analysis of public biological databases was used to identify the most relevant familial WM candidate from WES. Transcript expression and protein levels of the familial WM candidate were evaluated in the WM patient and 2 unaffected members of the kindred. RESULTS Among the 10 shared candidate mutations in the twins, the authors identified a novel heterozygous germline mutation in four and a half LIM domains protein 2 (FHL2; c.G226A, p.V76M) as a familial WM-associated mutation. FHL2 appeared to be connected with reported signaling pathways and disease-driving genes such as IL6 and HCK in WM. In addition, the authors found reduced FHL2 messenger RNA and protein expression in peripheral blood samples from the patient with WM in comparison with the healthy siblings. CONCLUSIONS Taken together, these findings indicate that an FHL2g226a mutation may play an important role in familial WM, and they provide new screening possibilities for familial cases. LAY SUMMARY Familial clustering in Waldenström macroglobulinemia (WM) has been observed over the years. The authors performed whole exome sequencing of germline DNA samples from twins, one diagnosed with WM and the other diagnosed with immunoglobulin M monoclonal gammopathy of undetermined significance, and their healthy siblings. Among the 10 shared candidate mutations in the twins, a novel heterozygous germline mutation in four and a half LIM domains protein 2 (FHL2; c.G226A, p.V76M) was identified as the most relevant familial WM candidate through bioinformatics analysis of a public database. Also, messenger RNA and protein expression of FHL2 was significantly lower in peripheral blood mononuclear cells of the WM patient in comparison with the healthy siblings, and this suggested that the function of FHL2 was impaired when mutated.
Collapse
Affiliation(s)
- Yike Wan
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuexin Cheng
- Department of Hematology, The First People's Hospital of Yancheng, Yancheng Affiliated Hospital of Xuzhou Medical University, The Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Yabin Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lijing Shen
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Hou
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Sun X, Phua DYZ, Axiotakis L, Smith MA, Blankman E, Gong R, Cail RC, Espinosa de Los Reyes S, Beckerle MC, Waterman CM, Alushin GM. Mechanosensing through Direct Binding of Tensed F-Actin by LIM Domains. Dev Cell 2020; 55:468-482.e7. [PMID: 33058779 DOI: 10.1016/j.devcel.2020.09.022] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/04/2020] [Accepted: 09/21/2020] [Indexed: 01/21/2023]
Abstract
Mechanical signals transmitted through the cytoplasmic actin cytoskeleton must be relayed to the nucleus to control gene expression. LIM domains are protein-protein interaction modules found in cytoskeletal proteins and transcriptional regulators. Here, we identify three LIM protein families (zyxin, paxillin, and FHL) whose members preferentially localize to the actin cytoskeleton in mechanically stimulated cells through their tandem LIM domains. A minimal actin-myosin reconstitution system reveals that representatives of all three families directly bind F-actin only in the presence of mechanical force. Point mutations at a site conserved in each LIM domain of these proteins disrupt tensed F-actin binding in vitro and cytoskeletal localization in cells, demonstrating a common, avidity-based mechanism. Finally, we find that binding to tensed F-actin in the cytoplasm excludes the cancer-associated transcriptional co-activator FHL2 from the nucleus in stiff microenvironments. This establishes direct force-activated F-actin binding as a mechanosensing mechanism by which cytoskeletal tension can govern nuclear localization.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY 10065, USA
| | - Donovan Y Z Phua
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY 10065, USA
| | - Lucas Axiotakis
- Laboratory of Macromolecular Interactions, Cell Biology and Physiology Center, Division of Intramural Research, National Heart Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Mark A Smith
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Elizabeth Blankman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Rui Gong
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY 10065, USA
| | - Robert C Cail
- Laboratory of Macromolecular Interactions, Cell Biology and Physiology Center, Division of Intramural Research, National Heart Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | | | - Mary C Beckerle
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Clare M Waterman
- Cell and Developmental Biology Center, Division of Intramural Research, National Heart Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Gregory M Alushin
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY 10065, USA; Laboratory of Macromolecular Interactions, Cell Biology and Physiology Center, Division of Intramural Research, National Heart Lung and Blood Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
7
|
Ahamad A, Wang J, Ge S, Kirschen GW. Early Dendritic Morphogenesis of Adult-Born Dentate Granule Cells Is Regulated by FHL2. Front Neurosci 2020; 14:202. [PMID: 32256309 PMCID: PMC7090230 DOI: 10.3389/fnins.2020.00202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/24/2020] [Indexed: 11/13/2022] Open
Abstract
Dentate granule cells (DGCs), the progeny of neural stem cells (NSCs) in the sub-granular zone of the dentate gyrus (DG), must develop and functionally integrate with the mature cohort of neurons in order to maintain critical hippocampal functions throughout adulthood. Dysregulation in the continuum of DGC development can result in aberrant morphology and disrupted functional maturation, impairing neuroplasticity of the network. Yet, the molecular underpinnings of the signaling involved in adult-born DGC maturation including dendritic growth, which correlates with functional integration, remains incompletely understood. Given the high metabolic activity in the dentate gyrus (DG) required to achieve continuous neurogenesis, we investigated the potential regulatory role of a cellular metabolism-linked gene recently implicated in NSC cycling and neuroblast migration, called Four and a half LIM domain 2 (FHL2). The FHL2 protein modulates numerous pathways related to proliferation, migration, survival and cytoskeletal rearrangement in peripheral tissues, interacting with the machinery of the sphingosine-1-phosphate pathway, also known to be highly active especially in the hippocampus. Yet, the potential relevance of FHL2 to adult-born DGC development remains unknown. To elucidate the role of FHL2 in DGC development in the adult brain, we first confirmed the endogenous expression of FHL2 in NSCs and new granule cells within the DG, then engineered viral vectors for genetic manipulation experiments, investigating morphological changes in early stages of DGC development. Overexpression of FHL2 during early DGC development resulted in marked sprouting and branching of dendrites, while silencing of FHL2 increased dendritic length. Together, these findings suggest a novel role of FHL2 in adult-born DGC morphological maturation, which may open up a new line of investigation regarding the relevance of this gene in physiology and pathologies of the hippocampus such as mesial temporal lobe epilepsy (MTLE).
