1
|
Hosseini A, Dhall A, Ikonen N, Sikora N, Nguyen S, Shen Y, Amaral MLJ, Jiao A, Wallner F, Sergeev P, Lim Y, Yang Y, Vick B, Kawabata KC, Melnick A, Vyas P, Ren B, Jeremias I, Psaila B, Heckman CA, Blanco MA, Shi Y. Perturbing LSD1 and WNT rewires transcription to synergistically induce AML differentiation. Nature 2025:10.1038/s41586-025-08915-1. [PMID: 40240608 DOI: 10.1038/s41586-025-08915-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/18/2025] [Indexed: 04/18/2025]
Abstract
Impaired differentiation is a hallmark of myeloid malignancies1,2. Therapies that enable cells to circumvent the differentiation block, such as all-trans retinoic acid (ATRA) and arsenic trioxide (ATO), are by and large curative in acute promyelocytic leukaemia3, but whether 'differentiation therapy' is a generalizable therapeutic approach for acute myeloid leukaemia (AML) and beyond remains incompletely understood. Here we demonstrate that simultaneous inhibition of the histone demethylase LSD1 (LSD1i) and the WNT pathway antagonist GSK3 kinase4 (GSK3i) robustly promotes therapeutic differentiation of established AML cell lines and primary human AML cells, as well as reducing tumour burden and significantly extending survival in a patient-derived xenograft mouse model. Mechanistically, this combination promotes differentiation by activating genes in the type I interferon pathway via inducing expression of transcription factors such as IRF7 (LSD1i) and the co-activator β-catenin (GSK3i), and their selective co-occupancy at targets such as STAT1, which is necessary for combination-induced differentiation. Combination treatment also suppresses the canonical, pro-oncogenic WNT pathway and cell cycle genes. Analysis of datasets from patients with AML suggests a correlation between the combination-induced transcription signature and better prognosis, highlighting clinical potential of this strategy. Collectively, this combination strategy rewires transcriptional programs to suppress stemness and to promote differentiation, which may have important therapeutic implications for AML and WNT-driven cancers beyond AML.
Collapse
Affiliation(s)
- Amir Hosseini
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Abhinav Dhall
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nemo Ikonen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Natalia Sikora
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sylvain Nguyen
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Yuqi Shen
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM), University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK
| | | | - Alan Jiao
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Felice Wallner
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Philipp Sergeev
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Yuhua Lim
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Yuanqin Yang
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Binje Vick
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and University Hospital LMU Munich, Munich, Germany
| | - Kimihito Cojin Kawabata
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Ari Melnick
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Paresh Vyas
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM), University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Bing Ren
- Cell and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Irmela Jeremias
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and University Hospital LMU Munich, Munich, Germany
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Bethan Psaila
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM), University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Caroline A Heckman
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland.
| | - M Andrés Blanco
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Yang Shi
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Wu D, Khan FA, Zhang K, Pandupuspitasari NS, Negara W, Guan K, Sun F, Huang C. Retinoic acid signaling in development and differentiation commitment and its regulatory topology. Chem Biol Interact 2024; 387:110773. [PMID: 37977248 DOI: 10.1016/j.cbi.2023.110773] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
Retinoic acid (RA), the derivative of vitamin A/retinol, is a signaling molecule with important implications in health and disease. It is a well-known developmental morphogen that functions mainly through the transcriptional activity of nuclear RA receptors (RARs) and, uncommonly, through other nuclear receptors, including peroxisome proliferator-activated receptors. Intracellular RA is under spatiotemporally fine-tuned regulation by synthesis and degradation processes catalyzed by retinaldehyde dehydrogenases and P450 family enzymes, respectively. In addition to dictating the transcription architecture, RA also impinges on cell functioning through non-genomic mechanisms independent of RAR transcriptional activity. Although RA-based differentiation therapy has achieved impressive success in the treatment of hematologic malignancies, RA also has pro-tumor activity. Here, we highlight the relevance of RA signaling in cell-fate determination, neurogenesis, visual function, inflammatory responses and gametogenesis commitment. Genetic and post-translational modifications of RAR are also discussed. A better understanding of RA signaling will foster the development of precision medicine to improve the defects caused by deregulated RA signaling.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | | | - Windu Negara
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| |
Collapse
|
3
|
Lee G, Franklin J, Gupta K, Liu R, Zhou L, Ryder C, Sobieraj L, Molitor L, Abiona O, Meyerson H, Das I, Jackson Z, Wald DN. Loss of GSK3β in hematopoietic stem cells results in normal hematopoiesis in mice. Blood Adv 2023; 7:7185-7189. [PMID: 37922427 PMCID: PMC10698258 DOI: 10.1182/bloodadvances.2022008094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/15/2023] [Accepted: 09/04/2023] [Indexed: 11/05/2023] Open
Affiliation(s)
- Grace Lee
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Jude Franklin
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Kalpana Gupta
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Ruifu Liu
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Lan Zhou
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Christopher Ryder
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Lukasz Sobieraj
- Midwestern University Chicago College of Osteopathic Medicine, Downers Grove, IL
| | - Luke Molitor
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Olubukola Abiona
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Howard Meyerson
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Indrani Das
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Zachary Jackson
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - David N. Wald
- Department of Pathology, Case Western Reserve University, Cleveland, OH
- Department of Pathology, Louis Stokes Cleveland VA Medical Center, Cleveland, OH
| |
Collapse
|
4
|
Novel Insights into the Role of Kras in Myeloid Differentiation: Engaging with Wnt/β-Catenin Signaling. Cells 2023; 12:cells12020322. [PMID: 36672256 PMCID: PMC9857056 DOI: 10.3390/cells12020322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Cells of the HL-60 myeloid leukemia cell line can be differentiated into neutrophil-like cells by treatment with dimethyl sulfoxide (DMSO). The molecular mechanisms involved in this differentiation process, however, remain unclear. This review focuses on the differentiation of HL-60 cells. Although the Ras proteins, a group of small GTP-binding proteins, are ubiquitously expressed and highly homologous, each has specific molecular functions. Kras was shown to be essential for normal mouse development, whereas Hras and Nras are not. Kras knockout mice develop profound hematopoietic defects, indicating that Kras is required for hematopoiesis in adults. The Wnt/β-catenin signaling pathway plays a crucial role in regulating the homeostasis of hematopoietic cells. The protein β-catenin is a key player in the Wnt/β-catenin signaling pathway. A great deal of evidence shows that the Wnt/β-catenin signaling pathway is deregulated in malignant tumors, including hematological malignancies. Wild-type Kras acts as a tumor suppressor during DMSO-induced differentiation of HL-60 cells. Upon DMSO treatment, Kras translocates to the plasma membrane, and its activity is enhanced. Inhibition of Kras attenuates CD11b expression. DMSO also elevates levels of GSK3β phosphorylation, resulting in the release of unphosphorylated β-catenin from the β-catenin destruction complex and its accumulation in the cytoplasm. The accumulated β-catenin subsequently translocates into the nucleus. Inhibition of Kras attenuates Lef/Tcf-sensitive transcription activity. Thus, upon treatment of HL-60 cells with DMSO, wild-type Kras reacts with the Wnt/β-catenin pathway, thereby regulating the granulocytic differentiation of HL-60 cells. Wild-type Kras and the Wnt/β-catenin signaling pathway are activated sequentially, increasing the levels of expression of C/EBPα, C/EBPε, and granulocyte colony-stimulating factor (G-CSF) receptor.
