1
|
Deng S, Ou J, Chen J, Huang Z, Cai Z, Xu X, Tang B, Ding C, Li J, Lin R, Wang Z, Zhang T, Liu Q, Zhou H. Refining Risk Stratification for B-cell Precursor Adult Acute Lymphoblastic Leukemia Treated With a Pediatric-inspired Regimen by Combining IKZF1 Deletion and Minimal Residual Disease. Transplant Cell Ther 2025; 31:242-252. [PMID: 39798801 DOI: 10.1016/j.jtct.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/27/2024] [Accepted: 01/04/2025] [Indexed: 01/15/2025]
Abstract
INTRODUCTION Minimal residual disease (MRD) is the most important prognostic factor for B-cell acute lymphoblastic leukemia (B-ALL) however nearly 20-30% of patients relapsed even when they achieved negative MRD, how to identify these patients is less addressed. In this study, we aimed to reassess the prognostic significance of MRD and IKZF1 in adult B-ALL patients receiving pediatric chemotherapy regimens. METHODOLOGY A total of 202 newly diagnosed adult patients with B-ALL treated at Nanfang Hospital between January 2016 and September 2020 were enrolled in the population-based protocol of the PDT-ALL-2016 trial (NCT03564470), a GRAALL-backbone, peg-aspargase-intensified, antimetabolite-based pediatric-inspired regimen therapy. The validation dataset COG-P9906, which includes complete gene expression profiles and clinical data for 190 samples, is accessible via the NCBI Gene Expression Omnibus (GEO) at the following link: (https://www.ncbi.nlm.nih.gov/geo/), under the accession code GSE11877. MAIN FINDINGS B-ALL patients were redefined as standard (MRD-negative and IKZF1wild-type), intermediate (MRD-positive or IKZF1 deletion), and high-risk (MRD-positive and IKZF1 deletion) groups by combining IKZF1 deletion status and MRD. In the PDT-ALL-2016 cohort, patients in the high- and intermediate-risk groups who underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT) exhibited significantly improved 5-year overall survival (OS), event-free survival (EFS), and lower cumulative incidence of relapse (CIR) compared to those who received chemotherapy alone. In the PDT-ALL-2016 cohort, no significant advantage was observed in the 5-year OS, EFS, and CIR of patients in the standard-risk group who received allo-HSCT compared to those who received chemotherapy. DISCUSSION Traditional risk factors, incorporating clinical and cytogenetic features, have been previously evaluated to stratify risks and guide treatment decisions. However, the prognostic strength of this stratified system is limited by the pediatric-inspired protocol background, making it difficult to identify patients with a high risk of relapse. Therefore, in the era of pediatric-inspired protocols, it is imperative to reassess traditional risk factors to identify patients at high risk of recurrence and mortality.In this study, we retrospectively evaluated the combination of MRD and IKZF1 to develop an efficient risk stratification tool for adult patients with B-ALL in the pediatric-inspired chemotherapy era. Moreover, allo-HSCT had distinct efficacy at different risk levels, which means that the decision to perform allo-HSCT may be well guided by this risk classification scheme. CONCLUSION In conclusion, based on our cohort study and validation cohort, we demonstrated that the combination of MRD and IKZF1 deletion allows for better risk stratification of adults with B-ALL and that allo-HSCT mitigates the poor prognosis of MRD+ and/or IKZF1del subgroups.
Collapse
Affiliation(s)
- Shiyu Deng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiawang Ou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junjie Chen
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zicong Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zihong Cai
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiuli Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bingqing Tang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chenhao Ding
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jia Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ren Lin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhixiang Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ting Zhang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongsheng Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Hollander JF, Szymansky A, Wünschel J, Astrahantseff K, Rosswog C, Thorwarth A, Thole-Kliesch TM, Chamorro González R, Hundsdörfer P, Hauptmann K, Schmelz K, Gürgen D, Rogasch JM, Henssen AG, Fischer M, Schulte JH, Eckert C, Eggert A, Lodrini M, Deubzer HE. Serially Quantifying TERT Rearrangement Breakpoints in ctDNA Enables Minimal Residual Disease Monitoring in Patients with Neuroblastoma. CANCER RESEARCH COMMUNICATIONS 2025; 5:167-177. [PMID: 39760332 PMCID: PMC11774142 DOI: 10.1158/2767-9764.crc-24-0569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/25/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
SIGNIFICANCE Real-time molecular monitoring of TERT-rearranged high-risk neuroblastoma is an unmet clinical need. We tested liquid biopsy-based assays for patient-individualized TERT breakpoint sequences to monitor disease in pediatric patients. Our digital PCR approach provides high resolution of spatial and temporal disease quantification in individual patients and is applicable for clinical routine.
Collapse
Affiliation(s)
- Jan F. Hollander
- Department of Pediatric Oncology and Hematology, Campus Virchow Klinikum, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Annabell Szymansky
- Department of Pediatric Oncology and Hematology, Campus Virchow Klinikum, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Jasmin Wünschel
- Department of Pediatric Oncology and Hematology, Campus Virchow Klinikum, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Kathy Astrahantseff
- Department of Pediatric Oncology and Hematology, Campus Virchow Klinikum, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Carolina Rosswog
- Department of Experimental Pediatric Oncology, University Children’s Hospital of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Anne Thorwarth
- Department of Pediatric Oncology and Hematology, Campus Virchow Klinikum, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Theresa M. Thole-Kliesch
- Department of Pediatric Oncology and Hematology, Campus Virchow Klinikum, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Rocío Chamorro González
- Department of Pediatric Oncology and Hematology, Campus Virchow Klinikum, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC) of Charité, Max-Delbrück-Center of Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Max-Delbrück Center of Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Patrick Hundsdörfer
- Department of Pediatric Oncology and Hematology, Campus Virchow Klinikum, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Pediatrics, Helios Klinikum Berlin-Buch, Berlin, Germany
| | - Kathrin Hauptmann
- Institute of Pathology, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Karin Schmelz
- Department of Pediatric Oncology and Hematology, Campus Virchow Klinikum, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Charité - 3R, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Dennis Gürgen
- Experimental Pharmacology and Oncology Berlin-Buch GmbH (EPO), Berlin, Germany
| | - Julian M.M. Rogasch
- Department of Nuclear Medicine, Campus Virchow Klinikum, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité, Berlin, Germany
| | - Anton G. Henssen
- Department of Pediatric Oncology and Hematology, Campus Virchow Klinikum, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC) of Charité, Max-Delbrück-Center of Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Max-Delbrück Center of Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité, Berlin, Germany
| | - Matthias Fischer
- Department of Experimental Pediatric Oncology, University Children’s Hospital of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Johannes H. Schulte
- Department of Pediatric Oncology and Hematology, Campus Virchow Klinikum, Charité – Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology and Hematology, University Hospital Tübingen, Tübingen, Germany
| | - Cornelia Eckert
- Department of Pediatric Oncology and Hematology, Campus Virchow Klinikum, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Angelika Eggert
- Department of Pediatric Oncology and Hematology, Campus Virchow Klinikum, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marco Lodrini
- Department of Pediatric Oncology and Hematology, Campus Virchow Klinikum, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Hedwig E. Deubzer
- Department of Pediatric Oncology and Hematology, Campus Virchow Klinikum, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC) of Charité, Max-Delbrück-Center of Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Max-Delbrück Center of Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
3
|
Ahmadi SE, Rahimian E, Rahimi S, Zarandi B, Bahraini M, Soleymani M, Safdari SM, Shabannezhad A, Jaafari N, Safa M. From regulation to deregulation of p53 in hematologic malignancies: implications for diagnosis, prognosis and therapy. Biomark Res 2024; 12:137. [PMID: 39538363 PMCID: PMC11565275 DOI: 10.1186/s40364-024-00676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The p53 protein, encoded by the TP53 gene, serves as a critical tumor suppressor, playing a vital role in maintaining genomic stability and regulating cellular responses to stress. Dysregulation of p53 is frequently observed in hematological malignancies, significantly impacting disease progression and patient outcomes. This review aims to examine the regulatory mechanisms of p53, the implications of TP53 mutations in various hematological cancers, and emerging therapeutic strategies targeting p53. We conducted a comprehensive literature review to synthesize recent findings related to p53's multifaceted role in hematologic cancers, focusing on its regulatory pathways and therapeutic potential. TP53 mutations in hematological malignancies often lead to treatment resistance and poor prognosis. Current therapeutic strategies, including p53 reactivation and gene therapy, show promise in improving treatment outcomes. Understanding the intricacies of p53 regulation and the consequences of its mutations is essential for developing effective diagnostic and therapeutic strategies in hematological malignancies, ultimately enhancing patient care and survival.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elahe Rahimian
- Department of Medical Translational Oncology, National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany
| | - Samira Rahimi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Zarandi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Bahraini
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maral Soleymani
- Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Mehrab Safdari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ashkan Shabannezhad
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Jaafari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Baghdadi H, Soleimani M, Zavvar M, Bahoush G, Poopak B. Combination of minimal residual disease on day 15 and copy number alterations results in BCR-ABL1-negative pediatric B-ALL: A powerful tool for prediction of induction failure. Cancer Genet 2024; 282-283:27-34. [PMID: 38183785 DOI: 10.1016/j.cancergen.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 08/08/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024]
Abstract
The current genomic abnormalities provide prognostic value in pediatric Acute Lymphoblastic Leukemia (ALL). Furthermore, Copy Number Alteration (CNA) has recently been used to improve the genetic risk stratification of patients. This study aimed to evaluate CNA profiles in BCR-ABL1-negative pediatric B-ALL patients and correlate the data with Minimal Residual Disease (MRD) results after induction therapy. We examined 82 bone marrow samples from pediatric BCR-ABL1-negative B-ALL using the MLPA method for the most common CNAs, including IKZF1, CDKN2A/B, PAX5, RB1, BTG1, ETV6, EBF1, JAK2, and PAR1 region. Subsequently, patients were followed-up by multiparameter Flow Cytometry for MRD (MFC-MRD) assessment on days 15 and 33 after induction. Data showed that 58.5 % of patients carried at least one gene deletion, whereas 41.7 % of them carried more than one gene deletion simultaneously. The most frequent gene deletions were CDKN2A/B, ETV6, and IKZF1 (30.5 %, 14.6 %, and 14.6 %, respectively), while the PAR1 region showed predominantly duplication (30.5 %). CDKN2A/B and IKZF1 were related to positive MRD results on day 15 (p = 0.003 and p = 0.007, respectively). The simultaneous presence of more than one deletion was significantly associated with high induction failure (p = 0.001). Also, according to the CNA profile criteria, the CNA with poor risk (CNA-PR) profile was statistically associated with older age and positive MRD results on day 15 (p = 0.014 and p = 0.013, respectively). According to our results, the combined use of CNAs with MRD results on day 15 can predict induction failure and be helpful in ameliorating B-ALL risk stratification and treatment approaches.
Collapse
Affiliation(s)
- Hamed Baghdadi
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115111, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115111, Iran
| | - Mahdi Zavvar
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran 443614177, Iran
| | - Gholamreza Bahoush
- Department of Pediatrics, Ali-Asghar Children Hospital, Faculty of Medicine, Iran University of Medical Sciences, Tehran 14665354, Iran
| | - Behzad Poopak
- Islamic Azad University, Tehran Medical Sciences Branch, Tehran 193951495, Iran.
| |
Collapse
|
5
|
Kimura H, Onozawa M, Yoshida S, Miyashita N, Yokoyama S, Matsukawa T, Hirabayashi S, Goto H, Endo T, Oguri S, Fujisawa S, Mori A, Kondo T, Hidaka D, Okada K, Ota S, Kakinoki Y, Tsutsumi Y, Yamamoto S, Miyagishima T, Hashiguchi J, Nagashima T, Ibata M, Wakasa K, Haseyama Y, Fujimoto K, Ishihara T, Sakai H, Teshima T. Dominant-negative type of IKZF1 deletion showed a favorable prognosis in adult B-cell acute lymphoblastic leukemia. Ann Hematol 2023; 102:3103-3113. [PMID: 37597110 DOI: 10.1007/s00277-023-05405-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/06/2023] [Indexed: 08/21/2023]
Abstract
IKZF1 deletion is a recurrent genomic alteration in B-cell acute lymphoblastic leukemia (B-ALL) and is divided into dominant-negative (DN) and loss of function (LOF) deletions. The prognostic impact of each deletion has not been fully elucidated. We retrospectively analyzed 117 patients with adult B-ALL including 60 patients with BCR::ABL1-positive B-ALL and 57 patients with BCR::ABL1-negative B-ALL by the fluorescence in situ hybridization (FISH) method for IKZF1 deletion and multiplex PCR for the 4 most common IKZF1 deletions (∆4-7, ∆2-7, ∆2-8, and ∆4-8). Samples, in which IKZF1 deletion was detected by FISH but a specific type of deletion was not identified by the PCR, were categorized as "other." Patients were classified into a DN group that had at least 1 allele of ∆4-7 (n = 23), LOF and other group (n = 40), and wildtype group (n = 54). DN type IKZF1 deletions were found in 33.3% of BCR::ABL1-positive cases and 5.2% of BCR::ABL1-negative cases. LOF and other type IKZF1 deletions were found in 43.4% of BCR::ABL1-positive cases and 24.6% of BCR::ABL1-negative cases. Patients with the DN group showed significantly higher overall survival (OS) than that of the LOF and other and WT groups (P = 0.011). Multivariate analysis including age, WBC counts, complex karyotype, and DN type IKZF1 deletion showed that the DN type of IKZF1 deletion (HR = 0.22, P = 0.013) had a positive impact and age ≥ 65 (HR = 1.92, P = 0.029) had a negative impact on OS. The prognostic impact of IKZF1 deletion depends on the type of deletion and DN type of IKZF1 deletion showed better prognosis in adult B-ALL patients.Clinical trial registration This study was part of a prospective observational study (Hokkaido Leukemia Net, UMIN000048611). It was conducted in compliance with ethical principles based on the Helsinki Declaration and was approved by the institutional review board of Hokkaido University Hospital (#015-0344).