Collapse
Affiliation(s)
- Afrinash Ahamad
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY, United States.,School of Health Technology and Management, Stony Brook University, Stony Brook, NY, United States
| | - Jia Wang
- Biomedical Pioneering Innovation Center, Peking University, Beijing, China
| | - Shaoyu Ge
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, United States
| | - Gregory W Kirschen
- Medical Scientist Training Program (MSTP), Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
8
|
Cheng Z, Dai Y, Pang Y, Jiao Y, Zhao H, Zhang Z, Qin T, Hu N, Zhang Y, Ke X, Chen Y, Wu D, Shi J, Fu L. Enhanced expressions of FHL2 and iASPP predict poor prognosis in acute myeloid leukemia. Cancer Gene Ther 2019; 26:17-25. [PMID: 29910468 DOI: 10.1038/s41417-018-0027-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 04/24/2018] [Accepted: 04/29/2018] [Indexed: 02/07/2023]
Abstract
iASPP is a negative regulator of the apoptotic function of p53, and it can enhance the ability of hematopoietic stem cells to self-renew and resist chemo- and radiation therapy. Recent study showed that iASPP could impact the proliferation and apoptosis of leukemia cells by interacting with FHL2. However, whether they have prognostic significance in acute myeloid leukemia (AML) is unknown. Eighty-four AML patients with FHL2 and iASPP expression data from The Cancer Genome Atlas database were enrolled in the study. Patients with high expressions of FHL2 and iASPP had significantly shorter event-free survival (EFS) and overall survival (OS) than patients with low expressions (P = 0.005, P = 0.003, respectively). Univariate analysis indicated that high expressions of FHL2 or iASPP were unfavorable for EFS and OS (all P < 0.05), while multivariate analysis confirmed that high FHL2 expression was an independent risk factor for EFS and OS (all P < 0.05). In patients who underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT), however, EFS and OS were not significantly different between FHL2 or iASPP high- and low-expression groups. Our results suggested that high expressions of FHL2 and iASPP were poor prognostic factors for AML, but the prognostic effect might be overcome by allo-HSCT.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Disease-Free Survival
- Female
- Gene Expression Regulation, Neoplastic
- Hematopoietic Stem Cell Transplantation
- Humans
- Intracellular Signaling Peptides and Proteins/genetics
- LIM-Homeodomain Proteins/genetics
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/therapy
- Male
- Middle Aged
- Muscle Proteins/genetics
- Prognosis
- Repressor Proteins/genetics
- Transcription Factors/genetics
- Young Adult
Collapse
Affiliation(s)
- Zhiheng Cheng
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, 100191, China
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, China
| | - Yifeng Dai
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, China
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, Netherlands
| | - Yifan Pang
- Department of Medicine, William Beaumont Hospital, Royal Oak, MI, 48073, USA
| | - Yang Jiao
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, China
| | - Hongmian Zhao
- Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Zhihui Zhang
- Department of Stomatology, Peking University, Third Hospital, Beijing, 100191, China
| | - Tong Qin
- Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Ning Hu
- Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Yijie Zhang
- Department of Respiratory, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Xiaoyan Ke
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, 100191, China
| | - Yang Chen
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic & Systems Biology, TNLIST, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Depei Wu
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Jinlong Shi
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China.
- Department of Biomedical Engineering, Chinese PLA General Hospital, Beijing, 100853, China.
- Department of Medical Big Data, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Lin Fu
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, 100191, China.
- Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, 475000, China.
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
9
|
Zhang Y, Li L, Yu C, Senyuk V, Li F, Quigley JG, Zhu T, Qian Z. miR-9 upregulation leads to inhibition of erythropoiesis by repressing FoxO3. Sci Rep 2018; 8:6519. [PMID: 29695725 PMCID: PMC5916915 DOI: 10.1038/s41598-018-24628-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/04/2018] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) are emerging as critical regulators of normal and malignant hematopoiesis. In previous studies of acute myeloid leukemia miR-9 overexpression was commonly observed. Here, we show that ectopic expression of miR-9 in vitro and in vivo significantly blocks differentiation of erythroid progenitor cells with an increase in reactive oxygen species (ROS) production. Consistent with this observation, ROS scavenging enzymes, including superoxide dismutase (Sod2), Catalase (Cat), and glutathine peroxidase (Gpx1), are down-regulated by miR-9. In addition, miR-9 suppresses expression of the erythroid transcriptional regulator FoxO3, and its down-stream targets Btg1 and Cited 2 in erythroid progenitor cells, while expression of a constitutively active form of FoxO3 (FoxO3-3A) reverses miR-9-induced suppression of erythroid differentiation, and inhibits miR-9-induced ROS production. Thus, our findings indicate that aberrant expression of miR-9 blocks erythropoiesis by deregulating FoxO3-mediated pathways, which may contribute to the ineffective erythropoiesis observed in patients with hematological malignancies.
