1
|
Zhang J, Zhao J, Wei S, Huang P, Tu X, Su G, Gan Y, Gong W, Xiang B. Developing and Validating an Autophagy Gene-Set-Based Prognostic Signature in Hepatocellular Carcinoma Patients. Int J Gen Med 2022; 15:8399-8415. [DOI: 10.2147/ijgm.s388592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
|
2
|
Yuan XW, Shen LL, Huang WH, Zhao HJ. Dehydroabietic acid chemosensitizes drug-resistant acute lymphoblastic leukemia cells by downregulating survivin expression. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.354429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
3
|
Abstract
BACKGROUND The evasion from apoptosis is a common strategy adopted by most tumors, and inhibitors of apoptosis proteins (IAPs) are among the most studied molecular and therapeutic targets. BIRC3 (cellular IAP2) and BIRC5 (survivin) are two of the eight members of the human IAPs family. This family is characterized by the presence of the baculoviral IAP repeat (BIR) domains, involved in protein-protein interactions. In addition to the BIR domains, IAPs also contain other important domains like the C-terminal ubiquitin-conjugating (UBC) domain, the caspase recruitment (CARD) domain and the C-terminal Ring zinc-finger (RING) domain. MAIN BODY BIRC3 and BIRC5 have been characterized in some solid and hematological tumors and are therapeutic targets for the family of drugs called "Smac mimetics". Many evidences point to the pro-survival and antiapoptotic role of BIRC3 in cancer cells, however, not all the data are consistent and the resulting picture is heterogeneous. For instance, BIRC3 genetic inactivation due to deletions or point mutations is consistently associated to shorter progression free survival and poor prognosis in chronic lymphocytic leukemia patients. BIRC3 inactivation has also been associated to chemoimmunotherapy resistance. On the contrary, the progression from low grade gliomas to high grade gliomas is accompanied by BIRC3 expression increase, which bears relevant prognostic consequences. Due to the relationship between BIRC3, MAP3K14 and the non-canonical NF-kB pathway, BIRC3 inactivation bears consequences also on the tumor cells relying on NF-kB pathway to survive. BIRC5, on the contrary, is commonly considered an anti-apoptotic molecule, promoting cell division and tumor progression and it is widely regarded as potential therapeutic target. CONCLUSIONS The present manuscript collects and reviews the most recent literature concerning the role played by BIRC3 and BIRC5 in cancer cells, providing useful information for the choice of the best therapeutic targets.
Collapse
Affiliation(s)
- Raffaele Frazzi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Viale Risorgimento 80, Reggio Emilia, Italy.
| |
Collapse
|
4
|
Ratti S, Lonetti A, Follo MY, Paganelli F, Martelli AM, Chiarini F, Evangelisti C. B-ALL Complexity: Is Targeted Therapy Still A Valuable Approach for Pediatric Patients? Cancers (Basel) 2020; 12:cancers12123498. [PMID: 33255367 PMCID: PMC7760974 DOI: 10.3390/cancers12123498] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary B-ALL is the more frequent childhood malignancy. Even though significant improvements in patients’ survival, some pediatric B-ALL have still poor prognosis and novel strategies are needed. Recently, new genetic abnormalities and altered signaling pathways have been described, defining novel B-ALL subtypes.Innovative targeted therapeutic drugs may potentially show a great impact on the treatment of B-ALL subtypes, offering an important chance to block multiple signaling pathways and potentially improving the clinical management of B-ALL younger patients, especially for the new identified subtypes that lack efficient chemotherapeutic protocols. In this review, we shed light on the up-to-date knowledge of the novel childhood B-ALL subtypes and the altered signaling pathways that could become new druggable targets. Abstract B-cell acute lymphoblastic leukemia (B-ALL) is a hematologic malignancy that arises from the clonal expansion of transformed B-cell precursors and predominately affects childhood. Even though significant progresses have been made in the treatment of B-ALL, pediatric patients’ outcome has to be furtherly increased and alternative targeted treatment strategies are required for younger patients. Over the last decade, novel approaches have been used to understand the genomic landscape and the complexity of the molecular biology of pediatric B-ALL, mainly next generation sequencing, offering important insights into new B-ALL subtypes, altered pathways, and therapeutic targets that may lead to improved risk stratification and treatments. Here, we will highlight the up-to-date knowledge of the novel B-ALL subtypes in childhood, with particular emphasis on altered signaling pathways. In addition, we will discuss the targeted therapies that showed promising results for the treatment of the different B-ALL subtypes.
Collapse
Affiliation(s)
- Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (S.R.); (M.Y.F.); (F.P.); (A.M.M.)
| | - Annalisa Lonetti
- Giorgio Prodi Cancer Research Center, S. Orsola-Malpighi Hospital, University of Bologna, Via Massarenti, 11, 40138 Bologna, Italy;
| | - Matilde Y. Follo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (S.R.); (M.Y.F.); (F.P.); (A.M.M.)
| | - Francesca Paganelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (S.R.); (M.Y.F.); (F.P.); (A.M.M.)
| | - Alberto M. Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (S.R.); (M.Y.F.); (F.P.); (A.M.M.)
| | - Francesca Chiarini
- CNR Institute of Molecular Genetics Luigi Luca Cavalli-Sforza, Via di Barbiano 1/10, 40136 Bologna, Italy
- IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy
- Correspondence: (F.C.); (C.E.); Tel.: +39-051-209-1581 (F.C.); +39-051-209-1581 (C.E.)
| | - Camilla Evangelisti
- CNR Institute of Molecular Genetics Luigi Luca Cavalli-Sforza, Via di Barbiano 1/10, 40136 Bologna, Italy
- IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy
- Correspondence: (F.C.); (C.E.); Tel.: +39-051-209-1581 (F.C.); +39-051-209-1581 (C.E.)
| |
Collapse
|
5
|
Townley AR, Wheatley SP. Mitochondrial survivin reduces oxidative phosphorylation in cancer cells by inhibiting mitophagy. J Cell Sci 2020; 133:jcs247379. [PMID: 33077555 DOI: 10.1242/jcs.247379] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/29/2020] [Indexed: 01/01/2023] Open
Abstract
Survivin (also known as BIRC5) is a cancer-associated protein that is pivotal for cellular life and death - it is an essential mitotic protein and an inhibitor of apoptosis. In cancer cells, a small pool of survivin localises to the mitochondria, the function of which remains to be elucidated. Here, we report that mitochondrial survivin inhibits the selective form of autophagy called 'mitophagy', causing an accumulation of respiratory-defective mitochondria. Mechanistically, the data reveal that survivin prevents recruitment of the E3-ubiquitin ligase Parkin to mitochondria and their subsequent recognition by the autophagosome. The data also demonstrate that cells in which mitophagy has been blocked by survivin expression have an increased dependency on glycolysis. As these effects were found exclusively in cancer cells, they suggest that the primary act of mitochondrial survivin is to steer cells towards the implementation of the Warburg transition by inhibiting mitochondrial turnover, which enables them to adapt and survive.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Amelia R Townley
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Sally P Wheatley
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
6
|
Ruan Y, Kim HN, Ogana H, Kim YM. Wnt Signaling in Leukemia and Its Bone Marrow Microenvironment. Int J Mol Sci 2020; 21:ijms21176247. [PMID: 32872365 PMCID: PMC7503842 DOI: 10.3390/ijms21176247] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/16/2020] [Accepted: 08/24/2020] [Indexed: 12/19/2022] Open
Abstract
Leukemia is an aggressive hematologic neoplastic disease. Therapy-resistant leukemic stem cells (LSCs) may contribute to the relapse of the disease. LSCs are thought to be protected in the leukemia microenvironment, mainly consisting of mesenchymal stem/stromal cells (MSC), endothelial cells, and osteoblasts. Canonical and noncanonical Wnt pathways play a critical role in the maintenance of normal hematopoietic stem cells (HSC) and LSCs. In this review, we summarize recent findings on the role of Wnt signaling in leukemia and its microenvironment and provide information on the currently available strategies for targeting Wnt signaling.
Collapse
Affiliation(s)
- Yongsheng Ruan
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children’s Hospital Los Angeles, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90027, USA; (Y.R.); (H.N.K.); (H.O.)
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hye Na Kim
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children’s Hospital Los Angeles, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90027, USA; (Y.R.); (H.N.K.); (H.O.)
| | - Heather Ogana
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children’s Hospital Los Angeles, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90027, USA; (Y.R.); (H.N.K.); (H.O.)
| | - Yong-Mi Kim
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children’s Hospital Los Angeles, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90027, USA; (Y.R.); (H.N.K.); (H.O.)
- Correspondence:
| |
Collapse
|
7
|
Thamm DH, Joseph JK, Rose BJ, Meuten TK, Weishaar KM. Phase-I trial of survivin inhibition with EZN-3042 in dogs with spontaneous lymphoma. BMC Vet Res 2020; 16:97. [PMID: 32209084 PMCID: PMC7092583 DOI: 10.1186/s12917-020-02317-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/16/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Lymphoma is a common cancer in dogs. While most dogs receiving chemotherapy experience remission, very few are cured, and median survival times are generally in the 12-month range. Novel approaches to treatment are unquestionably needed. The Inhibitor of Apoptosis Protein (IAP) family member survivin, which is one of the most commonly overexpressed proteins in human cancer, plays a key role in apoptosis resistance, a major cause of drug-resistant treatment failure. Survivin targeting therapies have shown promise preclinically; however, none have been evaluated in dogs to date. The goal of the current study was to determine the safety and pharmacodynamic effects of systemic administration of the anti-survivin locked nucleic acid antisense oligonucleotide EZN-3042 in dogs with lymphoma. RESULTS We performed a prospective phase-I clinical trial in dogs with biopsy-accessible peripheral nodal lymphoma. Eighteen dogs were treated with EZN-3042 as a 2-h IV infusion at 5 dose levels, from 3.25 to 8.25 mg/kg twice weekly for 3 treatments. No dose-limiting toxicities were encountered. Reduction in tumor survivin mRNA and protein were observed in 3 of 5 evaluable dogs at the 8.25 mg/kg dose cohort. CONCLUSIONS In conclusion, reduced survivin expression was demonstrated in lymphoma tissues in the majority of dogs treated with EZN-3042 at 8.25 mg/kg twice weekly, which was associated with minimal adverse effects. This dose may be used in future studies of EZN-3042/chemotherapy combinations in dogs with spontaneous lymphoma and other cancers.