Collapse
Affiliation(s)
- Hiroyuki Kimura
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Kita 15, Nishi 7, Kita-Ku, Sapporo, 0608638, Japan
| | - Masahiro Onozawa
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Kita 15, Nishi 7, Kita-Ku, Sapporo, 0608638, Japan.
| | - Shota Yoshida
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Kita 15, Nishi 7, Kita-Ku, Sapporo, 0608638, Japan
| | - Naoki Miyashita
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Kita 15, Nishi 7, Kita-Ku, Sapporo, 0608638, Japan
| | - Shota Yokoyama
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Kita 15, Nishi 7, Kita-Ku, Sapporo, 0608638, Japan
| | - Toshihiro Matsukawa
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Kita 15, Nishi 7, Kita-Ku, Sapporo, 0608638, Japan
| | | | - Hideki Goto
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Kita 15, Nishi 7, Kita-Ku, Sapporo, 0608638, Japan
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Tomoyuki Endo
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Kita 15, Nishi 7, Kita-Ku, Sapporo, 0608638, Japan
| | - Satoshi Oguri
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Shinichi Fujisawa
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Akio Mori
- Blood Disorders Center, Aiiku Hospital, Sapporo, Japan
| | - Takeshi Kondo
- Blood Disorders Center, Aiiku Hospital, Sapporo, Japan
| | - Daisuke Hidaka
- Department of Hematology, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Kohei Okada
- Department of Hematology, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Shuichi Ota
- Department of Hematology, Sapporo Hokuyu Hospital, Sapporo, Japan
| | | | - Yutaka Tsutsumi
- Department of Hematology, Hakodate Municipal Hospital, Hakodate, Japan
| | - Satoshi Yamamoto
- Department of Hematology, Sapporo City General Hospital, Sapporo, Japan
| | | | - Junichi Hashiguchi
- Department of Internal Medicine, Kitami Red Cross Hospital, Kitami, Japan
| | - Takahiro Nagashima
- Department of Internal Medicine, Kitami Red Cross Hospital, Kitami, Japan
| | - Makoto Ibata
- Department of Hematology, Sapporo Kosei General Hospital, Sapporo, Japan
| | - Kentaro Wakasa
- Department of Hematology, Obihiro Kosei Hospital, Obihiro, Japan
| | | | - Katsuya Fujimoto
- Department of Hematology, National Hospital Organization Hokkaido Cancer Center, Sapporo, Japan
| | | | - Hajime Sakai
- Department of Hematology, Teine Keijinkai Hospital, Sapporo, Japan
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Kita 15, Nishi 7, Kita-Ku, Sapporo, 0608638, Japan
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan
| |
Collapse
|
6
|
Velasco P, Bautista F, Rubio A, Aguilar Y, Rives S, Dapena JL, Pérez A, Ramirez M, Saiz-Ladera C, Izquierdo E, Escudero A, Camós M, Vega-García N, Ortega M, Hidalgo-Gómez G, Palacio C, Menéndez P, Bueno C, Montero J, Romecín PA, Zazo S, Alvarez F, Parras J, Ortega-Sabater C, Chulián S, Rosa M, Cirillo D, García E, García J, Manzano-Muñoz A, Minguela A, Fuster JL. The relapsed acute lymphoblastic leukemia network (ReALLNet): a multidisciplinary project from the spanish society of pediatric hematology and oncology (SEHOP). Front Pediatr 2023; 11:1269560. [PMID: 37800011 PMCID: PMC10547895 DOI: 10.3389/fped.2023.1269560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/06/2023] [Indexed: 10/07/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer, with survival rates exceeding 85%. However, 15% of patients will relapse; consequently, their survival rates decrease to below 50%. Therefore, several research and innovation studies are focusing on pediatric relapsed or refractory ALL (R/R ALL). Driven by this context and following the European strategic plan to implement precision medicine equitably, the Relapsed ALL Network (ReALLNet) was launched under the umbrella of SEHOP in 2021, aiming to connect bedside patient care with expert groups in R/R ALL in an interdisciplinary and multicentric network. To achieve this objective, a board consisting of experts in diagnosis, management, preclinical research, and clinical trials has been established. The requirements of treatment centers have been evaluated, and the available oncogenomic and functional study resources have been assessed and organized. A shipping platform has been developed to process samples requiring study derivation, and an integrated diagnostic committee has been established to report results. These biological data, as well as patient outcomes, are collected in a national registry. Additionally, samples from all patients are stored in a biobank. This comprehensive repository of data and samples is expected to foster an environment where preclinical researchers and data scientists can seek to meet the complex needs of this challenging population. This proof of concept aims to demonstrate that a network-based organization, such as that embodied by ReALLNet, provides the ideal niche for the equitable and efficient implementation of "what's next" in the management of children with R/R ALL.
Collapse
Affiliation(s)
- Pablo Velasco
- Pediatric Oncology and Hematology Department, Vall d’Hebron Barcelona Hospital, Campus, Barcelona, Spain
| | - Francisco Bautista
- Trial and Data Centrum, Prinses Maxima Centrum, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Alba Rubio
- Pediatric Oncology and Hematology Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Yurena Aguilar
- Pediatric Oncology and Hematology Department, Hospital Miguel Servet Hospital, Zaragoza, Spain
| | - Susana Rives
- Leukemia and Lymphoma Unit, Pediatric Cancer Center Barcelona (PCCB), Hospital Sant Joan de Déu de Barcelona, Barcelona, Spain
- Pediatric Cancer Center Barcelona (PCCB), Institut de Recerca Sant Joan de Déu, Leukemia and Pediatric Hematology Disorders, Developmental Tumors Biology Group, Barcelona, Spain
| | - Jose L. Dapena
- Leukemia and Lymphoma Unit, Pediatric Cancer Center Barcelona (PCCB), Hospital Sant Joan de Déu de Barcelona, Barcelona, Spain
- Pediatric Cancer Center Barcelona (PCCB), Institut de Recerca Sant Joan de Déu, Leukemia and Pediatric Hematology Disorders, Developmental Tumors Biology Group, Barcelona, Spain
| | - Antonio Pérez
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- Pediatric Hemato-Oncology Department, La Paz University Hospital, Madrid, Spain
- Pediatric Department, Universidad Autonoma de Madrid, Madrid, Spain
| | - Manuel Ramirez
- Hematology and Oncology Laboratory, Fundación Para La Investigación Biomédica Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Cristina Saiz-Ladera
- Hematology and Oncology Laboratory, Fundación Para La Investigación Biomédica Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Elisa Izquierdo
- Pediatric Hemato-Oncology Department, La Paz University Hospital, Madrid, Spain
- Department of Genetics, Institute of Medical and Molecular Genetics (INGEMM), La Paz University Hospital, Madrid, Spain
| | - Adela Escudero
- Pediatric Hemato-Oncology Department, La Paz University Hospital, Madrid, Spain
- Department of Genetics, Institute of Medical and Molecular Genetics (INGEMM), La Paz University Hospital, Madrid, Spain
| | - Mireia Camós
- Pediatric Cancer Center Barcelona (PCCB), Institut de Recerca Sant Joan de Déu, Leukemia and Pediatric Hematology Disorders, Developmental Tumors Biology Group, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Hematology Laboratory, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Nerea Vega-García
- Pediatric Cancer Center Barcelona (PCCB), Institut de Recerca Sant Joan de Déu, Leukemia and Pediatric Hematology Disorders, Developmental Tumors Biology Group, Barcelona, Spain
- Hematology Laboratory, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Margarita Ortega
- Hematology Service, Vall d’Hebron Barcelona Hospital, Campus, Barcelona, Spain
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Gloria Hidalgo-Gómez
- Hematology Service, Vall d’Hebron Barcelona Hospital, Campus, Barcelona, Spain
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Carlos Palacio
- Hematology Service, Vall d’Hebron Barcelona Hospital, Campus, Barcelona, Spain
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Pablo Menéndez
- Josep Carreras Leukemia Reserach Institute, Developmental Leukemia and Immunotherapy group, Barcelona, Spain
- Red Española de Terapias Avanzadas (TERAV)-Instituto de Salud Carlos III (ISCIII) (RICORS, RD21/0017/0029), Madrid, Spain
- CIBER-ONC, ISCIII, Barcelona, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| | - Clara Bueno
- Josep Carreras Leukemia Reserach Institute, Developmental Leukemia and Immunotherapy group, Barcelona, Spain
- Red Española de Terapias Avanzadas (TERAV)-Instituto de Salud Carlos III (ISCIII) (RICORS, RD21/0017/0029), Madrid, Spain
- CIBER-ONC, ISCIII, Barcelona, Spain
- Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Joan Montero
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Paola A. Romecín
- Josep Carreras Leukemia Reserach Institute, Developmental Leukemia and Immunotherapy group, Barcelona, Spain
- Red Española de Terapias Avanzadas (TERAV)-Instituto de Salud Carlos III (ISCIII) (RICORS, RD21/0017/0029), Madrid, Spain
| | - Santiago Zazo
- Information Processing and Telecommunications Center, Universidad Politécnica de Madrid, Madrid, Spain
| | - Federico Alvarez
- Information Processing and Telecommunications Center, Universidad Politécnica de Madrid, Madrid, Spain
| | - Juan Parras
- Information Processing and Telecommunications Center, Universidad Politécnica de Madrid, Madrid, Spain
| | - Carmen Ortega-Sabater
- Mathematical Oncology Laboratory (MOLAB), University of Castilla-La Mancha, Ciudad Real, Spain
| | - Salvador Chulián
- Department of Mathematics, Universidad de Cádiz, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - María Rosa
- Mathematical Oncology Laboratory (MOLAB), University of Castilla-La Mancha, Ciudad Real, Spain
- Department of Mathematics, Universidad de Cádiz, Cádiz, Spain
| | | | - Elena García
- Hematology and Oncology Laboratory, Fundación Para La Investigación Biomédica Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Jorge García
- Hematology and Oncology Laboratory, Fundación Para La Investigación Biomédica Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Albert Manzano-Muñoz
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Alfredo Minguela
- Immunology Department, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Jose L. Fuster
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
- Paediatric Oncohematology Department. Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| |
Collapse
|
7
|
Sigvardsson M. Transcription factor networks link B-lymphocyte development and malignant transformation in leukemia. Genes Dev 2023; 37:703-723. [PMID: 37673459 PMCID: PMC10546977 DOI: 10.1101/gad.349879.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Rapid advances in genomics have opened unprecedented possibilities to explore the mutational landscapes in malignant diseases, such as B-cell acute lymphoblastic leukemia (B-ALL). This disease is manifested as a severe defect in the production of normal blood cells due to the uncontrolled expansion of transformed B-lymphocyte progenitors in the bone marrow. Even though classical genetics identified translocations of transcription factor-coding genes in B-ALL, the extent of the targeting of regulatory networks in malignant transformation was not evident until the emergence of large-scale genomic analyses. There is now evidence that many B-ALL cases present with mutations in genes that encode transcription factors with critical roles in normal B-lymphocyte development. These include PAX5, IKZF1, EBF1, and TCF3, all of which are targeted by translocations or, more commonly, partial inactivation in cases of B-ALL. Even though there is support for the notion that germline polymorphisms in the PAX5 and IKZF1 genes predispose for B-ALL, the majority of leukemias present with somatic mutations in transcription factor-encoding genes. These genetic aberrations are often found in combination with mutations in genes that encode components of the pre-B-cell receptor or the IL-7/TSLP signaling pathways, all of which are important for early B-cell development. This review provides an overview of our current understanding of the molecular interplay that occurs between transcription factors and signaling events during normal and malignant B-lymphocyte development.
Collapse
Affiliation(s)
- Mikael Sigvardsson
- Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; Division of Molecular Hematology, Lund University, 22184 Lund, Sweden
| |
Collapse
|
8
|
Sun X, Liu X, Li Y, Shi X, Li Y, Tan R, Jiang Y, Sui X, Ge X, Xu H, Wang X, Fang X. Characteristics of Molecular Genetic Mutations and Their Correlation with Prognosis in Adolescent and Adult Patients with Acute Lymphoblastic Leukemia. Oncology 2023; 102:85-98. [PMID: 37437551 DOI: 10.1159/000531522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/23/2023] [Indexed: 07/14/2023]
Abstract
INTRODUCTION The prognosis of acute lymphoblastic leukemia (ALL) in adolescents and adults is poor, and recurrence is an important cause of their death. Changes of genetic information play a vital role in the pathogenesis and recurrence of ALL; however, the impact of molecular genetic mutations on disease diagnosis and prognosis remains unexplored. This study aimed to explore the frequency spectrum of gene mutations and their prognostic significance, along with the minimal residual disease (MRD) level and hematopoietic stem cell transplantation (HSCT), in adolescent and adult patients aged ≥15 years with ALL. METHODS The basic characteristics, cytogenetics, molecular genetics, MRD level, treatment regimen, and survival outcome of patients with untreated ALL (≥15 years) were collected, and the correlation and survival analysis were performed using the SPSS 25.0 and R software. RESULTS This study included 404 patients, of which 147 were selected for next-generation sequencing (NGS). NGS results revealed that 91.2% of the patients had at least one mutation, and 67.35% had multiple (≥2) mutations. NOTCH1, PHF6, RUNX1, PTEN, JAK3, TET2, and JAK1 were the most common mutations in T-ALL, whereas FAT1, TET2, NARS, KMT2D, FLT3, and RELN were the most common mutations in B-ALL. Correlation analysis revealed the mutation patterns, which were significantly different between T-ALL and B-ALL. In the prognostic analysis of 107 patients with B-ALL, multivariate analysis showed that the number of mutations ≥5 was an independent risk factor for overall survival and the RELN mutation was an independent poor prognostic factor for event-free survival. DISCUSSION The distribution of gene mutations and the co-occurrence and repulsion of mutant genes in patients with ALL were closely related to the immunophenotype of the patients. The number of mutations ≥5 and the RELN mutation were significantly associated with poor prognosis in adolescent and adult patients with ALL.
Collapse
Affiliation(s)
- Xue Sun
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, China,
| | - Xiaoqian Liu
- Department of Hematology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Ying Li
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xue Shi
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yahan Li
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ran Tan
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yujie Jiang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaohui Sui
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xueling Ge
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hongzhi Xu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- School of Medicine, Shandong University, Jinan, China
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China
| | - Xiaosheng Fang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
9
|
Wang D, Quesnel-Vallieres M, Jewell S, Elzubeir M, Lynch K, Thomas-Tikhonenko A, Barash Y. A Bayesian model for unsupervised detection of RNA splicing based subtypes in cancers. Nat Commun 2023; 14:63. [PMID: 36599821 PMCID: PMC9813260 DOI: 10.1038/s41467-022-35369-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 11/29/2022] [Indexed: 01/06/2023] Open
Abstract
Identification of cancer sub-types is a pivotal step for developing personalized treatment. Specifically, sub-typing based on changes in RNA splicing has been motivated by several recent studies. We thus develop CHESSBOARD, an unsupervised algorithm tailored for RNA splicing data that captures "tiles" in the data, defined by a subset of unique splicing changes in a subset of patients. CHESSBOARD allows for a flexible number of tiles, accounts for uncertainty of splicing quantification, and is able to model missing values as additional signals. We first apply CHESSBOARD to synthetic data to assess its domain specific modeling advantages, followed by analysis of several leukemia datasets. We show detected tiles are reproducible in independent studies, investigate their possible regulatory drivers and probe their relation to known AML mutations. Finally, we demonstrate the potential clinical utility of CHESSBOARD by supplementing mutation based diagnostic assays with discovered splicing profiles to improve drug response correlation.
Collapse
Affiliation(s)
- David Wang
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mathieu Quesnel-Vallieres
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - San Jewell
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Moein Elzubeir
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristen Lynch
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrei Thomas-Tikhonenko
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yoseph Barash
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Computer and Information Sciences, School of Engineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Lejman M, Chałupnik A, Chilimoniuk Z, Dobosz M. Genetic Biomarkers and Their Clinical Implications in B-Cell Acute Lymphoblastic Leukemia in Children. Int J Mol Sci 2022; 23:2755. [PMID: 35269896 PMCID: PMC8911213 DOI: 10.3390/ijms23052755] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a heterogeneous group of hematologic malignancies characterized by abnormal proliferation of immature lymphoid cells. It is the most commonly diagnosed childhood cancer with an almost 80% cure rate. Despite favorable survival rates in the pediatric population, a significant number of patients develop resistance to therapy, resulting in poor prognosis. ALL is a heterogeneous disease at the genetic level, but the intensive development of sequencing in the last decade has made it possible to broaden the study of genomic changes. New technologies allow us to detect molecular changes such as point mutations or to characterize epigenetic or proteomic profiles. This process made it possible to identify new subtypes of this disease characterized by constellations of genetic alterations, including chromosome changes, sequence mutations, and DNA copy number alterations. These genetic abnormalities are used as diagnostic, prognostic and predictive biomarkers that play an important role in earlier disease detection, more accurate risk stratification, and treatment. Identification of new ALL biomarkers, and thus a greater understanding of their molecular basis, will lead to better monitoring of the course of the disease. In this article, we provide an overview of the latest information on genomic alterations found in childhood ALL and discuss their impact on patients' clinical outcomes.
Collapse
Affiliation(s)
- Monika Lejman
- Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Aleksandra Chałupnik
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (A.C.); (Z.C.); (M.D.)
| | - Zuzanna Chilimoniuk
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (A.C.); (Z.C.); (M.D.)
| | - Maciej Dobosz
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (A.C.); (Z.C.); (M.D.)
| |
Collapse
|
11
|
Gao L, Harbaugh B, Parr K, Patel P, Golem S, Zhang D, Woodroof J, Cui W. MYC Expression Is Associated With p53 Expression and TP53 Aberration and Predicts Poor Overall Survival in Acute Lymphoblastic Leukemia/Lymphoma. Am J Clin Pathol 2022; 157:119-129. [PMID: 34528662 DOI: 10.1093/ajcp/aqab105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/13/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES We evaluated MYC and p53 expression, TP53 aberration, their relationship, and their impact on overall survival (OS) in acute lymphoblastic leukemia (ALL)/lymphoblastic lymphoma (LBL). METHODS We identified 173 patients with ALL and LBL, including 12 cases of mixed-phenotype acute leukemia, 8 cases of therapy-related B-cell ALL (B-ALL), 119 cases of B-ALL, and 34 cases of T-cell ALL/LBL diagnosed from 2003 to 2019. We retrospectively assessed p53 and MYC expression by immunohistochemistry of bone marrow and correlated MYC expression with p53 expression and TP53 aberration. RESULTS Expression of p53 and MYC was present in 11.5% and 27.7% of ALL/LBL cases (n = 20 and n = 48), respectively. MYC expression was significantly correlated with p53 expression and TP53 aberration (P = .002 and P = .03), and p53 expression and MYC expression had an adverse impact on OS in patients with ALL/LBL (P < .05). MYC and p53 dual expression as well as combined MYC expression and TP53 aberration had a negative impact on OS in patients with ALL/LBL. CONCLUSIONS MYC expression is correlated with p53 overexpression, TP53 aberration, and poor OS in patients with ALL/LBL.