Collapse
Affiliation(s)
- Yunyuan Zhang
- Department of Clinical laboratory, The Affiliated Hospital of Qingdao University Medical College, Qingdao, 266003, China
- Department of Medicine and Cancer Research Center, University of Illinois Hospital and Health Sciences System, Chicago, IL, USA
| | - Liping Li
- Department of Medicine and Cancer Research Center, University of Illinois Hospital and Health Sciences System, Chicago, IL, USA
- Fudan University ZhongShan Hospital, Shanghai, China
| | - Chunjie Yu
- Department of Medicine and Cancer Research Center, University of Illinois Hospital and Health Sciences System, Chicago, IL, USA
| | - Vitalyi Senyuk
- Department of Medicine and Cancer Research Center, University of Illinois Hospital and Health Sciences System, Chicago, IL, USA
| | - Fuxing Li
- Department of Medicine and Cancer Research Center, University of Illinois Hospital and Health Sciences System, Chicago, IL, USA
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - John G Quigley
- Department of Medicine and Cancer Research Center, University of Illinois Hospital and Health Sciences System, Chicago, IL, USA
| | - Tongyu Zhu
- Fudan University ZhongShan Hospital, Shanghai, China
| | - Zhijian Qian
- Department of Medicine and Cancer Research Center, University of Illinois Hospital and Health Sciences System, Chicago, IL, USA.
| |
Collapse
|
10
|
Zhang J, Chen JH, Liu XD, Wang HY, Liu XL, Li XY, Wu ZF, Zhu MJ, Zhao SH. Genomewide association studies for hematological traits and T lymphocyte subpopulations in a Duroc × Erhualian F resource population. J Anim Sci 2017; 94:5028-5041. [PMID: 28046140 DOI: 10.2527/jas.2016-0924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
It has been shown that hematological traits can act as important indicators of immune function in both humans and livestock. T lymphocytes are key components of the adaptive immune system, playing a critical role in immune response. To identify genomic regions affecting hematological traits and T lymphocyte subpopulations, we performed both a SNP-based genomewide association study (GWAS) and a haplotype analysis for 20 hematological traits and 8 T cell subpopulations at 3 different time points (d 20, 33, and 35) in a Duroc × Erhualian F intercross population. Bonferroni correction was used to calculate the threshold -values for suggestive and 5% genomewide significance levels. In total, for SNP-based GWAS, we detected 96 significant SNP, including 15 genomewide-significant SNP, associated with 23 hematological traits and 234 significant SNP, including 27 genomewide-significant SNP, associated with 8 T cell subpopulations. Meanwhile, we identified 563 significant SNP, including 7 genomewide-significant SNP, associated with 5 hematological traits and 2,407 significant SNP, including 1,261 genomewide-significant SNP, associated with 8 T cell subpopulations by haplotype analysis. Among the significant regions detected, we propose both the () gene and the () gene on SSC3 as plausible candidate genes associated with CD/CD T lymphocytes at d 20. The findings provide insights into the basis of molecular mechanisms that are involved with immune response in the domestic pig and would aid further identification of causative mutations.
Collapse
|
11
|
Baranek T, Morello E, Valayer A, Aimar RF, Bréa D, Henry C, Besnard AG, Dalloneau E, Guillon A, Dequin PF, Narni-Mancinelli E, Vivier E, Laurent F, Wei Y, Paget C, Si-Tahar M. FHL2 Regulates Natural Killer Cell Development and Activation during Streptococcus pneumoniae Infection. Front Immunol 2017; 8:123. [PMID: 28243234 PMCID: PMC5303898 DOI: 10.3389/fimmu.2017.00123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/25/2017] [Indexed: 12/21/2022] Open
Abstract
Recent in silico studies suggested that the transcription cofactor LIM-only protein FHL2 is a major transcriptional regulator of mouse natural killer (NK) cells. However, the expression and role of FHL2 in NK cell biology are unknown. Here, we confirm that FHL2 is expressed in both mouse and human NK cells. Using FHL2−/− mice, we found that FHL2 controls NK cell development in the bone marrow and maturation in peripheral organs. To evaluate the importance of FHL2 in NK cell activation, FHL2−/− mice were infected with Streptococcus pneumoniae. FHL2−/− mice are highly susceptible to this infection. The activation of lung NK cells is altered in FHL2−/− mice, leading to decreased IFNγ production and a loss of control of bacterial burden. Collectively, our data reveal that FHL2 is a new transcription cofactor implicated in NK cell development and activation during pulmonary bacterial infection.
Collapse
Affiliation(s)
- Thomas Baranek
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Eric Morello
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Alexandre Valayer
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Rose-France Aimar
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Déborah Bréa
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Clemence Henry
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Anne-Gaelle Besnard
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Emilie Dalloneau
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Antoine Guillon
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France; Service de Réanimation Polyvalente, Centre Hospitalier Régional Universitaire, Tours, France
| | - Pierre-François Dequin
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France; Service de Réanimation Polyvalente, Centre Hospitalier Régional Universitaire, Tours, France
| | - Emilie Narni-Mancinelli
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS , Marseille , France
| | - Eric Vivier
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France; Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | | | - Yu Wei
- Hépacivirus et immunité innée, Institut Pasteur , Paris , France
| | - Christophe Paget
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Mustapha Si-Tahar
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| |
Collapse
|
12
|
Passman AM, Low J, London R, Tirnitz-Parker JEE, Miyajima A, Tanaka M, Strick-Marchand H, Darlington GJ, Finch-Edmondson M, Ochsner S, Zhu C, Whelan J, Callus BA, Yeoh GCT. A Transcriptomic Signature of Mouse Liver Progenitor Cells. Stem Cells Int 2016; 2016:5702873. [PMID: 27777588 PMCID: PMC5061959 DOI: 10.1155/2016/5702873] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 08/04/2016] [Accepted: 08/14/2016] [Indexed: 01/07/2023] Open
Abstract
Liver progenitor cells (LPCs) can proliferate extensively, are able to differentiate into hepatocytes and cholangiocytes, and contribute to liver regeneration. The presence of LPCs, however, often accompanies liver disease and hepatocellular carcinoma (HCC), indicating that they may be a cancer stem cell. Understanding LPC biology and establishing a sensitive, rapid, and reliable method to detect their presence in the liver will assist diagnosis and facilitate monitoring of treatment outcomes in patients with liver pathologies. A transcriptomic meta-analysis of over 400 microarrays was undertaken to compare LPC lines against datasets of muscle and embryonic stem cell lines, embryonic and developed liver (DL), and HCC. Three gene clusters distinguishing LPCs from other liver cell types were identified. Pathways overrepresented in these clusters denote the proliferative nature of LPCs and their association with HCC. Our analysis also revealed 26 novel markers, LPC markers, including Mcm2 and Ltbp3, and eight known LPC markers, including M2pk and Ncam. These markers specified the presence of LPCs in pathological liver tissue by qPCR and correlated with LPC abundance determined using immunohistochemistry. These results showcase the value of global transcript profiling to identify pathways and markers that may be used to detect LPCs in injured or diseased liver.
