1
|
Hyprath M, Molitor M, Schweighöfer I, Marschalek R, Steinhilber D. MLL-AF4 upregulates 5-lipoxygenase expression in t(4;11) leukemia cells via the ALOX5 core promoter. Front Pharmacol 2025; 15:1520507. [PMID: 39877387 PMCID: PMC11772344 DOI: 10.3389/fphar.2024.1520507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/24/2024] [Indexed: 01/31/2025] Open
Abstract
5-Lipoxygenase (5-LO), encoded by the gene ALOX5, is implicated in several pathologies. As key enzyme in leukotriene biosynthesis, 5-LO plays a central role in inflammatory diseases, but the 5-LO pathway has also been linked to development of certain hematological and solid tumor malignancies. Of note, previous studies have shown that the leukemogenic fusion protein MLL-AF4 strongly increases ALOX5 gene promoter activity. Here, we investigate the upregulation of ALOX5 gene expression by MLL-AF4. Using reporter assays, we first identified the tandem GC box within the ALOX5 promotor sequence as the main target of MLL-AF4. Subsequently, we narrowed down the domains within the MLL-AF4 protein responsible for ALOX5 promoter activation. Our findings indicate that MLL-AF4 binds to the ALOX5 promoter via its CXXC domain and that the AF9ID, pSER and CHD domains redundantly activate transcriptional elongation. Knockdown of the MLL-AF4 gene in the human B cell line SEM revealed that MLL-AF4 is an inducer of ALOX5 gene expression in leukemic cells with lymphoid properties. Finally, we found that the MLL-AF4-related protein MLL-AF9, a driver of acute myeloid leukemia, similarly acts on the ALOX5 promoter. Taken together, we show that two prominent MLL fusion proteins are ALOX5 gene inducers in cells with lymphoid features.
Collapse
Affiliation(s)
- Marius Hyprath
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Maximilian Molitor
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Ilona Schweighöfer
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology, Goethe University, Frankfurt, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| |
Collapse
|
2
|
Verbeek TCAI, Vrenken KS, Arentsen-Peters STCJM, Castro PG, van de Ven M, van Tellingen O, Pieters R, Stam RW. Selective inhibition of HDAC class IIA as therapeutic intervention for KMT2A-rearranged acute lymphoblastic leukemia. Commun Biol 2024; 7:1257. [PMID: 39362994 PMCID: PMC11450098 DOI: 10.1038/s42003-024-06916-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024] Open
Abstract
KMT2A-rearranged acute lymphoblastic leukemia (ALL) is characterized by deregulation of the epigenome and shows susceptibility towards histone deacetylase (HDAC) inhibition. Most broad-spectrum HDAC inhibitors simultaneously target multiple human HDAC isoforms. Consequently, they often induce toxicity and especially in combination with other therapeutic agents. Therefore, more specifically targeting HDAC isoforms may represent a safer therapeutic strategy. Here we show that shRNA-mediated knock-down of the class IIA HDAC isoforms HDAC4, HDAC5, and HDAC7 results in apoptosis induction and cell cycle arrest in KMT2A-rearranged ALL cells. In concordance, the HDAC4/5 selective small molecule inhibitor LMK-235 effectively eradicates KMT2A-rearranged ALL cell lines as well as primary patient samples in vitro. However, using a xenograft mouse model of KMT2A-rearranged ALL we found that the maximum achievable dose of LMK-235 was insufficient to induce anti-leukemic effects in vivo. Similar results were obtained for the specific class IIA HDAC inhibitors MC1568 and TMP195. Finally, LMK-235 appeared to exert minimal anti-leukemic effects in vivo in combination with the BCL-2 inhibitor venetoclax, but not enough to prolong survival in treated mice. In conclusion, class IIA HDAC isoforms represent attractive therapeutic target in KMT2A-rearranged ALL, although clinical applications require the development of more stable and efficient specific HDAC inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rob Pieters
- Princess Máxima Center, Utrecht, The Netherlands
| | | |
Collapse
|
3
|
Nasrullah M, Kc R, Nickel K, Parent K, Kucharski C, Meenakshi Sundaram DN, Rajendran AP, Jiang X, Brandwein J, Uludağ H. Lipopolymer/siRNA Nanoparticles Targeting the Signal Transducer and Activator of Transcription 5A Disrupts Proliferation of Acute Lymphoblastic Leukemia. ACS Pharmacol Transl Sci 2024; 7:2840-2855. [PMID: 39296267 PMCID: PMC11406681 DOI: 10.1021/acsptsci.4c00336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 09/21/2024]
Abstract
The therapeutic potential of small interfering RNAs (siRNAs) in gene-targeted treatments is substantial, but their suboptimal delivery impedes widespread clinical applications. Critical among these is the inability of siRNAs to traverse the cell membranes due to their anionic nature and high molecular weight. This limitation is particularly pronounced in lymphocytes, which pose additional barriers due to their smaller size and scant cytoplasm. Addressing this, we introduce an innovative lipid-conjugated polyethylenimine lipopolymer platform, engineered for delivery of therapeutic siRNAs into lymphocytes. This system utilizes the cationic nature of the polyethylenimine for forming stable complexes with anionic siRNAs, while the lipid component facilitates cellular entry of siRNA. The resulting lipopolymer/siRNA complexes are termed lipopolymer nanoparticles (LPNPs). We comprehensively profiled the efficacy of this platform in human peripheral blood mononuclear cells (PBMCs) as well as in vitro and in vivo models of acute lymphoblastic leukemia (ALL), emphasizing the inhibition of the oncogenic signal transducer and activator of transcription 5A (STAT5A) gene. The lipopolymers demonstrated high efficiency in delivering siRNA to ALL cell lines (RS4;11 and SUP-B15) and primary patient cells, effectively silencing the STAT5A gene. The resultant gene silencing induced apoptosis and significantly reduced colony formation in vitro. Furthermore, in vivo studies showed a significant decrease in tumor volumes without causing substantial toxicity. The lipopolymers did not induce the secretion of proinflammatory cytokines (IL-6, TNF-α, and INF-γ) in PBMCs from healthy volunteers, underscoring their immune safety profile. Our observations indicate that LPNP-based siRNA delivery systems offer a promising therapeutic approach for ALL in terms of both safety and therapeutic efficacy.
Collapse
Affiliation(s)
- Mohammad Nasrullah
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H1, Canada
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1R1, Canada
| | - Remant Kc
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1R1, Canada
| | - Kyle Nickel
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1R1, Canada
| | - Kylie Parent
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1R1, Canada
| | - Cezary Kucharski
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1R1, Canada
| | | | - Amarnath Praphakar Rajendran
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1R1, Canada
| | - Xiaoyan Jiang
- Terry Fox Laboratory, British Colombia Cancer Research Institute and Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Joseph Brandwein
- Division of Hematology, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| | - Hasan Uludağ
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H1, Canada
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1R1, Canada
| |
Collapse
|
4
|
da Mota THA, Camargo R, Biojone ER, Guimarães AFR, Pittella-Silva F, de Oliveira DM. The Relevance of Telomerase and Telomere-Associated Proteins in B-Acute Lymphoblastic Leukemia. Genes (Basel) 2023; 14:genes14030691. [PMID: 36980962 PMCID: PMC10048576 DOI: 10.3390/genes14030691] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Telomeres and telomerase are closely linked to uncontrolled cellular proliferation, immortalization and carcinogenesis. Telomerase has been largely studied in the context of cancer, including leukemias. Deregulation of human telomerase gene hTERT is a well-established step in leukemia development. B-acute lymphoblastic leukemia (B-ALL) recovery rates exceed 90% in children; however, the relapse rate is around 20% among treated patients, and 10% of these are still incurable. This review highlights the biological and clinical relevance of telomerase for B-ALL and the implications of its canonical and non-canonical action on signaling pathways in the context of disease and treatment. The physiological role of telomerase in lymphocytes makes the study of its biomarker potential a great challenge. Nevertheless, many works have demonstrated that high telomerase activity or hTERT expression, as well as short telomeres, correlate with poor prognosis in B-ALL. Telomerase and related proteins have been proven to be promising pharmacological targets. Likewise, combined therapy with telomerase inhibitors may turn out to be an alternative strategy for B-ALL.