Collapse
Affiliation(s)
- Douglas H Thamm
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, 80523-1620, USA. .,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, 80523, USA. .,University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Jenette K Joseph
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, 80523-1620, USA.,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, 80523, USA
| | - Barbara J Rose
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, 80523-1620, USA
| | - Travis K Meuten
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, 80523-1620, USA.,Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Kristen M Weishaar
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, 80523-1620, USA
| |
Collapse
|
8
|
The Role Played by Wnt/β-Catenin Signaling Pathway in Acute Lymphoblastic Leukemia. Int J Mol Sci 2020; 21:ijms21031098. [PMID: 32046053 PMCID: PMC7037748 DOI: 10.3390/ijms21031098] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 12/15/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is an aggressive hematologic neoplastic disorder that arises from the clonal expansion of transformed T-cell or B-cell precursors. Thanks to progress in chemotherapy protocols, ALL outcome has significantly improved. However, drug-resistance remains an unresolved issue in the treatment of ALL and toxic effects limit dose escalation of current chemotherapeutics. Therefore, the identification of novel targeted therapies to support conventional chemotherapy is required. The Wnt/β-catenin pathway is a conserved signaling axis involved in several physiological processes such as development, differentiation, and adult tissue homeostasis. As a result, deregulation of this cascade is closely related to initiation and progression of various types of cancers, including hematological malignancies. In particular, deregulation of this signaling network is involved in the transformation of healthy HSCs in leukemic stem cells (LSCs), as well as cancer cell multi-drug-resistance. This review highlights the recent findings on the role of Wnt/β-catenin in hematopoietic malignancies and provides information on the current status of Wnt/β-catenin inhibitors with respect to their therapeutic potential in the treatment of ALL.
Collapse
|
9
|
Evangelisti C, Chiarini F, Cappellini A, Paganelli F, Fini M, Santi S, Martelli AM, Neri LM, Evangelisti C. Targeting Wnt/β-catenin and PI3K/Akt/mTOR pathways in T-cell acute lymphoblastic leukemia. J Cell Physiol 2020; 235:5413-5428. [PMID: 31904116 DOI: 10.1002/jcp.29429] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological disorder that results from the clonal transformation of T-cell precursors. Phosphatidylinositol 3-kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) and canonical Wnt/β-catenin signaling pathways play a crucial role in T-cell development and in self-renewal of healthy and leukemic stem cells. Notably, β-catenin is a transcriptional regulator of several genes involved in cancer cell proliferation and survival. In this way, aberrations of components belonging to the aforementioned networks contribute to T-ALL pathogenesis. For this reason, inhibition of both pathways could represent an innovative strategy in this hematological malignancy. Here, we show that combined targeting of Wnt/β-catenin pathway through ICG-001, a CBP/β-catenin transcription inhibitor, and of the PI3K/Akt/mTOR axis through ZSTK-474, a PI3K inhibitor, downregulated proliferation, survival, and clonogenic activity of T-ALL cells. ICG-001 and ZSTK-474 displayed cytotoxic effects, and, when combined together, induced a significant increase in apoptotic cells. This induction of apoptosis was associated with the downregulation of Wnt/β-catenin and PI3K/Akt/mTOR pathways. All these findings were confirmed under hypoxic conditions that mimic the bone marrow niche where leukemic stem cells are believed to reside. Taken together, our findings highlight potentially promising treatment consisting of cotargeting Wnt/β-catenin and PI3K/Akt/mTOR pathways in T-ALL settings.
Collapse
Affiliation(s)
- Cecilia Evangelisti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Francesca Chiarini
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Bologna, Italy.,IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alessandra Cappellini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Francesca Paganelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Milena Fini
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Spartaco Santi
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Bologna, Italy.,IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,LTTA-Electron Microscopy Center, University of Ferrara, Ferrara, Italy
| | - Camilla Evangelisti
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Bologna, Italy.,IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
10
|
Narimani M, Sharifi M, Jalili A. Knockout Of BIRC5 Gene By CRISPR/Cas9 Induces Apoptosis And Inhibits Cell Proliferation In Leukemic Cell Lines, HL60 And KG1. Blood Lymphat Cancer 2019; 9:53-61. [PMID: 31819702 PMCID: PMC6885567 DOI: 10.2147/blctt.s230383] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/02/2019] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Human Baculoviral inhibitor of apoptosis repeat-containing 5 (BIRC5) which encodes survivin exhibits multiple biological activities, such as cell proliferation and apoptosis. Survivin is overexpressed in numerous malignant diseases including acute myeloid leukemia (AML). Recent studies have shown that the CRISPR/Cas9 nuclease-mediated gene-editing systems are suitable approach's for editing or knocking out various genes including oncogenes. METHODS AND MATERIALS We used CRISPR-Cas9 to knockout the BIRC5 in the human leukemic cell line, HL60, and KG1, and these cell lines were transfected with either the Cas9- and three sgRNAs expressing plasmids or negative control (scramble) using Lipofectamine 3000. The efficacy of the transfection was determined by quantitative reverse transcription-polymerase chain (RT-qPCR) and surveyor mutation assays. Cell proliferation and apoptosis were measured by MTT assay and flow cytometry, respectively. RESULTS We have successfully knocked out the BIRC5 gene in these leukemic cells and observed that the BIRC5-knocked out cells by CRISPR/Cas9 showed a significant decrease (30 folds) of survivin at mRNA levels. Moreover, cell death and apoptosis were significantly induced in BIRC5-CRISPR/Cas9-transfected cells compared to the scramble vector. CONCLUSION We demonstrated for the first time that targeting BIRC5 by CRISPR/Cas9 technology is a suitable approach for the induction of apoptosis in leukemic cells. However, further studies targeting this gene in primary leukemic cells are required.
Collapse
Affiliation(s)
- Manizheh Narimani
- Cancer and Immunology Research Center, Institute of Research for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Jalili
- Cancer and Immunology Research Center, Institute of Research for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
11
|
Zhou J, Liu S, Wang Y, Dai W, Zou H, Wang S, Zhang J, Pan J. Salinomycin effectively eliminates cancer stem-like cells and obviates hepatic metastasis in uveal melanoma. Mol Cancer 2019; 18:159. [PMID: 31718679 PMCID: PMC6852970 DOI: 10.1186/s12943-019-1068-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/06/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Uveal melanoma (UM) is the most common primary intraocular tumor. Hepatic metastasis is the major and direct death-related reason in UM patients. Given that cancer stem-like cells (CSCs) are roots of metastasis, targeting CSCs may be a promising strategy to overcome hepatic metastasis in UM. Salinomycin, which has been identified as a selective inhibitor of CSCs in multiple types of cancer, may be an attractive agent against CSCs thereby restrain hepatic metastasis in UM. The objective of the study is to explore the antitumor activity of salinomycin against UM and clarify its underlying mechanism. METHODS UM cells were treated with salinomycin, and its effects on cell proliferation, apoptosis, migration, invasion, CSCs population, and the related signal transduction pathways were determined. The in vivo antitumor activity of salinomycin was evaluated in the NOD/SCID UM xenograft model and intrasplenic transplantation liver metastasis mouse model. RESULTS We found that salinomycin remarkably obviated growth and survival in UM cell lines and in a UM xenograft mouse model. Meanwhile, salinomycin significantly eliminated CSCs and efficiently hampered hepatic metastasis in UM liver metastasis mouse model. Mechanistically, Twist1 was fundamental for the salinomycin-enabled CSCs elimination and migration/invasion blockage in UM cells. CONCLUSIONS Our findings suggest that targeting UM CSCs by salinomycin is a promising therapeutic strategy to hamper hepatic metastasis in UM. These results provide the first pre-clinical evidence for further testing of salinomycin for its antitumor efficacy in UM patients with hepatic metastasis.
Collapse
Affiliation(s)
- Jingfeng Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, People's Republic of China
| | - Shenglan Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, People's Republic of China
| | - Yun Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, People's Republic of China
| | - Wei Dai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, People's Republic of China
| | - Hailin Zou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, People's Republic of China
| | - Shubo Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, People's Republic of China
| | - Jing Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, People's Republic of China
| | - Jingxuan Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
12
|
Narimani M, Sharifi M, Hakhamaneshi MS, Roshani D, Kazemi M, Hejazi SH, Jalili A. BIRC5 Gene Disruption via CRISPR/Cas9n Platform Suppress Acute Myelocytic Leukemia Progression. IRANIAN BIOMEDICAL JOURNAL 2019; 23:369-78. [PMID: 31104397 PMCID: PMC6800533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/27/2018] [Accepted: 10/28/2018] [Indexed: 01/05/2024]
Abstract
Background Acute myelocytic leukemia (AML) is a clonal malignancy resulting from the accumulation of genetic abnormalities in the cells. Human baculoviral inhibitor of apoptosis repeat-containing 5 (BIRC5), encodes survivin, is one of only a handful of genes that is differentially over-expressed in numerous malignant diseases including AML. Methods The BIRC5 was silenced permanently in two AML cell lines, HL‑60 and KG-1, via the CRISPR/Cas9n system. After transfection of CRISPR constructs, genomic DNA was extracted and amplified to assess mutation detection. To evaluate BIRC5 gene expression, quantitative real-time PCR was performed. Also, MTT cell viability and Annexin‑V/propidium iodide flowcytometric staining were performed, and the data were analyzed using the Kolmogorov-Smirnov, Levene's, and ANOVA tests. Results The results indicated that Cas9n and its sgRNAs successfully triggered site-specific cleavage and mutation in the BIRC5 gene locus. Moreover, suppression of BIRC5 resulted in the reduction of cell viability, and induction of apoptosis and necrosis in HL60 and KG1 suggested that the permanent suppression of BIRC5 remarkably dropped the gene expression and cells viability. Conclusion This study reinforces the idea that BIRC5 disruption via Cas9n:sgRNAs has favorable effects on the AML clinical outcome. It thereby can be a promising candidate in a variety of leukemia treatments.