Collapse
|
5
|
Zhan Q, Zhang H, Wu B, Zhang N, Zhang L. E3 ubiquitin ligases in the acute leukemic signaling pathways. Front Physiol 2022; 13:1004330. [PMID: 36439256 PMCID: PMC9691902 DOI: 10.3389/fphys.2022.1004330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022] Open
Abstract
Acute leukemia is a common hematologic tumor with highly genetic heterogeneity, and many factors are involved in the pathogenesis and drug-resistance mechanism. Emerging evidence proves that E3 ubiquitin ligases participate in the acute leukemic signaling pathways via regulating substrates. This review summarized the E3 ligases which can affect the leukemic signal. It is worth noting that the abnormal signal is often caused by a deficiency or a mutation of the E3 ligases. In view of this phenomenon, we envisioned perspectives associated with targeted agonists of E3 ligases and proteolysis-targeting chimera technology. Moreover, we emphasized the significance of research into the upstream factors regulating the expression of E3 ubiquitin ligases. It is expected that the understanding of the mechanism of leukemic signaling pathways with which that E3 ligases are involved will be beneficial to accelerating the process of therapeutic strategy improvement for acute leukemia.
Collapse
Affiliation(s)
- Qianru Zhan
- Department of Hematology, The First Hospital of China Medical University, Shenyang, China
| | - Heyang Zhang
- Department of Hematology, The First Hospital of China Medical University, Shenyang, China
| | - Boquan Wu
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| | - Naijin Zhang
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Lijun Zhang, ; Naijin Zhang,
| | - Lijun Zhang
- Department of Hematology, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Lijun Zhang, ; Naijin Zhang,
| |
Collapse
|
6
|
Ding L, Roeck K, Zhang C, Zidek B, Rodman E, Hernandez-Barco Y, Zhang JS, Bamlet W, Oberg A, Zhang L, Bardeesy N, Li H, Billadeau D. Nuclear GSK-3β and Oncogenic KRas Lead to the Retention of Pancreatic Ductal Progenitor Cells Phenotypically Similar to Those Seen in IPMN. Front Cell Dev Biol 2022; 10:853003. [PMID: 35646902 PMCID: PMC9136019 DOI: 10.3389/fcell.2022.853003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022] Open
Abstract
Glycogen synthase kinase-3β (GSK-3β) is a downstream target of oncogenic KRas and can accumulate in the nucleus in pancreatic ductal adenocarcinoma (PDA). To determine the interplay between oncogenic KRas and nuclear GSK-3β in PDA development, we generated Lox-STOP-Lox (LSL) nuclear-targeted GSK-3β animals and crossed them with LSL-KRasG12D mice under the control of the Pdx1-cre transgene—referred to as KNGC. Interestingly, 4-week-old KNGC animals show a profound loss of acinar cells, the expansion of ductal cells, and the rapid development of cystic-like lesions reminiscent of intraductal papillary mucinous neoplasm (IPMN). RNA-sequencing identified the expression of several ductal cell lineage genes including AQP5. Significantly, the Aqp5+ ductal cell pool was proliferative, phenotypically distinct from quiescent pancreatic ductal cells, and deletion of AQP5 limited expansion of the ductal pool. Aqp5 is also highly expressed in human IPMN along with GSK-3β highlighting the putative role of Aqp5+ ductal cells in human preneoplastic lesion development. Altogether, these data identify nGSK-3β and KRasG12D as an important signaling node promoting the retention of pancreatic ductal progenitor cells, which could be used to further characterize pancreatic ductal development as well as lineage biomarkers related to IPMN and PDA.
Collapse
Affiliation(s)
- Li Ding
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Li Ding, ; Daniel Billadeau,
| | - Kaely Roeck
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Cheng Zhang
- Department of Molecular and Experimental Therapeutics, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Brooke Zidek
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Esther Rodman
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | | | - Jin-San Zhang
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN, United States
- Center for Precision Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - William Bamlet
- Department of Health Sciences Research, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Ann Oberg
- Department of Health Sciences Research, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Lizhi Zhang
- Department of Laboratory Medicine and Pathology, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Nabeel Bardeesy
- Center for Cancer Research, Harvard Medical School, Boston, MA, United States
| | - Hu Li
- Department of Molecular and Experimental Therapeutics, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Daniel Billadeau
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Li Ding, ; Daniel Billadeau,
| |
Collapse
|
7
|
Development of inhibitors targeting glycogen synthase kinase-3β for human diseases: Strategies to improve selectivity. Eur J Med Chem 2022; 236:114301. [PMID: 35390715 DOI: 10.1016/j.ejmech.2022.114301] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023]
Abstract
Glycogen synthase kinase-3β (GSK-3β) is a conserved serine/threonine kinase that participates in the transmission of multiple signaling pathways and plays an important role in the occurrence and development of human diseases, such as metabolic diseases, neurological diseases and cancer, making it to be a potential and promising drug target. To date, copious GSK-3β inhibitors have been synthesized, but only few have entered clinical trials. Most of them exerts poor selectivity, concomitant off-target effects and side effects. This review summarizes the structural characteristics, biological functions and relationship with diseases of GSK-3β, as well as the selectivity profile and therapeutic potential of different categories of GSK-3β inhibitors. Strategies for increasing selectivity and reducing adverse effects are proposed for the future design of GSK-3β inhibitors.
Collapse
|
8
|
Karati D, Shaoo KK, Mahadik K, Kumr D. Glycogen synthase kinase-3β inhibitors as a novel promising target in the treatment of cancer: Medicinal chemistry perspective. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
9
|
Takahashi S. Kinase Inhibitors and Interferons as Other Myeloid Differentiation Inducers in Leukemia Therapy. Acta Haematol 2021; 145:113-121. [PMID: 34673646 DOI: 10.1159/000519769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022]
Abstract
Differentiation therapy using all-trans retinoic acid (ATRA) is well established for the treatment of acute promyelocytic leukemia (APL). Several attempts have been made to treat non-APL acute myeloid leukemia (AML) patients by employing differentiation inducers, such as hypomethylating agents and low-dose cytarabine, with encouraging results. In the present review, I focus on other possible differentiation inducers: kinase inhibitors and interferons (IFNs). A number of kinase inhibitors have been reported to induce differentiation, including CDK inhibitors, GSK3 inhibitors, Akt inhibitors, p38 MAPK inhibitors, Src family kinase inhibitors, Syk inhibitors, mTOR inhibitors, and HSP90 inhibitors. Other powerful inducers are IFNs, which were reported to enhance differentiation with ATRA. Although clinical trials for these kinase modulators remain scarce, their mechanisms of action have been, at least partly, clarified. The Raf/MEK/ERK MAPK pathway and the RARα downstream are affected by many of the kinase inhibitors and IFNs and seem to play a pivotal role for the induction of myeloid differentiation. Further clarification of the mechanisms, as well as the establishment of efficient combination therapies with the kinase inhibitors or IFNs, may lead to the development of effective therapeutic strategies for AML.