Collapse
Affiliation(s)
- Tales Henrique Andrade da Mota
- Laboratory of Molecular Pathology of Cancer, University of Brasilia, Brasilia 70910-900, Brazil
- Laboratory of Molecular Analysis, Faculty of Ceilândia, University of Brasilia, Brasilia 72220-275, Brazil
- Correspondence:
| | - Ricardo Camargo
- Brasília Children’s Hospital José Alencar, Brasilia 70684-831, Brazil
| | | | - Ana Flávia Reis Guimarães
- Laboratory of Molecular Analysis, Faculty of Ceilândia, University of Brasilia, Brasilia 72220-275, Brazil
| | - Fabio Pittella-Silva
- Laboratory of Molecular Pathology of Cancer, University of Brasilia, Brasilia 70910-900, Brazil
| | | |
Collapse
|
5
|
Moses EJ, Azlan A, Khor KZ, Mot YY, Mohamed S, Seeni A, Barneh F, Heidenreich O, Yusoff N. A RUNX1/ETO-SKP2-CDKN1B axis regulates expression of telomerase in t (8;21) acute myeloid leukemia. Cell Mol Life Sci 2023; 80:70. [PMID: 36820913 PMCID: PMC11071865 DOI: 10.1007/s00018-023-04713-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/24/2023]
Abstract
The fusion oncoprotein RUNX1/ETO which results from the chromosomal translocation t (8;21) in acute myeloid leukemia (AML) is an essential driver of leukemic maintenance. We have previously shown that RUNX1/ETO knockdown impairs expression of the protein component of telomerase, TERT. However, the underlying molecular mechanism of how RUNX1/ETO controls TERT expression has not been fully elucidated. Here we show that RUNX1/ETO binds to an intergenic region 18 kb upstream of the TERT transcriptional start site and to a site located in intron 6 of TERT. Loss of RUNX1/ETO binding precedes inhibition of TERT expression. Repression of TERT expression is also dependent on the destabilization of the E3 ubiquitin ligase SKP2 and the resultant accumulation of the cell cycle inhibitor CDKN1B, that are both associated with RUNX1/ETO knockdown. Increased CDKN1B protein levels ultimately diminished TERT transcription with E2F1/Rb involvement. Collectively, our results show that RUNX1/ETO controls TERT expression directly by binding to its locus and indirectly via a SKP2-CDKN1B-E2F1/Rb axis.
Collapse
Affiliation(s)
- Emmanuel J Moses
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia.
| | - Adam Azlan
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Kang Zi Khor
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Yee Yik Mot
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Saleem Mohamed
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Azman Seeni
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Farnaz Barneh
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Olaf Heidenreich
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK.
| | - Narazah Yusoff
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| |
Collapse
|
6
|
Issa H, Swart LE, Rasouli M, Ashtiani M, Nakjang S, Jyotsana N, Schuschel K, Heuser M, Blair H, Heidenreich O. Nanoparticle-mediated targeting of the fusion gene RUNX1/ETO in t(8;21)-positive acute myeloid leukaemia. Leukemia 2023; 37:820-834. [PMID: 36823395 PMCID: PMC10079536 DOI: 10.1038/s41375-023-01854-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023]
Abstract
A hallmark of acute myeloid leukaemias (AMLs) are chromosomal rearrangements that give rise to novel leukaemia-specific fusion genes. Most of these fusion genes are both initiating and driving events in AML and therefore constitute ideal therapeutic targets but are challenging to target by conventional drug development. siRNAs are frequently used for the specific suppression of fusion gene expression but require special formulations for efficient in vivo delivery. Here we describe the use of siRNA-loaded lipid nanoparticles for the specific therapeutic targeting of the leukaemic fusion gene RUNX1/ETO. Transient knockdown of RUNX1/ETO reduces its binding to its target genes and alters the binding of RUNX1 and its co-factor CBFβ. Transcriptomic changes in vivo were associated with substantially increased median survival of a t(8;21)-AML mouse model. Importantly, transient knockdown in vivo causes long-lasting inhibition of leukaemic proliferation and clonogenicity, induction of myeloid differentiation and a markedly impaired re-engraftment potential in vivo. These data strongly suggest that temporary inhibition of RUNX1/ETO results in long-term restriction of leukaemic self-renewal. Our results provide proof for the feasibility of targeting RUNX1/ETO in a pre-clinical setting and support the further development of siRNA-LNPs for the treatment of fusion gene-driven malignancies.
Collapse
Affiliation(s)
- Hasan Issa
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,Department of Pediatrics, Goethe University Frankfurt, Frankfurt, Germany
| | - Laura E Swart
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Milad Rasouli
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Department of Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Minoo Ashtiani
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Sirintra Nakjang
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Nidhi Jyotsana
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | | | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Helen Blair
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Olaf Heidenreich
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK. .,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| |
Collapse
|
7
|
Tirtakusuma R, Szoltysek K, Milne P, Grinev VV, Ptasinska A, Chin PS, Meyer C, Nakjang S, Hehir-Kwa JY, Williamson D, Cauchy P, Keane P, Assi SA, Ashtiani M, Kellaway SG, Imperato MR, Vogiatzi F, Schweighart EK, Lin S, Wunderlich M, Stutterheim J, Komkov A, Zerkalenkova E, Evans P, McNeill H, Elder A, Martinez-Soria N, Fordham SE, Shi Y, Russell LJ, Pal D, Smith A, Kingsbury Z, Becq J, Eckert C, Haas OA, Carey P, Bailey S, Skinner R, Miakova N, Collin M, Bigley V, Haniffa M, Marschalek R, Harrison CJ, Cargo CA, Schewe D, Olshanskaya Y, Thirman MJ, Cockerill PN, Mulloy JC, Blair HJ, Vormoor J, Allan JM, Bonifer C, Heidenreich O, Bomken S. Epigenetic regulator genes direct lineage switching in MLL/AF4 leukemia. Blood 2022; 140:1875-1890. [PMID: 35839448 PMCID: PMC10488321 DOI: 10.1182/blood.2021015036] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/30/2022] [Indexed: 11/20/2022] Open
Abstract
The fusion gene MLL/AF4 defines a high-risk subtype of pro-B acute lymphoblastic leukemia. Relapse can be associated with a lineage switch from acute lymphoblastic to acute myeloid leukemia, resulting in poor clinical outcomes caused by resistance to chemotherapies and immunotherapies. In this study, the myeloid relapses shared oncogene fusion breakpoints with their matched lymphoid presentations and originated from various differentiation stages from immature progenitors through to committed B-cell precursors. Lineage switching is linked to substantial changes in chromatin accessibility and rewiring of transcriptional programs, including alternative splicing. These findings indicate that the execution and maintenance of lymphoid lineage differentiation is impaired. The relapsed myeloid phenotype is recurrently associated with the altered expression, splicing, or mutation of chromatin modifiers, including CHD4 coding for the ATPase/helicase of the nucleosome remodelling and deacetylation complex. Perturbation of CHD4 alone or in combination with other mutated epigenetic modifiers induces myeloid gene expression in MLL/AF4+ cell models, indicating that lineage switching in MLL/AF4 leukemia is driven and maintained by disrupted epigenetic regulation.