Collapse
Affiliation(s)
- Manizheh Narimani
- Cancer and Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Daem Roshani
- Cancer and Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Kazemi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Hossein Hejazi
- Skin Diseases and Leishmaniasis Research Center, Department of Parasitology & Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Jalili
- Cancer and Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
13
|
Zhou C, Zhang L, Xu P. Growth inhibition and chemo-radiosensitization of esophageal squamous cell carcinoma by survivin-shRNA lentivirus transfection. Oncol Lett 2018; 16:4813-4820. [PMID: 30250546 PMCID: PMC6144918 DOI: 10.3892/ol.2018.9280] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/22/2018] [Indexed: 12/13/2022] Open
Abstract
Esophageal cancer is one of the most common types of cancer worldwide, and it has a poor prognosis. Chemo-radiotherapy resistance and cancer relapse are among the most difficult issues in its treatment. Identifying the underlying molecular mechanisms is critical for developing novel therapies. Survivin has been previously suggested to be overexpressed in esophageal cancer cells. The present study identified that down-regulation of survivin sensitized esophageal cancer cells to chemo-radiotherapy. Consistent with previous studies, the present study indicated that survivin was overexpressed in 4 esophageal squamous carcinoma cell lines. Short hairpin RNA delivered by lentivirus successfully knocked down survivin in these cancer cell lines. Consequently, down-regulation of survivin impaired their colony-forming, migratory and invasive capabilities, while the overexpression of survivin in normal human esophagus epithelial cells improved their resistance to cisplatin, paclitaxel and radiation. Survivin knockdown induced apoptosis in esophageal cancer KYSE-150 and ECA-109 cell lines when exposed to the aforementioned chemo-radiotherapy treatments. These results indicate that survivin expression sustains growth in esophageal cancer cells, and confers resistance to chemo-radiotherapy. Targeted survivin ablation may be a promising strategy against esophageal tumor relapse and chemo-radioresistance.
Collapse
Affiliation(s)
- Changlin Zhou
- Department of Oncology, Jining First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Lin Zhang
- Department of Oncology, Jining First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Peng Xu
- Department of Thoracic Surgery, Ji'nan Central Hospital Affiliated to Shandong University, Ji'nan, Shandong 250013, P.R. China
| |
Collapse
|
14
|
欧 艺, 姜 耀, 李 琦, 庄 永, 党 强, 谭 万. [Infiltrating mast cells promote neuroendocrine differentiation and increase docetaxel resistance of prostate cancer cells by up-regulating p21]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:723-730. [PMID: 29997096 PMCID: PMC6765720 DOI: 10.3969/j.issn.1673-4254.2018.06.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To investigate the effect of infiltrating mast cells on neuroendocrine differentiation (NED) and docetaxel sensitivity of prostate cancer (PCa) cells in vitro. METHODS Human PCa cell lines (LNCaP and C4-2) were co-cultured with human mast cell line (HMC-1) in Transwell chambers. Androgen receptor (AR) was silenced in C4-2 cells using sh-AR lentivirus, and p21 was knocked down and overexpressed by transfecting C4-2 cells with pLKO.1-sh-p21 and pCMV-p21, respectively. The morphological changes of LNCaP and C4-2 cells were observed. MTT assay and colony formation assay were used to assess the proliferation of LNCaP and C4-2 cells. CCK8 assay was used to detect the cell viability of C4-2 cells following docetaxel trreatment. RT-qPCR and Western blotting were performed to determine the mRNA and protein expressions of neuroendocrine markers, AR and p21 in the cells. RESULTS Co-culture with HMC-1 cells enhanced the neuroendocrine phenotypes, inhibited the proliferation and up-regulated the expression of p21 in LNCaP and C4-2 cells. P21 positively regulated NED through a non-AR-dependent signaling pathway, while p21 knockdown partially reversed NED promoted by the mast cells. PCa cells co-cultured with HMC-1 cells showed increased resistance to docetaxel, and silencing p21 partially reversed docetaxel resistance in PCa cells. CONCLUSION Infiltrating mast cells up-regulates p21 to promote NED and increase docetaxel resistance in PCa cells in vitro.
Collapse
Affiliation(s)
- 艺虹 欧
- />南方医科大学南方医院泌尿外科,广东 广州 510515Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 耀东 姜
- />南方医科大学南方医院泌尿外科,广东 广州 510515Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 琦 李
- />南方医科大学南方医院泌尿外科,广东 广州 510515Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 永江 庄
- />南方医科大学南方医院泌尿外科,广东 广州 510515Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 强 党
- />南方医科大学南方医院泌尿外科,广东 广州 510515Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 万龙 谭
- />南方医科大学南方医院泌尿外科,广东 广州 510515Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
15
|
Evensen NA, Madhusoodhan PP, Meyer J, Saliba J, Chowdhury A, Araten DJ, Nersting J, Bhatla T, Vincent TL, Teachey D, Hunger SP, Yang J, Schmiegelow K, Carroll WL. MSH6 haploinsufficiency at relapse contributes to the development of thiopurine resistance in pediatric B-lymphoblastic leukemia. Haematologica 2018; 103:830-839. [PMID: 29449434 PMCID: PMC5927991 DOI: 10.3324/haematol.2017.176362] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 07/02/2018] [Indexed: 01/10/2023] Open
Abstract
Survival of children with relapsed acute lymphoblastic leukemia is poor, and understanding mechanisms underlying resistance is essential to developing new therapy. Relapse-specific heterozygous deletions in MSH6, a crucial part of DNA mismatch repair, are frequently detected. Our aim was to determine whether MSH6 deletion results in a hypermutator phenotype associated with generation of secondary mutations involved in drug resistance, or if it leads to a failure to initiate apoptosis directly in response to chemotherapeutic agents. We knocked down MSH6 in mismatch repair proficient cell lines (697 and UOCB1) and showed significant increases in IC50s to 6-thioguanine and 6-mercaptopurine (697: 26- and 9-fold; UOCB1: 5- and 8-fold) in vitro, as well as increased resistance to 6-mercaptopurine treatment in vivo. No shift in IC50 was observed in deficient cells (Reh and RS4;11). 697 MSH6 knockdown resulted in increased DNA thioguanine nucleotide levels compared to non-targeted cells (3070 vs. 1722 fmol/μg DNA) with no difference observed in mismatch repair deficient cells. Loss of MSH6 did not give rise to microsatellite instability in cell lines or clinical samples, nor did it significantly increase mutation rate, but rather resulted in a defect in cell cycle arrest upon thiopurine exposure. MSH6 knockdown cells showed minimal activation of checkpoint regulator CHK1, γH2AX (DNA damage marker) and p53 levels upon treatment with thiopurines, consistent with intrinsic chemoresistance due to failure to recognize thioguanine nucleotide mismatching and initiate mismatch repair. Aberrant MSH6 adds to the list of alterations/mutations associated with acquired resistance to purine analogs emphasizing the importance of thiopurine therapy.
Collapse
Affiliation(s)
- Nikki A Evensen
- Departments of Pediatrics and Pathology, Perlmutter Cancer Center, NYU-Langone Medical Center, New York, NY, USA
| | - P Pallavi Madhusoodhan
- Departments of Pediatrics and Pathology, Perlmutter Cancer Center, NYU-Langone Medical Center, New York, NY, USA
| | - Julia Meyer
- Huntsman Cancer Institute, University of Utah Medical Center, Salt Lake City, USA
| | - Jason Saliba
- Departments of Pediatrics and Pathology, Perlmutter Cancer Center, NYU-Langone Medical Center, New York, NY, USA
| | - Ashfiyah Chowdhury
- Departments of Pediatrics and Pathology, Perlmutter Cancer Center, NYU-Langone Medical Center, New York, NY, USA
| | - David J Araten
- Department of Medicine, Perlmutter Cancer Center, NYU-Langone Medical Center, New York NY, USA
| | - Jacob Nersting
- Department of Pediatrics and Adolescent Medicine, The University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Teena Bhatla
- Departments of Pediatrics and Pathology, Perlmutter Cancer Center, NYU-Langone Medical Center, New York, NY, USA
| | - Tiffaney L Vincent
- Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia and The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA, USA
| | - David Teachey
- Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia and The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen P Hunger
- Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia and The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA, USA
| | - Jun Yang
- St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, The University Hospital Rigshospitalet, Copenhagen, Denmark
| | - William L Carroll
- Departments of Pediatrics and Pathology, Perlmutter Cancer Center, NYU-Langone Medical Center, New York, NY, USA
| |
Collapse
|
16
|
Kim YM, Gang EJ, Kahn M. CBP/Catenin antagonists: Targeting LSCs' Achilles heel. Exp Hematol 2017; 52:1-11. [PMID: 28479420 PMCID: PMC5526056 DOI: 10.1016/j.exphem.2017.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/07/2017] [Accepted: 04/20/2017] [Indexed: 12/18/2022]
Abstract
Cancer stem cells (CSCs), including leukemia stem cells (LSCs), exhibit self-renewal capacity and differentiation potential and have the capacity to maintain or renew and propagate a tumor/leukemia. The initial isolation of CSCs/LSCs was in adult myelogenous leukemia, although more recently, the existence of CSCs in a wide variety of other cancers has been reported. CSCs, in general, and LSCs, specifically with respect to this review, are responsible for initiation of disease, therapeutic resistance and ultimately disease relapse. One key focus in cancer research over the past decade has been the development of therapies that safely eliminate the LSC/CSC population. One major obstacle to this goal is the identification of key mechanisms that distinguish LSCs from normal endogenous hematopoietic stem cells. An additional daunting feature that has recently come to light with advances in next-generation sequencing and single-cell sequencing is the heterogeneity within leukemias/tumors, with multiple combinations of mutations, gain and loss of function of genes, and so on being capable of driving disease, even within the CSC/LSC population. The focus of this review/perspective is on our work in identifying and validating, in both chronic myelogenous leukemia and acute lymphoblastic leukemia, a safe and efficacious mechanism to target an evolutionarily conserved signaling nexus, which constitutes a common "Achilles heel" for LSCs/CSCs, using small molecule-specific CBP/catenin antagonists.