Collapse
Affiliation(s)
- Shinichiro Takahashi
- Division of Laboratory Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
10
|
Martelli AM, Evangelisti C, Paganelli F, Chiarini F, McCubrey JA. GSK-3: a multifaceted player in acute leukemias. Leukemia 2021; 35:1829-1842. [PMID: 33811246 DOI: 10.1038/s41375-021-01243-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023]
Abstract
Glycogen synthase kinase 3 (GSK-3) consists of two isoforms (α and β) that were originally linked to glucose metabolism regulation. However, GSK-3 is also involved in several signaling pathways controlling many different key functions in healthy cells. GSK-3 is a unique kinase in that its isoforms are constitutively active, while they are inactivated mainly through phosphorylation at Ser residues by a variety of upstream kinases. In the early 1990s, GSK-3 emerged as a key player in cancer cell pathophysiology. Since active GSK-3 promotes destruction of multiple oncogenic proteins (e.g., β-catenin, c-Myc, Mcl-1) it was considered to be a tumor suppressor. Accordingly, GSK-3 is frequently inactivated in human cancer via aberrant regulation of upstream signaling pathways. More recently, however, it has emerged that GSK-3 isoforms display also oncogenic properties, as they up-regulate pathways critical for neoplastic cell proliferation, survival, and drug-resistance. The regulatory roles of GSK-3 isoforms in cell cycle, apoptosis, DNA repair, tumor metabolism, invasion, and metastasis reflect the therapeutic relevance of these kinases and provide the rationale for combining GSK-3 inhibitors with other targeted drugs. Here, we discuss the multiple and often conflicting roles of GSK-3 isoforms in acute leukemias. We also review the current status of GSK-3 inhibitor development for innovative leukemia therapy.
Collapse
Affiliation(s)
- Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Camilla Evangelisti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Francesca Paganelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" Unit of Bologna, Bologna, Italy.,IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Francesca Chiarini
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" Unit of Bologna, Bologna, Italy.,IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
11
|
Sriram D, Dayma K, Devi AS, Raghawan AK, Rawat S, Radha V. Complex formation and reciprocal regulation between GSK3β and C3G. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118964. [PMID: 33450305 DOI: 10.1016/j.bbamcr.2021.118964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 11/16/2022]
Abstract
GSK3β, a ubiquitously expressed Ser/Thr kinase, regulates cell metabolism, proliferation and differentiation. Its activity is spatially and temporally regulated dependent on external stimuli and interacting partners, and its deregulation is associated with various human disorders. In this study, we identify C3G (RapGEF1), a protein essential for mammalian embryonic development as an interacting partner and substrate of GSK3β. In vivo and in vitro interaction assays demonstrated that GSK3β and Akt are present in complex with C3G. Molecular modelling and mutational analysis identified a domain in C3G that aids interaction with GSK3β, and overlaps with its nuclear export sequence. GSK3β phosphorylates C3G on primed as well as unprimed sites, and regulates its subcellular localization. Over-expression of C3G resulted in activation of Akt and inactivation of GSK3β. Huntingtin aggregate formation, dependent on GSK3β inhibition, was enhanced upon C3G overexpression. Stable clones of C2C12 cells generated by CRISPR/Cas9 mediated knockdown of C3G, that cannot differentiate, show reduced Akt activity and S9-GSK3β phosphorylation compared to wild type cells. Co-expression of catalytically active GSK3β inhibited C3G induced myocyte differentiation. C3G mutant defective for GSK3β phosphorylation, does not alter S9-GSK3β phosphorylation and, is compromised for inducing myocyte differentiation. Our results show complex formation and reciprocal regulation between GSK3β and C3G. We have identified a novel function of C3G as a negative regulator of GSK3β, a property important for its ability to induce myogenic differentiation.
Collapse
Affiliation(s)
- Divya Sriram
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Kunal Dayma
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Ambure Sharada Devi
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | | - Shivali Rawat
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Vegesna Radha
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India.
| |
Collapse
|
12
|
Mishra M, Thacker G, Sharma A, Singh AK, Upadhyay V, Sanyal S, Verma SP, Tripathi AK, Bhatt MLB, Trivedi AK. FBW7 Inhibits Myeloid Differentiation in Acute Myeloid Leukemia via GSK3-Dependent Ubiquitination of PU.1. Mol Cancer Res 2020; 19:261-273. [PMID: 33188146 DOI: 10.1158/1541-7786.mcr-20-0268] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/17/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022]
Abstract
Glycogen synthase kinase 3β (GSK3β), an ubiquitously expressed serine/threonine kinase is reported to be overexpressed and hyperactivated in cancers including acute myeloid leukemia (AML) where it promotes self-renewal, growth, and survival of AML cells. Therefore, GSK3β inhibition results in AML cell growth inhibition and myeloid differentiation. Here we identified master transcription factor PU.1 of monocyte-macrophage differentiation pathway as potential GSK3β target. We demonstrate that GSK3β phosphorylates PU.1 at Ser41 and Ser140 leading to its recognition and subsequent ubiquitin-mediated degradation by E3 ubiquitin ligase FBW7. This GSK3-dependent degradation of PU.1 by FBW7 inhibited monocyte-macrophage differentiation. We further showed that a phospho-deficient PU.1 mutant (PU.1-S41, S140A) neither bound to FBW7 nor was degraded by it. Consequently, PU.1-S41, S140A retained its transactivation, DNA-binding ability and promoted monocyte-macrophage differentiation of U937 cells even without phorbol 12-myristate 13-acetate (PMA) treatment. We further showed that FBW7 overexpression inhibited both PMA as well as M-CSF-induced macrophage differentiation of myeloid cell lines and peripheral blood mononuclear cells (PBMC) from healthy volunteers, respectively. Contrarily, FBW7 depletion promoted differentiation of these cells even without any inducer suggesting for a robust role of GSK3β-FBW7 axis in negatively regulating myeloid differentiation. Furthermore, we also recapitulated these findings in PBMCs isolated from patients with leukemia where FBW7 overexpression markedly inhibited endogenous PU.1 protein levels. In addition, PBMCs also showed enhanced differentiation when treated with M-CSF and GSK3 inhibitor (SB216763) together compared with M-CSF treatment alone. IMPLICATIONS: Our data demonstrate a plausible mechanism behind PU.1 restoration and induction of myeloid differentiation upon GSK3β inhibition and further substantiates potential of GSK3β as a therapeutic target in AML.