Collapse
Affiliation(s)
- Ricky Tirtakusuma
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Katarzyna Szoltysek
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Maria Sklodowska-Curie Institute, Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Paul Milne
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Vasily V. Grinev
- Department of Genetics, the Faculty of Biology, Belarusian State University, Minsk, Republic of Belarus
| | - Anetta Ptasinska
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Paulynn S. Chin
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Claus Meyer
- Institute of Pharmaceutical Biology/DCAL, Goethe-University, Frankfurt/Main, Germany
| | - Sirintra Nakjang
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Daniel Williamson
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Pierre Cauchy
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Peter Keane
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Salam A. Assi
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Minoo Ashtiani
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Sophie G. Kellaway
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Maria R. Imperato
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Fotini Vogiatzi
- ALL-BFM Study Group, Pediatric Hematology/Oncology, Christian Albrechts University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | | | - Shan Lin
- Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Mark Wunderlich
- Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | | | - Alexander Komkov
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia
| | - Elena Zerkalenkova
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia
| | - Paul Evans
- Haematological Malignancy Diagnostic Service, St James’s University Hospital, Leeds, United Kingdom
| | - Hesta McNeill
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alex Elder
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Natalia Martinez-Soria
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sarah E. Fordham
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Yuzhe Shi
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lisa J. Russell
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Deepali Pal
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alex Smith
- Epidemiology and Cancer Statistics Group, University of York, York, United Kingdom
| | | | - Jennifer Becq
- Illumina Cambridge Ltd., Great Abington, United Kingdom
| | - Cornelia Eckert
- Department of Pediatric Oncology/Hematology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Oskar A. Haas
- St Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Peter Carey
- Department of Paediatric Haematology and Oncology, The Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
| | - Simon Bailey
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Paediatric Haematology and Oncology, The Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
| | - Roderick Skinner
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Paediatric Haematology and Oncology, The Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
| | - Natalia Miakova
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia
| | - Matthew Collin
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Venetia Bigley
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Muzlifah Haniffa
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Department of Dermatology and Newcastle National Institute of Health Research (NIHR), Newcastle Biomedical Research Centre, Newcastle Hospitals National Health Service (NHS) Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology/DCAL, Goethe-University, Frankfurt/Main, Germany
| | - Christine J. Harrison
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Catherine A. Cargo
- Haematological Malignancy Diagnostic Service, St James’s University Hospital, Leeds, United Kingdom
| | - Denis Schewe
- Department of Pediatrics, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Yulia Olshanskaya
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia
| | - Michael J. Thirman
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Peter N. Cockerill
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - James C. Mulloy
- Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Helen J. Blair
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Josef Vormoor
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - James M. Allan
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Olaf Heidenreich
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Simon Bomken
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Paediatric Haematology and Oncology, The Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
8
|
Rafat A, Dizaji Asl K, Mazloumi Z, Movassaghpour AA, Talebi M, Shanehbandi D, Farahzadi R, Nejati B, Nozad Charoudeh H. Telomerase inhibition on acute myeloid leukemia stem cell induced apoptosis with both intrinsic and extrinsic pathways. Life Sci 2022; 295:120402. [PMID: 35176279 DOI: 10.1016/j.lfs.2022.120402] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/24/2022]
Abstract
AIMS Acute Myeloid Leukemia (AML) is an invasive and lethal blood cancer caused by a rare population of Leukemia Stem Cells (LSCs). Telomerase activation is a limitless self-renewal process in LSCs. Apart from telomerase role in telomere lengthening, telomerase (especially hTERT subunit) inhibits intrinsic-, extrinsic-, and p53- mediated apoptosis pathways. In this study, the effect of Telomerase Inhibition (TI) on intrinsic-, extrinsic-, p53-mediated apoptosis, and DNMT3a and TET epigenetic markers in stem (CD34+) and differentiated (CD34-) AML cells is evaluated. MAIN METHODS High-purity CD34+ (primary AML and KG-1a) cells were enriched using the Magnetic-Activated Cell Sorting (MACS) system. CD34+ and CD34- (primary AML and KG-1a) cells were treated with BIBR1532 and then, MTT assay, Annexin V/7AAD, Ki-67 assay, Telomere Length (TL) measurement, and transcriptional alterations of p53, hTERT, TET2, DNMT3a were analyzed. Finally, apoptosis-related genes and proteins were studied. KEY FINDINGS TI with the IC50 values of 83.5, 33.2, 54.3, and 24.6 μM in CD34+ and CD34- (primary AML and KG-1a) cells significantly inhibited cell proliferation and induced apoptosis. However, TI had no significant effect on TL. The results also suggested TI induced intrinsic-, extrinsic-, and p53-mediated apoptosis. It was shown that the expression levels of DNMT3a and TET2 epigenetic markers were highly increased following TI. SIGNIFICANCE In total, it was revealed that TI induced apoptosis through intrinsic, extrinsic, and p53 pathways and increased the expression of DNMT3a and TET2 epigenetic markers.
Collapse
Affiliation(s)
- Ali Rafat
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Dizaji Asl
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Mazloumi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mehdi Talebi
- Department of Applied Sciences, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology research center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Babak Nejati
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
9
|
Ozyerli‐Goknar E, Nizamuddin S, Timmers HTM. A Box of Chemistry to Inhibit the MEN1 Tumor Suppressor Gene Promoting Leukemia. ChemMedChem 2021; 16:1391-1402. [PMID: 33534953 PMCID: PMC8252030 DOI: 10.1002/cmdc.202000972] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Indexed: 12/30/2022]
Abstract
Targeting protein-protein interactions (PPIs) with small-molecule inhibitors has become a hotbed of modern drug development. In this review, we describe a new class of PPI inhibitors that block menin from binding to MLL proteins. Menin is encoded by the MEN1 tumor suppressor, but acts as an essential cofactor for MLL/KMT2A-rearranged leukemias. The most promising menin-MLL inhibitors belong to the thienopyrimidine class and have recently entered phase I/II clinical trials for treating acute leukemias characterized by MLL/KMT2A translocations or NPM1 mutations. As single agents, thienopyrimidine compounds eradicate leukemia in a xenograft models of primary leukemic cells belonging to the MLL-rearranged or NPM1-mutant subtypes. These compounds are well tolerated with few or no side effects, which is remarkable given the tumor-suppressor function of menin. The menin-MLL inhibitors highlight how leukemia patients could benefit from a targeted epigenetic therapy with novel PPI inhibitors obtained by directed chemical evolution.
Collapse
Affiliation(s)
- Ezgi Ozyerli‐Goknar
- German Cancer Consortium (DKTK) partner site Freiburg German Cancer Research Center (DKFZ) Medical Center-University of Freiburg, Department of UrologyBreisacherstrasse 6679016FreiburgGermany
| | - Sheikh Nizamuddin
- German Cancer Consortium (DKTK) partner site Freiburg German Cancer Research Center (DKFZ) Medical Center-University of Freiburg, Department of UrologyBreisacherstrasse 6679016FreiburgGermany
| | - H. T. Marc Timmers
- German Cancer Consortium (DKTK) partner site Freiburg German Cancer Research Center (DKFZ) Medical Center-University of Freiburg, Department of UrologyBreisacherstrasse 6679016FreiburgGermany
| |
Collapse
|
10
|
Menshawy NE, Ashwah SE, Ebrahim MA. Short Dysfunctional Telomere Is Highly Predictive of Dismal Outcome in MDS but Not in AML Patients. Int J Hematol Oncol Stem Cell Res 2020; 14:188-199. [PMID: 33024526 PMCID: PMC7521393 DOI: 10.18502/ijhoscr.v14i3.3728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: A trigger for initiation the clonal hematopoietic stem cells disorders could be short telomere length probably due to chromosomal instability. The relationship between relative telomere length (RTL) and the two linked hematological stem cell disorders, myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) is still unclear. Materials and Methods: We evaluated the role of RTL in MDS (n=96) and AML (n=130) at the time of diagnosis using a real time quantitative polymerase chain reaction (RT-PCR) technique. The median value of RTL (1) was set as the cutoff for statistical comparison. Overall survival (OS) is defined as the time from diagnosis to death or last follow-up. Results: RTL was significantly longer in both MDS and AML cases versus control (p<0.0001) and was significantly longer in MDS versus AML cases (p =0.03). RTL correlated negatively with age in MDS (p <0.0001) but not in AML cases. RTL was also significantly shorter in MDS cases with pancytopenia and poor risk cytogenetics (p < 0.0001 for each) and short RTL was significantly associated with inferior survival (p = 0.007), while RTL showed no significant impact on OS in AML cases. Moreover, short RTL retained independent prognostic value in multivariate analysis (HR= 3.42 [95% CI, 8.97-19.35], p = 0.004). Conclusion: RTL showed an association with both AML and MDS; however, short RTL was an independent poor prognostic factor in MDS patients only.