Collapse
Affiliation(s)
- Adam M. Passman
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia
- The Centre for Medical Research, Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia
| | - Jasmine Low
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA 6009, Australia
| | - Roslyn London
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia
| | - Janina E. E. Tirnitz-Parker
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
- School of Medicine and Pharmacology, The University of Western Australia, Fremantle, WA 6160, Australia
| | - Atsushi Miyajima
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-8654, Japan
| | - Minoru Tanaka
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-8654, Japan
| | | | | | - Megan Finch-Edmondson
- Department of Physiology, NUS Yong Loo Lin School of Medicine, Singapore 117411
- Mechanobiology Institute (MBI), National University of Singapore, Singapore 117411
| | - Scott Ochsner
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cornelia Zhu
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia
- The Centre for Medical Research, Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia
| | - James Whelan
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA 6009, Australia
- Department of Animal, Plant and Soil Sciences, La Trobe University, Melbourne, VIC 3086, Australia
| | - Bernard A. Callus
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia
- The Centre for Medical Research, Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia
- School of Health Sciences, The University of Notre Dame Australia, Fremantle, WA 6959, Australia
| | - George C. T. Yeoh
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia
- The Centre for Medical Research, Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia
| |
Collapse
|
13
|
Jin H, Lee K, Kim YH, Oh HK, Maeng YI, Kim TH, Suh DS, Bae J. Scaffold protein FHL2 facilitates MDM2-mediated degradation of IER3 to regulate proliferation of cervical cancer cells. Oncogene 2016; 35:5106-5118. [PMID: 26973248 PMCID: PMC5399145 DOI: 10.1038/onc.2016.54] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 12/29/2015] [Accepted: 02/08/2016] [Indexed: 12/15/2022]
Abstract
The expression of immediate early response 3 (IER3), a protein with a short half-life, is rapidly induced by various cellular stimuli. We recently reported that IER3 induces the apoptosis of cervical cancer cells and that its expression is downregulated in patients with cervical cancer. However, the molecular mechanism involved in the rapid degradation of IER3 remains unknown. Here, we demonstrate that MDM2 is an E3 ligase that interacts with IER3 and promotes its ubiquitination, followed by proteasomal degradation. Polyubiquitination of the conserved lysine 60 of IER3 is essential for its degradation. In addition, four and a half LIM domains protein 2 (FHL2) binds to both IER3 and MDM2, allowing for efficient MDM2-mediated IER3 degradation by facilitating an association between MDM2 and IER3. Moreover, IER3 induces cell cycle arrest in cervical cancer cells and its activity is further enhanced in cells in which FHL2 or MDM2 was silenced, thereby preventing IER3 degradation. The E6 and E7 oncoproteins of human papilloma virus 18 regulated IER3 expression. FHL2 expression was significantly higher in the squamous epithelium of cervical carcinoma tissues than in non-cancerous cervical tissues, whereas cervical carcinoma expression of IER3 was downregulated in this region. Thus, we determined the molecular mechanism responsible for IER3 degradation, involving a ternary complex of IER3, MDM2 and FHL2, which may contribute to cervical tumor growth. Furthermore, we demonstrated that FHL2 serves as a scaffold for E3 ligase and its substrate during the ubiquitination reaction, a function that has not been previously reported for this protein.
Collapse
Affiliation(s)
- H Jin
- School of Pharmacy, Chung-Ang University, Seoul, Korea
| | - K Lee
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Y-H Kim
- Department of Microbiology, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - H K Oh
- Department of Pathology, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Y-I Maeng
- Department of Pathology, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - T-H Kim
- Department of Biochemistry, Chosun University School of Medicine, Gwangju, Korea
| | - D-S Suh
- Department of Obstetrics and Gynecology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - J Bae
- School of Pharmacy, Chung-Ang University, Seoul, Korea
| |
Collapse
|
14
|
Kurakula K, Vos M, van Eijk M, Smits HH, de Vries CJ. LIM-only protein FHL2 regulates experimental pulmonarySchistosoma mansoniegg granuloma formation. Eur J Immunol 2015; 45:3098-106. [DOI: 10.1002/eji.201545627] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 07/05/2015] [Accepted: 08/18/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Kondababu Kurakula
- Department of Medical Biochemistry; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - Mariska Vos
- Department of Medical Biochemistry; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - Marco van Eijk
- Department of Medical Biochemistry; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - Hermelijn H. Smits
- Department of Parasitology; Cellular Immunology of Helminths; Leiden University Medical Center; Leiden The Netherlands
| | - Carlie J.M. de Vries
- Department of Medical Biochemistry; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| |
Collapse
|
15
|
de Rooij JDE, Beuling E, van den Heuvel-Eibrink MM, Obulkasim A, Baruchel A, Trka J, Reinhardt D, Sonneveld E, Gibson BES, Pieters R, Zimmermann M, Zwaan CM, Fornerod M. Recurrent deletions of IKZF1 in pediatric acute myeloid leukemia. Haematologica 2015; 100:1151-9. [PMID: 26069293 PMCID: PMC4800704 DOI: 10.3324/haematol.2015.124321] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/05/2015] [Indexed: 11/09/2022] Open
Abstract
IKAROS family zinc finger 1/IKZF1 is a transcription factor important in lymphoid differentiation, and a known tumor suppressor in acute lymphoid leukemia. Recent studies suggest that IKZF1 is also involved in myeloid differentiation. To investigate whether IKZF1 deletions also play a role in pediatric acute myeloid leukemia, we screened a panel of pediatric acute myeloid leukemia samples for deletions of the IKZF1 locus using multiplex ligation-dependent probe amplification and for mutations using direct sequencing. Three patients were identified with a single amino acid variant without change of IKZF1 length. No frame-shift mutations were found. Out of 11 patients with an IKZF1 deletion, 8 samples revealed a complete loss of chromosome 7, and 3 cases a focal deletion of 0.1-0.9Mb. These deletions included the complete IKZF1 gene (n=2) or exons 1-4 (n=1), all leading to a loss of IKZF1 function. Interestingly, differentially expressed genes in monosomy 7 cases (n=8) when compared to non-deleted samples (n=247) significantly correlated with gene expression changes in focal IKZF1-deleted cases (n=3). Genes with increased expression included genes involved in myeloid cell self-renewal and cell cycle, and a significant portion of GATA target genes and GATA factors. Together, these results suggest that loss of IKZF1 is recurrent in pediatric acute myeloid leukemia and might be a determinant of oncogenesis in acute myeloid leukemia with monosomy 7.