Collapse
Affiliation(s)
- Mukul Mishra
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Gatha Thacker
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Akshay Sharma
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Anil Kumar Singh
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Vishal Upadhyay
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Sabyasachi Sanyal
- Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow, UP, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India
| | | | - Anil Kumar Tripathi
- King George's Medical University, Lucknow, UP, India.,Ram Manohar Lohia Institute of Medical Sciences (RMLIMS), UP, Lucknow, India
| | | | - Arun Kumar Trivedi
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India
| |
Collapse
|
13
|
Buschner G, Feuerecker B, Spinner S, Seidl C, Essler M. Differentiation of acute myeloid leukemia (AML) cells with ATRA reduces 18F-FDG uptake and increases sensitivity towards ABT-737-induced apoptosis. Leuk Lymphoma 2020; 62:630-639. [PMID: 33140666 DOI: 10.1080/10428194.2020.1839648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Acute myeloid leukemia (AML) is a malignant disease of the bone marrow, comprising various subtypes. We have investigated seven different AML cell lines that showed different sensitivities toward the inducer of apoptosis ABT-737, with IC50 concentrations ranging from 9.9 nM to 1.8 µM. Besides, the AML cell lines revealed distinct differences in 18F-FDG uptake ranging from 4.1 to 11.0%. Moreover, the Pearson coefficient (0.363) suggests a moderate correlation between 18F-FDG uptake and the IC50 values of ABT-737. Differentiation of the AML cell lines NB-4 and AML-193 with all-trans-retinoic-acid (ATRA) induced a significant increase in sensitivity towards ABT-737 along with a reduced uptake of 18F-FDG. Therefore, 18F-FDG uptake could be predictive on sensitivity to treatment with ABT-737. Furthermore, because differentiation treatment of AML cells using ATRA reduced 18F-FDG uptake and increased sensitivity towards ABT-737, a combined treatment regimen with ATRA and ABT-737 might be a promising therapeutic option in the future.
Collapse
Affiliation(s)
- Gabriel Buschner
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Benedikt Feuerecker
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Sabine Spinner
- Department of Hematology and Oncology, Internal Medicine III, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Christof Seidl
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Markus Essler
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Department of Nuclear Medicine, Universitätsklinikum Bonn, Bonn, Germany
| |
Collapse
|
14
|
Salt-inducible kinase inhibition sensitizes human acute myeloid leukemia cells to all-trans retinoic acid-induced differentiation. Int J Hematol 2020; 113:254-262. [PMID: 33074481 DOI: 10.1007/s12185-020-03026-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/20/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
Differentiation therapies with all-trans retinoic acid (ATRA) have been successful in treating acute promyelocytic leukemia, a rare subtype of acute myeloid leukemia (AML). However, their efficacy is limited in the case of other AML subtypes. Here, we show that the combination of ATRA with salt-inducible kinase (SIK) inhibition significantly enhances ATRA-mediated AML differentiation. SIK inhibition augmented the ability of ATRA to induce growth inhibition and G1 cell cycle arrest of AML cells. Moreover, combining ATRA and SIK inhibition synergistically activated the Akt signaling pathway but not the MAPK pathway. Pharmacological blockade of Akt activity suppressed the combination-induced differentiation, indicating an essential role for Akt in the action of the combination treatment. Taken together, our study reveals a novel role for SIK in the regulation of ATRA-mediated AML differentiation, implicating the combination of ATRA and SIK inhibition as a promising approach for future differentiation therapy.
Collapse
|
15
|
Lee YC, Shi YJ, Wang LJ, Chiou JT, Huang CH, Chang LS. GSK3β suppression inhibits MCL1 protein synthesis in human acute myeloid leukemia cells. J Cell Physiol 2020; 236:570-586. [PMID: 32572959 DOI: 10.1002/jcp.29884] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/27/2020] [Accepted: 06/04/2020] [Indexed: 01/09/2023]
Abstract
Previous studies have shown that glycogen synthase kinase 3β (GSK3β) suppression is a potential strategy for human acute myeloid leukemia (AML) therapy. However, the cytotoxic mechanism associated with GSK3β suppression remains unresolved. Thus, the underlying mechanism of N-(4-methoxybenzyl)-N'-(5-nitro-1,3-thiazol-2-yl)urea (AR-A014418)-elicited GSK3β suppression in the induction of AML U937 and HL-60 cell death was investigated in this study. Our study revealed that AR-A014418-induced MCL1 downregulation remarkably elicited apoptosis of U937 cells. Furthermore, the AR-A014418 treatment increased p38 MAPK phosphorylation and decreased the phosphorylated Akt and ERK levels. Activation of p38 MAPK subsequently evoked autophagic degradation of 4EBP1, while Akt inactivation suppressed mTOR-mediated 4EBP1 phosphorylation. Furthermore, AR-A014418-elicited ERK inactivation inhibited Mnk1-mediated eIF4E phosphorylation, which inhibited MCL1 mRNA translation in U937 cells. In contrast to GSK3α, GSK3β downregulation recapitulated the effect of AR-A014418 in U937 cells. Transfection of constitutively active GSK3β or cotransfection of constitutively activated MEK1 and Akt suppressed AR-A014418-induced MCL1 downregulation. Moreover, AR-A014418 sensitized U937 cells to ABT-263 (BCL2/BCL2L1 inhibitor) cytotoxicity owing to MCL1 suppression. Collectively, these results indicate that AR-A014418-induced GSK3β suppression inhibits ERK-Mnk1-eIF4E axis-modulated de novo MCL1 protein synthesis and thereby results in U937 cell apoptosis. Our findings also indicate a similar pathway underlying AR-A014418-induced death in human AML HL-60 cells.
Collapse
Affiliation(s)
- Yuan-Chin Lee
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yi-Jun Shi
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Liang-Jun Wang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chia-Hui Huang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
16
|
Glycogen Synthase Kinase 3β in Cancer Biology and Treatment. Cells 2020; 9:cells9061388. [PMID: 32503133 PMCID: PMC7349761 DOI: 10.3390/cells9061388] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/15/2022] Open
Abstract
Glycogen synthase kinase (GSK)3β is a multifunctional serine/threonine protein kinase with more than 100 substrates and interacting molecules. GSK3β is normally active in cells and negative regulation of GSK3β activity via phosphorylation of its serine 9 residue is required for most normal cells to maintain homeostasis. Aberrant expression and activity of GSK3β contributes to the pathogenesis and progression of common recalcitrant diseases such as glucose intolerance, neurodegenerative disorders and cancer. Despite recognized roles against several proto-oncoproteins and mediators of the epithelial–mesenchymal transition, deregulated GSK3β also participates in tumor cell survival, evasion of apoptosis, proliferation and invasion, as well as sustaining cancer stemness and inducing therapy resistance. A therapeutic effect from GSK3β inhibition has been demonstrated in 25 different cancer types. Moreover, there is increasing evidence that GSK3β inhibition protects normal cells and tissues from the harmful effects associated with conventional cancer therapies. Here, we review the evidence supporting aberrant GSK3β as a hallmark property of cancer and highlight the beneficial effects of GSK3β inhibition on normal cells and tissues during cancer therapy. The biological rationale for targeting GSK3β in the treatment of cancer is also discussed at length.