Collapse
Affiliation(s)
- Nadia El Menshawy
- Clinical Pathology, Hematology Unit, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Shaimaa El Ashwah
- Clinical Hematology Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed A Ebrahim
- Medical Oncology Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
11
|
Hidaka D, Onozawa M, Miyashita N, Yokoyama S, Nakagawa M, Hashimoto D, Teshima T. Short-term treatment with imetelstat sensitizes hematopoietic malignant cells to a genotoxic agent via suppression of the telomerase-mediated DNA repair process. Leuk Lymphoma 2020; 61:2722-2732. [PMID: 32571117 DOI: 10.1080/10428194.2020.1779256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Imetelstat is a specific and competitive inhibitor of telomerase enzymatic activity. We demonstrated that imetelstat could interfere with the DNA repair process and enhance the effect of DNA damaging agents using hematological tumor cell lines. Short-term administration of imetelstat enhanced growth suppression by anticancer agents and radiation. It also upregulated γH2AX expression induced by irradiation. Immunofluorescence staining showed that both human telomerase reverse transcriptase (hTERT) and γH2AX were upregulated and co-localized in the nucleus of peripheral blood mononuclear cells after irradiation, suggesting that hTERT was involved in the DNA-DSB repair process. Imetelstat enhanced growth inhibitory effect of cytotoxic agents in short-term culture without shortening of telomeres, indicating that this effect was attributed by telomere length independent mechanism. Our results suggest that the combination of short-term treatment with imetelstat and cytotoxic agent is a promising strategy to treat a wide variety of hematopoietic malignancies.
Collapse
Affiliation(s)
- Daisuke Hidaka
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Sapporo, Japan
| | - Masahiro Onozawa
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Sapporo, Japan
| | - Naohiro Miyashita
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Sapporo, Japan
| | - Shota Yokoyama
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Sapporo, Japan
| | - Masao Nakagawa
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Sapporo, Japan
| | - Daigo Hashimoto
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Sapporo, Japan
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
12
|
Zhang Z, Li L, Wu C, Yin G, Zhu P, Zhou Y, Hong Y, Ni H, Qian Z, Wu WS. Inhibition of Slug effectively targets leukemia stem cells via the Slc13a3/ROS signaling pathway. Leukemia 2020; 34:380-390. [PMID: 31492896 PMCID: PMC6995768 DOI: 10.1038/s41375-019-0566-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 04/30/2019] [Accepted: 06/11/2019] [Indexed: 02/05/2023]
Abstract
Leukemia stem cells (LSCs) are the rare populations of acute myeloid leukemia (AML) cells that are able to initiate, maintain, and propagate AML. Targeting LSCs is a promising approach for preventing AML relapse and improving long-term outcomes. While Slug, a zinc-finger transcription repressor, negatively regulates the self-renewal of normal hematopoietic stem cells, its functions in AML are still unknown. We report here that Slug promotes leukemogenesis and its loss impairs LSC self-renewal and delays leukemia progression. Mechanistically, Slc13a3, a direct target of Slug in LSCs, restricts the self-renewal of LSCs and markedly prolongs recipient survival. Genetic or pharmacological inhibition of SLUG or forced expression of Slc13a3 suppresses the growth of human AML cells. In conclusion, our studies demonstrate that Slug differentially regulates self-renewal of LSCs and normal HSCs, and both Slug and Slc13a3 are potential therapeutic targets of LSCs.
Collapse
Affiliation(s)
- Zhonghui Zhang
- School of Life Sciences, Shanghai University, 200444, Shanghai, China
- Division of Hematology/Oncology, Department of Medicine and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Lei Li
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Chen Wu
- School of Life Sciences, Shanghai University, 200444, Shanghai, China
| | - Guoshu Yin
- Division of Hematology/Oncology, Department of Medicine and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Pei Zhu
- Division of Hematology/Oncology, Department of Medicine and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Yalu Zhou
- Division of Hematology/Oncology, Department of Medicine and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Yuanfan Hong
- Division of Hematology/Oncology, Department of Medicine and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Hongyu Ni
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Zhijian Qian
- Division of Hematology/Oncology, Department of Medicine and The University of Florida, Cancer/Genetics Research Complex, Florida, FL, 32610, USA
| | - Wen-Shu Wu
- Division of Hematology/Oncology, Department of Medicine and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
13
|
Crosstalk between 14-3-3θ and AF4 enhances MLL-AF4 activity and promotes leukemia cell proliferation. Cell Oncol (Dordr) 2019; 42:829-845. [PMID: 31493143 DOI: 10.1007/s13402-019-00468-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2019] [Indexed: 01/14/2023] Open
Abstract
PURPOSE The t(4;11)(q21;q23) translocation characterizes a form of acute lymphoblastic leukemia with a poor prognosis. It results in a fusion gene encoding a chimeric transcription factor, MLL-AF4, that deregulates gene expression through a variety of still controversial mechanisms. To provide new insights into these mechanisms, we examined the interaction between AF4, the most common MLL fusion partner, and the scaffold protein 14-3-3θ, in the context of t(4;11)-positive leukemia. METHODS Protein-protein interactions were analyzed using immunoprecipitation and in vitro binding assays, and by fluorescence microscopy in t(4;11)-positive RS4;11 and MV4-11 leukemia cells and in HEK293 cells. Protein and mRNA expression levels were determined by Western blotting and RT-qPCR, respectively. A 5-bromo-2'-deoxyuridine assay and an annexin V/propidium iodide assay were used to assess proliferation and apoptosis rates, respectively, in t(4;11)-positive and control cells. Chromatin immunoprecipitation was performed to assess binding of 14-3-3θ and AF4 to a specific promoter element. RESULTS We found that AF4 and 14-3-3θ are nuclear interactors, that 14-3-3θ binds Ser588 of AF4 and that 14-3-3θ forms a complex with MLL-AF4. In addition, we found that in t(4;11)-positive cells, 14-3-3θ knockdown decreased the expression of MLL-AF4 target genes, induced apoptosis and hampered cell proliferation. Moreover, we found that 14-3-3θ knockdown impaired the recruitment of AF4, but not of MLL-AF4, to target chromatin. Overall, our data indicate that the activity of the chimeric transcription factor MLL-AF4 depends on the cellular availability of 14-3-3θ, which triggers the transactivating function and subsequent degradation of AF4. CONCLUSIONS From our data we conclude that the scaffold protein 14-3-3θ enhances the aberrant activity of the chimeric transcription factor MLL-AF4 and, therefore, represents a new player in the molecular pathogenesis of t(4;11)-positive leukemia and a new promising therapeutic target.
Collapse
|
14
|
Garrido Castro P, van Roon EHJ, Pinhanços SS, Trentin L, Schneider P, Kerstjens M, Te Kronnie G, Heidenreich O, Pieters R, Stam RW. The HDAC inhibitor panobinostat (LBH589) exerts in vivo anti-leukaemic activity against MLL-rearranged acute lymphoblastic leukaemia and involves the RNF20/RNF40/WAC-H2B ubiquitination axis. Leukemia 2018; 32:323-331. [PMID: 28690313 DOI: 10.1038/leu.2017.216] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 06/21/2017] [Accepted: 06/26/2017] [Indexed: 11/08/2022]
Abstract
MLL-rearranged acute lymphoblastic leukaemia (ALL) represents an aggressive malignancy in infants (<1 year of age), associated with poor outcome. Current treatment intensification is not further possible, and novel therapy strategies are needed. Notably, MLL-rearranged ALL is characterised by a strongly deregulated epigenome and shows sensitivity to epigenetic perturbators. Here we demonstrate the in vivo efficacy of the histone deacetylase inhibitor panobinostat (LBH589) using xenograft mouse models of MLL-rearranged ALL. Panobinostat monotherapy showed strong anti-leukaemic effects, extending survival and reducing overall disease burden. Comprehensive molecular analyses in vitro showed that this anti-leukaemic activity involves depletion of H2B ubiquitination via suppression of the RNF20/RNF40/WAC E3 ligase complex; a pivotal pathway for MLL-rearranged leukaemic maintenance. Knockdown of WAC phenocopied loss of H2B ubiquitination and concomitant cell death induction. These combined data demonstrate that panobinostat cross-inhibits multiple epigenetic pathways, ultimately contributing to its highly efficacious targeting of MLL-rearranged ALL.