Collapse
Affiliation(s)
- Linlin Gao
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, MO, USA
| | - Brent Harbaugh
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, MO, USA
| | - Kevin Parr
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, MO, USA
| | - Payal Patel
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, MO, USA
| | - Shivani Golem
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, MO, USA
| | - Da Zhang
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, MO, USA
| | - Janet Woodroof
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, MO, USA
| | - Wei Cui
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, MO, USA
| |
Collapse
|
12
|
Antić Ž, Yu J, Bornhauser BC, Lelieveld SH, van der Ham CG, van Reijmersdal SV, Morgado L, Elitzur S, Bourquin JP, Cazzaniga G, Eckert C, Camós M, Sutton R, Cavé H, Moorman AV, Sonneveld E, Geurts van Kessel A, van Leeuwen FN, Hoogerbrugge PM, Waanders E, Kuiper RP. Clonal dynamics in pediatric B-cell precursor acute lymphoblastic leukemia with very early relapse. Pediatr Blood Cancer 2022; 69:e29361. [PMID: 34597466 DOI: 10.1002/pbc.29361] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/18/2021] [Accepted: 08/31/2021] [Indexed: 01/08/2023]
Abstract
INTRODUCTION One-quarter of the relapses in children with B-cell precursor acute lymphoblastic leukemia (BCP-ALL) occur very early (within 18 months, before completion of treatment), and prognosis in these patients is worse compared to cases that relapse after treatment has ended. METHODS In this study, we performed a genomic analysis of diagnosis-relapse pairs of 12 children who relapsed very early, followed by a deep-sequencing validation of all identified mutations. In addition, we included one case with a good initial treatment response and on-treatment relapse at the end of upfront therapy. RESULTS We observed a dynamic clonal evolution in all cases, with relapse almost exclusively originating from a subclone at diagnosis. We identified several driver mutations that may have influenced the outgrowth of a minor clone at diagnosis to become the major clone at relapse. For example, a minimal residual disease (MRD)-based standard-risk patient with ETV6-RUNX1-positive leukemia developed a relapse from a TP53-mutated subclone after loss of the wildtype allele. Furthermore, two patients with TCF3-PBX1-positive leukemia that developed a very early relapse carried E1099K WHSC1 mutations at diagnosis, a hotspot mutation that was recurrently encountered in other very early TCF3-PBX1-positive leukemia relapses as well. In addition to alterations in known relapse drivers, we found two cases with truncating mutations in the cohesin gene RAD21. CONCLUSION Comprehensive genomic characterization of diagnosis-relapse pairs shows that very early relapses in BCP-ALL frequently arise from minor subclones at diagnosis. A detailed understanding of the therapeutic pressure driving these events may aid the development of improved therapies.
Collapse
Affiliation(s)
- Željko Antić
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Jiangyan Yu
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Beat C Bornhauser
- Department of Oncology and Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | | | | | - Simon V van Reijmersdal
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lionel Morgado
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Sarah Elitzur
- Pediatric Hematology-Oncology, Schneider Children's Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jean-Pierre Bourquin
- Department of Oncology and Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Giovanni Cazzaniga
- Centro Ricerca Tettamanti, Fondazione Tettamanti, University of Milan Bicocca, Monza, Italy
| | - Cornelia Eckert
- Pediatric Oncology/Hematology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mireia Camós
- Leukemia and Other Pediatric Hemopathies, Developmental Tumor Biology Group, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Hematology Laboratory, Hospital Sant Joan de Deu Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Rosemary Sutton
- Molecular Diagnostics, Children's Cancer Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Hélène Cavé
- Department of Genetics, Robert Debré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,INSERM U1131, Saint-Louis Research Institute, University of Paris, Paris, France
| | - Anthony V Moorman
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Edwin Sonneveld
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Dutch Childhood Oncology Group, Utrecht, The Netherlands
| | - Ad Geurts van Kessel
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Peter M Hoogerbrugge
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Dutch Childhood Oncology Group, Utrecht, The Netherlands
| | - Esmé Waanders
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roland P Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
13
|
Mangum DS, Meyer JA, Mason CC, Shams S, Maese LD, Gardiner JD, Downie JM, Pei D, Cheng C, Gleason A, Luo M, Pui CH, Aplenc R, Hunger SP, Loh M, Greaves M, Trede N, Raetz E, Frazer JK, Mullighan CG, Engel ME, Miles RR, Rabin KR, Schiffman JD. Association of Combined Focal 22q11.22 Deletion and IKZF1 Alterations With Outcomes in Childhood Acute Lymphoblastic Leukemia. JAMA Oncol 2021; 7:1521-1528. [PMID: 34410295 DOI: 10.1001/jamaoncol.2021.2723] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Alterations in the IKZF1 gene drive B-cell acute lymphoblastic leukemia (B-ALL) but are not routinely used to stratify patients by risk because of inconsistent associations with outcomes. We describe a novel deletion in 22q11.22 that was consistently associated with very poor outcomes in patients with B-ALL with IKZF1 alterations. Objective To determine whether focal deletions within the λ variable chain region in chromosome 22q11.22 were associated with patients with B-ALL with IKZF1 alterations with the highest risk of relapse and/or death. Design, Setting, and Participants This cohort study included 1310 primarily high-risk pediatric patients with B-ALL who were taken from 6 independent clinical cohorts, consisting of 3 multicenter cohorts (AALL0232 [2004-2011], P9906 [2000-2003], and patients with Down syndrome who were pooled from national and international studies) and 3 single-institution cohorts (University of Utah [Salt Lake City], Children's Hospital of Philadelphia [Philadelphia, Pennsylvania], and St. Jude Children's Hospital [Memphis, Tennessee]). Data analysis began in 2011 using patients from the older studies first, and data analysis concluded in 2021. Exposures Focal 22q11.22 deletions. Main Outcomes and Measures Event-free and overall survival was investigated. The hypothesis that 22q11.22 deletions stratified the prognostic effect of IKZF1 alterations was formulated while investigating nearby deletions in VPREB1 in 2 initial cohorts (n = 270). Four additional cohorts were then obtained to further study this association (n = 1040). Results This study of 1310 patients with B-ALL (717 male [56.1%] and 562 female patients [43.9%]) found that focal 22q11.22 deletions are frequent (518 of 1310 [39.5%]) in B-ALL and inconsistent with physiologic V(D)J recombination. A total of 299 of 1310 patients with B-ALL had IKZF1 alterations. Among patients with IKZF1 alterations, more than half shared concomitant focal 22q11.22 deletions (159 of 299 [53.0%]). Patients with combined IKZF1 alterations and 22q11.22 deletions had worse outcomes compared with patients with IKZF1 alterations and wild-type 22q11.22 alleles in every cohort examined (combined cohorts: 5-year event-free survival rates, 43.3% vs 68.5%; hazard ratio [HR], 2.18; 95% CI, 1.54-3.07; P < .001; 5-year overall survival rates, 66.9% vs 83.9%; HR, 2.05; 95% CI, 1.32-3.21; P = .001). While 22q11.22 deletions were not prognostic in patients with wild-type IKZF1 , concomitant 22q11.22 deletions in patients with IKZF1 alterations stratified outcomes across additional risk groups, including patients who met the IKZF1plus criteria, and maintained independent significance in multivariate analysis for event-free survival (HR, 2.05; 95% CI, 1.27-3.29; P = .003) and overall survival (HR, 1.83; 95% CI, 1.01-3.34; P = .05). Conclusions and Relevance This cohort study suggests that 22q11.22 deletions identify patients with B-ALL and IKZF1 alterations who have very poor outcomes and may offer a new genetic biomarker to further refine B-ALL risk stratification and treatment strategies.
Collapse
Affiliation(s)
- David Spencer Mangum
- Nemours/Alfred I. DuPont Hospital for Children, Division of Pediatric Hematology/Oncology, Wilmington, Delaware
| | - Julia A Meyer
- Division of Pediatric Hematology & Oncology, Department of Pediatrics, University of Utah, Salt Lake City.,Division of Pediatric Hematology and Oncology, University of California, San Francisco
| | - Clinton C Mason
- Division of Pediatric Hematology & Oncology, Department of Pediatrics, University of Utah, Salt Lake City
| | | | - Luke D Maese
- Division of Pediatric Hematology & Oncology, Department of Pediatrics, University of Utah, Salt Lake City
| | - Jamie D Gardiner
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City
| | | | - Deqing Pei
- Department of Biostatistics, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Cheng Cheng
- Department of Biostatistics, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Adam Gleason
- Department of Pathology & Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Minjie Luo
- Department of Pathology & Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Ching-Hon Pui
- Department of Oncology, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Richard Aplenc
- Division of Oncology and the Center for Childhood Cancer Research, The Children's Hospital of Philadelphia and The Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Stephen P Hunger
- Division of Oncology and the Center for Childhood Cancer Research, The Children's Hospital of Philadelphia and The Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Mignon Loh
- Division of Pediatric Hematology and Oncology, University of California, San Francisco
| | - Mel Greaves
- Institute of Cancer Research, London, England
| | | | - Elizabeth Raetz
- Department of Pediatrics, NYU Langone Health, New York, New York
| | - J Kimble Frazer
- Jimmy Everest Section of Pediatric Hematology-Oncology, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Charles G Mullighan
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Michael E Engel
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Virginia, Charlottesville
| | - Rodney R Miles
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City
| | - Karen R Rabin
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Joshua D Schiffman
- Division of Pediatric Hematology & Oncology, Department of Pediatrics, University of Utah, Salt Lake City.,Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City.,PEEL Therapeutics, Inc, Salt Lake City, Utah
| |
Collapse
|
14
|
Lee SHR, Li Z, Tai ST, Oh BLZ, Yeoh AEJ. Genetic Alterations in Childhood Acute Lymphoblastic Leukemia: Interactions with Clinical Features and Treatment Response. Cancers (Basel) 2021; 13:4068. [PMID: 34439222 PMCID: PMC8393341 DOI: 10.3390/cancers13164068] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/03/2021] [Accepted: 08/08/2021] [Indexed: 12/28/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer among children. This aggressive cancer comprises multiple molecular subtypes, each harboring a distinct constellation of somatic, and to a lesser extent, inherited genetic alterations. With recent advances in genomic analyses such as next-generation sequencing techniques, we can now clearly identify >20 different genetic subtypes in ALL. Clinically, identifying these genetic subtypes will better refine risk stratification and determine the optimal intensity of therapy for each patient. Underpinning each genetic subtype are unique clinical and therapeutic characteristics, such as age and presenting white blood cell (WBC) count. More importantly, within each genetic subtype, there is much less variability in treatment response and survival outcomes compared with current risk factors such as National Cancer Institute (NCI) criteria. We review how this new taxonomy of genetic subtypes in childhood ALL interacts with clinical risk factors used widely, i.e., age, presenting WBC, IKZF1del, treatment response, and outcomes.
Collapse
Affiliation(s)
- Shawn H. R. Lee
- VIVA-University Children’s Cancer Centre, Khoo-Teck Puat-National University Children’s Medical Institute, National University Hospital, Singapore 119074, Singapore; (S.H.R.L.); (B.L.Z.O.)
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; (Z.L.); (S.T.T.)
| | - Zhenhua Li
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; (Z.L.); (S.T.T.)
| | - Si Ting Tai
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; (Z.L.); (S.T.T.)
| | - Bernice L. Z. Oh
- VIVA-University Children’s Cancer Centre, Khoo-Teck Puat-National University Children’s Medical Institute, National University Hospital, Singapore 119074, Singapore; (S.H.R.L.); (B.L.Z.O.)
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; (Z.L.); (S.T.T.)
| | - Allen E. J. Yeoh
- VIVA-University Children’s Cancer Centre, Khoo-Teck Puat-National University Children’s Medical Institute, National University Hospital, Singapore 119074, Singapore; (S.H.R.L.); (B.L.Z.O.)
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; (Z.L.); (S.T.T.)
| |
Collapse
|
15
|
Eckert C, Parker C, Moorman AV, Irving JA, Kirschner-Schwabe R, Groeneveld-Krentz S, Révész T, Hoogerbrugge P, Hancock J, Sutton R, Henze G, Chen-Santel C, Attarbaschi A, Bourquin JP, Sramkova L, Zimmermann M, Krishnan S, von Stackelberg A, Saha V. Risk factors and outcomes in children with high-risk B-cell precursor and T-cell relapsed acute lymphoblastic leukaemia: combined analysis of ALLR3 and ALL-REZ BFM 2002 clinical trials. Eur J Cancer 2021; 151:175-189. [PMID: 34010787 DOI: 10.1016/j.ejca.2021.03.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/01/2021] [Accepted: 03/15/2021] [Indexed: 12/30/2022]
Abstract
AIM Outcomes of children with high-risk (HR) relapsed acute lymphoblastic leukaemia (ALL) (N = 393), recruited to ALLR3 and ALL-REZ BFM 2002 trials, were analysed. Minimal residual disease (MRD) was assessed after induction and at predetermined time points until haematopoietic stem cell transplantation (SCT). METHODS Genetic analyses included karyotype, copy-number alterations and mutation analyses. Ten-year survivals were analysed using Kaplan-Meier and Cox models for multivariable analyses. RESULTS Outcomes of patients were comparable in ALLR3 and ALL-REZ BFM 2002. The event-free survival of B-cell precursor (BCP) and T-cell ALL (T-ALL) was 22.6% and 26.2% (P = 0.94), respectively, and the overall survival (OS) was 32.6% and 28.2% (P = 0.11), respectively. Induction failures (38%) were associated with deletions of NR3C1 (P = 0.002) and BTG1 (P = 0.03) in BCP-ALL. The disease-free survival (DFS) and OS in patients with good vs poor MRD responses were 57.4% vs 22.6% (P < 0.0001) and 57.8% vs 32.0% (P = 0.0004), respectively. For BCP- and T-ALL, the post-SCT DFS and OS were 42.1% and 56.8% (P = 0.26) and 51.6% and 55.4% (P = 0.67), respectively. The cumulative incidences of post-SCT relapse for BCP- and T-ALL were 36.9% and 17.8% (P = 0.012) and of death were 10.7% and 25.5% (P = 0.013), respectively. Determinants of outcomes after SCT were acute graft versus host disease, pre-SCT MRD (≥10-3), HR cytogenetics and TP53 alterations in BCP-ALL. CONCLUSION Improvements in outcomes for HR ALL relapses require novel compounds in induction therapy to improve remission rates and immune targeted therapy after induction to maintain remission after SCT. TRIAL REGISTRATION ALLR3: NCT00967057; ALL REZ-BFM 2002: NCT00114348.