Collapse
|
17
|
Ueda M, Stefan T, Stetson L, Ignatz-Hoover JJ, Tomlinson B, Creger RJ, Cooper B, Lazarus HM, de Lima M, Wald DN, Caimi PF. Phase I Trial of Lithium and Tretinoin for Treatment of Relapsed and Refractory Non-promyelocytic Acute Myeloid Leukemia. Front Oncol 2020; 10:327. [PMID: 32211336 PMCID: PMC7076174 DOI: 10.3389/fonc.2020.00327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/25/2020] [Indexed: 11/13/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK3) inhibitors induce differentiation and growth inhibition of acute myeloid leukemia (AML) cells. Our pre-clinical studies showed GSK3 inhibition leads to sensitization of AML cells to tretinoin-mediated differentiation. We conducted a phase I trial of lithium, a GSK3 inhibitor, plus tretinoin for relapsed, refractory non-promyelocytic AML. Nine patients with median (range) age 65 (42–82) years were enrolled. All subjects had relapsed leukemia after prior therapy, with a median (range) of 3 (1–3) prior therapies. Oral lithium carbonate 300 mg was given 2–3 times daily and adjusted to meet target serum concentration (0.6 to 1.0 mmol/L); tretinoin 22.5 or 45 mg/m2/day (two equally divided doses) was administered orally on days 1–7 and 15–21 of a 28-day cycle. Four patients attained disease stability with no increase in circulating blasts for ≥4 weeks. Median (range) survival was 106 days (60–502). Target serum lithium concentration was achieved in all patients and correlated with GSK3 inhibition in leukemic cells. Immunophenotypic changes associated with myeloid differentiation were observed in five patients. The combination treatment led to a reduction in the CD34+ CD38– AML stem cell population both in vivo and in vitro. The combination of lithium and tretinoin is well-tolerated, induces differentiation of leukemic cells, and may target AML stem cells, but has limited clinical activity in the absence of other antileukemic agents. The results of this clinical trial suggest GSK3 inhibition can result in AML cell differentiation and may be a novel therapeutic strategy in this disease, particularly in combination with other antileukemic agents. Lithium is a weak GSK3 inhibitor and future strategies in AML treatment will probably require more potent agents targeting this pathway or combinations with other antileukemic agents. This trial is registered at ClinicalTrials.gov NCT01820624.
Collapse
Affiliation(s)
- Masumi Ueda
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, WA, United States
| | - Tammy Stefan
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Lindsay Stetson
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - James J Ignatz-Hoover
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Benjamin Tomlinson
- Stem Cell Transplant and Hematologic Malignancies Program, University Hospitals Seidman Cancer Center, Cleveland, OH, United States.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | - Richard J Creger
- Stem Cell Transplant and Hematologic Malignancies Program, University Hospitals Seidman Cancer Center, Cleveland, OH, United States.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | - Brenda Cooper
- Stem Cell Transplant and Hematologic Malignancies Program, University Hospitals Seidman Cancer Center, Cleveland, OH, United States.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | - Hillard M Lazarus
- Stem Cell Transplant and Hematologic Malignancies Program, University Hospitals Seidman Cancer Center, Cleveland, OH, United States.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | - Marcos de Lima
- Stem Cell Transplant and Hematologic Malignancies Program, University Hospitals Seidman Cancer Center, Cleveland, OH, United States.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | - David N Wald
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | - Paolo F Caimi
- Stem Cell Transplant and Hematologic Malignancies Program, University Hospitals Seidman Cancer Center, Cleveland, OH, United States.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
18
|
Pyrimethamine conjugated histone deacetylase inhibitors: Design, synthesis and evidence for triple negative breast cancer selective cytotoxicity. Bioorg Med Chem 2020; 28:115345. [DOI: 10.1016/j.bmc.2020.115345] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/12/2020] [Accepted: 01/22/2020] [Indexed: 12/25/2022]
|
19
|
Xu A, Zhang N, Cao J, Zhu H, Yang B, He Q, Shao X, Ying M. Post-translational modification of retinoic acid receptor alpha and its roles in tumor cell differentiation. Biochem Pharmacol 2020; 171:113696. [DOI: 10.1016/j.bcp.2019.113696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/05/2019] [Indexed: 12/22/2022]
|
20
|
Zhang S, Gao W, Tang J, Zhang H, Zhou Y, Liu J, Chen K, Liu F, Li W, To SKY, Wong AST, Zhang XK, Zhou H, Zeng JZ. The Roles of GSK-3β in Regulation of Retinoid Signaling and Sorafenib Treatment Response in Hepatocellular Carcinoma. Theranostics 2020; 10:1230-1244. [PMID: 31938062 PMCID: PMC6956800 DOI: 10.7150/thno.38711] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/05/2019] [Indexed: 01/10/2023] Open
Abstract
Rationale: Glycogen synthase kinase-3β (GSK-3β) plays key roles in metabolism and many cellular processes. It was recently demonstrated that overexpression of GSK-3β can confer tumor growth. However, the expression and function of GSK-3β in hepatocellular carcinoma (HCC) remain largely unexplored. This study is aimed at investigating the role and therapeutic target value of GSK-3β in HCC. Methods: We firstly clarified the expression of GSK-3β in human HCC samples. Given that deviated retinoid signalling is critical for HCC development, we studied whether GSK-3β could be involved in the regulation. Since sorafenib is currently used to treat HCC, the involvement of GSK-3β in sorafenib treatment response was determined. Co-immunoprecipitation, GST pull down, in vitro kinase assay, luciferase reporter and chromatin immunoprecipitation were used to explore the molecular mechanism. The biological readouts were examined with MTT, flow cytometry and animal experiments. Results: We demonstrated that GSK-3β is highly expressed in HCC and associated with shorter overall survival (OS). Overexpression of GSK-3β confers HCC cell colony formation and xenograft tumor growth. Tumor-associated GSK-3β is correlated with reduced expression of retinoic acid receptor-β (RARβ), which is caused by GSK-3β-mediated phosphorylation and heterodimerization abrogation of retinoid X receptor (RXRα) with RARα on RARβ promoter. Overexpression of functional GSK-3β impairs retinoid response and represses sorafenib anti-HCC effect. Inactivation of GSK-3β by tideglusib can potentiate 9-cis-RA enhancement of sorafenib sensitivity (tumor inhibition from 48.3% to 93.4%). Efficient induction of RARβ by tideglusib/9-cis-RA is required for enhanced therapeutic outcome of sorafenib, which effect is greatly inhibited by knocking down RARβ. Conclusions: Our findings demonstrate that GSK-3β is a disruptor of retinoid signalling and a new resistant factor of sorafenib in HCC. Targeting GSK-3β may be a promising strategy for HCC treatment in clinic.