Collapse
Affiliation(s)
- P Garrido Castro
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - E H J van Roon
- Department of Pediatric Hematology/Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - S S Pinhanços
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - L Trentin
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - P Schneider
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - M Kerstjens
- Department of Pediatric Hematology/Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - G Te Kronnie
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - O Heidenreich
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
- North of England Stem Cell Institute, Newcastle and Durham Universities, Newcastle upon Tyne, UK
| | - R Pieters
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - R W Stam
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
15
|
Lin S, Wei J, Wunderlich M, Chou FS, Mulloy JC. Immortalization of human AE pre-leukemia cells by hTERT allows leukemic transformation. Oncotarget 2018; 7:55939-55950. [PMID: 27509060 PMCID: PMC5302887 DOI: 10.18632/oncotarget.11093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/13/2016] [Indexed: 01/21/2023] Open
Abstract
Human CD34+ hematopoietic stem and progenitor cells (HSPC) expressing fusion protein AML1-ETO (AE), generated by the t(8;21)(q22;q22) rearrangement, manifest enhanced self-renewal and dysregulated differentiation without leukemic transformation, representing a pre-leukemia stage. Enabling replicative immortalization via telomerase reactivation is a crucial step in cancer development. However, AE expression alone is not sufficient to maintain high telomerase activity to immortalize human HSPC cells, which may hamper transformation. Here, we investigated the cooperativity of telomerase reverse transcriptase (hTERT), the catalytic subunit of telomerase, and AE in disease progression. Enforced expression of hTERT immortalized human AE pre-leukemia cells in a telomere-lengthening independent manner, and improved the pre-leukemia stem cell function by enhancing cell proliferation and survival. AE-hTERT cells retained cytokine dependency and multi-lineage differentiation potential similar to parental AE clones. Over the short-term, AE-hTERT cells did not show features of stepwise transformation, with no leukemogenecity evident upon initial injection into immunodeficient mice. Strikingly, after extended culture, we observed full transformation of one AE-hTERT clone, which recapitulated the disease evolution process in patients and emphasizes the importance of acquiring cooperating mutations in t(8;21) AML leukemogenesis. In summary, achieving unlimited proliferative potential via hTERT activation, and thereby allowing for acquisition of additional mutations, is a critical link for transition from pre-leukemia to overt disease in human cells. AE-hTERT cells represent a tractable model to study cooperating genetic lesions important for t(8;21) AML disease progression.
Collapse
Affiliation(s)
- Shan Lin
- Cancer and Blood Disease Institute, Cincinnati Children's Hospital Research Center, Cincinnati, OH, USA
| | - Junping Wei
- Cancer and Blood Disease Institute, Cincinnati Children's Hospital Research Center, Cincinnati, OH, USA
| | - Mark Wunderlich
- Cancer and Blood Disease Institute, Cincinnati Children's Hospital Research Center, Cincinnati, OH, USA
| | - Fu-Sheng Chou
- Cancer and Blood Disease Institute, Cincinnati Children's Hospital Research Center, Cincinnati, OH, USA
| | - James C Mulloy
- Cancer and Blood Disease Institute, Cincinnati Children's Hospital Research Center, Cincinnati, OH, USA
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW The activation of telomere maintenance pathways has long been regarded as a key hallmark of cancer and this has propelled the development of novel inhibitors of telomerase. In this review, we detail the background biology on telomere maintenance in health and disease, then concentrate on the recent preclinical and clinical development behind targeting telomerase in blood cancers. RECENT FINDINGS Preclinical and clinical studies have shown that imetelstat, a competitive inhibitor of telomerase, has activity in certain hematologic malignancies, in particular the myeloproliferative neoplasms and acute myeloid leukemia. SUMMARY Telomerase inhibition has shown remarkable efficacy in myeloid malignancies, and current and future preclinical and clinical studies are necessary to comprehensively investigate its underlying mechanism of action. Future work should identify the potential genetic susceptibilities to telomerase inhibition therapy, and evaluate rational combinations of telomerase inhibitors with chemotherapy and other novel agents. Robust preclinical evaluation is essential to best translate these new agents successfully into our clinical treatment algorithm for myeloid and other blood cancers.
Collapse
|
17
|
Kishtagari A, Watts J. Biological and clinical implications of telomere dysfunction in myeloid malignancies. Ther Adv Hematol 2017; 8:317-326. [PMID: 29093807 DOI: 10.1177/2040620717731549] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/24/2017] [Indexed: 12/12/2022] Open
Abstract
Telomeres at the ends of linear chromosomes protect the genome. Telomeres shorten with each round of cell division, placing a finite limit on cell growth. Telomere attrition is associated with cell senescence and apoptosis. Telomerase, a specialized ribonucleoprotein complex, maintains telomeres homeostasis through repeat addition of telomere sequences to the 3' telomeric overhang. Telomere biology is closely related to cancer and normal aging. Upregulation of telomerase or activation of the alternative pathway of telomere lengthening is a hallmark of cancer cells, making telomerase an attractive target for cancer therapeutics. In this review, we will discuss telomere biology and the prognostic implications of telomere length in acute myeloid leukemia, and review exciting new investigational approaches using telomerase inhibitors in acute myeloid leukemia and other myeloid malignancies.
Collapse
Affiliation(s)
- Ashwin Kishtagari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH, USA
| | - Justin Watts
- Division of Hematology, Department of Medicine, University of Miami, Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1475 NW 12th Avenue, Miami, FL 33136-1002, USA
| |
Collapse
|
18
|
Bruedigam C, Bagger FO, Heidel FH, Paine Kuhn C, Guignes S, Song A, Austin R, Vu T, Lee E, Riyat S, Moore AS, Lock RB, Bullinger L, Hill GR, Armstrong SA, Williams DA, Lane SW. Telomerase inhibition effectively targets mouse and human AML stem cells and delays relapse following chemotherapy. Cell Stem Cell 2015; 15:775-90. [PMID: 25479751 DOI: 10.1016/j.stem.2014.11.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 08/01/2014] [Accepted: 11/12/2014] [Indexed: 11/26/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive and lethal blood cancer maintained by rare populations of leukemia stem cells (LSCs). Selective targeting of LSCs is a promising approach for treating AML and preventing relapse following chemotherapy, and developing such therapeutic modalities is a key priority. Here, we show that targeting telomerase activity eradicates AML LSCs. Genetic deletion of the telomerase subunit Terc in a retroviral mouse AML model induces cell-cycle arrest and apoptosis of LSCs, and depletion of telomerase-deficient LSCs is partially rescued by p53 knockdown. Murine Terc(-/-) LSCs express a specific gene expression signature that can be identified in human AML patient cohorts and is positively correlated with patient survival following chemotherapy. In xenografts of primary human AML, genetic or pharmacological inhibition of telomerase targets LSCs, impairs leukemia progression, and delays relapse following chemotherapy. Altogether, these results establish telomerase inhibition as an effective strategy for eliminating AML LSCs.
Collapse
Affiliation(s)
- Claudia Bruedigam
- Division of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Frederik O Bagger
- The Finsen Laboratory, Bioinformatics Centre, Department of Biology, and Biotech Research and Innovation Center (BRIC), University of Copenhagen, 1165 Copenhagen, Denmark
| | - Florian H Heidel
- Department of Hematology and Oncology, University Hospital, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Catherine Paine Kuhn
- Division of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Solene Guignes
- Division of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Axia Song
- Division of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Rebecca Austin
- Division of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Therese Vu
- Division of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Erwin Lee
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Sarbjit Riyat
- Department of Haematology, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia
| | - Andrew S Moore
- Queensland Children's Medical Research Institute, Brisbane, QLD 4029, Australia; University of Queensland, Brisbane, QLD 4072, Australia
| | - Richard B Lock
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Lars Bullinger
- Department of Hematology and Oncology, University Hospital Ulm, 89081 Ulm, Germany
| | - Geoffrey R Hill
- Division of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; Department of Haematology, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia; University of Queensland, Brisbane, QLD 4072, Australia
| | - Scott A Armstrong
- Department of Pediatrics, Memorial Sloan Kettering Leukemia Center, New York, NY 10065, USA
| | - David A Williams
- Division of Hematology and Oncology, Dana-Farber Cancer Institute, Harvard Medical School and Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Steven W Lane
- Division of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; Department of Haematology, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia; University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
19
|
Progress in RNAi-mediated Molecular Therapy of Acute and Chronic Myeloid Leukemia. MOLECULAR THERAPY. NUCLEIC ACIDS 2015; 4:e240. [DOI: 10.1038/mtna.2015.13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/26/2015] [Indexed: 02/08/2023]
|
20
|
Abstract
Leukemia stem cells (LSCs), featuring unlimited self-renewal capacity and chemoresistance, are critical cellular targets for new treatments to improve outcomes for acute myeloid leukemia (AML). In this issue of Cell Stem Cell, Bruedigam et al. (2014) demonstrate that inhibition of telomerase is damaging to LSCs and may represent a promising therapeutic approach in AML.