Collapse
Affiliation(s)
- Cornelia Eckert
- Department of Pediatric Oncology Hematology, Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium, and German Cancer Research Center, Im Neuenheimer Feld, Heidelberg, Germany.
| | - Catriona Parker
- Children's Cancer Group, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, UK
| | - Anthony V Moorman
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Julie Ae Irving
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Renate Kirschner-Schwabe
- Department of Pediatric Oncology Hematology, Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium, and German Cancer Research Center, Im Neuenheimer Feld, Heidelberg, Germany
| | | | - Tamas Révész
- Department of Hematology-Oncology, SA Pathology at Women's and Children's Hospital and University of Adelaide, Adelaide, Australia
| | - Peter Hoogerbrugge
- Princess Maxima Center for Pediatric Oncology, Utrecht, and Dutch Childhood Oncology Group, Utrecht, the Netherlands
| | - Jeremy Hancock
- Southmead Hospital Bristol Genetics Laboratory, Bristol, UK
| | - Rosemary Sutton
- Children's Cancer Institute, School of Women's and Children's Health, University of New South Wales, Sydney, Australia
| | - Guenter Henze
- Department of Pediatric Oncology Hematology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Chen-Santel
- Department of Pediatric Oncology Hematology, Charité - Universitätsmedizin Berlin, Berlin, Germany; University Children's Hospital, University Medical Center Rostock, Rostock, Germany
| | - Andishe Attarbaschi
- St Anna Children's Research Institute and Children's Hospital, Medical University of Vienna, Vienna, Austria
| | - Jean-Pierre Bourquin
- Department of Pediatric Oncology, University Children's Hospital, Zurich, Switzerland
| | - Lucie Sramkova
- Department of Pediatric Hematology and Oncology, Charles University, 2nd Medical School and University Hospital Motol, Prague, Czech Republic
| | - Martin Zimmermann
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Shekhar Krishnan
- Children's Cancer Group, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, UK; Tata Translational Cancer Research Centre, Tata Medical Center, New Town, Kolkata, India
| | - Arend von Stackelberg
- Department of Pediatric Oncology Hematology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Vaskar Saha
- Children's Cancer Group, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, UK; Tata Translational Cancer Research Centre, Tata Medical Center, New Town, Kolkata, India.
| |
Collapse
|
16
|
Locatelli F, Zugmaier G, Rizzari C, Morris JD, Gruhn B, Klingebiel T, Parasole R, Linderkamp C, Flotho C, Petit A, Micalizzi C, Mergen N, Mohammad A, Kormany WN, Eckert C, Möricke A, Sartor M, Hrusak O, Peters C, Saha V, Vinti L, von Stackelberg A. Effect of Blinatumomab vs Chemotherapy on Event-Free Survival Among Children With High-risk First-Relapse B-Cell Acute Lymphoblastic Leukemia: A Randomized Clinical Trial. JAMA 2021; 325:843-854. [PMID: 33651091 PMCID: PMC7926287 DOI: 10.1001/jama.2021.0987] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IMPORTANCE Blinatumomab is a CD3/CD19-directed bispecific T-cell engager molecule with efficacy in children with relapsed or refractory B-cell acute lymphoblastic leukemia (B-ALL). OBJECTIVE To evaluate event-free survival in children with high-risk first-relapse B-ALL after a third consolidation course with blinatumomab vs consolidation chemotherapy before allogeneic hematopoietic stem cell transplant. DESIGN, SETTING, AND PARTICIPANTS In this randomized phase 3 clinical trial, patients were enrolled November 2015 to July 2019 (data cutoff, July 17, 2019). Investigators at 47 centers in 13 countries enrolled children older than 28 days and younger than 18 years with high-risk first-relapse B-ALL in morphologic complete remission (M1 marrow, <5% blasts) or with M2 marrow (blasts ≥5% and <25%) at randomization. INTERVENTION Patients were randomized to receive 1 cycle of blinatumomab (n = 54; 15 μg/m2/d for 4 weeks, continuous intravenous infusion) or chemotherapy (n = 54) for the third consolidation. MAIN OUTCOMES AND MEASURES The primary end point was event-free survival (events: relapse, death, second malignancy, or failure to achieve complete remission). The key secondary efficacy end point was overall survival. Other secondary end points included minimal residual disease remission and incidence of adverse events. RESULTS A total of 108 patients were randomized (median age, 5.0 years [interquartile range {IQR}, 4.0-10.5]; 51.9% girls; 97.2% M1 marrow) and all patients were included in the analysis. Enrollment was terminated early for benefit of blinatumomab in accordance with a prespecified stopping rule. After a median of 22.4 months of follow-up (IQR, 8.1-34.2), the incidence of events in the blinatumomab vs consolidation chemotherapy groups was 31% vs 57% (log-rank P < .001; hazard ratio [HR], 0.33 [95% CI, 0.18-0.61]). Deaths occurred in 8 patients (14.8%) in the blinatumomab group and 16 (29.6%) in the consolidation chemotherapy group. The overall survival HR was 0.43 (95% CI, 0.18-1.01). Minimal residual disease remission was observed in more patients in the blinatumomab vs consolidation chemotherapy group (90% [44/49] vs 54% [26/48]; difference, 35.6% [95% CI, 15.6%-52.5%]). No fatal adverse events were reported. In the blinatumomab vs consolidation chemotherapy group, the incidence of serious adverse events was 24.1% vs 43.1%, respectively, and the incidence of adverse events greater than or equal to grade 3 was 57.4% vs 82.4%. Adverse events leading to treatment discontinuation were reported in 2 patients in the blinatumomab group. CONCLUSIONS AND RELEVANCE Among children with high-risk first-relapse B-ALL, treatment with 1 cycle of blinatumomab compared with standard intensive multidrug chemotherapy before allogeneic hematopoietic stem cell transplant resulted in an improved event-free survival at a median of 22.4 months of follow-up. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02393859.
Collapse
Affiliation(s)
- Franco Locatelli
- IRCCS Ospedale Pediatrico Bambino Gesù and Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | | - Rosanna Parasole
- Azienda Ospedaliera di Rilievo Nazionale Santobono Pausilipon, Naples, Italy
| | | | | | - Arnaud Petit
- Sorbonne Université, Hôpital Armand Trousseau, AP-HP, Paris, France
| | | | | | | | | | | | - Anja Möricke
- Universitätsklinikum Schleswig–Holstein, Kiel, Germany
| | - Mary Sartor
- Westmead Hospital, Sydney, New South Wales, Australia
| | - Ondrej Hrusak
- Charles University, Motol University Hospital, Prague, Czech Republic
| | | | - Vaskar Saha
- The University of Manchester, Manchester, United Kingdom
- Tata Translational Cancer Research Center, Tata Medical Center, Kolkata, West Bengal, India
| | - Luciana Vinti
- IRCCS Ospedale Pediatrico Bambino Gesù and Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
17
|
González-Gil C, Ribera J, Ribera JM, Genescà E. The Yin and Yang-Like Clinical Implications of the CDKN2A/ARF/CDKN2B Gene Cluster in Acute Lymphoblastic Leukemia. Genes (Basel) 2021; 12:genes12010079. [PMID: 33435487 PMCID: PMC7827355 DOI: 10.3390/genes12010079] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a malignant clonal expansion of lymphoid hematopoietic precursors that exhibit developmental arrest at varying stages of differentiation. Similar to what occurs in solid cancers, transformation of normal hematopoietic precursors is governed by a multistep oncogenic process that drives initiation, clonal expansion and metastasis. In this process, alterations in genes encoding proteins that govern processes such as cell proliferation, differentiation, and growth provide us with some of the clearest mechanistic insights into how and why cancer arises. In such a scenario, deletions in the 9p21.3 cluster involving CDKN2A/ARF/CDKN2B genes arise as one of the oncogenic hallmarks of ALL. Deletions in this region are the most frequent structural alteration in T-cell acute lymphoblastic leukemia (T-ALL) and account for roughly 30% of copy number alterations found in B-cell-precursor acute lymphoblastic leukemia (BCP-ALL). Here, we review the literature concerning the involvement of the CDKN2A/B genes as a prognosis marker of good or bad response in the two ALL subtypes (BCP-ALL and T-ALL). We compare frequencies observed in studies performed on several ALL cohorts (adult and child), which mainly consider genetic data produced by genomic techniques. We also summarize what we have learned from mouse models designed to evaluate the functional involvement of the gene cluster in ALL development and in relapse/resistance to treatment. Finally, we examine the range of possibilities for targeting the abnormal function of the protein-coding genes of this cluster and their potential to act as anti-leukemic agents in patients.
Collapse
Affiliation(s)
- Celia González-Gil
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), 08916 Badalona, Spain; (C.G.-G.); (J.R.); (J.M.R.)
| | - Jordi Ribera
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), 08916 Badalona, Spain; (C.G.-G.); (J.R.); (J.M.R.)
| | - Josep Maria Ribera
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), 08916 Badalona, Spain; (C.G.-G.); (J.R.); (J.M.R.)
- Clinical Hematology Department, ICO-Hospital Germans Trias i Pujol, 08916 Badalona, Spain
| | - Eulàlia Genescà
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), 08916 Badalona, Spain; (C.G.-G.); (J.R.); (J.M.R.)
- Correspondence: ; Tel.: +34-93-557-28-08
| |
Collapse
|
18
|
Hosein Pour Feizi A, Zeinali S, Toporski J, Sheervalilou R, Mehranfar S. Frequency and Correlation of Common Genes Copy Number Alterations in Childhood Acute Lymphoblastic Leukemia with Prognosis. Asian Pac J Cancer Prev 2020; 21:3493-3500. [PMID: 33369444 PMCID: PMC8046302 DOI: 10.31557/apjcp.2020.21.12.3493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Indexed: 11/25/2022] Open
Abstract
Objective: It was shown by genomic profiling that despite no detectable chromosomal abnormalities a proportion of children with pre-B acute lymphoblastic leukemia harbors copy number alterations (CNA) of genes playing role in B-cell development and function. The aim of the study was to determine the frequency of CNA in pediatric acute lymphoblastic leukemia and correlate these findings with clinical outcome. Methods: DNA extracted from peripheral blood or bone marrow at diagnosis/relapse of fifty newly diagnosed children with precursor B-cell acute lymphoblastic leukemia was analyzed for CNA with multiplex ligation-dependent probe amplification. Results: The analysis revealed 76 CNA in 24 patients most frequently found in PAR1 (17%), CDKN2A/B (15.7%) and PAX5 (14.4%) genes. There were significant CNA co-occurrences between PAX5, CDKN2A/B, BTG1, ETV6, PAR1 or XP22 genes, (p<0.020) and the high-risk group. There was a significant correlation between EBF1, RB1, and IKZF1 alterations and bone marrow relapse. Patients with CNA in screened genes are more likely to succumb to their disease except for those with PAR1 or XP22 genes (p<0.050). Conclusion: The multiplex ligation-dependent probe amplification could be considered as an independent diagnostic tool allowing prompt identification of patients at high risk of treatment failure and, subsequently, a more adequate treatment approach.
Collapse
Affiliation(s)
| | - Sirous Zeinali
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.,Kawsar Human Genetics Research Center, Kawsar Genomics Center, Tehran, Iran
| | - Jacek Toporski
- Department of Clinical Sciences, Pediatric Oncology and Hematology, University of Lund, Lund, Sweden
| | | | - Sahar Mehranfar
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Social Determinate of Health Research Center, Clinical Research Institute Urmia University of Medical Science, Urmia, Iran
| |
Collapse
|
19
|
Expression Patterns of Coagulation Factor XIII Subunit A on Leukemic Lymphoblasts Correlate with Clinical Outcome and Genetic Subtypes in Childhood B-cell Progenitor Acute Lymphoblastic Leukemia. Cancers (Basel) 2020; 12:cancers12082264. [PMID: 32823516 PMCID: PMC7463512 DOI: 10.3390/cancers12082264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Based on previous retrospective results, we investigated the association of coagulation FXIII subunit A (FXIII-A) expression pattern on survival and correlations with known prognostic factors of B-cell progenitor (BCP) childhood acute lymphoblastic leukemia (ALL) as a pilot study of the prospective multi-center BFM ALL-IC 2009 clinical trial. METHODS The study included four national centers (n = 408). Immunophenotyping by flow cytometry and cytogenetic analysis were performed by standard methods. Copy number alteration was studied in a subset of patients (n = 59). Survival rates were estimated by Kaplan-Meier analysis. Correlations between FXIII-A expression patterns and risk factors were investigated with Cox and logistic regression models. RESULTS Three different patterns of FXIII-A expression were observed: negative (<20%), dim (20-79%), and bright (≥80%). The FXIII-A dim expression group had significantly higher 5-year event-free survival (EFS) (93%) than the FXIII-A negative (70%) and FXIII-A bright (61%) groups. Distribution of intermediate genetic risk categories and the "B-other" genetic subgroup differed significantly between the FXIII-A positive and negative groups. Multivariate logistic regression confirmed independent association between the FXIII-A negative expression characteristics and the prevalence of intermediate genetic risk group. CONCLUSIONS FXIII-A negativity is associated with dismal survival in children with BCP-ALL and is an indicator for the presence of unfavorable genetic alterations.
Collapse
|
20
|
Merli P, Algeri M, Del Bufalo F, Locatelli F. Hematopoietic Stem Cell Transplantation in Pediatric Acute Lymphoblastic Leukemia. Curr Hematol Malig Rep 2020; 14:94-105. [PMID: 30806963 DOI: 10.1007/s11899-019-00502-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE OF REVIEW The remarkable improvement in the prognosis of children with acute lymphoblastic leukemia (ALL) has been mainly achieved through the administration of risk-adapted therapy, including allogeneic hematopoietic stem cell transplantation (HSCT). This paper reviews the current indications to HSCT in ALL children, as well as the type of donor and conditioning regimens commonly used. Finally, it will focus on future challenges in immunotherapy. RECENT FINDINGS As our comprehension of disease-specific risk factors improves, indications to HSCT continue to evolve. Future studies will answer the year-old question on the best conditioning regimen to be used in this setting, while a recent randomized controlled study fixed the optimal anti-thymocyte globulin dose in unrelated donor HSCT. HSCT, the oldest immunotherapy used in clinical practice, still represents the gold standard consolidation treatment for a number of pediatric patients with high-risk/relapsed ALL. New immunotherapies hold the promise of further improving outcomes in this setting.
Collapse
Affiliation(s)
- Pietro Merli
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, Piazza Sant'Onofrio, 4, 00165, Rome, Italy
| | - Mattia Algeri
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, Piazza Sant'Onofrio, 4, 00165, Rome, Italy
| | - Francesca Del Bufalo
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, Piazza Sant'Onofrio, 4, 00165, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, Piazza Sant'Onofrio, 4, 00165, Rome, Italy. .,Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
21
|
IKZF1 deletions in pediatric acute lymphoblastic leukemia: still a poor prognostic marker? Blood 2020; 135:252-260. [PMID: 31821407 DOI: 10.1182/blood.2019000813] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 11/21/2019] [Indexed: 12/31/2022] Open
Abstract
Improved personalized adjustment of primary therapy to the perceived risk of relapse by using new prognostic markers for treatment stratification may be beneficial to patients with acute lymphoblastic leukemia (ALL). Here, we review the advances that have shed light on the role of IKZF1 aberration as prognostic factor in pediatric ALL and summarize emerging concepts in this field. Continued research on the interplay of disease biology with exposure and response to treatment will be key to further improve treatment strategies.
Collapse
|
22
|
Vairy S, Tran TH. IKZF1 alterations in acute lymphoblastic leukemia: The good, the bad and the ugly. Blood Rev 2020; 44:100677. [PMID: 32245541 DOI: 10.1016/j.blre.2020.100677] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 12/16/2022]
Abstract
Advances in genomics have deepened our understanding of the biology of acute lymphoblastic leukemia (ALL), defined novel molecular leukemia subtypes, discovered new prognostic biomarkers and paved the way to emerging molecularly targeted therapeutic avenues. Since its discovery, IKZF1 has generated significant interest within the leukemia scientific community.IKZF1 plays a critical role in lymphoid development and its alterations cooperate to mediate leukemogenesis. IKZF1 alterations are present in approximately 15% of childhood ALL, rise in prevalence among adults with ALL and become highly enriched within kinase-driven ALL. A cumulating body of literature has highlighted the adverse prognostic impact of IKZF1 alterations in both Philadelphia chromosome (Ph)-negative and Ph-driven ALL. IKZF1 alterations thus emerge as an important prognostic biomarker in ALL. This article aims to provide a state-of-the-art review focusing on the prognostic clinical relevance of IKZF1 alterations in ALL, as well as current and future therapeutic strategies targeting IKZF1-altered ALL.