Collapse
|
21
|
Wagner FF, Benajiba L, Campbell AJ, Weïwer M, Sacher JR, Gale JP, Ross L, Puissant A, Alexe G, Conway A, Back M, Pikman Y, Galinsky I, DeAngelo DJ, Stone RM, Kaya T, Shi X, Robers MB, Machleidt T, Wilkinson J, Hermine O, Kung A, Stein AJ, Lakshminarasimhan D, Hemann MT, Scolnick E, Zhang YL, Pan JQ, Stegmaier K, Holson EB. Exploiting an Asp-Glu "switch" in glycogen synthase kinase 3 to design paralog-selective inhibitors for use in acute myeloid leukemia. Sci Transl Med 2019. [PMID: 29515000 DOI: 10.1126/scitranslmed.aam8460] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Glycogen synthase kinase 3 (GSK3), a key regulatory kinase in the wingless-type MMTV integration site family (WNT) pathway, is a therapeutic target of interest in many diseases. Although dual GSK3α/β inhibitors have entered clinical trials, none has successfully translated to clinical application. Mechanism-based toxicities, driven in part by the inhibition of both GSK3 paralogs and subsequent β-catenin stabilization, are a concern in the translation of this target class because mutations and overexpression of β-catenin are associated with many cancers. Knockdown of GSK3α or GSK3β individually does not increase β-catenin and offers a conceptual resolution to targeting GSK3: paralog-selective inhibition. However, inadequate chemical tools exist. The design of selective adenosine triphosphate (ATP)-competitive inhibitors poses a drug discovery challenge due to the high homology (95% identity and 100% similarity) in this binding domain. Taking advantage of an Asp133→Glu196 "switch" in their kinase hinge, we present a rational design strategy toward the discovery of paralog-selective GSK3 inhibitors. These GSK3α- and GSK3β-selective inhibitors provide insights into GSK3 targeting in acute myeloid leukemia (AML), where GSK3α was identified as a therapeutic target using genetic approaches. The GSK3α-selective compound BRD0705 inhibits kinase function and does not stabilize β-catenin, mitigating potential neoplastic concerns. BRD0705 induces myeloid differentiation and impairs colony formation in AML cells, with no apparent effect on normal hematopoietic cells. Moreover, BRD0705 impairs leukemia initiation and prolongs survival in AML mouse models. These studies demonstrate feasibility of paralog-selective GSK3α inhibition, offering a promising therapeutic approach in AML.
Collapse
Affiliation(s)
- Florence F Wagner
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA.
| | - Lina Benajiba
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA.,INSERM U1163 and CNRS 8254, Imagine Institute, Université Paris Saclay, 91190 Paris, France
| | - Arthur J Campbell
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Michel Weïwer
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Joshua R Sacher
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Jennifer P Gale
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Linda Ross
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Alexandre Puissant
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA.,INSERM U944, Institute of Hematology, St. Louis Hospital, 75010 Paris, France
| | - Gabriela Alexe
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA.,Bioinformatics Graduate Program, Boston University, Boston, MA 02215, USA
| | - Amy Conway
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Morgan Back
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Yana Pikman
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Ilene Galinsky
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Daniel J DeAngelo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Richard M Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Taner Kaya
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Xi Shi
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Matthew B Robers
- Promega Corporation, 2800 Woods Hollow Road, Madison, WI 53711, USA
| | - Thomas Machleidt
- Promega Corporation, 2800 Woods Hollow Road, Madison, WI 53711, USA
| | | | - Olivier Hermine
- INSERM U1163 and CNRS 8254, Imagine Institute, Université Sorbonne Paris Cité, Paris, France.,Department of Hematology, Hôpital Necker, Assistance Publique Hôpitaux de Paris, University Paris Descartes, 75006 Paris, France
| | - Andrew Kung
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | - Michael T Hemann
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Edward Scolnick
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Yan-Ling Zhang
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Jen Q Pan
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Kimberly Stegmaier
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA. .,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Edward B Holson
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| |
Collapse
|
22
|
Sahin I, Eturi A, De Souza A, Pamarthy S, Tavora F, Giles FJ, Carneiro BA. Glycogen synthase kinase-3 beta inhibitors as novel cancer treatments and modulators of antitumor immune responses. Cancer Biol Ther 2019; 20:1047-1056. [PMID: 30975030 DOI: 10.1080/15384047.2019.1595283] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
As a kinase at the crossroads of numerous metabolic and cell growth signaling pathways, glycogen synthase kinase-3 beta (GSK-3β) is a highly desirable therapeutic target in cancer. Despite its involvement in pathways associated with the pathogenesis of several malignancies, no selective GSK-3β inhibitor has been approved for the treatment of cancer. The regulatory role of GSK-3β in apoptosis, cell cycle, DNA repair, tumor growth, invasion, and metastasis reflects the therapeutic relevance of this target and provides the rationale for drug combinations. Emerging data on GSK-3β as a mediator of anticancer immune response also highlight the potential clinical applications of novel selective GSK-3β inhibitors that are entering clinical studies. This manuscript reviews the preclinical and early clinical results with GSK-3β inhibitors and delineates the developmental therapeutics landscape for this potentially important target in cancer therapy.
Collapse
Affiliation(s)
- Ilyas Sahin
- a Lifespan Cancer Institute, Division of Hematology/Oncology , The Warren Alpert Medical School of Brown University , Providence , RI , USA
| | - Aditya Eturi
- b Department of Medicine , The Warren Alpert Medical School of Brown University , Providence , RI , USA
| | - Andre De Souza
- a Lifespan Cancer Institute, Division of Hematology/Oncology , The Warren Alpert Medical School of Brown University , Providence , RI , USA
| | - Sahithi Pamarthy
- c Atrin Pharmaceuticals , Pennsylvania Biotechnology Center , Doylestown , PA , USA
| | - Fabio Tavora
- d Argos Laboratory/Messejana Heart and Lung Hospital , Fortaleza , Brazil
| | - Francis J Giles
- e Developmental Therapeutics Consortium , Chicago , IL , USA
| | - Benedito A Carneiro
- a Lifespan Cancer Institute, Division of Hematology/Oncology , The Warren Alpert Medical School of Brown University , Providence , RI , USA
| |
Collapse
|
23
|
Retinoic Acid Receptor α Knockdown Suppresses the Tumorigenicity of Esophageal Carcinoma via Wnt/β-catenin Pathway. Dig Dis Sci 2018; 63:3348-3358. [PMID: 30155836 DOI: 10.1007/s10620-018-5254-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/16/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Aberrant expression of retinoic acid receptor α (RARα) was correlated with diverse carcinomas such as acute promyelocytic leukemia and colorectal carcinoma. Nevertheless, the function and mechanism of RARα in esophageal carcinoma (EC) remain unclear. AIM To investigate the expression of RARα in EC and its effect in the tumorigenesis of EC. METHODS AND RESULTS In immunohistochemistry study, RARα was overexpressed in human EC tissues, and its overexpression was closely related to the pathological differentiation, lymph node metastasis, and clinical stages in EC patients. Functionally, RARα knockdown suppressed the proliferation and metastasis of EC cells through downregulating the expression of PCNA, Ki67, MMP7, and MMP9, as well as enhanced drug susceptibility of EC cells to 5-fluorouracil and cisplatin. Mechanistically, RARα knockdown inhibited the activity of Wnt/β-catenin pathway through reducing the phosphorylation level of GSK3β at Ser-9 and inducing phosphorylation level at Tyr-216, which resulted in downregulation of its downstream targets such as MMP7, MMP9, and P-gP. CONCLUSIONS Our results demonstrated that RARα knockdown suppressed the tumorigenicity of EC via Wnt/β-catenin pathway. RARα might be a potential molecular target for EC clinical therapy.