Collapse
Affiliation(s)
- Ya-Huei Kuo
- Division of Hematopoietic Stem Cell and Leukemia Research, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| | - Ravi Bhatia
- Division of Hematopoietic Stem Cell and Leukemia Research, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
21
|
Bruedigam C, Bagger FO, Heidel FH, Paine Kuhn C, Guignes S, Song A, Austin R, Vu T, Lee E, Riyat S, Moore AS, Lock RB, Bullinger L, Hill GR, Armstrong SA, Williams DA, Lane SW. Telomerase inhibition effectively targets mouse and human AML stem cells and delays relapse following chemotherapy. Cell Stem Cell 2014. [PMID: 25479751 DOI: 10.1016/j.stem.2014.11.010.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive and lethal blood cancer maintained by rare populations of leukemia stem cells (LSCs). Selective targeting of LSCs is a promising approach for treating AML and preventing relapse following chemotherapy, and developing such therapeutic modalities is a key priority. Here, we show that targeting telomerase activity eradicates AML LSCs. Genetic deletion of the telomerase subunit Terc in a retroviral mouse AML model induces cell-cycle arrest and apoptosis of LSCs, and depletion of telomerase-deficient LSCs is partially rescued by p53 knockdown. Murine Terc(-/-) LSCs express a specific gene expression signature that can be identified in human AML patient cohorts and is positively correlated with patient survival following chemotherapy. In xenografts of primary human AML, genetic or pharmacological inhibition of telomerase targets LSCs, impairs leukemia progression, and delays relapse following chemotherapy. Altogether, these results establish telomerase inhibition as an effective strategy for eliminating AML LSCs.
Collapse
Affiliation(s)
- Claudia Bruedigam
- Division of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Frederik O Bagger
- The Finsen Laboratory, Bioinformatics Centre, Department of Biology, and Biotech Research and Innovation Center (BRIC), University of Copenhagen, 1165 Copenhagen, Denmark
| | - Florian H Heidel
- Department of Hematology and Oncology, University Hospital, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Catherine Paine Kuhn
- Division of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Solene Guignes
- Division of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Axia Song
- Division of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Rebecca Austin
- Division of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Therese Vu
- Division of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Erwin Lee
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Sarbjit Riyat
- Department of Haematology, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia
| | - Andrew S Moore
- Queensland Children's Medical Research Institute, Brisbane, QLD 4029, Australia; University of Queensland, Brisbane, QLD 4072, Australia
| | - Richard B Lock
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Lars Bullinger
- Department of Hematology and Oncology, University Hospital Ulm, 89081 Ulm, Germany
| | - Geoffrey R Hill
- Division of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; Department of Haematology, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia; University of Queensland, Brisbane, QLD 4072, Australia
| | - Scott A Armstrong
- Department of Pediatrics, Memorial Sloan Kettering Leukemia Center, New York, NY 10065, USA
| | - David A Williams
- Division of Hematology and Oncology, Dana-Farber Cancer Institute, Harvard Medical School and Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Steven W Lane
- Division of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; Department of Haematology, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia; University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
22
|
Breig O, Bras S, Martinez Soria N, Osman D, Heidenreich O, Haenlin M, Waltzer L. Pontin is a critical regulator for AML1-ETO-induced leukemia. Leukemia 2014; 28:1271-9. [PMID: 24342949 DOI: 10.1038/leu.2013.376] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/05/2013] [Accepted: 12/11/2013] [Indexed: 01/07/2023]
Abstract
The oncogenic fusion protein AML1-ETO, also known as RUNX1-RUNX1T1 is generated by the t(8;21)(q22;q22) translocation, one of the most frequent chromosomal rearrangements in acute myeloid leukemia (AML). Identifying the genes that cooperate with or are required for the oncogenic activity of this chimeric transcription factor remains a major challenge. Our previous studies showed that Drosophila provides a genuine model to study how AML1-ETO promotes leukemia. Here, using an in vivo RNA interference screen for suppressors of AML1-ETO activity, we identified pontin/RUVBL1 as a gene required for AML1-ETO-induced lethality and blood cell proliferation in Drosophila. We further show that PONTIN inhibition strongly impaired the growth of human t(8;21)(+) or AML1-ETO-expressing leukemic blood cells. Interestingly, AML1-ETO promoted the transcription of PONTIN. Moreover, transcriptome analysis in Kasumi-1 cells revealed a strong correlation between PONTIN and AML1-ETO gene signatures and demonstrated that PONTIN chiefly regulated the expression of genes implicated in cell cycle progression. Concordantly, PONTIN depletion inhibited leukemic self-renewal and caused cell cycle arrest. All together our data suggest that the upregulation of PONTIN by AML1-ETO participate in the oncogenic growth of t(8;21) cells.
Collapse
MESH Headings
- ATPases Associated with Diverse Cellular Activities
- Animals
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Carrier Proteins/antagonists & inhibitors
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Cycle
- Cell Proliferation
- Chromosomes, Human, Pair 21/genetics
- Chromosomes, Human, Pair 8/genetics
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- DNA Helicases/antagonists & inhibitors
- DNA Helicases/genetics
- DNA Helicases/metabolism
- Drosophila melanogaster/genetics
- Drosophila melanogaster/growth & development
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Male
- Oligonucleotide Array Sequence Analysis
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- RUNX1 Translocation Partner 1 Protein
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Translocation, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- O Breig
- CNRS, CBD UMR5547, Université de Toulouse, UPS, CBD (Centre de Biologie du Développement), Bâtiment 4R3, 118 route de Narbonne, Toulouse, France
| | - S Bras
- CNRS, CBD UMR5547, Université de Toulouse, UPS, CBD (Centre de Biologie du Développement), Bâtiment 4R3, 118 route de Narbonne, Toulouse, France
| | - N Martinez Soria
- Northern Institute for Cancer Research, University of Newcastle, Newcastle upon Tyne, UK
| | - D Osman
- CNRS, CBD UMR5547, Université de Toulouse, UPS, CBD (Centre de Biologie du Développement), Bâtiment 4R3, 118 route de Narbonne, Toulouse, France
| | - O Heidenreich
- Northern Institute for Cancer Research, University of Newcastle, Newcastle upon Tyne, UK
| | - M Haenlin
- CNRS, CBD UMR5547, Université de Toulouse, UPS, CBD (Centre de Biologie du Développement), Bâtiment 4R3, 118 route de Narbonne, Toulouse, France
| | - L Waltzer
- CNRS, CBD UMR5547, Université de Toulouse, UPS, CBD (Centre de Biologie du Développement), Bâtiment 4R3, 118 route de Narbonne, Toulouse, France
| |
Collapse
|
23
|
Determination of key structure-activity relationships in siRNA delivery with a mixed micelle system. J Control Release 2013; 172:939-45. [PMID: 24140749 PMCID: PMC3898608 DOI: 10.1016/j.jconrel.2013.10.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/08/2013] [Accepted: 10/09/2013] [Indexed: 11/21/2022]
Abstract
Short interfering ribonucleic acids (siRNAs) offer a highly specific and selective form of therapy for diseases with a genetic component; however the poor pharmacokinetic properties of the molecule have impeded its development into a therapeutic for use in vivo. Several different approaches have been taken to develop a successful siRNA delivery system but these systems lack the flexibility for easy optimisation. Here, we propose a polymeric nanoparticle (PNP) system consisting of two amphiphilic diblock copolymers which allow for the rapid determination of structure-activity relationships involving gene knockdown and toxicity. The diblock copolymers self-assemble into monodisperse micelles of defined hydrodynamic diameters ranging from 30 to 100 nm dependent on the copolymer ratio. A luciferase-based high throughput assay varying PNP composition, concentration and siRNA concentration allowed the rapid identification of efficient PNP formulations for adherent and suspension cell lines. Optimised PNPs efficiently knocked down a fusion oncogene in hard to transfect human leukaemic cells raising the possibility of targeting malignant cells in a cancer-specific fashion. This approach allows the optimum PNP formulation to be identified for different cell types and conditions.