Collapse
Affiliation(s)
- Stephanie Vairy
- Division of Pediatric Hematology-Oncology, Charles-Bruneau Cancer Center, CHU Sainte-Justine, Montréal, Québec, Canada
| | - Thai Hoa Tran
- Division of Pediatric Hematology-Oncology, Charles-Bruneau Cancer Center, CHU Sainte-Justine, Montréal, Québec, Canada.
| |
Collapse
|
23
|
Evidence-based review of genomic aberrations in B-lymphoblastic leukemia/lymphoma: Report from the cancer genomics consortium working group for lymphoblastic leukemia. Cancer Genet 2020; 243:52-72. [PMID: 32302940 DOI: 10.1016/j.cancergen.2020.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 03/04/2020] [Accepted: 03/17/2020] [Indexed: 12/19/2022]
Abstract
Clinical management and risk stratification of B-lymphoblastic leukemia/ lymphoma (B-ALL/LBL) depend largely on identification of chromosomal abnormalities obtained using conventional cytogenetics and Fluorescence In Situ Hybridization (FISH) testing. In the last few decades, testing algorithms have been implemented to support an optimal risk-oriented therapy, leading to a large improvement in overall survival. In addition, large scale genomic studies have identified multiple aberrations of prognostic significance that are not routinely tested by existing modalities. However, as chromosomal microarray analysis (CMA) and next-generation sequencing (NGS) technologies are increasingly used in clinical management of hematologic malignancies, these abnormalities may be more readily detected. In this article, we have compiled a comprehensive, evidence-based review of the current B-ALL literature, focusing on known and published subtypes described to date. More specifically, we describe the role of various testing modalities in the diagnosis, prognosis, and therapeutic relevance. In addition, we propose a testing algorithm aimed at assisting laboratories in the most effective detection of the underlying genomic abnormalities.
Collapse
|
24
|
Barz MJ, Hof J, Groeneveld-Krentz S, Loh JW, Szymansky A, Astrahantseff K, von Stackelberg A, Khiabanian H, Ferrando AA, Eckert C, Kirschner-Schwabe R. Subclonal NT5C2 mutations are associated with poor outcomes after relapse of pediatric acute lymphoblastic leukemia. Blood 2020; 135:921-933. [PMID: 31971569 PMCID: PMC7218751 DOI: 10.1182/blood.2019002499] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/28/2019] [Indexed: 12/27/2022] Open
Abstract
Activating mutations in cytosolic 5'-nucleotidase II (NT5C2) are considered to drive relapse formation in acute lymphoblastic leukemia (ALL) by conferring purine analog resistance. To examine the clinical effects of NT5C2 mutations in relapsed ALL, we analyzed NT5C2 in 455 relapsed B-cell precursor ALL patients treated within the ALL-REZ BFM 2002 relapse trial using sequencing and sensitive allele-specific real-time polymerase chain reaction. We detected 110 NT5C2 mutations in 75 (16.5%) of 455 B-cell precursor ALL relapses. Two-thirds of relapses harbored subclonal mutations and only one-third harbored clonal mutations. Event-free survival after relapse was inferior in patients with relapses with clonal and subclonal NT5C2 mutations compared with those without (19% and 25% vs 53%, P < .001). However, subclonal, but not clonal, NT5C2 mutations were associated with reduced event-free survival in multivariable analysis (hazard ratio, 1.89; 95% confidence interval, 1.28-2.69; P = .001) and with an increased rate of nonresponse to relapse treatment (subclonal 32%, clonal 12%, wild type 9%, P < .001). Nevertheless, 27 (82%) of 33 subclonal NT5C2 mutations became undetectable at the time of nonresponse or second relapse, and in 10 (71%) of 14 patients subclonal NT5C2 mutations were undetectable already after relapse induction treatment. These results show that subclonal NT5C2 mutations define relapses associated with high risk of treatment failure in patients and at the same time emphasize that their role in outcome is complex and goes beyond mutant NT5C2 acting as a targetable driver during relapse progression. Sensitive, prospective identification of NT5C2 mutations is warranted to improve the understanding and treatment of this aggressive ALL relapse subtype.
Collapse
Affiliation(s)
- Malwine J Barz
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin-Berlin Institute of Health, Berlin, Germany
| | - Jana Hof
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin-Berlin Institute of Health, Berlin, Germany
| | - Stefanie Groeneveld-Krentz
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin-Berlin Institute of Health, Berlin, Germany
| | - Jui Wan Loh
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ
- Graduate Program in Microbiology and Molecular Genetics, Rutgers University, Piscataway, NJ
| | - Annabell Szymansky
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin-Berlin Institute of Health, Berlin, Germany
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Kathy Astrahantseff
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin-Berlin Institute of Health, Berlin, Germany
| | - Arend von Stackelberg
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin-Berlin Institute of Health, Berlin, Germany
| | - Hossein Khiabanian
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ
- Graduate Program in Microbiology and Molecular Genetics, Rutgers University, Piscataway, NJ
- Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ
| | - Adolfo A Ferrando
- Institute of Cancer Genetics, Columbia University, New York, NY; and
| | - Cornelia Eckert
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin-Berlin Institute of Health, Berlin, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Renate Kirschner-Schwabe
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin-Berlin Institute of Health, Berlin, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
25
|
Eckert C, Groeneveld-Krentz S, Kirschner-Schwabe R, Hagedorn N, Chen-Santel C, Bader P, Borkhardt A, Cario G, Escherich G, Panzer-Grümayer R, Astrahantseff K, Eggert A, Sramkova L, Attarbaschi A, Bourquin JP, Peters C, Henze G, von Stackelberg A. Improving Stratification for Children With Late Bone Marrow B-Cell Acute Lymphoblastic Leukemia Relapses With Refined Response Classification and Integration of Genetics. J Clin Oncol 2019; 37:3493-3506. [DOI: 10.1200/jco.19.01694] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
PURPOSE Minimal residual disease (MRD) helps to accurately assess when children with late bone marrow relapses of B-cell precursor (BCP) acute lymphoblastic leukemia (ALL) will benefit from allogeneic hematopoietic stem-cell transplantation (allo-HSCT). More detailed dissection of MRD response heterogeneity and the specific genetic aberrations could improve current practice. PATIENTS AND METHODS MRD was assessed after induction treatment and at different times during relapse treatment until allo-HSCT (indicated in poor responders to induction; MRD ≥ 10−3) for patients being treated for late BCP-ALL bone marrow relapses (n = 413; median follow-up, 9.4 years) in the ALL-REZ BFM 2002 trial/registry (ClinicalTrials.gov identifier: NCT00114348 ). RESULTS Patients with both good (MRD < 10−3) and poor responses to induction treatment reached excellent event-free survival (EFS; 72% v 65%) and overall survival (OS; 82% v 74%). Patients with MRD of 10−2 or greater after induction had reduced EFS (56%), and their MRD persisted until allo-HSCT more frequently than it did in patients with MRD of 10−3 or greater to less than 10−2 ( P = .037). Patients with 25% or more leukemic blasts after induction (early nonresponders) had the poorest prognosis (EFS, 22%). Interestingly, patients with MRD of 10−3 or greater before allo-HSCT (late nonresponders) still had an EFS of 50% and OS of 63%, which in principle justifies allo-HSCT in these patients. From a panel of selected candidate genes, TP53 alterations (frequency, 8%) were the only genetic alteration with independent prognostic value in any MRD-based response subgroup. CONCLUSION After induction treatment, MRD-based treatment stratification resulted in excellent survival in patients with late relapsed BCP-ALL. Prognosis could be further improved in very poor responders by intensifying treatment directly after induction. TP53 alterations can be defined as a novel genetic high-risk marker in all MRD response groups in late relapsed BCP-ALL. Here we identified early and late nonresponders to be considered as events in future trials.
Collapse
Affiliation(s)
- Cornelia Eckert
- Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium, and German Cancer Research Center, Heidelberg, Germany
| | | | - Renate Kirschner-Schwabe
- Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium, and German Cancer Research Center, Heidelberg, Germany
| | | | | | - Peter Bader
- University Hospital Frankfurt, Frankfurt, Germany
| | | | - Gunnar Cario
- University Medical Center Schleswig-Holstein, Kiel, Germany
| | | | | | | | - Angelika Eggert
- Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium, and German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | - Günter Henze
- Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | | |
Collapse
|
26
|
Hoffmann J, Krumbholz M, Gutiérrez HP, Fillies M, Szymansky A, Bleckmann K, Zur Stadt U, Köhler R, Kuiper RP, Horstmann M, von Stackelberg A, Eckert C, Metzler M. High sensitivity and clonal stability of the genomic fusion as single marker for response monitoring in ETV6-RUNX1-positive acute lymphoblastic leukemia. Pediatr Blood Cancer 2019; 66:e27780. [PMID: 31034759 DOI: 10.1002/pbc.27780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/21/2019] [Accepted: 04/09/2019] [Indexed: 11/08/2022]
Abstract
BACKGROUND Assessment of minimal residual disease (MRD) is an integral component for response monitoring and treatment stratification in acute lymphoblastic leukemia (ALL). We aimed to evaluate the genomic ETV6-RUNX1 fusion sites as a single marker for MRD quantification. PROCEDURE In a representative, uniformly treated cohort of pediatric relapsed ALL patients (n = 52), ETV6-RUNX1 fusion sites were compared to the current gold standard, immunoglobulin/T-cell receptor (Ig/TCR) gene rearrangements. RESULTS Primer/probe sets designed to ETV6-RUNX1 fusions achieved significantly more frequent a sensitivity and a quantitative range of at least 10-4 compared to the gold standard with 100% and 73% versus 76% and 47%, respectively. The breakpoint sequence was identical at diagnosis and relapse in all tested cases. There was a high degree of concordance between quantitative MRD results assessed using ETV6-RUNX1 and the highest Ig/TCR marker (Spearman's 0.899, P < .01) with differences >½ log-step in only 6% of patients. A high proportion of ETV6-RUNX1-positive ALL relapses (40%) in our cohort showed a poor response to induction treatment at relapse, and therefore had an indication for hematopoietic stem cell transplantation, demonstrating the need of accurate identification of this subgroup. CONCLUSIONS ETV6-RUNX1 fusion sites are highly sensitive and reliable MRD markers. Our data confirm that they are unaffected by clonal evolution and selection during front-line and second-line chemotherapy in contrast to Ig/TCR rearrangements, which require several markers per patient to compensate for the observed loss of target clones. In future studies, the genomic ETV6-RUNX1 fusion can be used as single MRD marker.
Collapse
Affiliation(s)
- Jana Hoffmann
- Pediatric Oncology/Hematology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Manuela Krumbholz
- Pediatric Oncology/Hematology, University Hospital Erlangen, Erlangen, Germany
| | | | - Marion Fillies
- Pediatric Oncology/Hematology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Annabell Szymansky
- Pediatric Oncology/Hematology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kirsten Bleckmann
- Department of Pediatrics, University of Schleswig-Holstein, Kiel, Germany
| | - Udo Zur Stadt
- Center for Diagnostics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rolf Köhler
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Roland P Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Martin Horstmann
- Research Institute Children's Cancer Center, Hamburg, Germany.,Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Arend von Stackelberg
- Pediatric Oncology/Hematology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Cornelia Eckert
- Pediatric Oncology/Hematology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Metzler
- Pediatric Oncology/Hematology, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
27
|
Erbilgin Y, Firtina S, Mercan S, Hatirnaz Ng O, Karaman S, Tasar O, Karakas Z, Celkan TT, Zengin E, Sarper N, Yildirmak ZY, Sisko S, Ozbek U, Sayitoglu M. Prognostic gene alterations and clonal changes in childhood B-ALL. Leuk Res 2019; 83:106159. [PMID: 31228652 DOI: 10.1016/j.leukres.2019.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 12/20/2022]
Abstract
Genomic profiles of leukemia patients lead to characterization of variations that provide the molecular classification of risk groups, prediction of clinical outcome and therapeutic decisions. In this study, we examined the diagnostic (n = 77) and relapsed (n = 31) pediatric B-cell acute lymphoblastic leukemia (B-ALL) samples for the most common leukemia-associated gene variations CRLF2, JAK2, PAX5 and IL7R using deep sequencing and copy number alterations (CNAs) (CDKN2A/2B, PAX5, RB1, BTG1, ETV6, CSF2RA, IL3RA and CRLF2) by multiplex ligation proximity assay (MLPA), and evaluated for the clonal changes through relapse. Single nucleotide variations SNVs were detected in 19% of diagnostic 15.3% of relapse samples. The CNAs were detected in 55% of diagnosed patients; most common affected genes were CDKN2A/2B, PAX5, and CRLF2. Relapse samples did not accumulate a greater number of CNAs or SNVs than the cohort of diagnostic samples, but the clonal dynamics showed the accumulation/disappearance of specific gene variations explained the course of relapse. The CDKN2A/2B were most frequently altered in relapse samples and 32% of relapse samples carried at least one CNA. Moreover, CDKN2A/2B alterations and/or JAK2 variations were associated with decreased relapse-free survival. On the other hand, CRLF2 copy number alterations predicted a better survival rate in B-ALL. These findings contribute to the knowledge of CDKN2A/2B and CRLF2 alterations and their prognostic value in B-ALL. The integration of genomic data in clinical practice will enable better stratification of ALL patients and allow deeper understanding of the nature of relapse.
Collapse
Affiliation(s)
- Yucel Erbilgin
- Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Sinem Firtina
- Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey; Istinye University, Faculty of Arts and Sciences, Istanbul, Turkey
| | - Sevcan Mercan
- Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey; Kafkas University, Faculty of Engineering, Kars, Turkey
| | - Ozden Hatirnaz Ng
- Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey; Acibadem Mehmet Ali Aydinlar University Medical Faculty, Istanbul, Turkey
| | - Serap Karaman
- Istanbul University, Aziz Sancar Institute of Experimental Medicine, Istanbul, Turkey
| | - Orcun Tasar
- Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Zeynep Karakas
- Istanbul University, Aziz Sancar Institute of Experimental Medicine, Istanbul, Turkey
| | | | - Emine Zengin
- Kocaeli University Medical Faculty, Kocaeli, Turkey
| | - Nazan Sarper
- Kocaeli University Medical Faculty, Kocaeli, Turkey
| | | | - Sinem Sisko
- Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ugur Ozbek
- Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey; Acibadem Mehmet Ali Aydinlar University Medical Faculty, Istanbul, Turkey
| | - Muge Sayitoglu
- Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
28
|
Mattsson K, Honkaniemi E, Ramme K, Barbany G, Sander BM, Gustafsson BM. Strong expression of p53 protein in bone marrow samples after hematopoietic stem cell transplantation indicates risk of relapse in pediatric acute lymphoblastic leukemia patients. Pediatr Transplant 2019; 23:e13408. [PMID: 30955249 DOI: 10.1111/petr.13408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 02/12/2019] [Accepted: 03/02/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND For pediatric ALL patients that relapse or respond poorly to conventional chemotherapy treatment, HSCT is one treatment option. Still, relapse occurs in 30% of the children after HSCT. Mutations in the tumor suppressor gene TP53 which can lead to an altered p53 protein expression are rare at time of diagnosis of ALL, yet occur more frequent at relapse indicating a more aggressive disease. Our aim was to evaluate if alterations in the expression of the tumor suppressor protein p53 signaled a relapse in pediatric ALL patients post-HSCT and could guide for preemptive immunotherapy. PROCEDURE Paraffin-embedded bone marrow samples from 46 children diagnosed with ALL between 1997 and 2010, and transplanted at Karolinska University Hospital, were analyzed for p53 by IHC. Samples were analyzed independently at diagnosis, before HSCT, and after HSCT 0-3 months, 3-6 months, and 6-12 months. RESULT Strong expression of p53 in the bone marrow at 0-3-months after HSCT was associated with increased risk of relapse, odds ratio 2.63 (confidence interval 1.08-6.40) P = 0.033. CONCLUSION Evaluation of p53 protein expression in bone marrow from pediatric ALL patients that undergo HSCT may be a potential, additional prognostic marker for predicting relapse after HSCT.