Collapse
Affiliation(s)
- Jasmijn D E de Rooij
- Pediatric Oncology, Erasmus MC-Sophia Children's Hospital Rotterdam, the Netherlands
| | - Eva Beuling
- Pediatric Oncology, Erasmus MC-Sophia Children's Hospital Rotterdam, the Netherlands
| | - Marry M van den Heuvel-Eibrink
- Pediatric Oncology, Erasmus MC-Sophia Children's Hospital Rotterdam, the Netherlands Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Askar Obulkasim
- Pediatric Oncology, Erasmus MC-Sophia Children's Hospital Rotterdam, the Netherlands
| | | | - Jan Trka
- Pediatric Hematology/Oncology, 2nd Medical School, Charles University, Prague, Czech Republic
| | - Dirk Reinhardt
- AML-BFM Study Group, Pediatric Hematology/Oncology, Medical School Hannover, Germany
| | - Edwin Sonneveld
- Dutch Childhood Oncology Group (DCOG), The Hague, the Netherlands
| | | | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Martin Zimmermann
- Pediatric Hematology/Oncology, 2nd Medical School, Charles University, Prague, Czech Republic
| | - C Michel Zwaan
- Pediatric Oncology, Erasmus MC-Sophia Children's Hospital Rotterdam, the Netherlands
| | - Maarten Fornerod
- Pediatric Oncology, Erasmus MC-Sophia Children's Hospital Rotterdam, the Netherlands
| |
Collapse
|
16
|
Zienert E, Eke I, Aust D, Cordes N. LIM-only protein FHL2 critically determines survival and radioresistance of pancreatic cancer cells. Cancer Lett 2015; 364:17-24. [PMID: 25917075 DOI: 10.1016/j.canlet.2015.04.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/17/2015] [Accepted: 04/19/2015] [Indexed: 11/27/2022]
Abstract
Numerous factors determine the current poor prognosis of pancreatic ductal adenocarcinoma (PDAC). One of the greatest challenges to overcome is treatment resistance. Among a large repertoire of intrinsic resistance mechanisms, integrin-mediated cell adhesion to extracellular matrix (ECM) has been identified to be fundamental. Coalesced in focal adhesion complexes, integrins, receptor tyrosine kinases, protein kinases and adapter proteins mediate prosurvival signaling. Four and a half LIM domains protein 2 (FHL2) is one of these adapter proteins, which operates through protein-protein interactions and shows tumor-specific expression. Based on this, we investigated FHL2 expression in PDAC specimens and three-dimensionally grown cell lines and how FHL2 mechanistically contributes to cell survival, cell cycling and radiation resistance. PDAC exhibited a significantly increased and heterogeneous FHL2 expression. Upon FHL2 depletion, pancreatic cancer cell lines showed significantly decreased cell survival, proliferation and radioresistance as well as enhanced apoptosis and MEK/ERK signaling and cyclin D1, E, A and B1 expression were strongly induced. Targeting of FHL2 and MEK1 was similarly effective than FHL2 depletion alone, suggesting MEK1 as a downstream signaling mediator of FHL2. Taken together, our results provide evidence for the importance of the focal adhesion protein FHL2 in pancreatic cancer cell survival, proliferation and radiosensitivity.