Collapse
Affiliation(s)
- Yong-Mi Kim
- Children's Hospital Los Angeles, Department of Pediatrics, Division of Blood and Bone Marrow Transplantation, University of Southern California, Los Angeles, CA
| | - Eun-Ji Gang
- Children's Hospital Los Angeles, Department of Pediatrics, Division of Blood and Bone Marrow Transplantation, University of Southern California, Los Angeles, CA
| | - Michael Kahn
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA; Department of Molecular Pharmacology and Toxicology, University of Southern California, Los Angeles, CA; Center for Molecular Pathways and Drug Discovery, University of Southern California, Los Angeles, CA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA.
| |
Collapse
|
17
|
Zhang B, Zhang J, Pan J. Pristimerin effectively inhibits the malignant phenotypes of uveal melanoma cells by targeting NF‑κB pathway. Int J Oncol 2017; 51:887-898. [PMID: 28766683 DOI: 10.3892/ijo.2017.4079] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 07/13/2017] [Indexed: 11/05/2022] Open
Abstract
Uveal melanoma (UM) is a highly aggressive intraocular malignancy that lacks any effective targeted-therapy. Neither survival nor prognosis has been improved for the past decades in patients with metastatic UM. NF‑κB pathway is reported to be abnormally activated in UM. However, the role of NF‑κB pathway as a potential therapeutical target in UM remains unclear. Here, the effect of pristimerin, a potent inhibitor of NF‑κB pathway, on UM cells in terms of growth, apoptosis, motility, invasion and cancer stem-like cells (CSCs) was evaluated in vitro. We showed that pristimerin suppressed tumor necrosis factor α (TNFα)-induced IκBα phosphorylation, translocation of p65, and expression of NF‑κB-dependent genes. Moreover, pristimerin decreased cell viability and clonogenic ability of UM cells. A synergistic effect was observed in the treatment of pristimerin combined with vinblastine, a frontline therapeutic agent, in UM. Pristimerin led to a significant increase in the Annexin V+ cell population as measured by flow cytometry. We also observed that pristimerin impaired the abilities of migration and invasion in UM cells. Furthermore, pristimerin eliminated the ALDH+ cells and weakened serial re-plating ability of melanosphere. Collectively, pristimerin shows remarkable anticancer activities in UM cells through inactivating NF‑κB pathway, revealing that pristimerin may be a promising therapeutic agent in UM.
Collapse
Affiliation(s)
- Biao Zhang
- Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510060, P.R. China
| | - Jing Zhang
- Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510060, P.R. China
| | - Jingxuan Pan
- Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
18
|
Pierro J, Hogan LE, Bhatla T, Carroll WL. New targeted therapies for relapsed pediatric acute lymphoblastic leukemia. Expert Rev Anticancer Ther 2017. [PMID: 28649891 DOI: 10.1080/14737140.2017.1347507] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION The improvement in outcomes for children with acute lymphoblastic leukemia (ALL) is one of the greatest success stories of modern oncology however the prognosis for patients who relapse remains dismal. Recent discoveries by high resolution genomic technologies have characterized the biology of relapsed leukemia, most notably pathways leading to the drug resistant phenotype. These observations open the possibility of targeting such pathways to prevent and/or treat relapse. Likewise, early experiences with new immunotherapeutic approaches have shown great promise. Areas covered: We performed a literature search on PubMed and recent meeting abstracts using the keywords below. We focused on the biology and clonal evolution of relapsed disease highlighting potential new targets of therapy. We further summarized the results of early trials of the three most prominent immunotherapy agents currently under investigation. Expert commentary: Discovery of targetable pathways that lead to drug resistance and recent breakthroughs in immunotherapy show great promise towards treating this aggressive disease. The best way to treat relapse, however, is to prevent it which makes incorporation of these new approaches into frontline therapy the best approach. Challenges remain to balance efficacy with toxicity and to prevent the emergence of resistant subclones which is why combining these newer agents with conventional chemotherapy will likely become standard of care.
Collapse
Affiliation(s)
- Joanna Pierro
- a Division of Pediatric Hematology Oncology, Department of Pediatrics , Perlmutter Cancer Center, NYU Langone Medical Center , New York , NY , USA
| | - Laura E Hogan
- b Division of Pediatric Hematology/Oncology, Department of Pediatrics , Stony Brook Children's , Stony Brook , NY , USA
| | - Teena Bhatla
- a Division of Pediatric Hematology Oncology, Department of Pediatrics , Perlmutter Cancer Center, NYU Langone Medical Center , New York , NY , USA
| | - William L Carroll
- a Division of Pediatric Hematology Oncology, Department of Pediatrics , Perlmutter Cancer Center, NYU Langone Medical Center , New York , NY , USA
| |
Collapse
|
19
|
Yan X, Yu Q, Guo L, Guo W, Guan S, Tang H, Lin S, Gan Z. Positively Charged Combinatory Drug Delivery Systems against Multi-Drug-Resistant Breast Cancer: Beyond the Drug Combination. ACS APPLIED MATERIALS & INTERFACES 2017; 9:6804-6815. [PMID: 28185449 DOI: 10.1021/acsami.6b14244] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The formation and development of cancer is usually accompanied by angiogenesis and is related to multiple pathways. The inhibition of one pathway by monotherapy might result in the occurrence of drug resistance, tumor relapse, or metastasis. Thus, a combinatory therapeutic system that targets several independent pathways simultaneously is preferred for the treatment. To this end, we prepared combinatory drug delivery systems consisting of cytotoxic drug SN38, pro-apoptotic KLAK peptide, and survivin siRNA with high drug loading capacity and reductive responsiveness for the treatment of multi-drug-resistant (MDR) cancer. With the help of positive charge and the synergistic effect of different drug, the combinatory systems inhibited the growth of doxorubicin-resistant breast cancer cells (MCF-7/ADR) efficiently. Interestingly, the systems without siRNA showed more superior in vivo anticancer efficacy than those with siRNA which exhibited enhanced in vitro cytotoxicity and pro-apoptotic ability. This phenomenon could be attributed to the preferential tumor accumulation, strong tumor penetration, and excellent tumor vasculature targeting ability of the combinatory micelles of SN38 and KLAK. As a result, a combinatory multitarget therapeutic system with positive charge induced tumor accumulation and vasculature targeting which can simultaneously inhibit the growth of both tumor cell and tumor vasculature was established. This work also enlightened us to the fact that the design of combinatory drug delivery systems is not just a matter of simple drug combination. Besides the cytotoxicity and pro-apoptotic ability, tumor accumulation, tumor penetration, or vascular targeting may also influence the eventual antitumor effect of the combinatory system.
Collapse
Affiliation(s)
- Xu Yan
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology , Beijing 100029, PR China
| | - Qingsong Yu
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology , Beijing 100029, PR China
| | - Linyi Guo
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology , Beijing 100029, PR China
| | - Wenxuan Guo
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology , Beijing 100029, PR China
| | - Shuli Guan
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology , Beijing 100029, PR China
| | - Hao Tang
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology , Beijing 100029, PR China
| | - Shanshan Lin
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology , Beijing 100029, PR China
| | - Zhihua Gan
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology , Beijing 100029, PR China
| |
Collapse
|
20
|
Beghein E, Van Audenhove I, Zwaenepoel O, Verhelle A, De Ganck A, Gettemans J. A new survivin tracer tracks, delocalizes and captures endogenous survivin at different subcellular locations and in distinct organelles. Sci Rep 2016; 6:31177. [PMID: 27514728 PMCID: PMC4981888 DOI: 10.1038/srep31177] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/13/2016] [Indexed: 01/18/2023] Open
Abstract
Survivin, the smallest member of the inhibitor of apoptosis protein family, plays a central role during mitosis and exerts a cytoprotective function. Survivin is highly expressed in most cancer types and contributes to multiple facets of carcinogenesis. The molecular mechanisms underlying its highly diverse functions need to be extensively explored, which is crucial for rational design of future personalized therapeutics. In this study, we have generated an alpaca survivin nanobody (SVVNb8) that binds with low nanomolar affinity to its target. When expressed as an intrabody in HeLa cells, SVVNb8 faithfully tracks survivin during different phases of mitosis without interfering with survivin function. Furthermore, coupling SVVNb8 with a subcellular delocalization tag efficiently redirects endogenous survivin towards the nucleus, the cytoplasm, peroxisomes and even to the intermembrane space of mitochondria where it presumably interacts with resident mitochondrial survivin. Based on our findings, we believe that SVVNb8 is an excellent instrument to further elucidate survivin biology and topography, and can serve as a model system to investigate mitochondrial and peroxisomal (survivin) protein import.
Collapse
Affiliation(s)
- Els Beghein
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Campus Rommelaere, A. Baertsoenkaai 3, Ghent University, Ghent, Belgium
| | - Isabel Van Audenhove
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Campus Rommelaere, A. Baertsoenkaai 3, Ghent University, Ghent, Belgium
| | - Olivier Zwaenepoel
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Campus Rommelaere, A. Baertsoenkaai 3, Ghent University, Ghent, Belgium
| | - Adriaan Verhelle
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Campus Rommelaere, A. Baertsoenkaai 3, Ghent University, Ghent, Belgium
| | - Ariane De Ganck
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Campus Rommelaere, A. Baertsoenkaai 3, Ghent University, Ghent, Belgium
| | - Jan Gettemans
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Campus Rommelaere, A. Baertsoenkaai 3, Ghent University, Ghent, Belgium
| |
Collapse
|
21
|
Lu BY, Thanawala SU, Zochowski KC, Burke MJ, Carroll WL, Bhatla T. Decitabine enhances chemosensitivity of early T-cell precursor-acute lymphoblastic leukemia cell lines and patient-derived samples. Leuk Lymphoma 2016; 57:1938-41. [PMID: 26726842 DOI: 10.3109/10428194.2015.1110747] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Benjamin Y Lu
- a Perlmutter Cancer Center , New York University Langone Medical Center , New York , NY , USA ; Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - Shivani U Thanawala
- b Perlmutter Cancer Center , New York University Langone Medical Center , New York , NY , USA
| | - Kelly C Zochowski
- b Perlmutter Cancer Center , New York University Langone Medical Center , New York , NY , USA
| | - Michael J Burke
- c Division of Hematology/Oncology/Blood and Marrow Transplant, Department of Pediatrics , Medical College of Wisconsin and Children's Hospital of Wisconsin , Milwaukee , WI , USA
| | - William L Carroll
- b Perlmutter Cancer Center , New York University Langone Medical Center , New York , NY , USA
| | - Teena Bhatla
- b Perlmutter Cancer Center , New York University Langone Medical Center , New York , NY , USA
| |
Collapse
|
22
|
Khan S, Ferguson Bennit H, Asuncion Valenzuela MM, Turay D, Diaz Osterman CJ, Moyron RB, Esebanmen GE, Ashok A, Wall NR. Localization and upregulation of survivin in cancer health disparities: a clinical perspective. Biologics 2015; 9:57-67. [PMID: 26185415 PMCID: PMC4501680 DOI: 10.2147/btt.s83864] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Survivin is one of the most important members of the inhibitors of apoptosis protein family, as it is expressed in most human cancers but is absent in normal, differentiated tissues. Lending to its importance, survivin has proven associations with apoptosis and cell cycle control, and has more recently been shown to modulate the tumor microenvironment and immune evasion as a result of its extracellular localization. Upregulation of survivin has been found in many cancers including breast, prostate, pancreatic, and hematological malignancies, and it may prove to be associated with the advanced presentation, poorer prognosis, and lower survival rates observed in ethnically diverse populations.