Collapse
Affiliation(s)
- Kristin Mattsson
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, CLINTEC, Stockholm, Sweden
| | - Emma Honkaniemi
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, CLINTEC, Stockholm, Sweden
| | - Kim Ramme
- Department of Pediatric Hematology, Immunology and Stem Cell Transplantation, Astrid Lindgren`s Childrens Hospital, Karolinska University Hospital-Huddinge, Sweden
| | - Gisela Barbany
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta M Sander
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital-Huddinge, Stockholm, Sweden
| | - Britt M Gustafsson
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, CLINTEC, Stockholm, Sweden
| |
Collapse
|
29
|
Demir S, Boldrin E, Sun Q, Hampp S, Tausch E, Eckert C, Ebinger M, Handgretinger R, Kronnie GT, Wiesmüller L, Stilgenbauer S, Selivanova G, Debatin KM, Meyer LH. Therapeutic targeting of mutant p53 in pediatric acute lymphoblastic leukemia. Haematologica 2019; 105:170-181. [PMID: 31073076 PMCID: PMC6939517 DOI: 10.3324/haematol.2018.199364] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 05/02/2019] [Indexed: 12/17/2022] Open
Abstract
Alterations of the tumor suppressor gene TP53 are found in different cancers, in particular in carcinomas of adults. In pediatric acute lymphoblastic leukemia (ALL), TP53 mutations are infrequent but enriched at relapse. As in most cancers, mainly DNA-binding domain missense mutations are found, resulting in accumulation of mutant p53, poor therapy response, and inferior outcome. Different strategies to target mutant p53 have been developed including reactivation of p53's wildtype function by the small molecule APR-246. We investigated TP53 mutations in cell lines and 62 B-cell precursor ALL samples and evaluated the activity of APR-246 in TP53-mutated or wildtype ALL. We identified cases with TP53 missense mutations, high (mutant) p53 expression and insensitivity to the DNA-damaging agent doxorubicin. In TP53-mutated ALL, APR-246 induced apoptosis showing strong anti-leukemia activity. APR-246 restored mutant p53 to its wildtype conformation, leading to pathway activation with induction of transcriptional targets and re-sensitization to genotoxic therapy in vitro and in vivo In addition, induction of oxidative stress contributed to APR-246-mediated cell death. In a preclinical model of patient-derived TP53-mutant ALL, APR-246 reduced leukemia burden and synergized strongly with the genotoxic agent doxorubicin, leading to superior leukemia-free survival in vivo Thus, targeting mutant p53 by APR-246, restoring its tumor suppressive function, seems to be an effective therapeutic strategy for this high-risk group of TP53-mutant ALL.
Collapse
Affiliation(s)
- Salih Demir
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany.,International Graduate School of Molecular Medicine, Ulm University, Ulm, Germany
| | - Elena Boldrin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany.,International Graduate School of Molecular Medicine, Ulm University, Ulm, Germany.,PhD Program in Biosciences, University of Padova, Padova, Italy
| | - Qian Sun
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Stephanie Hampp
- Department of Obstetrics and Gynecology, Ulm University Medical Center, Ulm, Germany
| | - Eugen Tausch
- Department of Internal Medicine III, Ulm University Medical Center, Ulm, Germany
| | - Cornelia Eckert
- Department of Pediatrics, Charité Center Gynecology, Perinatal, Pediatric and Adolescent Medicine, Berlin, Germany
| | - Martin Ebinger
- Department of General Pediatrics, Hematology and Oncology, Children's University Hospital Tübingen, Tübingen, Germany
| | - Rupert Handgretinger
- Department of General Pediatrics, Hematology and Oncology, Children's University Hospital Tübingen, Tübingen, Germany
| | - Geertruy Te Kronnie
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University Medical Center, Ulm, Germany
| | - Stephan Stilgenbauer
- Department of Internal Medicine III, Ulm University Medical Center, Ulm, Germany
| | - Galina Selivanova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Lüder Hinrich Meyer
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
30
|
Integrated analysis of relapsed B-cell precursor Acute Lymphoblastic Leukemia identifies subtype-specific cytokine and metabolic signatures. Sci Rep 2019; 9:4188. [PMID: 30862934 PMCID: PMC6414622 DOI: 10.1038/s41598-019-40786-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 02/22/2019] [Indexed: 12/20/2022] Open
Abstract
Recent efforts reclassified B-Cell Precursor Acute Lymphoblastic Leukemia (BCP-ALL) into more refined subtypes. Nevertheless, outcomes of relapsed BCP-ALL remain unsatisfactory, particularly in adult patients where the molecular basis of relapse is still poorly understood. To elucidate the evolution of relapse in BCP-ALL, we established a comprehensive multi-omics dataset including DNA-sequencing, RNA-sequencing, DNA methylation array and proteome MASS-spec data from matched diagnosis and relapse samples of BCP-ALL patients (n = 50) including the subtypes DUX4, Ph-like and two aneuploid subtypes. Relapse-specific alterations were enriched for chromatin modifiers, nucleotide and steroid metabolism including the novel candidates FPGS, AGBL and ZNF483. The proteome expression analysis unraveled deregulation of metabolic pathways at relapse including the key proteins G6PD, TKT, GPI and PGD. Moreover, we identified a novel relapse-specific gene signature specific for DUX4 BCP-ALL patients highlighting chemotaxis and cytokine environment as a possible driver event at relapse. This study presents novel insights at distinct molecular levels of relapsed BCP-ALL based on a comprehensive multi-omics integrated data set including a valuable proteomics data set. The relapse specific aberrations reveal metabolic signatures on genomic and proteomic levels in BCP-ALL relapse. Furthermore, the chemokine expression signature in DUX4 relapse underscores the distinct status of DUX4-fusion BCP-ALL.
Collapse
|
31
|
Groeneveld‐Krentz S, Schroeder MP, Reiter M, Pogodzinski MJ, Pimentel‐Gutiérrez HJ, Vagkopoulou R, Hof J, Chen‐Santel C, Nebral K, Bradtke J, Türkmen S, Baldus CD, Gattenlöhner S, Haas OA, Stackelberg A, Karawajew L, Eckert C, Kirschner‐Schwabe R. Aneuploidy in children with relapsed B‐cell precursor acute lymphoblastic leukaemia: clinical importance of detecting a hypodiploid origin of relapse. Br J Haematol 2019; 185:266-283. [DOI: 10.1111/bjh.15770] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/05/2018] [Indexed: 12/17/2022]
Affiliation(s)
| | - Michael P. Schroeder
- Department of Haematology/Oncology Charité Universitätsmedizin Berlin Berlin Germany
| | - Michael Reiter
- Institute of Visual Computing & Human‐Centered Technology Vienna University of Technology Vienna Austria
| | - Malwine J. Pogodzinski
- Department of Paediatric Oncology/Haematology Charité Universitätsmedizin Berlin Berlin Germany
| | | | - Renia Vagkopoulou
- Department of Paediatric Oncology/Haematology Charité Universitätsmedizin Berlin Berlin Germany
| | - Jana Hof
- Department of Paediatric Oncology/Haematology Charité Universitätsmedizin Berlin Berlin Germany
| | - Christiane Chen‐Santel
- Department of Paediatric Oncology/Haematology Charité Universitätsmedizin Berlin Berlin Germany
| | - Karin Nebral
- Children's Cancer Research Institute St. Anna Kinderkrebsforschung Vienna Austria
| | - Jutta Bradtke
- Department of Pathology University of Gießen Gießen Germany
| | - Seval Türkmen
- Labor Berlin Charité Vivantes Berlin Germany
- Institute of Medical Genetics and Human Genetics Charité Universitätsmedizin Berlin Berlin Germany
| | - Claudia D. Baldus
- Department of Haematology/Oncology Charité Universitätsmedizin Berlin Berlin Germany
| | | | - Oskar A. Haas
- Children's Cancer Research Institute St. Anna Kinderkrebsforschung Vienna Austria
- St. Anna Children's Hospital Medical University of Vienna Austria
| | - Arend Stackelberg
- Department of Paediatric Oncology/Haematology Charité Universitätsmedizin Berlin Berlin Germany
| | - Leonid Karawajew
- Department of Paediatric Oncology/Haematology Charité Universitätsmedizin Berlin Berlin Germany
| | - Cornelia Eckert
- Department of Paediatric Oncology/Haematology Charité Universitätsmedizin Berlin Berlin Germany
- German Cancer Consortium (DKTK), and German Research Center (DKFZ) Heidelberg Germany
| | - Renate Kirschner‐Schwabe
- Department of Paediatric Oncology/Haematology Charité Universitätsmedizin Berlin Berlin Germany
- German Cancer Consortium (DKTK), and German Research Center (DKFZ) Heidelberg Germany
| |
Collapse
|
32
|
Significance of genetic polymorphisms in hematological malignancies: implications of risk factors for prognosis and relapse. MEMO-MAGAZINE OF EUROPEAN MEDICAL ONCOLOGY 2018. [DOI: 10.1007/s12254-018-0446-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
33
|
Skah S, Richartz N, Duthil E, Gilljam KM, Bindesbøll C, Naderi EH, Eriksen AB, Ruud E, Dirdal MM, Simonsen A, Blomhoff HK. cAMP-mediated autophagy inhibits DNA damage-induced death of leukemia cells independent of p53. Oncotarget 2018; 9:30434-30449. [PMID: 30100998 PMCID: PMC6084393 DOI: 10.18632/oncotarget.25758] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/23/2018] [Indexed: 12/13/2022] Open
Abstract
Autophagy is important in regulating the balance between cell death and survival, with the tumor suppressor p53 as one of the key components in this interplay. We have previously utilized an in vitro model of the most common form of childhood cancer, B cell precursor acute lymphoblastic leukemia (BCP-ALL), to show that activation of the cAMP signaling pathway inhibits p53-mediated apoptosis in response to DNA damage in both cell lines and primary leukemic cells. The present study reveals that cAMP-mediated survival of BCP-ALL cells exposed to DNA damaging agents, involves a critical and p53-independent enhancement of autophagy. Although autophagy generally is regarded as a survival mechanism, DNA damage-induced apoptosis has been linked both to enhanced and reduced levels of autophagy. Here we show that exposure of BCP-ALL cells to irradiation or cytotoxic drugs triggers autophagy and cell death in a p53-dependent manner. Stimulation of the cAMP signaling pathway further augments autophagy and inhibits the DNA damage-induced cell death concomitant with reduced nuclear levels of p53. Knocking-down the levels of p53 reduced the irradiation-induced autophagy and cell death, but had no effect on the cAMP-mediated autophagy. Moreover, prevention of autophagy by bafilomycin A1 or by the ULK-inhibitor MRT68921, diminished the protecting effect of cAMP signaling on DNA damage-induced cell death. Having previously proposed a role of the cAMP signaling pathway in development and treatment of BCP-ALLs, we here suggest that inhibitors of autophagy may improve current DNA damage-based therapy of BCP-ALL - independent of p53.
Collapse
Affiliation(s)
- Seham Skah
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Nina Richartz
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Eva Duthil
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Karin M Gilljam
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Christian Bindesbøll
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Elin Hallan Naderi
- Department of Oncology, Section for Head and Neck Oncology, Oslo University Hospital, Oslo, Norway
| | - Agnete B Eriksen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ellen Ruud
- Department of Hematology and Oncology, Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marta M Dirdal
- Department of Hematology and Oncology, Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Heidi Kiil Blomhoff
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
34
|
Kathiravan M, Singh M, Bhatia P, Trehan A, Varma N, Sachdeva MS, Bansal D, Jain R, Naseem S. Deletion of CDKN2A/B is associated with inferior relapse free survival in pediatric B cell acute lymphoblastic leukemia. Leuk Lymphoma 2018; 60:433-441. [PMID: 29966470 DOI: 10.1080/10428194.2018.1482542] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Considering conflicting data on CDKN2A/B deletion in ALL, this study to assess its prognostic significance as an independent marker in a total of 96 pediatric B and T-ALL cases was planned. The overall frequency of CDKN2A/B deletion was 44% (n = 43) with 36% (30/83) in B-ALL and 100% (13/13) in T-ALL. CDKN2A/B deletion was significantly associated with high WBC count (p = .002) and National Cancer Institute risk (p = .01) in B-ALL. Importantly, CDKN2A/B deletion cases had poor EFS of 42% at 28 months compared to EFS of 90% in rest (p = .0004). Further, relapse free survival was only 56% for cases with CDKN2A/B deletions (n = 25), compared to 100% in control group (p = .001). Moreover, CDKN2A/B deletion was the only risk factor associated with early relapse (p = .01) compared to IKZF1 deletion (p = .73) or occurrence of BCR-ABL1 fusion transcript (p = .26). Thus our study data highlights potential prognostic role of CDKN2A/B deletions in early disease stratification in pediatric B-ALL.
Collapse
Affiliation(s)
- M Kathiravan
- a Paediatric Haematology-Oncology Unit , Post Graduate Institute of Medical Education and Research , Chandigarh , India
| | - Minu Singh
- a Paediatric Haematology-Oncology Unit , Post Graduate Institute of Medical Education and Research , Chandigarh , India
| | - Prateek Bhatia
- a Paediatric Haematology-Oncology Unit , Post Graduate Institute of Medical Education and Research , Chandigarh , India
| | - Amita Trehan
- a Paediatric Haematology-Oncology Unit , Post Graduate Institute of Medical Education and Research , Chandigarh , India
| | - Neelam Varma
- b Department of Haematology , Post Graduate Institute of Medical Education and Research , Chandigarh , India
| | - Manupdesh Singh Sachdeva
- b Department of Haematology , Post Graduate Institute of Medical Education and Research , Chandigarh , India
| | - Deepak Bansal
- a Paediatric Haematology-Oncology Unit , Post Graduate Institute of Medical Education and Research , Chandigarh , India
| | - Richa Jain
- a Paediatric Haematology-Oncology Unit , Post Graduate Institute of Medical Education and Research , Chandigarh , India
| | - Shano Naseem
- b Department of Haematology , Post Graduate Institute of Medical Education and Research , Chandigarh , India
| |
Collapse
|
35
|
Aoe M, Ishida H, Matsubara T, Karakawa S, Kawaguchi H, Fujiwara K, Kanamitsu K, Washio K, Okada K, Shibakura M, Shimada A. Simultaneous detection of ABL1
mutation and IKZF1
deletion in Philadelphia chromosome-positive acute lymphoblastic leukemia using a customized target enrichment system panel. Int J Lab Hematol 2018; 40:427-436. [DOI: 10.1111/ijlh.12805] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 02/15/2018] [Indexed: 11/30/2022]
Affiliation(s)
- M. Aoe
- Division of Medical Support; Okayama University Hospital; Okayama Japan
| | - H. Ishida
- Department of Pediatrics; Okayama University Hospital; Okayama Japan
| | - T. Matsubara
- Department of BioBank; Okayama University Hospital; Okayama Japan
| | - S. Karakawa
- Department of Pediatrics; Hiroshima University Hospital; Hiroshima Japan
| | - H. Kawaguchi
- Department of Pediatrics; Hiroshima University Hospital; Hiroshima Japan
| | - K. Fujiwara
- Department of Pediatrics; Okayama University Hospital; Okayama Japan
| | - K. Kanamitsu
- Department of Pediatrics; Okayama University Hospital; Okayama Japan
| | - K. Washio
- Department of Pediatrics; Okayama University Hospital; Okayama Japan
| | - K. Okada
- Division of Medical Support; Okayama University Hospital; Okayama Japan
| | - M. Shibakura
- Field of Medical Technology; Okayama University Graduate School of Health Sciences; Okayama Japan
| | - A. Shimada
- Department of Pediatrics; Okayama University Hospital; Okayama Japan
| |
Collapse
|
36
|
Vshyukova V, Valochnik A, Meleshko A. Expression of aberrantly spliced oncogenic Ikaros isoforms coupled with clonal IKZF1 deletions and chimeric oncogenes in acute lymphoblastic leukemia. Blood Cells Mol Dis 2018; 71:29-38. [PMID: 29496375 DOI: 10.1016/j.bcmd.2018.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 02/15/2018] [Accepted: 02/20/2018] [Indexed: 11/16/2022]
Affiliation(s)
- Volha Vshyukova
- Belarusian Research Center for Pediatric Oncology, Haematology and Immunology, 223053, Frunzenskaya str., 43, Minsk Region, Belarus.
| | - Alena Valochnik
- Belarusian Research Center for Pediatric Oncology, Haematology and Immunology, 223053, Frunzenskaya str., 43, Minsk Region, Belarus
| | - Alexander Meleshko
- Belarusian Research Center for Pediatric Oncology, Haematology and Immunology, 223053, Frunzenskaya str., 43, Minsk Region, Belarus
| |
Collapse
|
37
|
Fang Q, Yuan T, Li Y, Feng J, Gong X, Li Q, Zhao X, Liu K, Tang K, Tian Z, Zhang Q, Wang Y, Liu B, Wang M, Ru K, Wang J, Mi Y. Prognostic significance of copy number alterations detected by multi-link probe amplification of multiple genes in adult acute lymphoblastic leukemia. Oncol Lett 2018; 15:5359-5367. [PMID: 29552179 DOI: 10.3892/ol.2018.7985] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 12/07/2017] [Indexed: 02/07/2023] Open
Abstract
The multiplex ligation-dependent probe amplification (MLPA) method was used to detect the copy number alterations (CNAs) of IKAROS family zinc finger 1 (IKZF1), paired box 5 (PAX5), ETS variant 6 (ETV6), RB transcriptional corepressor 1 (RB1), BTG anti-proliferation factor 1 (BTG1), early B-cell factor 1 (EBF1), cyclin dependent kinase inhibitor 2A/2B (CDKN2A/2B) and cytokine receptor like factor 2 (CRLF2) genes in 87 adults with acute lymphoblastic leukemia (ALL) in China. The effects of CNAs on prognosis were analyzed. Gene deletions were detected in 58/87 (66.7%) ALL patients. The most common deletions were observed in the following genes: IKZF1 (40.6%), CDKN2A (31.9%), CDKN2B (29%), PAX5 (21.7%), RB1 (14.5%) and BTG1 (10.1%). B cell-ALL (B-ALL) patients with CDKN2A/2B deletions exhibited poor 2-year overall survival (OS; P=0.055) and relapse-free survival (RFS; P=0.054) rates. CDKN2A/2B deletions were associated with poor 2-year OS (P=0.045) and RFS (P=0.071) rates in Philadelphia chromosome positive (Ph+) B-ALL patients, as well as in the high risk (HR) B-ALL group (P=0.037 and P=0.047, respectively). Patients with PAX5 deletions displayed poor 2-year OS (P=0.004) and RFS (P=0.016) rates in Philadelphia chromosome negative (Ph-) B-ALL patients. Patients with ≥3 gene deletions exhibited a poorer prognosis than other patients (OS, P=0.001; RFS, 0.002).