Collapse
Affiliation(s)
- Elisa Zienert
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Iris Eke
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Daniela Aust
- Institute for Pathology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Nils Cordes
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Institute of Radiooncology, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
17
|
Lu Y, Cai G, Cui S, Geng W, Chen D, Wen J, Zhang Y, Zhang F, Xie Y, Fu B, Chen X. FHL2-driven molecular network mediated Septin2 knockdown inducing apoptosis in mesangial cell. Proteomics 2014; 14:2485-97. [PMID: 25103794 DOI: 10.1002/pmic.201400252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/22/2014] [Accepted: 08/04/2014] [Indexed: 01/20/2023]
Affiliation(s)
- Yang Lu
- Department of Nephrology; Chinese PLA General Hospital; Chinese PLA Institute of Nephrology; State Key Laboratory of Kidney Diseases; National Clinical Research Center of Kidney Diseases; Beijing P. R. China
| | - Guangyan Cai
- Department of Nephrology; Chinese PLA General Hospital; Chinese PLA Institute of Nephrology; State Key Laboratory of Kidney Diseases; National Clinical Research Center of Kidney Diseases; Beijing P. R. China
| | - Shaoyuan Cui
- Department of Nephrology; Chinese PLA General Hospital; Chinese PLA Institute of Nephrology; State Key Laboratory of Kidney Diseases; National Clinical Research Center of Kidney Diseases; Beijing P. R. China
| | - Wenjia Geng
- Department of Nephrology; Chinese PLA General Hospital; Chinese PLA Institute of Nephrology; State Key Laboratory of Kidney Diseases; National Clinical Research Center of Kidney Diseases; Beijing P. R. China
| | - Dapeng Chen
- Department of Nephrology; Chinese PLA General Hospital; Chinese PLA Institute of Nephrology; State Key Laboratory of Kidney Diseases; National Clinical Research Center of Kidney Diseases; Beijing P. R. China
| | - Jun Wen
- Department of Nephrology; Chinese PLA General Hospital; Chinese PLA Institute of Nephrology; State Key Laboratory of Kidney Diseases; National Clinical Research Center of Kidney Diseases; Beijing P. R. China
| | - Yuanyuan Zhang
- Department of Nephrology; Chinese PLA General Hospital; Chinese PLA Institute of Nephrology; State Key Laboratory of Kidney Diseases; National Clinical Research Center of Kidney Diseases; Beijing P. R. China
| | - Fujian Zhang
- Department of Nephrology; Chinese PLA General Hospital; Chinese PLA Institute of Nephrology; State Key Laboratory of Kidney Diseases; National Clinical Research Center of Kidney Diseases; Beijing P. R. China
| | - Yuansheng Xie
- Department of Nephrology; Chinese PLA General Hospital; Chinese PLA Institute of Nephrology; State Key Laboratory of Kidney Diseases; National Clinical Research Center of Kidney Diseases; Beijing P. R. China
| | - Bo Fu
- Department of Nephrology; Chinese PLA General Hospital; Chinese PLA Institute of Nephrology; State Key Laboratory of Kidney Diseases; National Clinical Research Center of Kidney Diseases; Beijing P. R. China
| | - Xiangmei Chen
- Department of Nephrology; Chinese PLA General Hospital; Chinese PLA Institute of Nephrology; State Key Laboratory of Kidney Diseases; National Clinical Research Center of Kidney Diseases; Beijing P. R. China
| |
Collapse
|
18
|
FHL2 regulates hematopoietic stem cell functions under stress conditions. Leukemia 2014; 29:615-24. [PMID: 25179730 PMCID: PMC4346553 DOI: 10.1038/leu.2014.254] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 07/16/2014] [Accepted: 08/20/2014] [Indexed: 12/22/2022]
Abstract
FHL2, a member of the four and one half LIM domain protein family, is a critical transcriptional modulator. Here, we identify FHL2 as a critical regulator of hematopoietic stem cells (HSCs) that is essential for maintaining HSC self-renewal under regenerative stress. We find that Fhl2 loss has limited effects on hematopoiesis under homeostatic conditions. In contrast, Fhl2-null chimeric mice reconstituted with Fhl2-null bone marrow cells developed abnormal hematopoiesis with significantly reduced numbers of HSCs, hematopoietic progenitor cells (HPCs), red blood cells and platelets as well as hemoglobin levels. In addition, HSCs displayed a significantly reduced self-renewal capacity and were skewed toward myeloid lineage differentiation. We find that Fhl2 loss reduces both HSC quiescence and survival in response to regenerative stress, probably as a consequence of Fhl2-loss-mediated down-regulation of cyclin dependent kinase (CDK)-inhibitors, including p21(Cip) and p27(Kip1). Interestingly, FHL2 is regulated under control of a tissue specific promoter in hematopoietic cells and it is down-regulated by DNA hypermethylation in the leukemia cell line and primary leukemia cells. Furthermore, we find that down-regulation of FHL2 frequently occurs in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) patients, raising a possibility that FHL2 down-regulation plays a role in the pathogenesis of myeloid malignancies.
Collapse
|
19
|
LIM-only protein FHL2 activates NF-κB signaling in the control of liver regeneration and hepatocarcinogenesis. Mol Cell Biol 2013; 33:3299-308. [PMID: 23775124 DOI: 10.1128/mcb.00105-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Four-and-a-half LIM-only protein 2 (FHL2) is an important mediator in many signaling pathways. In this study, we analyzed the functions of FHL2 in nuclear factor κB (NF-κB) signaling in the liver. We show that FHL2 enhanced tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) activity in transcriptional activation of NF-κB targets by stabilizing the protein. TRAF6 is a binding partner of FHL2 and an important component of the Toll-like receptor-NF-κB pathway. Knockdown of FHL2 in 293-hTLR4/MD2-CD14 cells impaired lipopolysaccharide (LPS)-induced NF-κB activity, which regulates expression of inflammatory cytokines. Indeed, FHL2(-/-) macrophages showed significantly reduced production of TNF and interleukin 6 (IL-6) following LPS stimulation. TNF and IL-6 are the key cytokines that prime liver regeneration after hepatic injury. Following partial hepatectomy, FHL2(-/-) mice exhibited diminished induction of TNF and IL-6 and delayed hepatocyte regeneration. In the liver, NF-κB signaling orchestrates inflammatory cross talk between hepatocytes and hepatic immune cells that promote chemical hepatocarcinogenesis. We found that deficiency of FHL2 reduced susceptibility to diethylnitrosamine-induced hepatocarcinogenesis, correlating with the activator function of FHL2 in NF-κB signaling. Our findings demonstrate FHL2 as a positive regulator of NF-κB activity in liver regeneration and carcinogenesis and highlight the importance of FHL2 in both hepatocytes and hepatic immune cells.