Collapse
Affiliation(s)
- Salma Khan
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA ; Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Heather Ferguson Bennit
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA ; Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Malyn May Asuncion Valenzuela
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA ; Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - David Turay
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA ; Department of Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Carlos J Diaz Osterman
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA ; Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Ron B Moyron
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA ; Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Grace E Esebanmen
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA ; Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Arjun Ashok
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA ; Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Nathan R Wall
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA ; Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
23
|
Singh N, Krishnakumar S, Kanwar RK, Cheung CHA, Kanwar JR. Clinical aspects for survivin: a crucial molecule for targeting drug-resistant cancers. Drug Discov Today 2015; 20:578-87. [DOI: 10.1016/j.drudis.2014.11.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/12/2014] [Accepted: 11/20/2014] [Indexed: 12/24/2022]
|
24
|
Chang BH, Johnson K, LaTocha D, Rowley JSJ, Bryant J, Burke R, Smith RL, Loriaux M, Müschen M, Mullighan C, Druker BJ, Tyner JW. YM155 potently kills acute lymphoblastic leukemia cells through activation of the DNA damage pathway. J Hematol Oncol 2015; 8:39. [PMID: 25895498 PMCID: PMC4408565 DOI: 10.1186/s13045-015-0132-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 03/26/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Novel-targeted therapies are in rapid development for the treatment of acute lymphoblastic leukemia (ALL) to overcome resistance and decrease toxicity. Survivin, a member of the inhibitor of apoptosis gene family and chromosome passenger complex, is critical in a variety of human cancers, including ALL. A well-established suppressor of survivin has been the small molecule, YM155. Reports are identifying other mechanisms of action for YM155. Therefore, we sought to investigate the mode of action and role of YM155 for therapeutic use in the context of ALL. METHODS Primary ALL samples and ALL cell lines were interrogated with YM155 to identify drug sensitivity. Ph(+)ALL harboring the BCR-ABL1 oncogene were tested for any interaction with YM155 and the multi-kinase inhibitor dasatinib. Representative ALL cell lines were tested to identify the response to YM155 using standard biochemical assays as well as RNA expression and phosphorylation arrays. RESULTS ALL samples exhibited significant sensitivity to YM155, and an additive response was observed with dasatinib in the setting of Ph(+)ALL. ALL cells were more sensitive to YM155 during S phase during DNA replication. YM155 activates the DNA damage pathway leading to phosphorylation of Chk2 and H2AX. Interestingly, screening of primary patient samples identified unique and exquisite YM155 sensitivity in some but not all ALL specimens. CONCLUSION These results are the first to have screened a large number of primary patient leukemic samples to identify individual variations of response to YM155. Our studies further support that YM155 in ALL induces DNA damage leading to S phase arrest. Finally, only subsets of ALL have exquisite sensitivity to YM155 presumably through both suppression of survivin expression and activation of the DNA damage pathway underscoring its potential for therapeutic development.
Collapse
Affiliation(s)
- Bill H Chang
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Oregon Health & Science University, Portland, OR, 97239, USA.
- OHSU Knight Cancer Institute, Portland, OR, 97239, USA.
| | - Kara Johnson
- OHSU Knight Cancer Institute, Portland, OR, 97239, USA.
| | | | | | - Jade Bryant
- OHSU Knight Cancer Institute, Portland, OR, 97239, USA.
| | - Russell Burke
- OHSU Knight Cancer Institute, Portland, OR, 97239, USA.
| | | | - Marc Loriaux
- OHSU Knight Cancer Institute, Portland, OR, 97239, USA.
- Department of Pathology, Oregon Health & Science University, Portland, OR, 97239, USA.
| | - Markus Müschen
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA.
| | - Charles Mullighan
- Department of Oncology, St Jude Children's Research Hospital and University of Tennessee Health Science Center, Memphis, TN, 38105, USA.
| | - Brian J Druker
- OHSU Knight Cancer Institute, Portland, OR, 97239, USA.
- Howard Hughes Medical Institute, Portland, OR, 97239, USA.
| | - Jeffrey W Tyner
- OHSU Knight Cancer Institute, Portland, OR, 97239, USA.
- Department Cell & Developmental Biology, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
25
|
Huang J, Lyu H, Wang J, Liu B. MicroRNA regulation and therapeutic targeting of survivin in cancer. Am J Cancer Res 2014; 5:20-31. [PMID: 25628918 PMCID: PMC4300714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 11/18/2014] [Indexed: 06/04/2023] Open
Abstract
Survivin, the smallest member of IAP (inhibitor of apoptosis) family, is a dual functional protein acting as a critical apoptosis inhibitor and key cell cycle regulator. Survivin is usually expressed in embryonic tissues during development and undetectable in most terminally differentiated tissues. Numerous studies demonstrate that survivin is selectively upregulated in almost all types of human malignancies and its overexpression positively correlates with poor prognosis, tumor recurrence, and therapeutic resistance. This differential expression of survivin in tumors and normal tissues draws a great interest to develop survivin-targeted therapy for cancer treatment. Nonetheless, the molecular mechanisms controlling survivin expression in malignant tumor cells have not been fully understood. While aberrant activation of receptor tyrosine kinases (RTKs) and the downstream signaling, such as PI-3K/Akt, MEK/MAPK, mTOR, and STAT pathways, have frequently been shown to upregulate survivin, recent data suggest that a class of noncoding RNAs, microRNAs (miRNAs) also play an important role in survivin dysregulation in human cancers. Here, we focus on survivin expression-regulated by specific miRNAs binding to the 3'-UTR of survivin mRNA, and summarize the latest advances on survivin-targeted therapy in clinical trials and the therapeutic potential of survivin-targeting miRNAs in cancer.
Collapse
Affiliation(s)
- Jingcao Huang
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical CampusAurora, CO, USA
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin, China
| | - Hui Lyu
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical CampusAurora, CO, USA
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin, China
| | - Bolin Liu
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical CampusAurora, CO, USA
| |
Collapse
|
26
|
Lee SH, Lee JY, Jung CL, Bae IH, Suh KH, Ahn YG, Jin DH, Kim TW, Suh YA, Jang SJ. A novel antagonist to the inhibitors of apoptosis (IAPs) potentiates cell death in EGFR-overexpressing non-small-cell lung cancer cells. Cell Death Dis 2014; 5:e1477. [PMID: 25321484 PMCID: PMC4649530 DOI: 10.1038/cddis.2014.447] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 09/06/2014] [Accepted: 09/11/2014] [Indexed: 12/25/2022]
Abstract
In the effort to develop an efficient chemotherapy drug for the treatment of non-small-cell lung cancer (NSCLC), we analyzed the anti-tumorigenic effects of a novel small molecule targeting the inhibitor of apoptosis (IAPs), HM90822B, on NSCLC cells. HM90822B efficiently decreased IAP expression, especially that of XIAP and survivin, in several NSCLC cells. Interestingly, cells overexpressing epidermal growth factor receptor (EGFR) due to the mutations were more sensitive to HM90822B, undergoing cell cycle arrest and apoptosis when treated. In xenograft experiments, inoculated EGFR-overexpressing NSCLC cells showed tumor regression when treated with the inhibitor, demonstrating the chemotherapeutic potential of this agent. Mechanistically, decreased levels of EGFR, Akt and phospho-MAPKs were observed in inhibitor-treated PC-9 cells on phosphorylation array and western blotting analysis, indicating that the reagent inhibited cell growth by preventing critical cell survival signaling pathways. In addition, gene-specific knockdown studies against XIAP and/or EGFR further uncovered the involvement of Akt and MAPK pathways in HM90822B-mediated downregulation of NSCLC cell growth. Together, these results support that HM90822B is a promising candidate to be developed as lung tumor chemotherapeutics by targeting oncogenic activities of IAP together with inhibiting cell survival signaling pathways.
Collapse
Affiliation(s)
- S-H Lee
- Institute for Innovative Cancer Research, Asan Institute for Life Science, Seoul Asan Medical Center, The University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - J-Y Lee
- Institute for Innovative Cancer Research, Asan Institute for Life Science, Seoul Asan Medical Center, The University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - C L Jung
- Institute for Innovative Cancer Research, Asan Institute for Life Science, Seoul Asan Medical Center, The University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - I H Bae
- Hanmi Research Center, Hanmi Pharm. Co., Ltd., Hwaseong, Gyeonggi-do, Republic of Korea
| | - K H Suh
- Hanmi Research Center, Hanmi Pharm. Co., Ltd., Hwaseong, Gyeonggi-do, Republic of Korea
| | - Y G Ahn
- Hanmi Research Center, Hanmi Pharm. Co., Ltd., Hwaseong, Gyeonggi-do, Republic of Korea
| | - D-H Jin
- Institute for Innovative Cancer Research, Asan Institute for Life Science, Seoul Asan Medical Center, The University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - T W Kim
- 1] Institute for Innovative Cancer Research, Asan Institute for Life Science, Seoul Asan Medical Center, The University of Ulsan College of Medicine, Seoul, Republic of Korea [2] Department of Medicinal Oncology, Seoul Asan Medical Center, The University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Y-A Suh
- Institute for Innovative Cancer Research, Asan Institute for Life Science, Seoul Asan Medical Center, The University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - S J Jang
- 1] Institute for Innovative Cancer Research, Asan Institute for Life Science, Seoul Asan Medical Center, The University of Ulsan College of Medicine, Seoul, Republic of Korea [2] Department of Pathology, Seoul Asan Medical Center, The University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
27
|
Brun SN, Markant SL, Esparza LA, Garcia G, Terry D, Huang JM, Pavlyukov MS, Li XN, Grant GA, Crawford JR, Levy ML, Conway EM, Smith LH, Nakano I, Berezov A, Greene MI, Wang Q, Wechsler-Reya RJ. Survivin as a therapeutic target in Sonic hedgehog-driven medulloblastoma. Oncogene 2014; 34:3770-9. [PMID: 25241898 PMCID: PMC4369477 DOI: 10.1038/onc.2014.304] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/22/2014] [Accepted: 07/31/2014] [Indexed: 12/31/2022]
Abstract
Medulloblastoma (MB) is a highly malignant brain tumor that occurs primarily in children. Although surgery, radiation and high-dose chemotherapy have led to increased survival, many MB patients still die from their disease, and patients who survive suffer severe long-term side effects as a consequence of treatment. Thus, more effective and less toxic therapies for MB are critically important. Development of such therapies depends in part on identification of genes that are necessary for growth and survival of tumor cells. Survivin is an inhibitor of apoptosis protein that regulates cell cycle progression and resistance to apoptosis, is frequently expressed in human MB and when expressed at high levels predicts poor clinical outcome. Therefore, we hypothesized that Survivin may have a critical role in growth and survival of MB cells and that targeting it may enhance MB therapy. Here we show that Survivin is overexpressed in tumors from patched (Ptch) mutant mice, a model of Sonic hedgehog (SHH)-driven MB. Genetic deletion of survivin in Ptch mutant tumor cells significantly inhibits proliferation and causes cell cycle arrest. Treatment with small-molecule antagonists of Survivin impairs proliferation and survival of both murine and human MB cells. Finally, Survivin antagonists impede growth of MB cells in vivo. These studies highlight the importance of Survivin in SHH-driven MB, and suggest that it may represent a novel therapeutic target in patients with this disease.