Collapse
Affiliation(s)
- Qiuyun Fang
- Leukemia Department, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, P.R. China.,Hematological Cancer Laboratory, State Key Laboratory of Experimental Hematology, Tianjin 300020, P.R. China
| | - Tian Yuan
- Hematology Department, Tianjin Cancer Hospital, Tianjin 300060, P.R. China
| | - Yan Li
- Leukemia Department, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, P.R. China
| | - Juan Feng
- Leukemia Department, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, P.R. China.,Hematological Cancer Laboratory, State Key Laboratory of Experimental Hematology, Tianjin 300020, P.R. China
| | - Xiaoyuan Gong
- Leukemia Department, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, P.R. China
| | - Qinghua Li
- Leukemia Department, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, P.R. China
| | - Xingli Zhao
- Leukemia Department, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, P.R. China
| | - Kaiqi Liu
- Leukemia Department, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, P.R. China
| | - Kejing Tang
- Leukemia Department, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, P.R. China.,Hematological Cancer Laboratory, State Key Laboratory of Experimental Hematology, Tianjin 300020, P.R. China
| | - Zheng Tian
- Leukemia Department, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, P.R. China.,Hematological Cancer Laboratory, State Key Laboratory of Experimental Hematology, Tianjin 300020, P.R. China
| | - Qi Zhang
- Leukemia Department, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, P.R. China.,Hematological Cancer Laboratory, State Key Laboratory of Experimental Hematology, Tianjin 300020, P.R. China
| | - Ying Wang
- Leukemia Department, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, P.R. China
| | - Bingcheng Liu
- Leukemia Department, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, P.R. China
| | - Min Wang
- Leukemia Department, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, P.R. China.,Hematological Cancer Laboratory, State Key Laboratory of Experimental Hematology, Tianjin 300020, P.R. China
| | - Kun Ru
- Leukemia Department, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, P.R. China
| | - Jianxiang Wang
- Leukemia Department, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, P.R. China.,Hematological Cancer Laboratory, State Key Laboratory of Experimental Hematology, Tianjin 300020, P.R. China
| | - Yingchang Mi
- Leukemia Department, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, P.R. China.,Hematological Cancer Laboratory, State Key Laboratory of Experimental Hematology, Tianjin 300020, P.R. China
| |
Collapse
|
38
|
Sewastianik T, Jiang M, Sukhdeo K, Patel SS, Roberts K, Kang Y, Alduaij A, Dennis PS, Lawney B, Liu R, Song Z, Xiong J, Zhang Y, Lemieux ME, Pinkus GS, Rich JN, Weinstock DM, Mullighan CG, Sharpless NE, Carrasco RD. Constitutive Ras signaling and Ink4a/Arf inactivation cooperate during the development of B-ALL in mice. Blood Adv 2017; 1:2361-2374. [PMID: 29296886 PMCID: PMC5729631 DOI: 10.1182/bloodadvances.2017012211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 09/24/2017] [Indexed: 11/20/2022] Open
Abstract
Despite recent advances in treatment, human precursor B-cell acute lymphoblastic leukemia (B-ALL) remains a challenging clinical entity. Recent genome-wide studies have uncovered frequent genetic alterations involving RAS pathway mutations and loss of the INK4A/ARF locus, suggesting their important role in the pathogenesis, relapse, and chemotherapy resistance of B-ALL. To better understand the oncogenic mechanisms by which these alterations might promote B-ALL and to develop an in vivo preclinical model of relapsed B-ALL, we engineered mouse strains with induced somatic KrasG12D pathway activation and/or loss of Ink4a/Arf during early stages of B-cell development. Although constitutive activation of KrasG12D in B cells induced prominent transcriptional changes that resulted in enhanced proliferation, it was not sufficient by itself to induce development of a high-grade leukemia/lymphoma. Instead, in 40% of mice, these engineered mutations promoted development of a clonal low-grade lymphoproliferative disorder resembling human extranodal marginal-zone lymphoma of mucosa-associated lymphoid tissue or lymphoplasmacytic lymphoma. Interestingly, loss of the Ink4a/Arf locus, apart from reducing the number of apoptotic B cells broadly attenuated KrasG12D-induced transcriptional signatures. However, combined Kras activation and Ink4a/Arf inactivation cooperated functionally to induce a fully penetrant, highly aggressive B-ALL phenotype resembling high-risk subtypes of human B-ALL such as BCR-ABL and CRFL2-rearranged. Ninety percent of examined murine B-ALL tumors showed loss of the wild-type Ink4a/Arf locus without acquisition of highly recurrent cooperating events, underscoring the role of Ink4a/Arf in restraining Kras-driven oncogenesis in the lymphoid compartment. These data highlight the importance of functional cooperation between mutated Kras and Ink4a/Arf loss on B-ALL.
Collapse
Affiliation(s)
- Tomasz Sewastianik
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Meng Jiang
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA
- Department of Surgical Oncology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kumar Sukhdeo
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic, Cleveland, OH
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Sanjay S Patel
- Department of Pathology, Brigham & Women's Hospital, Boston, MA
| | - Kathryn Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Yue Kang
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA
| | - Ahmad Alduaij
- Pathology and Laboratory Medicine Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Peter S Dennis
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA
| | - Brian Lawney
- Center for Computational Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Ruiyang Liu
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA
| | - Zeyuan Song
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA
| | - Jessie Xiong
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC
| | - Yunyu Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; and
| | | | | | - Jeremy N Rich
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic, Cleveland, OH
| | - David M Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; and
| | | | - Norman E Sharpless
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC
| | - Ruben D Carrasco
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA
- Department of Pathology, Brigham & Women's Hospital, Boston, MA
| |
Collapse
|
39
|
Ribera J, Zamora L, Morgades M, Mallo M, Solanes N, Batlle M, Vives S, Granada I, Juncà J, Malinverni R, Genescà E, Guàrdia R, Mercadal S, Escoda L, Martinez-Lopez J, Tormo M, Esteve J, Pratcorona M, Martinez-Losada C, Solé F, Feliu E, Ribera JM. Copy number profiling of adult relapsed B-cell precursor acute lymphoblastic leukemia reveals potential leukemia progression mechanisms. Genes Chromosomes Cancer 2017; 56:810-820. [PMID: 28758283 DOI: 10.1002/gcc.22486] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/22/2017] [Accepted: 07/22/2017] [Indexed: 12/11/2022] Open
Abstract
The outcome of relapsed adult acute lymphoblastic leukemia (ALL) remains dismal despite new therapeutic approaches. Previous studies analyzing relapse samples have shown a high degree of heterogeneity regarding gene alterations without an evident relapse signature. Bone marrow or peripheral blood samples from 31 adult B-cell precursor ALL patients at first relapse, and 21 paired diagnostic samples were analyzed by multiplex ligation probe-dependent amplification (MLPA). Nineteen paired diagnostic and relapse samples of these 21 patients were also analyzed by SNP arrays. A trend to acquire homozygous CDKN2A/B deletions and a significant increase in the number of copy number alterations (CNA) was observed from diagnosis to first relapse. Evolution from an ancestral clone was the main pattern of clonal evolution. Relapse samples were extremely heterogeneous regarding CNA frequencies. However, CDKN2A/B, PAX5, ETV6, ATM, IKZF1, VPREB1, and TP53 deletions and duplications of 1q, 8q, 17q, 21, X/Y PAR1, and Xp were frequently detected at relapse. Duplications of genes involved in cell proliferation, drug resistance and stem cell homeostasis regulation, as well as deletions of KDM6A and STAG2 genes emerged as specific alterations at relapse. Genomics of relapsed adult B-cell precursor ALL is highly heterogeneous, although some recurrent lesions involved in essential pathways deregulation were frequently observed. Selective and simultaneous targeting of these deregulated pathways may improve the results of current salvage therapies.
Collapse
Affiliation(s)
- Jordi Ribera
- Josep Carreras Leukemia Research Institute (IJC), Universitat Autònoma de Barcelona, Badalona, Spain
| | - Lurdes Zamora
- Josep Carreras Leukemia Research Institute (IJC), Universitat Autònoma de Barcelona, Badalona, Spain
- Catalan Institute of Oncology-Germans Trias i Pujol, Badalona, Spain
| | - Mireia Morgades
- Josep Carreras Leukemia Research Institute (IJC), Universitat Autònoma de Barcelona, Badalona, Spain
- Catalan Institute of Oncology-Germans Trias i Pujol, Badalona, Spain
| | - Mar Mallo
- Josep Carreras Leukemia Research Institute (IJC), Universitat Autònoma de Barcelona, Badalona, Spain
| | - Neus Solanes
- Josep Carreras Leukemia Research Institute (IJC), Universitat Autònoma de Barcelona, Badalona, Spain
| | - Montserrat Batlle
- Josep Carreras Leukemia Research Institute (IJC), Universitat Autònoma de Barcelona, Badalona, Spain
- Catalan Institute of Oncology-Germans Trias i Pujol, Badalona, Spain
| | - Susana Vives
- Josep Carreras Leukemia Research Institute (IJC), Universitat Autònoma de Barcelona, Badalona, Spain
- Catalan Institute of Oncology-Germans Trias i Pujol, Badalona, Spain
| | - Isabel Granada
- Josep Carreras Leukemia Research Institute (IJC), Universitat Autònoma de Barcelona, Badalona, Spain
- Catalan Institute of Oncology-Germans Trias i Pujol, Badalona, Spain
| | - Jordi Juncà
- Josep Carreras Leukemia Research Institute (IJC), Universitat Autònoma de Barcelona, Badalona, Spain
- Catalan Institute of Oncology-Germans Trias i Pujol, Badalona, Spain
| | - Roberto Malinverni
- Josep Carreras Leukemia Research Institute (IJC), Universitat Autònoma de Barcelona, Badalona, Spain
| | - Eulàlia Genescà
- Josep Carreras Leukemia Research Institute (IJC), Universitat Autònoma de Barcelona, Badalona, Spain
| | - Ramon Guàrdia
- Catalan Institute of Oncology-Josep Trueta, Girona, Spain
| | - Santiago Mercadal
- Catalan Institute of Oncology-Duran i Reynals, L'Hospitalet de Llobregat, Spain
| | - Lourdes Escoda
- Catalan Institute of Oncology-Joan XXIII, Tarragona, Spain
| | | | | | - Jordi Esteve
- Josep Carreras Leukemia Research Institute (IJC), Universitat Autònoma de Barcelona, Badalona, Spain
- Clinic Hospital, Barcelona, Spain
| | - Marta Pratcorona
- Josep Carreras Leukemia Research Institute (IJC), Universitat Autònoma de Barcelona, Badalona, Spain
- Sant Pau Hospital, Barcelona, Spain
| | | | - Francesc Solé
- Josep Carreras Leukemia Research Institute (IJC), Universitat Autònoma de Barcelona, Badalona, Spain
| | - Evarist Feliu
- Josep Carreras Leukemia Research Institute (IJC), Universitat Autònoma de Barcelona, Badalona, Spain
- Catalan Institute of Oncology-Germans Trias i Pujol, Badalona, Spain
| | - Josep-Maria Ribera
- Josep Carreras Leukemia Research Institute (IJC), Universitat Autònoma de Barcelona, Badalona, Spain
- Catalan Institute of Oncology-Germans Trias i Pujol, Badalona, Spain
| |
Collapse
|
40
|
Bainer RO, Trendowski MR, Cheng C, Pei D, Yang W, Paugh SW, Goss KH, Skol AD, Pavlidis P, Pui CH, Gilliam TC, Evans WE, Onel K. A p53-regulated apoptotic gene signature predicts treatment response and outcome in pediatric acute lymphoblastic leukemia. Cancer Manag Res 2017; 9:397-410. [PMID: 28979163 PMCID: PMC5602435 DOI: 10.2147/cmar.s139864] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Gene signatures have been associated with outcome in pediatric acute lymphoblastic leukemia (ALL) and other malignancies. However, determining the molecular drivers of these expression changes remains challenging. In ALL blasts, the p53 tumor suppressor is the primary regulator of the apoptotic response to genotoxic chemotherapy, which is predictive of outcome. Consequently, we hypothesized that the normal p53-regulated apoptotic response to DNA damage would be altered in ALL and that this alteration would influence drug response and treatment outcome. To test this, we first used global expression profiling in related human B-lineage lymphoblastoid cell lines with either wild type or mutant TP53 to characterize the normal p53-mediated transcriptional response to ionizing radiation (IR) and identified 747 p53-regulated apoptotic target genes. We then sorted these genes into six temporal expression clusters (TECs) based upon differences over time in their IR-induced p53-regulated gene expression patterns, and found that one cluster (TEC1) was associated with multidrug resistance in leukemic blasts in one cohort of children with ALL and was an independent predictor of survival in two others. Therefore, by investigating p53-mediated apoptosis in vitro, we identified a gene signature significantly associated with drug resistance and treatment outcome in ALL. These results suggest that intersecting pathway-derived and clinically derived expression data may be a powerful method to discover driver gene signatures with functional and clinical implications in pediatric ALL and perhaps other cancers as well.
Collapse
Affiliation(s)
| | - Matthew R Trendowski
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, IL
| | | | | | | | - Steven W Paugh
- Hematological Malignancy Program, St Jude Children's Research Hospital, Memphis, TN
| | | | - Andrew D Skol
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Paul Pavlidis
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Ching-Hon Pui
- Hematological Malignancy Program, St Jude Children's Research Hospital, Memphis, TN.,Department of Oncology
| | | | - William E Evans
- Hematological Malignancy Program, St Jude Children's Research Hospital, Memphis, TN.,Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN
| | - Kenan Onel
- Division of Human Genetics and Genomics.,Division of Hematology/Oncology and Stem Cell Transplantation, Cohen Children's Medical Center, New Hyde Park.,The Feinstein Institute for Medical Research, Manhasset, NY.,Hofstra Northwell School of Medicine, Hofstra University, Hempstead, NY, USA
| |
Collapse
|
41
|
Intragenic amplification of PAX5: a novel subgroup in B-cell precursor acute lymphoblastic leukemia? Blood Adv 2017; 1:1473-1477. [PMID: 29296789 DOI: 10.1182/bloodadvances.2017006734] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/30/2017] [Indexed: 01/10/2023] Open
Abstract
Intragenic PAX5 amplification defines a novel, relapse-prone subtype of B-cell precursor acute lymphoblastic leukemia with a poor outcome.