Collapse
|
24
|
Kim HJ, Choi EJ, Sohn HJ, Park SH, Min WS, Kim TG. Combinatorial molecular marker assays of WT1, survivin, and TERT at initial diagnosis of adult acute myeloid leukemia. Eur J Haematol 2013; 91:411-22. [PMID: 23826993 DOI: 10.1111/ejh.12167] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2013] [Indexed: 11/30/2022]
Abstract
High levels of expression of Wilms' tumor gene 1 (WT1), survivin, or telomerase reverse transcriptase (TERT) genes are introduced as leukemia-associated targets predicting clinical outcome. We prospectively investigated the leukemia-associated gene transcripts by real-time quantitative polymerase chain reaction from 151 adult patients with AML associated with the patients' clinical characteristics. The maximum levels of each gene in bone marrow were 64.4-, 8.1-, and 3.9-fold higher than those in the normal control, respectively. In contrast to the WT1 and TERT levels, survivin showed comparatively higher expression in the unfavorable cytogenetic group of patients. We found a significant difference in survivin levels between the CR and non-CR groups (P = 0.0237). TERT expression levels were higher in patients who had a greater number of peripheral blood leukemic blasts at diagnosis (P = 0.0191). Non-MRC subtypes and patients without specific mutations were the most powerful predictive factors for a better CR rate, by multivariate analyses. The lower levels of both WT1 and survivin co-expression (P = 0.0129) and both survivin + TERT co-expression (P = 0.0115) were significant factors for better OS. Besides lower initial levels of serum ferritin (P = 0.0401), lower levels of WT1 (P = 0.0438) and survivin (P = 0.0401), lower levels of both WT1 and survivin co-expression (P = 0.0031), and the three-gene combination of lower WT1 + survivin + TERT (P = 0.0454) were powerful predictive factors for better EFS. As our findings were based on a single disease entity, that is, adult AML, they suggest that the expression of these genes may be critical for the immunobiology of AML to influence the clinical outcome in various ways.
Collapse
Affiliation(s)
- Hee-Je Kim
- Division of Hematology, Department of Internal Medicine, Catholic Blood and Marrow Transplantation Center, Seoul St. Mary's Hospital, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
25
|
Osaki H, Walf-Vorderwülbecke V, Mangolini M, Zhao L, Horton SJ, Morrone G, Schuringa JJ, de Boer J, Williams O. The AAA+ ATPase RUVBL2 is a critical mediator of MLL-AF9 oncogenesis. Leukemia 2013; 27:1461-8. [PMID: 23403462 DOI: 10.1038/leu.2013.42] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 01/18/2013] [Accepted: 02/11/2013] [Indexed: 12/27/2022]
Abstract
The most frequent chromosomal translocations in pediatric acute myeloid leukemia affect the 11q23 locus and give rise to mixed lineage leukemia (MLL) fusion genes, MLL-AF9 being the most prevalent. The MLL-AF9 fusion gene has been shown to induce leukemia in both mouse and human models. In this study, we demonstrate that leukemogenic activity of MLL-AF9 requires RUVBL2 (RuvB-like 2), an AAA+ ATPase family member that functions in a wide range of cellular processes, including chromatin remodeling and transcriptional regulation. Expression of RUVBL2 was dependent on MLL-AF9, as it increased upon immortalization of human cord blood-derived hematopoietic progenitor cells with the fusion gene and decreased following loss of fusion gene expression in conditionally immortalized mouse cells. Short hairpin RNA-mediated silencing experiments demonstrated that both the immortalized human cells and the MLL-AF9-expressing human leukemia cell line THP-1 required RUVBL2 expression for proliferation and survival. Furthermore, inhibition of RUVBL2 expression in THP-1 cells led to reduced telomerase activity and clonogenic potential. These data were confirmed with a dominant-negative Walker B-mutated RUVBL2 construct. Taken together, these data suggest the possibility of targeting RUVBL2 as a potential therapeutic strategy for MLL-AF9-associated leukemia.
Collapse
Affiliation(s)
- H Osaki
- Molecular Haematology and Cancer Biology Unit, UCL Institute of Child Health, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Rehe K, Wilson K, Bomken S, Williamson D, Irving J, den Boer ML, Stanulla M, Schrappe M, Hall AG, Heidenreich O, Vormoor J. Acute B lymphoblastic leukaemia-propagating cells are present at high frequency in diverse lymphoblast populations. EMBO Mol Med 2012; 5:38-51. [PMID: 23229821 PMCID: PMC3569652 DOI: 10.1002/emmm.201201703] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 10/15/2012] [Accepted: 10/16/2012] [Indexed: 12/16/2022] Open
Abstract
Leukaemia-propagating cells are more frequent in high-risk acute B lymphoblastic leukaemia than in many malignancies that follow a hierarchical cancer stem cell model. It is unclear whether this characteristic can be more universally applied to patients from non-'high-risk' sub-groups and across a broad range of cellular immunophenotypes. Here, we demonstrate in a wide range of primary patient samples and patient samples previously passaged through mice that leukaemia-propagating cells are found in all populations defined by high or low expression of the lymphoid differentiation markers CD10, CD20 or CD34. The frequency of leukaemia-propagating cells and their engraftment kinetics do not differ between these populations. Transcriptomic analysis of CD34(high) and CD34(low) blasts establishes their difference and their similarity to comparable normal progenitors at different stages of B-cell development. However, consistent with the functional similarity of these populations, expression signatures characteristic of leukaemia propagating cells in acute myeloid leukaemia fail to distinguish between the different populations. Together, these findings suggest that there is no stem cell hierarchy in acute B lymphoblastic leukaemia.
Collapse
Affiliation(s)
- Klaus Rehe
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Gallo M, Ho J, Coutinho FJ, Vanner R, Lee L, Head R, Ling EKM, Clarke ID, Dirks PB. A tumorigenic MLL-homeobox network in human glioblastoma stem cells. Cancer Res 2012; 73:417-27. [PMID: 23108137 DOI: 10.1158/0008-5472.can-12-1881] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glioblastoma growth is driven by cancer cells that have stem cell properties, but molecular determinants of their tumorigenic behavior are poorly defined. In cancer, altered activity of the epigenetic modifiers Polycomb and Trithorax complexes may contribute to the neoplastic phenotype. Here, we provide the first mechanistic insights into the role of the Trithorax protein mixed lineage leukemia (MLL) in maintaining cancer stem cell characteristics in human glioblastoma. We found that MLL directly activates the Homeobox gene HOXA10. In turn, HOXA10 activates a downstream Homeobox network and other genes previously characterized for their role in tumorigenesis. The MLL-Homeobox axis we identified significantly contributes to the tumorigenic potential of glioblastoma stem cells. Our studies suggest a role for MLL in contributing to the epigenetic heterogeneity between tumor-initiating and non-tumor-initiating cells in glioblastoma.
Collapse
Affiliation(s)
- Marco Gallo
- Program in Developmental and Stem Cell Biology, Arthur and Sonia Labatt Brain Tumour Research Centre, Toronto, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Fuka G, Kantner HP, Grausenburger R, Inthal A, Bauer E, Krapf G, Kaindl U, Kauer M, Dworzak MN, Stoiber D, Haas OA, Panzer-Grümayer R. Silencing of ETV6/RUNX1 abrogates PI3K/AKT/mTOR signaling and impairs reconstitution of leukemia in xenografts. Leukemia 2012; 26:927-33. [PMID: 22094587 DOI: 10.1038/leu.2011.322] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/01/2011] [Accepted: 10/07/2011] [Indexed: 12/21/2022]
Abstract
The ETV6/RUNX1 (E/R) gene fusion is generated by the t(12;21) and found in approximately 25% of childhood B-cell precursor acute lymphoblastic leukemia. In contrast to the overwhelming evidence that E/R is critical for the initiation of leukemia, its relevance for the maintenance of overt disease is less clear. To investigate this issue, we suppressed the endogenous E/R fusion protein with lentivirally transduced short hairpin RNA in the leukemia cell lines REH and AT-2, and found a distinct reduction of proliferation and cell survival. In line with the observed concurrent inactivation of the phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway, pharmacological inhibition diminished the phosphorylation of AKT and ribosomal protein S6, and significantly increased the apoptosis rate in E/R-positive leukemias. Moreover, PI3K/mTOR inhibitors sensitized glucocorticoid-resistant REH cells to prednisolone, an observation of potential relevance for improving treatment of drug-resistant relapses. Of note, knockdown of the E/R fusion gene also severely impaired the repopulation capacity of REH cells in non-obese deficient/severe combined immunodeficient mice. Collectively, these data demonstrate that the E/R fusion protein activates the PI3K/AKT/mTOR pathway and is indispensible for disease maintenance. Importantly, these results provide a first rationale and justification for targeting the fusion gene and the PI3K/AKT/mTOR pathway therapeutically.