Collapse
Affiliation(s)
- S N Brun
- 1] Tumor Initiation and Maintenance Program, National Cancer Institute (NCI)-Designated Cancer Center, Sanford-Burnham Medical Research Institute (SBMRI), La Jolla, CA, USA [2] Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA [3] Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - S L Markant
- 1] Tumor Initiation and Maintenance Program, National Cancer Institute (NCI)-Designated Cancer Center, Sanford-Burnham Medical Research Institute (SBMRI), La Jolla, CA, USA [2] Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA [3] Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - L A Esparza
- 1] Tumor Initiation and Maintenance Program, National Cancer Institute (NCI)-Designated Cancer Center, Sanford-Burnham Medical Research Institute (SBMRI), La Jolla, CA, USA [2] Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - G Garcia
- Histopathology Core SBMRI, La Jolla, CA, USA
| | - D Terry
- Conrad Prebys Center for Chemical Genomics, SBMRI, Lake Nona, FL, USA
| | - J-M Huang
- Cedars-Sinai Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | - M S Pavlyukov
- 1] Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA [2] James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - X-N Li
- Brain Tumor Program, Texas Children's Cancer Center, and Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - G A Grant
- Department of Neurosurgery, Stanford University/Lucile Packard Children's Hospital, Stanford, CA, USA
| | - J R Crawford
- 1] Department of Pediatrics, University of California San Diego, San Diego, CA, USA [2] Departments of Neurosciences, University of California San Diego, San Diego, CA, USA [3] Rady Children's Hospital, San Diego, CA, USA
| | - M L Levy
- 1] Rady Children's Hospital, San Diego, CA, USA [2] Department of Neurosurgery, University of California San Diego, La Jolla, CA, USA
| | - E M Conway
- Centre for Blood Research, Division of Hematology, Department of Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
| | - L H Smith
- 1] Conrad Prebys Center for Chemical Genomics, SBMRI, Lake Nona, FL, USA [2] Cardiopathobiology Program, Sanford Burnham Medical Research Institute, Lake Nona, FL, USA
| | - I Nakano
- 1] Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA [2] James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - A Berezov
- Department of Biomedical Sciences at Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - M I Greene
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Q Wang
- Cedars-Sinai Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | - R J Wechsler-Reya
- 1] Tumor Initiation and Maintenance Program, National Cancer Institute (NCI)-Designated Cancer Center, Sanford-Burnham Medical Research Institute (SBMRI), La Jolla, CA, USA [2] Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA [3] Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| |
Collapse
|
28
|
A phase I study of EZN-3042, a novel survivin messenger ribonucleic acid (mRNA) antagonist, administered in combination with chemotherapy in children with relapsed acute lymphoblastic leukemia (ALL): a report from the therapeutic advances in childhood leukemia and lymphoma (TACL) consortium. J Pediatr Hematol Oncol 2014; 36:458-63. [PMID: 24276047 PMCID: PMC4238428 DOI: 10.1097/mph.0b013e3182a8f58f] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To address the therapeutic challenges in childhood relapsed ALL, a phase 1 study combining a survivin mRNA antagonist, EZN-3042, with reinduction chemotherapy was developed for pediatric patients with second or greater bone marrow relapses of B-lymphoblastic leukemia. EZN-3042 was administered as a single agent on days -5 and -2 and then in combination with a 4-drug reinduction platform on days 8, 15, 22, and 29. Toxicity and the biological activity of EZN-3042 were assessed. Six patients were enrolled at dose level 1 (EZN-3042 2.5 mg/kg/dose). Two dose-limiting toxicities were observed: 1 patient developed a grade 3 γ-glutamyl transferase elevation and another patient developed a grade 3 gastrointestinal bleeding. Downmodulation of survivin mRNA and protein were assessed after single-agent dosing and decreased expression was observed in 2 of 5 patients with sufficient material for analysis. Although some biological activity was observed, the combination of EZN-3042 with intensive reinduction chemotherapy was not tolerated at a dose that led to consistent downregulation of survivin expression. The trial was terminated following the completion of dose level 1, after further clinical development of this agent was halted.
Collapse
|
29
|
Abstract
Although great strides have been made in the improvement of outcome for newly diagnosed pediatric acute lymphoblastic leukemia because of refinements in risk stratification and selective intensification of therapy, the prognosis for relapsed leukemia has lagged behind significantly. Understanding the underlying biological pathways responsible for drug resistance is essential to develop novel approaches for the prevention of recurrence and treatment of relapsed disease. High throughput genomic technologies have the potential to revolutionize cancer care in this era of personalized medicine. Using such advanced technologies, we and others have shown that a diverse assortment of cooperative genetic and epigenetic events drive the resistant phenotype. Herein, we summarize results using a variety of genomic technologies to highlight the power of this methodology in providing insight into the biological mechanisms that impart resistant disease.
Collapse
|
30
|
Dandekar S, Romanos-Sirakis E, Pais F, Bhatla T, Jones C, Bourgeois W, Hunger SP, Raetz EA, Hermiston ML, Dasgupta R, Morrison DJ, Carroll WL. Wnt inhibition leads to improved chemosensitivity in paediatric acute lymphoblastic leukaemia. Br J Haematol 2014; 167:87-99. [PMID: 24995804 DOI: 10.1111/bjh.13011] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 05/26/2014] [Indexed: 12/14/2022]
Abstract
While childhood acute lymphoblastic leukaemia (ALL) is now highly curable, the dismal prognosis for children who relapse warrants novel therapeutic approaches. Previously, using an integrated genomic analysis of matched diagnosis-relapse paired samples, we identified overactivation of the Wnt pathway as a possible mechanism of recurrence. To validate these findings and document whether Wnt inhibition may sensitize cells to chemotherapy, we analysed the expression of activated β-catenin (and its downstream target BIRC5) using multiparameter phosphoflow cytometry and tested the efficacy of a recently developed Wnt inhibitor, iCRT14, in ALL cell lines and patient samples. We observed increased activation of β-catenin at relapse in 6/10 patients. Furthermore, treatment of leukaemic cell lines with iCRT14 led to significant downregulation of Wnt target genes and combination with traditional chemotherapeutic drugs resulted in a synergistic decrease in viability as well as a significant increase in apoptotic cell death. Finally, pre-treatment of purified blasts from patients with relapsed leukaemia with the Wnt inhibitor followed by exposure to prednisolone, restored chemosensitivity in these cells. Our results demonstrate that overactivation of the Wnt pathway may contribute to chemoresistance in relapsed childhood ALL and that Wnt-inhibition may be a promising therapeutic approach.
Collapse
Affiliation(s)
- Smita Dandekar
- NYU Cancer Institute, NYU Langone Medical Center, New York, NY
| | - Eleny Romanos-Sirakis
- NYU Cancer Institute, NYU Langone Medical Center, New York, NY.,Department of Pediatrics, Staten Island University Hospital
| | - Faye Pais
- Department of Pediatrics, University of California School of Medicine, San Francisco, California
| | - Teena Bhatla
- NYU Cancer Institute, NYU Langone Medical Center, New York, NY
| | - Courtney Jones
- NYU Cancer Institute, NYU Langone Medical Center, New York, NY
| | | | | | | | - Michelle L Hermiston
- Department of Pediatrics, University of California School of Medicine, San Francisco, California
| | - Ramanuj Dasgupta
- NYU Cancer Institute, NYU Langone Medical Center, New York, NY.,Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY
| | | | - William L Carroll
- NYU Cancer Institute, NYU Langone Medical Center, New York, NY.,Department of Pathology, NYU Langone Medical Center, New York, NY
| |
Collapse
|
31
|
Shoeneman JK, Ehrhart EJ, Charles JB, Thamm DH. Survivin inhibition via EZN-3042 in canine lymphoma and osteosarcoma. Vet Comp Oncol 2014; 14:e45-57. [PMID: 24923332 DOI: 10.1111/vco.12104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/08/2014] [Accepted: 05/15/2014] [Indexed: 12/21/2022]
Abstract
Canine lymphoma (LSA) and osteosarcoma (OS) have high mortality rates and remain in need of more effective therapeutic approaches. Survivin, an inhibitor of apoptosis (IAP) family member protein that inhibits apoptosis and drives cell proliferation, is commonly elevated in human and canine cancer. Survivin expression is a negative prognostic factor in dogs with LSA and OS, and canine LSA and OS cell lines express high levels of survivin. In this study, we demonstrate that survivin downregulation in canine LSA and OS cells using a clinically applicable locked nucleic acid antisense oligonucleotide (EZN-3042, Enzon Pharmaceuticals, Piscataway Township, NJ, USA) inhibits growth, induces apoptosis and enhances chemosensitivity in vitro, and inhibits survivin transcription and protein production in orthotopic canine OS xenografts. Our findings strongly suggest that survivin-directed therapies might be effective in treatment of canine LSA and OS and support evaluation of EZN-3042 in dogs with cancer.