Collapse
|
42
|
Abstract
Acute lymphoblastic leukemia (ALL) is characterized by a great biological and clinical heterogeneity. Despite most adult patients enter complete hematologic remission after induction therapy only 40% survive five or more years. Over the last 20 years, the definition of an accurate biologic leukemia profile and the minimal residual disease evaluation in addition to conventional risk criteria led to a significant improvement for the risk stratification. The alterations of the oncosuppressor gene TP53, including deletions, sequence mutations and defect in its expression due to regulatory defects, define a new important predictor of adverse outcome. More recently, new drugs have been developed with the aim of targeting p53 protein itself or its regulatory molecules, such as Mdm2, and restoring the pathway functionality. Therefore, TP53 alterations should be considered in the diagnostic work-up to identify high risk ALL patients in need of intensive treatment strategies or eligible for new innovative targeted therapies.
Collapse
Affiliation(s)
- Silvia Salmoiraghi
- a Hematology and Bone Marrow Transplant Unit of Azienda Ospedaliera Papa Giovanni XXIII , Bergamo , Italy
| | - Alessandro Rambaldi
- a Hematology and Bone Marrow Transplant Unit of Azienda Ospedaliera Papa Giovanni XXIII , Bergamo , Italy.,b Department of Hematology-Oncology , University of Milan , Milan , Italy
| | - Orietta Spinelli
- a Hematology and Bone Marrow Transplant Unit of Azienda Ospedaliera Papa Giovanni XXIII , Bergamo , Italy
| |
Collapse
|
43
|
Genomic analysis of adult B-ALL identifies potential markers of shorter survival. Leuk Res 2017; 56:44-51. [DOI: 10.1016/j.leukres.2017.01.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/02/2017] [Accepted: 01/29/2017] [Indexed: 11/17/2022]
|
44
|
Witkowski MT, Hu Y, Roberts KG, Boer JM, McKenzie MD, Liu GJ, Le Grice OD, Tremblay CS, Ghisi M, Willson TA, Horstmann MA, Aifantis I, Cimmino L, Frietze S, den Boer ML, Mullighan CG, Smyth GK, Dickins RA. Conserved IKAROS-regulated genes associated with B-progenitor acute lymphoblastic leukemia outcome. J Exp Med 2017; 214:773-791. [PMID: 28190000 PMCID: PMC5339666 DOI: 10.1084/jem.20160048] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 10/05/2016] [Accepted: 12/19/2016] [Indexed: 12/31/2022] Open
Abstract
Genetic alterations disrupting the transcription factor IKZF1 (encoding IKAROS) are associated with poor outcome in B lineage acute lymphoblastic leukemia (B-ALL) and occur in >70% of the high-risk BCR-ABL1+ (Ph+) and Ph-like disease subtypes. To examine IKAROS function in this context, we have developed novel mouse models allowing reversible RNAi-based control of Ikaros expression in established B-ALL in vivo. Notably, leukemias driven by combined BCR-ABL1 expression and Ikaros suppression rapidly regress when endogenous Ikaros is restored, causing sustained disease remission or ablation. Comparison of transcriptional profiles accompanying dynamic Ikaros perturbation in murine B-ALL in vivo with two independent human B-ALL cohorts identified nine evolutionarily conserved IKAROS-repressed genes. Notably, high expression of six of these genes is associated with inferior event-free survival in both patient cohorts. Among them are EMP1, which was recently implicated in B-ALL proliferation and prednisolone resistance, and the novel target CTNND1, encoding P120-catenin. We demonstrate that elevated Ctnnd1 expression contributes to maintenance of murine B-ALL cells with compromised Ikaros function. These results suggest that IKZF1 alterations in B-ALL leads to induction of multiple genes associated with proliferation and treatment resistance, identifying potential new therapeutic targets for high-risk disease.
Collapse
Affiliation(s)
- Matthew T Witkowski
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia.,Molecular Medicine Division, Walter and Eliza Hall Institute of Medical Research, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Yifang Hu
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Victoria, Australia
| | - Kathryn G Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Judith M Boer
- Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, 3015 CN Rotterdam, Netherlands
| | - Mark D McKenzie
- Molecular Medicine Division, Walter and Eliza Hall Institute of Medical Research, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Grace J Liu
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia.,Molecular Medicine Division, Walter and Eliza Hall Institute of Medical Research, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Oliver D Le Grice
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia.,Molecular Medicine Division, Walter and Eliza Hall Institute of Medical Research, Victoria, Australia
| | - Cedric S Tremblay
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | - Margherita Ghisi
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | - Tracy A Willson
- Molecular Medicine Division, Walter and Eliza Hall Institute of Medical Research, Victoria, Australia
| | - Martin A Horstmann
- Research Institute Children's Cancer Center, Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, 20246 Hamburg, Germany
| | - Iannis Aifantis
- Department of Pathology, NYU School of Medicine, New York, NY 10016
| | - Luisa Cimmino
- Department of Pathology, NYU School of Medicine, New York, NY 10016
| | - Seth Frietze
- Department of Medical Laboratory and Radiation Science, University of Vermont, Burlington, VT 05405
| | - Monique L den Boer
- Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, 3015 CN Rotterdam, Netherlands.,Dutch Childhood Oncology Group, 2545 The Hague, Netherlands
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Gordon K Smyth
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Victoria, Australia.,Department of Mathematics and Statistics, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Ross A Dickins
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia .,Molecular Medicine Division, Walter and Eliza Hall Institute of Medical Research, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville 3010, Victoria, Australia
| |
Collapse
|
45
|
Churchman ML, Mullighan CG. Ikaros: Exploiting and targeting the hematopoietic stem cell niche in B-progenitor acute lymphoblastic leukemia. Exp Hematol 2017; 46:1-8. [PMID: 27865806 PMCID: PMC5241204 DOI: 10.1016/j.exphem.2016.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 11/02/2016] [Indexed: 01/23/2023]
Abstract
Genetic alterations of IKZF1 encoding the lymphoid transcription factor IKAROS are a hallmark of high-risk B-progenitor acute lymphoblastic leukemia (ALL), such as BCR-ABL1-positive (Ph+) and Ph-like ALL, and are associated with poor outcome even in the era of contemporary chemotherapy incorporating tyrosine kinase inhibitors. Recent experimental mouse modeling of B-progenitor ALL has shown that IKZF1 alterations have multiple effects, including arresting differentiation, skewing lineage of leukemia from myeloid to lymphoid, and, in Ph+ leukemia, conferring resistance to tyrosine kinase inhibitor (TKI) therapy without abrogating ABL1 inhibition. These effects are in part mediated by acquisition of an aberrant hematopoietic stem cell-like program accompanied by induction of cell surface expression of stem cell and adhesion molecules that mediate extravascular invasion and residence in the niche and activation of integrin signaling pathways. These effects can be exploited therapeutically using several approaches. IKZF1 alterations also result in upregulation of RXRA that encodes part of the heterodimeric retinoic acid X receptor. Rexinoids, a synthetic class of retinoids that bind specifically to retinoid "X" receptors such as bexarotene potently reverse aberrant adhesion and niche mislocalization in vivo and induce differentiation and cell cycle arrest. Focal adhesion kinase inhibitors block the downstream integrin-mediated signaling, reverse adhesion, and niche mislocalization. Both agents act synergistically with TKIs to prolong survival of Ph+ ALL in mouse and human xenograft model, with long-term remission induced by focal adhesion kinase inhibitors. Therefore, these findings provide important new conceptual insights into the mechanisms by which IKZF1 alterations result in drug resistance and indicate that therapeutic strategies directed against the pathways deregulated by mutation, rather than attempting to restore IKZF1 expression directly, represent promising therapeutic approaches in this disease.
Collapse
Affiliation(s)
- Michelle L Churchman
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
46
|
Sundaresh A, Williams O. Mechanism of ETV6-RUNX1 Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:201-216. [PMID: 28299659 DOI: 10.1007/978-981-10-3233-2_13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The t(12;21)(p13;q22) translocation is the most frequently occurring single genetic abnormality in pediatric leukemia. This translocation results in the fusion of the ETV6 and RUNX1 genes. Since its discovery in the 1990s, the function of the ETV6-RUNX1 fusion gene has attracted intense interest. In this chapter, we will summarize current knowledge on the clinical significance of ETV6-RUNX1, the experimental models used to unravel its function in leukemogenesis, the identification of co-operating mutations and the mechanisms responsible for their acquisition, the function of the encoded transcription factor and finally, the future therapeutic approaches available to mitigate the associated disease.
Collapse
Affiliation(s)
- Aishwarya Sundaresh
- Cancer section, Developmental Biology and Cancer Programme, UCL Institute of Child Health, London, UK
| | - Owen Williams
- Cancer section, Developmental Biology and Cancer Programme, UCL Institute of Child Health, London, UK.
| |
Collapse
|
47
|
Acute lymphoblastic leukemia relapsing after first-line pediatric-inspired therapy: a retrospective GRAALL study. Blood Cancer J 2016; 6:e504. [PMID: 27935576 PMCID: PMC5223147 DOI: 10.1038/bcj.2016.111] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 10/06/2016] [Indexed: 01/16/2023] Open
Abstract
The outcome of adult patients with Philadelphia chromosome-negative acute lymphoblastic leukemia (Ph− ALL) relapsing after pediatric-inspired front-line therapy is ill known. Here 229 relapsing Ph− ALL younger adults (18–63 years) treated within the Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL)-2003/-2005 trials were considered. Salvage regimens consisted of potentially curative therapies in 194 cases, low-intensity therapies in 21, allogeneic stem cell transplant (allo-SCT) in 6 and best supportive care in 8. Overall, 77 patients received allo-SCT after relapse. The median follow-up was 3.1 years. A second complete remission (CR2) was achieved in 121 patients (53%). In multivariate analysis, only younger age <45 years (P=0.008) and CR1 duration ⩾18 months (P=0.009) predicted CR2. Overall survival (OS) at 2 and 5 years was 19.3% (14–24%) and 13.3% (8–18%), respectively. In CR2 patients, disease-free survival (DFS) at 2 and 5 years was 29.0% (21–38%) and 25% (17–33%). In multivariate analysis, CR1 duration ⩾18 months and allo-SCT after relapse were associated with longer DFS (P<0.009 and P=0.004, respectively) and longer OS (P=0.004 and P<0.0001, respectively). In conclusion, although younger adults relapsing after pediatric-inspired ALL therapies retain a poor outcome, some of them may be cured if CR1 duration ⩾18 months and if allo-SCT can be performed in CR2. New therapies are definitely needed for these patients.
Collapse
|
48
|
Abstract
Acute lymphoblastic leukemia (ALL) is the most common malignancy in childhood. Despite enormous improvement of prognosis during the last half century, ALL remains a major cause of childhood cancer-related mortality. During the past decade, whole genomic methods have enhanced our knowledge of disease biology. Stratification of therapy according to early treatment response measured by minimal residual disease allows risk group assignment into different treatment arms, ranging from reduction to intensification of treatment. Progress has been achieved in academic clinical trials by optimization of combined chemotherapy, which continues to be the mainstay of contemporary treatment. The availability of suitable volunteer main histocompatibility antigen-matched unrelated donors has increased the rates of hematopoietic stem cell transplantation (HSCT) over the past two decades. Allogeneic HSCT has become an alternative treatment for selected, very-high-risk patients. However, intensive treatment burdens children with severe acute toxic effects that can cause permanent organ damage and even toxic death. Immunotherapeutic approaches have recently come to the forefront in ALL therapy. Monoclonal antibodies blinatumomab and inotuzumab ozogamicin as well as gene-modified T cells directed to specific target antigens have shown efficacy against resistant/relapsed leukemia in phase I/II studies. Integration of these newer modalities into combined regimens with chemotherapy may rescue a subset of children not curable by contemporary therapy. Another major challenge will be to incorporate less toxic regimens into the therapy of patients with low-risk disease who have a nearly 100% chance of being cured, and the ultimate goal is to improve their quality of life while maintaining a high cure rate.
Collapse
Affiliation(s)
- Jan Starý
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Ondřej Hrušák
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
49
|
An Q, Qi G, Jin M. Current views of pediatric B cell precursor acute leucoyteic leukemia. Minerva Pediatr 2016; 71:376-379. [PMID: 27652901 DOI: 10.23736/s0026-4946.16.04730-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The most common type cancer prevailing in pediatric patients worldwide is acute lymphoblastic leukemia (ALL). The characteristic feature of this cancer is the accumulation of immature lymphoid cell in the bone marrow. Further a subtype of ALL namely B-cell precursor (BCP)-ALL has raised in the recent years and is the most common subtype of ALL prevalent in children worldwide. The present review article will put light on the current aspects of BCP ALL including etiology, causative factors, diagnostic and treatment.
Collapse
Affiliation(s)
- Qi An
- Department of Hematology, Xuzhou Children's Hospital, Xuzhou, China
| | - Gongjian Qi
- Department of Hematology, Xuzhou Children's Hospital, Xuzhou, China
| | - Mingwei Jin
- Department of Hematology, Xuzhou Children's Hospital, Xuzhou, China -
| |
Collapse
|
50
|
Kutlay NY, Pekpak E, Altıner S, Ileri T, Vicdan AN, Dinçaslan H, Ince EU, Tukun FA. Prognostic impact of RUNX1 and ETV6 gene copy number on pediatric B-cell precursor acute lymphoblastic leukemia with or without hyperdiploidy. Int J Hematol 2016; 104:368-77. [PMID: 27393278 DOI: 10.1007/s12185-016-2034-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/26/2016] [Accepted: 05/26/2016] [Indexed: 10/21/2022]
Abstract
The ETV6/RUNX1 fusion gene is a valuable prognostic marker that is frequently observed in B-cell precursor acute lymphoblastic leukemia (B-cell ALL). However, the clinical significance of copy number aberrations in these genes remains unclear. In this study, the effects of various aberrations inETV6 and RUNX1 gene copy number on disease prognosis were evaluated in 21 pediatric patients diagnosed with B-cell ALL with/without t(12;21). The prognostic significance of changes in gene copy number of ETV6 or RUNX1 in the presence or absence of hyperdiploidy, trisomy 21, and t(12;21) translocation were also evaluated. RUNX1 gene copy number amplifications were detected in 83 % of the patients who lacked t(12;21) and in all of the patients with hyperdiploidy. Trisomy 21 was detected in 78 % of the patients with hyperdiploidy. Changes in ETV6 gene copy number were detected in patients who lacked both the t(12;21) translocation and RUNX1 gene copy number amplifications. However, RUNX1 gene copy number amplification and ETV6 deletion were observed in all of the patients with t(12;21). RUNX1 gene copy number amplification was associated with hyperdiploidy, but not with t(12;21). Thus, the evaluation of distinct FISH and cytogenetic patterns in patients with B-cell ALL may strengthen the prognostic significance of changes in gene copy number.
Collapse
Affiliation(s)
| | - Esra Pekpak
- Ankara University School of Medicine, Pediatric Hematology and Oncology, Ankara, Turkey
| | - Sule Altıner
- Ankara University School of Medicine, Medical Genetics, Ankara, Turkey
| | - Talia Ileri
- Ankara University School of Medicine, Pediatric Hematology and Oncology, Ankara, Turkey
| | | | - Handan Dinçaslan
- Ankara University School of Medicine, Pediatric Hematology and Oncology, Ankara, Turkey
| | - Elif Unal Ince
- Ankara University School of Medicine, Pediatric Hematology and Oncology, Ankara, Turkey
| | - Fatma Ajlan Tukun
- Ankara University School of Medicine, Medical Genetics, Ankara, Turkey
| |
Collapse
|