Collapse
|
24
|
Klobuch S, Steinberg T, Bruni E, Mirbeth C, Heilmeier B, Ghibelli L, Herr W, Reichle A, Thomas S. Biomodulatory Treatment With Azacitidine, All- trans Retinoic Acid and Pioglitazone Induces Differentiation of Primary AML Blasts Into Neutrophil Like Cells Capable of ROS Production and Phagocytosis. Front Pharmacol 2018; 9:1380. [PMID: 30542286 PMCID: PMC6278634 DOI: 10.3389/fphar.2018.01380] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 11/09/2018] [Indexed: 01/06/2023] Open
Abstract
Effective and tolerable salvage therapies for elderly patients with chemorefractory acute myeloid leukemia (AML) are limited and usually do not change the poor clinical outcome. We recently described in several chemorefractory elderly AML patients that a novel biomodulatory treatment regimen consisting of low-dose azacitidine (AZA) in combination with PPARγ agonist pioglitazone (PGZ) and all-trans retinoic acid (ATRA) induced complete remission of leukemia and also triggered myeloid differentiation with rapid increase of peripheral blood neutrophils. Herein, we further investigated our observations and comprehensively analyzed cell differentiation in primary AML blasts after treatment with ATRA, AZA, and PGZ ex vivo. The drug combination was found to significantly inhibit cell growth as well as to induce cell differentiation in about half of primary AML blasts samples independent of leukemia subtype. Notably and in comparison to ATRA/AZA/PGZ triple-treatment, effects on cell growth and myeloid differentiation with ATRA monotherapy was much less efficient. Morphological signs of myeloid cell differentiation were further confirmed on a functional basis by demonstrating increased production of reactive oxygen species as well as enhanced phagocytic activity in AML blasts treated with ATRA/AZA/PGZ. In conclusion, we show that biomodulatory treatment with ATRA/AZA/PGZ can induce phenotypical and functional differentiation of primary AML blasts into neutrophil like cells, which aside from its antileukemic activity may lower neutropenia associated infection rates in elderly AML patients in vivo. Clinical impact of the ATRA/AZA/PGZ treatment regimen is currently further investigated in a randomized clinical trial in chemorefractory AML patients (NCT02942758).
Collapse
Affiliation(s)
- Sebastian Klobuch
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Tim Steinberg
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Emanuele Bruni
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Carina Mirbeth
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany.,Regensburg Center for Interventional Immunology, University Hospital Regensburg, Regensburg, Germany
| | - Bernhard Heilmeier
- Department of Oncology and Hematology, Hospital Barmherzige Brueder, Regensburg, Germany
| | - Lina Ghibelli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Wolfgang Herr
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany.,Regensburg Center for Interventional Immunology, University Hospital Regensburg, Regensburg, Germany
| | - Albrecht Reichle
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Simone Thomas
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany.,Regensburg Center for Interventional Immunology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
25
|
Ignatz-Hoover JJ, Wang V, Mackowski NM, Roe AJ, Ghansah IK, Ueda M, Lazarus HM, de Lima M, Paietta E, Fernandez H, Cripe L, Tallman M, Wald DN. Aberrant GSK3β nuclear localization promotes AML growth and drug resistance. Blood Adv 2018; 2:2890-2903. [PMID: 30385433 PMCID: PMC6234355 DOI: 10.1182/bloodadvances.2018016006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 08/23/2018] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) is a devastating disease with poor patient survival. As targetable mutations in AML are rare, novel oncogenic mechanisms are needed to define new therapeutic targets. We identified AML cells that exhibit an aberrant pool of nuclear glycogen synthase kinase 3β (GSK3β). This nuclear fraction drives AML growth and drug resistance. Nuclear, but not cytoplasmic, GSK3β enhances AML colony formation and AML growth in mouse models. Nuclear GSK3β drives AML partially by promoting nuclear localization of the NF-κB subunit, p65. Finally, nuclear GSK3β localization has clinical significance as it strongly correlates to worse patient survival (n = 86; hazard ratio = 2.2; P < .01) and mediates drug resistance in cell and animal models. Nuclear localization of GSK3β may define a novel oncogenic mechanism in AML and represent a new therapeutic target.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Cell Line, Tumor
- Cell Nucleus/metabolism
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Drug Resistance, Neoplasm
- Female
- Glycogen Synthase Kinase 3 beta/metabolism
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Myeloid-Lymphoid Leukemia Protein/metabolism
- NF-kappa B/metabolism
- Oncogene Proteins, Fusion/metabolism
- Proportional Hazards Models
- Survival Rate
- Transplantation, Heterologous
- Up-Regulation
Collapse
Affiliation(s)
| | - Victoria Wang
- Eastern Cooperative Oncology Group-American College of Radiology Imaging Network (ECOG-ACRIN) Biostatistics Center, Dana-Farber Cancer Institute, Boston, MA
| | | | - Anne J Roe
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Isaac K Ghansah
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Masumi Ueda
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Hillard M Lazarus
- Department of Hematology and Oncology, University Hospitals Case Medical Center and Case Western Reserve University, Cleveland, OH
| | - Marcos de Lima
- Department of Hematology and Oncology, University Hospitals Case Medical Center and Case Western Reserve University, Cleveland, OH
| | | | - Hugo Fernandez
- Department of Blood and Marrow Transplant, Moffitt Cancer Center, Tampa, FL
| | - Larry Cripe
- Department of Medicine, Indiana University, Indianapolis, IN
| | - Martin Tallman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; and
| | - David N Wald
- Department of Pathology, Case Western Reserve University, Cleveland, OH
- Department of Pathology, University Hospitals Case Medical Center, Cleveland, OH
| |
Collapse
|
26
|
Benajiba L, Alexe G, Su A, Raffoux E, Soulier J, Hemann MT, Hermine O, Itzykson R, Stegmaier K, Puissant A. Creatine kinase pathway inhibition alters GSK3 and WNT signaling in EVI1-positive AML. Leukemia 2018; 33:800-804. [PMID: 30390009 DOI: 10.1038/s41375-018-0291-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/24/2018] [Accepted: 09/18/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Lina Benajiba
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,The Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA, USA.,INSERM U1163 and CNRS 8254, Imagine Institute, Université Paris Saclay, Paris, France
| | - Gabriela Alexe
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,The Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA, USA.,Bioinformatics Graduate Program, Boston University, Boston, MA, USA
| | - Angela Su
- INSERM UMR 944, Institut Universitaire d'Hématologie, Hôpital St. Louis, Paris, France
| | - Emmanuel Raffoux
- Département d'Hématologie, Hôpital Saint-Louis, Assistance Publique - Hopitaux de Paris, Paris, France
| | - Jean Soulier
- Département d'Hématologie, Hôpital Saint-Louis, Assistance Publique - Hopitaux de Paris, Paris, France
| | - Michael T Hemann
- Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Olivier Hermine
- INSERM U1163 and CNRS 8254, Imagine Institute, Université Paris Saclay, Paris, France
| | - Raphael Itzykson
- INSERM UMR 944, Institut Universitaire d'Hématologie, Hôpital St. Louis, Paris, France.,Département d'Hématologie, Hôpital Saint-Louis, Assistance Publique - Hopitaux de Paris, Paris, France
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA. .,The Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Alexandre Puissant
- INSERM UMR 944, Institut Universitaire d'Hématologie, Hôpital St. Louis, Paris, France.