Collapse
|
20
|
Critical role of miR-9 in myelopoiesis and EVI1-induced leukemogenesis. Proc Natl Acad Sci U S A 2013; 110:5594-9. [PMID: 23509296 DOI: 10.1073/pnas.1302645110] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
MicroRNA-9 (miR-9) is emerging as a critical regulator of organ development and neurogenesis. It is also deregulated in several types of solid tumors; however, its role in hematopoiesis and leukemogenesis is not yet known. Here we show that miR-9 is detected in hematopoietic stem cells and hematopoietic progenitor cells, and that its expression increases during hematopoietic differentiation. Ectopic expression of miR-9 strongly accelerates terminal myelopoiesis and promotes apoptosis in vitro and in vivo. Conversely, in hematopoietic progenitor cells, the inhibition of miR-9 with a miRNA sponge blocks myelopoiesis. Ecotropic viral integration site 1 (EVI1), required for normal embryogenesis, is considered an oncogene because its inappropriate up-regulation induces malignant transformation in solid and hematopoietic cancers. Here we show that EVI1 binds to the promoter of miR-9-3, leading to DNA hypermethylation of the promoter and repression of miR-9. Moreover, miR-9 expression reverses a myeloid differentiation block that is induced by EVI1. Our findings indicate that EVI1, when inappropriately expressed, delays or blocks myeloid differentiation at least in part by DNA hypermethylation and down-regulation of miR-9. It was reported that Forkhead box class O genes (FoxOs) inhibit myeloid differentiation and prevent differentiation of leukemia-initiating cells. Here we identify both FoxO1 and FoxO3 as direct targets of miR-9 in hematopoietic cells and find that up-regulation of FoxO3 inhibits miR-9-induced myelopoiesis. These results reveal a unique role of miR-9 in myelopoiesis and in the pathogenesis of EVI1-induced myeloid neoplasms and provide insights into the epigenetic regulation of miR9 in tumorigenesis.
Collapse
|
21
|
Nouët Y, Dahan J, Labalette C, Levillayer F, Julien B, Jouvion G, Cairo S, Vives FL, Ribeiro A, Huerre M, Colnot S, Perret C, Nhieu JTV, Tordjmann T, Buendia MA, Wei Y. The four and a half LIM-only protein 2 regulates liver homeostasis and contributes to carcinogenesis. J Hepatol 2012; 57:1029-36. [PMID: 22796152 DOI: 10.1016/j.jhep.2012.06.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 06/26/2012] [Accepted: 06/27/2012] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS The four and a half LIM-only protein 2 (FHL2) is upregulated in diverse pathological conditions. Here, we analyzed the effects of FHL2 overexpression in the liver of FHL2 transgenic mice (Apo-FHL2). METHODS We first examined cell proliferation and apoptosis in Apo-FHL2 livers and performed partial hepatectomy to investigate high FHL2 expression in liver regeneration. Expression of FHL2 was then analyzed by real time PCR in human hepatocellular carcinoma and adjacent non-tumorous livers. Finally, the role of FHL2 in hepatocarcinogenesis was assessed using Apo-FHL2;Apc(lox/lox) mice. RESULTS Six-fold increase in cell proliferation in transgenic livers was associated with concomitant apoptosis, resulting in normal liver mass. In Apo-FHL2 livers, both cyclin D1 and p53 were markedly increased. Evidence supporting a p53-dependent cell death mechanism was provided by the findings that FHL2 bound to and activated the p53 promoter, and that a dominant negative p53 mutant compromised FHL2-induced apoptosis in hepatic cells. Following partial hepatectomy in Apo-FHL2 mice, hepatocytes displayed advanced G1 phase entry and DNA synthesis leading to accelerated liver weight restoration. Interestingly, FHL2 upregulation in human liver specimens showed significant association with increasing inflammation score and cirrhosis. Finally, while Apo-FHL2 mice developed no tumors, the FHL2 transgene enhanced hepatocarcinogenesis induced by liver-specific deletion of the adenomatous polyposis coli gene and aberrant Wnt/β-catenin signaling in Apc(lox/lox) animals. CONCLUSIONS Our results implicate FHL2 in the regulation of signaling pathways that couple proliferation and cell death machineries, and underscore the important role of FHL2 in liver homeostasis and carcinogenesis.
Collapse
Affiliation(s)
- Yann Nouët
- Institut Pasteur, Unité d'Oncogenèse et Virologie Moléculaire, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ming M, Wang S, Wu W, Senyuk V, Le Beau MM, Nucifora G, Qian Z. Activation of Wnt/β-catenin protein signaling induces mitochondria-mediated apoptosis in hematopoietic progenitor cells. J Biol Chem 2012; 287:22683-90. [PMID: 22589536 DOI: 10.1074/jbc.m112.342089] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The canonical Wnt/β-catenin signaling is activated during development, tumorigenesis, and in adult homeostasis, yet its role in maintenance of hematopoietic stem/progenitor cells is not firmly established. Here, we demonstrate that conditional expression of an active form of β-catenin in vivo induces a marked increase in the frequency of apoptosis in hematopoietic stem/progenitor cells (HSCs/HPCs). Activation of Wnt/β-catenin signaling in HPCs in vitro elevates the activity of caspases 3 and 9 and leads to a loss of mitochondrial membrane potential (ΔΨ(m)), indicating that it induces the intrinsic mitochondrial apoptotic pathway. In vivo, expression of activated β-catenin in HPCs is associated with down-regulation of Bcl2 and expression of Casp3. Bone marrow transplantation assays reveal that enhanced cell survival by a Bcl2 transgene re-establishes the reconstitution capacity of HSCs/HPCs that express activated β-catenin. In addition, a Bcl2 transgene prevents exhaustion of these HSCs/HPCs in vivo. Our data suggest that activation of the Wnt/β-catenin pathway contributes to the defective function of HPCs in part by deregulating their survival.