Collapse
Affiliation(s)
- J K Shoeneman
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, USA
| | - E J Ehrhart
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, USA.,Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - J B Charles
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.,Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - D H Thamm
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
32
|
Gang EJ, Hsieh YT, Pham J, Zhao Y, Nguyen C, Huantes S, Park E, Naing K, Klemm L, Swaminathan S, Conway EM, Pelus LM, Crispino J, Mullighan C, McMillan M, Müschen M, Kahn M, Kim YM. Small-molecule inhibition of CBP/catenin interactions eliminates drug-resistant clones in acute lymphoblastic leukemia. Oncogene 2014; 33:2169-78. [PMID: 23728349 PMCID: PMC3994178 DOI: 10.1038/onc.2013.169] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 03/04/2013] [Accepted: 03/25/2013] [Indexed: 02/07/2023]
Abstract
Drug resistance in acute lymphoblastic leukemia (ALL) remains a major problem warranting new treatment strategies. Wnt/catenin signaling is critical for the self-renewal of normal hematopoietic progenitor cells. Deregulated Wnt signaling is evident in chronic and acute myeloid leukemia; however, little is known about ALL. Differential interaction of catenin with either the Kat3 coactivator CREBBP (CREB-binding protein (CBP)) or the highly homologous EP300 (p300) is critical to determine divergent cellular responses and provides a rationale for the regulation of both proliferation and differentiation by the Wnt signaling pathway. Usage of the coactivator CBP by catenin leads to transcriptional activation of cassettes of genes that are involved in maintenance of progenitor cell self-renewal. However, the use of the coactivator p300 leads to activation of genes involved in the initiation of differentiation. ICG-001 is a novel small-molecule modulator of Wnt/catenin signaling, which specifically binds to the N-terminus of CBP and not p300, within amino acids 1-110, thereby disrupting the interaction between CBP and catenin. Here, we report that selective disruption of the CBP/β- and γ-catenin interactions using ICG-001 leads to differentiation of pre-B ALL cells and loss of self-renewal capacity. Survivin, an inhibitor-of-apoptosis protein, was also downregulated in primary ALL after treatment with ICG-001. Using chromatin immunoprecipitation assay, we demonstrate occupancy of the survivin promoter by CBP that is decreased by ICG-001 in primary ALL. CBP mutations have been recently identified in a significant percentage of ALL patients, however, almost all of the identified mutations reported occur C-terminal to the binding site for ICG-001. Importantly, ICG-001, regardless of CBP mutational status and chromosomal aberration, leads to eradication of drug-resistant primary leukemia in combination with conventional therapy in vitro and significantly prolongs the survival of NOD/SCID mice engrafted with primary ALL. Therefore, specifically inhibiting CBP/catenin transcription represents a novel approach to overcome relapse in ALL.
Collapse
Affiliation(s)
- Eun Ji Gang
- Childrens Hospital Los Angeles, Division of Hematology and Oncology, Department of Pediatrics, University of Southern California, Keck School of Medicine, Los Angeles, CA
| | - Yao-Te Hsieh
- Childrens Hospital Los Angeles, Division of Hematology and Oncology, Department of Pediatrics, University of Southern California, Keck School of Medicine, Los Angeles, CA
| | - Jennifer Pham
- Childrens Hospital Los Angeles, Division of Hematology and Oncology, Department of Pediatrics, University of Southern California, Keck School of Medicine, Los Angeles, CA
| | - Yi Zhao
- Norris Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, Department of Molecular Pharmacology and Toxicology, Center for Molecular Pathways and Drug Discovery, University of Southern California, Los Angeles, CA
| | - Cu Nguyen
- Norris Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, Department of Molecular Pharmacology and Toxicology, Center for Molecular Pathways and Drug Discovery, University of Southern California, Los Angeles, CA
| | - Sandra Huantes
- Childrens Hospital Los Angeles, Division of Hematology and Oncology, Department of Pediatrics, University of Southern California, Keck School of Medicine, Los Angeles, CA
| | - Eugene Park
- Childrens Hospital Los Angeles, Division of Hematology and Oncology, Department of Pediatrics, University of Southern California, Keck School of Medicine, Los Angeles, CA
| | - Khatija Naing
- Childrens Hospital Los Angeles, Division of Hematology and Oncology, Department of Pediatrics, University of Southern California, Keck School of Medicine, Los Angeles, CA
| | - Lars Klemm
- Comprehensive Cancer Center, Department of Laboratory Medicine, University of California, San Francisco, California
| | - Srividya Swaminathan
- Comprehensive Cancer Center, Department of Laboratory Medicine, University of California, San Francisco, California
| | - Edward M. Conway
- Centre for Blood Research (CBR), Faculty of Medicine, Division of Hematology, University of British Columbia, Canada
| | - Louis M. Pelus
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis
| | - John Crispino
- Division of Hematology/Oncology, Northwestern University, Chicago
| | - Charles Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Michael McMillan
- Norris Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, Department of Molecular Pharmacology and Toxicology, Center for Molecular Pathways and Drug Discovery, University of Southern California, Los Angeles, CA
| | - Markus Müschen
- Comprehensive Cancer Center, Department of Laboratory Medicine, University of California, San Francisco, California
| | - Michael Kahn
- Norris Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, Department of Molecular Pharmacology and Toxicology, Center for Molecular Pathways and Drug Discovery, University of Southern California, Los Angeles, CA
| | - Yong-Mi Kim
- Childrens Hospital Los Angeles, Division of Hematology and Oncology, Department of Pediatrics, University of Southern California, Keck School of Medicine, Los Angeles, CA
| |
Collapse
|
33
|
Fulda S. Inhibitor of apoptosis proteins in pediatric leukemia: molecular pathways and novel approaches to therapy. Front Oncol 2014; 4:3. [PMID: 24478984 PMCID: PMC3902469 DOI: 10.3389/fonc.2014.00003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 01/06/2014] [Indexed: 11/13/2022] Open
Abstract
Inhibitor of Apoptosis (IAP) proteins are a family of proteins with antiapoptotic functions that contribute to the evasion of apoptosis, a form of programed cell death. IAP proteins are expressed at high levels in a variety of human cancers including childhood acute leukemia. This elevated expression has been associated with unfavorable prognosis and poor outcome. Therefore, IAP proteins are currently exploited as therapeutic targets for cancer drug discovery. Consequently, small-molecule inhibitors or antisense oligonucleotides directed against IAP proteins have been developed over the last years. Indeed, IAP antagonists proved to exhibit in vitro and in vivo antitumor activities against childhood pediatric leukemia in several preclinical studies. Thus, targeting IAP proteins represents a promising molecular targeted strategy to overcome apoptosis resistance in childhood leukemia, which warrants further exploitation.
Collapse
Affiliation(s)
- Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University , Frankfurt , Germany
| |
Collapse
|
34
|
Ghosh SK, Yigit MV, Uchida M, Ross AW, Barteneva N, Moore A, Medarova Z. Sequence-dependent combination therapy with doxorubicin and a survivin-specific small interfering RNA nanodrug demonstrates efficacy in models of adenocarcinoma. Int J Cancer 2013; 134:1758-66. [PMID: 24114765 DOI: 10.1002/ijc.28499] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/13/2013] [Indexed: 12/22/2022]
Abstract
The clinical management of cancer reflects a balance between treatment efficacy and toxicity. While typically, combination therapy improves response rate and time to progression compared with sequential monotherapy, it causes increased toxicity. Consequently, in cases of advanced cancer, emerging guidelines recommend sequential monotherapy, as a means to enhance quality of life. An alternative approach that could overcome nonspecific toxicity while retaining therapeutic efficacy, involves the combination of chemotherapy with targeted therapy. In the current study, we tested the hypothesis that combination therapy targeting survivin (BIRC5) and low-dose doxorubicin (Dox) will show enhanced therapeutic potential in the treatment of cancer, as compared to monotherapy with Dox. We demonstrate in both in vitro and in vivo models of breast cancer that combination therapy with a low dose of Dox and an anti-survivin siRNA nanodrug (MN-siBIRC5) is superior to mono-therapy with either low- or high-dose Dox alone. Importantly, therapeutic efficacy showed prominent sequence dependence. Induction of apoptosis was observed only when the cells were treated with Dox followed by MN-siBIRC5, whereas the reverse sequence abrogated the benefit of the drug combination. In vivo, confirmation of successful sequence dependent combination therapy was demonstrated in a murine xenograft model of breast cancer. Finally, to determine if the observed effect is not limited to breast cancer, we extended our studies to a murine xenograft model of pancreatic adenocarcinoma and found similar outcomes as shown for breast cancer.
Collapse
Affiliation(s)
- Subrata K Ghosh
- Molecular Imaging Laboratory, MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | | | | | | | | | | | | |
Collapse
|
35
|
Sudhakar J, Venkatesan N, Lakshmanan S, Khetan V, Krishnakumar S, Biswas J. Hypoxic tumor microenvironment in advanced retinoblastoma. Pediatr Blood Cancer 2013; 60:1598-601. [PMID: 23804414 DOI: 10.1002/pbc.24599] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 04/23/2013] [Indexed: 12/13/2022]
Abstract
PURPOSE Retinoblastoma (RB) is a malignant tumor of infancy and childhood. Unfavorable therapeutic response is still a quest in many tumors, including retinoblastoma. Hypoxic tumor microenvironment is one of the factors that determine the therapeutic response in many tumors. The purpose of this study was to determine the presence of hypoxia and its related proteins; Hypoxia inducible factor-1α (HIF-1α), Carbonic anhydrase IX (CA IX) and survivin in RB and their association with clinicopathological features. MATERIALS AND METHODS We evaluated the expression of HIF-1α and survivin by immunohistochemistry in 42 archival retinoblastoma tumors and CA IX; a hypoxia marker in 33 tumors in the same cohort. The expression was correlated with tumor groups based on invasion, differentiation and IIRC. RESULTS Expression of HIF-1α, survivin and CA IX was observed in 83% (35/42), 86% (36/42), and 93% (31/33) of tumors respectively. We observed no significance between HIF-1α and CA IX expression in tumors with invasion, differentiation and in IIRC tumor groups. An increased survivin expression was observed in group E tumors than in group D tumors (P = 0.044). A significant association was observed between HIF-1α and survivin in differentiated (r = -0.582; P = < 0.01) and undifferentiated tumors groups (r = 0.513; P = <0.012). A similar significant association was observed between HIF-1α and CA IX in tumors with high immunoreactivity for HIF-1α (r = 0.833; P = <0.01). CONCLUSION Based on these observations, we propose that HIF-1α pathway is deregulated in RB. The role of drug resistance and the potential of targeting HIF-1α, CA IX, and survivin in RB should further examined.