Collapse
Affiliation(s)
- G Fuka
- Children's Cancer Research Institute, St Anna Kinderkrebsforschung, Medical University Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ptasinska A, Assi SA, Mannari D, James SR, Williamson D, Dunne J, Hoogenkamp M, Wu M, Care M, McNeill H, Cauchy P, Cullen M, Tooze RM, Tenen DG, Young BD, Cockerill PN, Westhead DR, Heidenreich O, Bonifer C. Depletion of RUNX1/ETO in t(8;21) AML cells leads to genome-wide changes in chromatin structure and transcription factor binding. Leukemia 2012; 26:1829-41. [PMID: 22343733 PMCID: PMC3419980 DOI: 10.1038/leu.2012.49] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The t(8;21) translocation fuses the DNA-binding domain of the hematopoietic master regulator RUNX1 to the ETO protein. The resultant RUNX1/ETO fusion protein is a leukemia-initiating transcription factor that interferes with RUNX1 function. The result of this interference is a block in differentiation and, finally, the development of acute myeloid leukemia (AML). To obtain insights into RUNX1/ETO-dependant alterations of the epigenetic landscape, we measured genome-wide RUNX1- and RUNX1/ETO-bound regions in t(8;21) cells and assessed to what extent the effects of RUNX1/ETO on the epigenome depend on its continued expression in established leukemic cells. To this end, we determined dynamic alterations of histone acetylation, RNA Polymerase II binding and RUNX1 occupancy in the presence or absence of RUNX1/ETO using a knockdown approach. Combined global assessments of chromatin accessibility and kinetic gene expression data show that RUNX1/ETO controls the expression of important regulators of hematopoietic differentiation and self-renewal. We show that selective removal of RUNX1/ETO leads to a widespread reversal of epigenetic reprogramming and a genome-wide redistribution of RUNX1 binding, resulting in the inhibition of leukemic proliferation and self-renewal, and the induction of differentiation. This demonstrates that RUNX1/ETO represents a pivotal therapeutic target in AML.
Collapse
Affiliation(s)
- A Ptasinska
- Section of Experimental Haematology, Leeds Institute of Molecular Medicine, University of Leeds, Leeds, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Gene expression profiles predictive of outcome and age in infant acute lymphoblastic leukemia: a Children's Oncology Group study. Blood 2011; 119:1872-81. [PMID: 22210879 DOI: 10.1182/blood-2011-10-382861] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Gene expression profiling was performed on 97 cases of infant ALL from Children's Oncology Group Trial P9407. Statistical modeling of an outcome predictor revealed 3 genes highly predictive of event-free survival (EFS), beyond age and MLL status: FLT3, IRX2, and TACC2. Low FLT3 expression was found in a group of infants with excellent outcome (n = 11; 5-year EFS of 100%), whereas differential expression of IRX2 and TACC2 partitioned the remaining infants into 2 groups with significantly different survivals (5-year EFS of 16% vs 64%; P < .001). When infants with MLL-AFF1 were analyzed separately, a 7-gene classifier was developed that split them into 2 distinct groups with significantly different outcomes (5-year EFS of 20% vs 65%; P < .001). In this classifier, elevated expression of NEGR1 was associated with better EFS, whereas IRX2, EPS8, and TPD52 expression were correlated with worse outcome. This classifier also predicted EFS in an independent infant ALL cohort from the Interfant-99 trial. When evaluating expression profiles as a continuous variable relative to patient age, we further identified striking differences in profiles in infants less than or equal to 90 days of age and those more than 90 days of age. These age-related patterns suggest different mechanisms of leukemogenesis and may underlie the differential outcomes historically seen in these age groups.
Collapse
|
31
|
Pathogenetic, Clinical, and Prognostic Features of Adult t(4;11)(q21;q23)/MLL-AF4 Positive B-Cell Acute Lymphoblastic Leukemia. Adv Hematol 2011; 2011:621627. [PMID: 22190943 PMCID: PMC3235494 DOI: 10.1155/2011/621627] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 08/23/2011] [Accepted: 09/06/2011] [Indexed: 12/23/2022] Open
Abstract
Translocation t(4;11)(q21;q23) leading to formation of MLL-AF4 fusion gene is found in about 10% of newly diagnosed B-cell acute lymphoblastic leukemia (ALL) in adult patients. Patients expressing this chromosomal aberration present typical biological, immunophenotypic, and clinical features. This form of leukemia is universally recognized as high-risk leukemia and treatment intensification with allogeneic hematopoietic stem cell transplantation (HSCT) in first complete remission (CR) could be a valid option to improve prognosis, but data obtained from the literature are controversial. In this review, we briefly describe pathogenetic, clinical, and prognostic characteristics of adult t(4;11)(q21;q23)/MLL-AF4 positive ALL and provide a review of the clinical outcome reported by the most important cooperative groups worldwide.
Collapse
|
32
|
Muntean AG, Hess JL. The pathogenesis of mixed-lineage leukemia. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2011; 7:283-301. [PMID: 22017583 DOI: 10.1146/annurev-pathol-011811-132434] [Citation(s) in RCA: 267] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aggressive leukemias arise in both children and adults as a result of rearrangements to the mixed-lineage leukemia gene (MLL) located on chromosome 11q23. MLL encodes a large histone methyltransferase that directly binds DNA and positively regulates gene transcription, including homeobox (HOX) genes. MLL is involved in chromosomal translocations, partial tandem duplications, and amplifications, all of which result in hematopoietic malignancies due to sustained HOX expression and stalled differentiation. MLL lesions are associated with both acute myeloid leukemia and acute lymphoid leukemia and are usually associated with a relatively poor prognosis despite improved treatment options such as allogeneic hematopoietic stem cell transplantation, which underscores the need for new treatment regimens. Recent advances have begun to reveal the molecular mechanisms that drive MLL-associated leukemias, which, in turn, have provided opportunities for therapeutic development. Here, we discuss the etiology of MLL leukemias and potential directions for future therapy.
Collapse
Affiliation(s)
- Andrew G Muntean
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA.
| | | |
Collapse
|
33
|
hTERT promoter methylation and telomere length in childhood acute lymphoblastic leukemia: associations with immunophenotype and cytogenetic subgroup. Exp Hematol 2011; 39:1144-51. [PMID: 21914494 DOI: 10.1016/j.exphem.2011.08.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 08/17/2011] [Accepted: 08/22/2011] [Indexed: 01/11/2023]
Abstract
Telomere maintenance, important for long-term cell survival and malignant transformation, is directed by a multitude of factors, including epigenetic mechanisms, and has been implicated in outcomes for patients with leukemia. In the present study, the objective was to investigate the biological and clinical significance of telomere length and promoter methylation of the human telomerase reverse transcriptase gene in childhood acute lymphoblastic leukemia. A cohort of 169 childhood acute lymphoblastic leukemias was investigated for telomere length, human telomerase reverse transcriptase gene promoter methylation status, genomic aberrations, immunophenotype, and clinical outcomes. Methylation of the core promoter of the human telomerase reverse transcriptase (hTERT) gene was demonstrated in 24% of diagnostic samples, with a significant difference between B-cell precursor (n = 130) and T-cell acute lymphoblastic leukemia (ALL) (n = 17) cases (18% and 72%, respectively; p < 0.001). No remission sample demonstrated hTERT promoter methylation (n = 40). Within the B-cell precursor group, t(12;21)(p13;q22) [ETV6/RUNX1] cases (n = 19) showed a much higher frequency of hTERT methylation than high-hyperdiploid (51-61 chromosomes) ALL (n = 44) (63% and 7%, respectively; p < 0.001). hTERT messenger RNA levels were negatively associated with methylation status and, in the t(12;21) group, methylated cases had shorter telomeres (p = 0.017). In low-risk B-cell precursor patients (n = 101), long telomeres indicated a worse prognosis. The collected data from the present study indicate that the telomere biology in childhood ALL has clinical implications and reflects molecular differences between diverse ALL subgroups.
Collapse
|
34
|
|