Collapse
Affiliation(s)
- Ming Ming
- Department of Medicine, University of Illinois, Chicago, Illinois 60621, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Overexpression of four and a half LIM domains protein 2 promotes epithelial-mesenchymal transition-like phenotype in fish pre-osteoblasts. Biochimie 2012; 94:1128-34. [PMID: 22285966 DOI: 10.1016/j.biochi.2012.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 01/16/2012] [Indexed: 11/21/2022]
Abstract
FHL2 is a multifunctional protein involved in gene transcription regulation and cytoarchitecture modulation that has been recently associated with epithelial-mesenchymal transition (EMT) in colon cancer. Overexpression of FHL2 in a fish pre-osteoblastic cell line promoted cell dedifferentiation and impaired its extracellular matrix mineralization capacity. Cell cultures also acquired a novel three-dimensional structure organization, their proliferation rate was enhanced and gene expression profile was altered in agreement with an EMT-like phenotype upon overexpression of FHL2. Altogether, our results provide additional support to the relevance of FHL2 for cell differentiation and its association with hallmarks of cancer phenotype.
Collapse
|
24
|
FHL2 interacts with CALM and is highly expressed in acute erythroid leukemia. Blood Cancer J 2011; 1:e42. [PMID: 22829078 PMCID: PMC3256755 DOI: 10.1038/bcj.2011.40] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 08/12/2011] [Indexed: 12/22/2022] Open
Abstract
The t(10;11)(p13;q14) translocation results in the fusion of the CALM (clathrin assembly lymphoid myeloid leukemia protein) and AF10 genes. This translocation is observed in acute myeloblastic leukemia (AML M6), acute lymphoblastic leukemia (ALL) and malignant lymphoma. Using a yeast two-hybrid screen, the four and a half LIM domain protein 2 (FHL2) was identified as a CALM interacting protein. Recently, high expression of FHL2 in breast, gastric, colon, lung as well as in prostate cancer was shown to be associated with an adverse prognosis. The interaction between CALM and FHL2 was confirmed by glutathione S-transferase-pulldown assay and co-immunoprecipitation experiments. The FHL2 interaction domain of CALM was mapped to amino acids 294–335 of CALM. The transcriptional activation capacity of FHL2 was reduced by CALM, but not by CALM/AF10, which suggests that regulation of FHL2 by CALM might be disturbed in CALM/AF10-positive leukemia. Extremely high expression of FHL2 was seen in acute erythroid leukemia (AML M6). FHL2 was also highly expressed in chronic myeloid leukemia and in AML with complex aberrant karyotype. These results suggest that FHL2 may play an important role in leukemogenesis, especially in the case of AML M6.
Collapse
|
25
|
Kurakula K, van der Wal E, Geerts D, van Tiel CM, de Vries CJM. FHL2 protein is a novel co-repressor of nuclear receptor Nur77. J Biol Chem 2011; 286:44336-43. [PMID: 22049082 DOI: 10.1074/jbc.m111.308999] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The three members of the NR4A orphan nuclear receptor subfamily Nur77, Nurr1, and NOR-1, regulate a variety of biological functions including vascular disease and metabolism. In this study, we identified Four and a half LIM domains protein-2 (FHL2) as a novel interacting protein of NR4A nuclear receptors by yeast two-hybrid screen and co-immunoprecipitation studies. Each of the four LIM domains of FHL2 can bind Nur77, and both the amino-terminal domain and the DNA binding domain of Nur77 are involved in the interaction between FHL2 and Nur77. FHL2 represses Nur77 transcriptional activity in a dose-dependent manner, and short hairpin RNA-mediated knockdown of FHL2 results in increased Nur77 transcriptional activity. ChIP experiments on the enolase3 promoter revealed that FHL2 inhibits the association of Nur77 with DNA. FHL2 is highly expressed in human endothelial and smooth muscle cells, but not in monocytes or macrophages. To substantiate functional involvement of FHL2 in smooth muscle cell physiology, we demonstrated that FHL2 overexpression increases the growth of these cells, whereas FHL2 knockdown results in reduced DNA synthesis. Collectively, these studies suggest that association of FHL2 with Nur77 plays a pivotal role in vascular disease.
Collapse
Affiliation(s)
- Kondababu Kurakula
- Department of Medical Biochemistry, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
26
|
Abstract
The c-myb transcription factor is highly expressed in immature hematopoietic cells and down-regulated during differentiation. To define its role during the hematopoietic lineage commitment, we silenced c-myb in human CD34(+) hematopoietic stem/progenitor cells. Noteworthy, c-myb silencing increased the commitment capacity toward the macrophage and megakaryocyte lineages, whereas erythroid differentiation was impaired, as demonstrated by clonogenic assay, morphologic and immunophenotypic data. Gene expression profiling and computational analysis of promoter regions of genes modulated in c-myb-silenced CD34(+) cells identified the transcription factors Kruppel-Like Factor 1 (KLF1) and LIM Domain Only 2 (LMO2) as putative targets, which can account for c-myb knockdown effects. Indeed, chromatin immunoprecipitation and luciferase reporter assay demonstrated that c-myb binds to KLF1 and LMO2 promoters and transactivates their expression. Consistently, the retroviral vector-mediated overexpression of either KLF1 or LMO2 partially rescued the defect in erythropoiesis caused by c-myb silencing, whereas only KLF1 was also able to repress the megakaryocyte differentiation enhanced in Myb-silenced CD34(+) cells. Our data collectively demonstrate that c-myb plays a pivotal role in human primary hematopoietic stem/progenitor cells lineage commitment, by enhancing erythropoiesis at the expense of megakaryocyte diffentiation. Indeed, we identified KLF1 and LMO2 transactivation as the molecular mechanism underlying Myb-driven erythroid versus megakaryocyte cell fate decision.
Collapse
|