Collapse
Affiliation(s)
- Job Sudhakar
- Department of Ocular Pathology, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | | | | | | | | | | |
Collapse
|
36
|
Bates DJP, Lewis LD. Manipulating the apoptotic pathway: potential therapeutics for cancer patients. Br J Clin Pharmacol 2013; 76:381-95. [PMID: 23782006 PMCID: PMC3769666 DOI: 10.1111/bcp.12193] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 05/20/2013] [Indexed: 12/14/2022] Open
Abstract
This review summarizes the current state of scientific understanding of the apoptosis pathway, with a focus on the proteins involved in the pathway, their interactions and functions. This forms the rationale for detailing the preclinical and clinical pharmacology of drugs that modulate the pivotal proteins in this pathway, with emphasis on drugs that are furthest advanced in clinical development as anticancer agents. There is a focus on describing drugs that modulate three of the most promising targets in the apoptosis pathway, namely antibodies that bind and activate the death receptors, small molecules that inhibit the anti-apoptotic Bcl-2 family proteins, and small molecules and antisense oligonucleotides that inactivate the inhibitors of apoptosis, all of which drive the equilibrium of the apoptotic pathway towards apoptosis. These structurally different yet functionally related groups of drugs represent a promising novel approach to anticancer therapeutics whether used as monotherapy or in combination with either classical cytotoxic or other molecularly targeted anticancer agents.
Collapse
Affiliation(s)
- Darcy J P Bates
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, The Norris Cotton Cancer Center, Lebanon, NH, USA
| | | |
Collapse
|
37
|
Neri LM, Cani A, Martelli AM, Simioni C, Junghanss C, Tabellini G, Ricci F, Tazzari PL, Pagliaro P, McCubrey JA, Capitani S. Targeting the PI3K/Akt/mTOR signaling pathway in B-precursor acute lymphoblastic leukemia and its therapeutic potential. Leukemia 2013; 28:739-48. [PMID: 23892718 DOI: 10.1038/leu.2013.226] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/11/2013] [Accepted: 07/19/2013] [Indexed: 02/07/2023]
Abstract
B-precursor acute lymphoblastic leukemia (B-pre ALL) is a malignant disorder characterized by the abnormal proliferation of B-cell progenitors. The prognosis of B-pre ALL has improved in pediatric patients, but the outcome is much less successful in adults. Constitutive activation of the phosphatidylinositol 3-kinase (PI3K), Akt and the mammalian target of rapamycin (mTOR) (PI3K/Akt/mTOR) network is a feature of B-pre ALL, where it strongly influences cell growth and survival. RAD001, a selective mTORC1 inhibitor, has been shown to be cytotoxic against many types of cancer including hematological malignancies. To investigate whether mTORC1 could represent a target in the therapy of B-pre ALL, we treated cell lines and adult patient primary cells with RAD001. We documented that RAD001 decreased cell viability, induced cell cycle arrest in G0/G1 phase and caused apoptosis in B-pre ALL cell lines. Autophagy was also induced, which was important for the RAD001 cytotoxic effect, as downregulation of Beclin-1 reduced drug cytotoxicity. RAD001 strongly synergized with the novel allosteric Akt inhibitor MK-2206 in both cell lines and patient samples. Similar results were obtained with the combination CCI-779 plus GSK 690693. These findings point out that mTORC1 inhibitors, either as a single agent or in combination with Akt inhibitors, could represent a potential therapeutic innovative strategy in B-pre ALL.
Collapse
Affiliation(s)
- L M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - A Cani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - A M Martelli
- 1] Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy [2] Institute of Molecular Genetics, National Research Council, Pavia, Italy
| | - C Simioni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - C Junghanss
- University of Rostock, Division of Medicine, Department of Hematology/Oncology/Palliative Medicine, Rostock, Germany
| | - G Tabellini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - F Ricci
- Immunohematology and Transfusion Center, Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - P L Tazzari
- Immunohematology and Transfusion Center, Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - P Pagliaro
- Immunohematology and Transfusion Center, Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - J A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - S Capitani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
38
|
Abstract
Abstract
Acute lymphoblastic leukemia (ALL) is the most common and one of the most treatable cancers in children. Although the majority of children with ALL are now cured, 10%-20% of patients are predicted to relapse and outcomes with salvage therapy have been disappointing, with approximately only one-third of children surviving long-term after disease recurrence. Several prognostic factors have been identified, with timing of recurrence relative to diagnosis and site of relapse emerging as the most important variables. Despite heterogeneity in the elements of salvage therapy that are delivered in trials conducted internationally, outcomes have been remarkably similar and have remained static. Because most intensive salvage regimens have reached the limit of tolerability, current strategies are focusing on identifying new agents tailored to the unique biology of relapsed disease and identifying methods to develop these agents efficiently for clinical use. Recently, high-resolution genomic analyses of matched pairs of diagnostic and relapse bone marrow samples are emerging as a promising tool for identifying pathways that impart chemoresistance.
Collapse
|
39
|
Yang M, Liu Y, Lu S, Wang Z, Wang R, Zi Y, Li J. Analysis of the expression levels of survivin and VEGF in patients with acute lymphoblastic leukemia. Exp Ther Med 2012; 5:305-307. [PMID: 23251288 PMCID: PMC3524107 DOI: 10.3892/etm.2012.769] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 10/10/2012] [Indexed: 12/05/2022] Open
Abstract
The purpose of this study was to investigate the association between an inhibitor of apoptosis (survivin) and vascular endothelial growth factor (VEGF) expression in patients with acute lymphoblastic leukemia (ALL) prior to and following chemotherapy. Reverse transcription (RT)-PCR and western blotting were employed to analyze survivin and VEGF mRNA and protein expression. Moreover, the concentrations of survivin and VEGF were determined by enzyme-linked immunosorbent assay (ELISA). Our data revealed that survivin and VEGF were overexpressed in patients with ALL prior to treatment, while survivin levels were significantly decreased following treatment. In addition, there was a positive correlation between survivin and VEGF concentrations in plasma. In conclusion, analysis of survivin and VEGF expression levels may improve the clinical diagnosis and treatment of ALL.
Collapse
|
40
|
Kanwar JR, Kamalapuram SK, Kanwar RK. Survivin Signaling in Clinical Oncology: A Multifaceted Dragon. Med Res Rev 2012; 33:765-89. [DOI: 10.1002/med.21264] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jagat R. Kanwar
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (LIMBR); Centre for Biotechnology and Interdisciplinary Biosciences (BioDeakin); Institute for Technology & Research Innovation; Deakin University, Geelong; Technology Precinct; Pigdons Road, Waurn Ponds; Geelong; Victoria; 3217; Australia
| | - Sishir K. Kamalapuram
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (LIMBR); Centre for Biotechnology and Interdisciplinary Biosciences (BioDeakin); Institute for Technology & Research Innovation; Deakin University, Geelong; Technology Precinct; Pigdons Road, Waurn Ponds; Geelong; Victoria; 3217; Australia
| | - Rupinder K. Kanwar
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (LIMBR); Centre for Biotechnology and Interdisciplinary Biosciences (BioDeakin); Institute for Technology & Research Innovation; Deakin University, Geelong; Technology Precinct; Pigdons Road, Waurn Ponds; Geelong; Victoria; 3217; Australia
| |
Collapse
|
41
|
Epigenetic reprogramming reverses the relapse-specific gene expression signature and restores chemosensitivity in childhood B-lymphoblastic leukemia. Blood 2012; 119:5201-10. [PMID: 22496163 DOI: 10.1182/blood-2012-01-401687] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Whereas the improvement in outcome for children with acute lymphoblastic leukemia has been gratifying, the poor outcome of patients who relapse warrants novel treatment approaches. Previously, we identified a characteristic relapse-specific gene expression and methylation signature associated with chemoresistance using a large cohort of matched-diagnosis relapse samples. We hypothesized that "reversing" such a signature might restore chemosensitivity. In the present study, we demonstrate that the histone deacetylase inhibitor vorinostat not only reprograms the aberrant gene expression profile of relapsed blasts by epigenetic mechanisms, but is also synergistic when applied before chemotherapy in primary patient samples and leukemia cell lines. Furthermore, incorporation of the DNA methyltransferase inhibitor decitabine led to reexpression of genes shown to be preferentially methylated and silenced at relapse. Combination pretreatment with vorinostat and decitabine resulted in even greater cytotoxicity compared with each agent individually with chemotherapy. Our results indicate that acquisition of chemo-resistance at relapse may be driven in part by epigenetic mechanisms. Incorporation of these targeted epigenetic agents to the standard chemotherapy backbone is a promising approach to the treatment of relapsed pediatric acute lymphoblastic leukemia.
Collapse
|
42
|
Integrated genomic analysis of relapsed childhood acute lymphoblastic leukemia reveals therapeutic strategies. Blood 2011; 118:5218-26. [PMID: 21921043 DOI: 10.1182/blood-2011-04-345595] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Despite an increase in survival for children with acute lymphoblastic leukemia (ALL), the outcome after relapse is poor. To understand the genetic events that contribute to relapse and chemoresistance and identify novel targets of therapy, 3 high-throughput assays were used to identify genetic and epigenetic changes at relapse. Using matched diagnosis/relapse bone marrow samples from children with relapsed B-precursor ALL, we evaluated gene expression, copy number abnormalities (CNAs), and DNA methylation. Gene expression analysis revealed a signature of differentially expressed genes from diagnosis to relapse that is different for early (< 36 months) and late (≥ 36 months) relapse. CNA analysis discovered CNAs that were shared at diagnosis and relapse and others that were new lesions acquired at relapse. DNA methylation analysis found increased promoter methylation at relapse. There were many genetic alterations that evolved from diagnosis to relapse, and in some cases these genes had previously been associated with chemoresistance. Integration of the results from all 3 platforms identified genes of potential interest, including CDKN2A, COL6A2, PTPRO, and CSMD1. Although our results indicate that a diversity of genetic changes are seen at relapse, integration of gene expression, CNA, and methylation data suggest a possible convergence on the WNT and mitogen-activated protein kinase pathways.
Collapse
|