| |
Collapse
|
27
|
Wallace AS, Supnick HT, Bunaciu RP, Yen A. RRD-251 enhances all-trans retinoic acid (RA)-induced differentiation of HL-60 myeloblastic leukemia cells. Oncotarget 2018; 7:46401-46418. [PMID: 27331409 PMCID: PMC5216806 DOI: 10.18632/oncotarget.10136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/03/2016] [Indexed: 12/28/2022] Open
Abstract
All-trans-retinoic acid (RA) is known to induce terminal granulocytic differentiation and cell cycle arrest of HL-60 cells. Responding to an RA-induced cytosolic signaling machine, c-Raf translocates to the nucleus, providing propulsion for RA-induced differentiation. This novel mechanism is not understood, but presumably reflects c-Raf binding with nuclear gene regulatory proteins. RRD-251 is a small molecule that prevents the interaction of c-Raf and RB, the retinoblastoma tumor suppressor protein. The involvement of c-Raf and RB in RA-induced differentiation motivates interest in the effects of combined RA and RRD-251 treatment on leukemic cell differentiation. We demonstrate that RRD-251 enhances RA-induced differentiation. Mechanistically, we find that nuclear translocated c-Raf associates with pS608 RB. RA causes loss of pS608 RB, where cells with hypophosphorylated S608 RB are G0/G1 restricted. Corroborating the pS608 RB hypophosphorylation, RB sequestration of E2F increased with concomitant loss of cdc6 expression, which is known to be driven by E2F. Hypophosphorylation of S608 RB releases c-Raf from RB sequestration to bind other nuclear targets. Release of c-Raf from RB sequestration results in enhanced association with GSK-3 which is phosphorylated at its S21/9 inhibitory sites. c-Raf binding to GSK-3 is associated with dissociation of GSK-3 and RARα, thereby relieving RARα of GSK-3 inhibition. RRD-251 amplifies each of these RA-induced events. Consistent with the posited enhancement of RARα transcriptional activity by RRD-251, RRD-251 increases the RARE-driven CD38 expression per cell. The RA/c-Raf/GSK-3/RARα axis emerges as a novel differentiation regulatory mechanism susceptible to RRD-251, suggesting enhancing RA-effects with RRD-251 in therapy.
Collapse
Affiliation(s)
- Aaron S Wallace
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Harrison T Supnick
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Rodica P Bunaciu
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Andrew Yen
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
28
|
Ricciardi MR, Mirabilii S, Licchetta R, Piedimonte M, Tafuri A. Targeting the Akt, GSK-3, Bcl-2 axis in acute myeloid leukemia. Adv Biol Regul 2017; 65:36-58. [PMID: 28549531 DOI: 10.1016/j.jbior.2017.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
Over the last few decades, there has been significant progress in the understanding of the pathogenetic mechanisms of the Acute Myeloid Leukemia (AML). However, despite important advances in elucidating molecular mechanisms, the treatment of AML has not improved significantly, remaining anchored at the standard chemotherapy regimen "3 + 7", with the prognosis of patients remaining severe, especially for the elderly and for those not eligible for transplant procedures. The biological and clinical heterogeneity of AML represents the major obstacle that hinders the improvement of prognosis and the identification of new effective therapeutic approaches. To date, abundant information has been collected on the genetic and molecular alterations of AML carrying prognostic significance. However, not enough is known on how AML progenitors regulate proliferation and survival by redundant and cross-talking signal transduction pathways (STP). Furthermore, it remains unclear how such complicated network affects prognosis and therapeutic treatment options, although many of these molecular determinants are potentially attractive for their druggable characteristics. In this review, some of the key STP frequently deregulated in AML, such as PI3k/Akt/mTOR pathway, GSK3 and components of Bcl-2 family of proteins, are summarized, highlighting in addition their interplay. Based on this information, we reviewed new targeted therapeutic approaches, focusing on the aberrant networks that sustain the AML blast proliferation, survival and drug resistance, aiming to improve disease treatment. Finally, we reported the approaches aimed at disrupting key signaling cross-talk overcoming resistances based on the combination of different targeting therapeutic strategies.
Collapse
Affiliation(s)
- Maria Rosaria Ricciardi
- Hematology, "Sant'Andrea" Hospital-Sapienza, University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy
| | - Simone Mirabilii
- Hematology, "Sant'Andrea" Hospital-Sapienza, University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy.
| | - Roberto Licchetta
- Hematology, "Sant'Andrea" Hospital-Sapienza, University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy
| | - Monica Piedimonte
- Hematology, "Sant'Andrea" Hospital-Sapienza, University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy
| | - Agostino Tafuri
- Hematology, "Sant'Andrea" Hospital-Sapienza, University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy
| |
Collapse
|
29
|
Ruvolo PP. GSK-3 as a novel prognostic indicator in leukemia. Adv Biol Regul 2017; 65:26-35. [PMID: 28499784 DOI: 10.1016/j.jbior.2017.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/05/2017] [Accepted: 05/07/2017] [Indexed: 06/07/2023]
Abstract
While leukemias represent a diverse set of diseases with malignant cells derived from myeloid or lymphoid origin, a common feature is the dysregulation of signal transduction pathways that influence leukemogeneisis, promote drug resistance, and favor leukemia stem cells. Mutations in PI3K, PTEN, RAS, or other upstream regulators can activate the AKT kinase which has central roles in supporting cell proliferation and survival. A major target of AKT is Glycogen Synthase Kinase 3 (GSK3). GSK3 has two isoforms (alpha and beta) that were studied as regulators of metabolism but emerged as central players in cancer in the early 1990s. GSK3 is unique in that the isoforms are constitutively active. Active GSK3 promotes destruction of oncogenic proteins such as beta Catenin, c-MYC, and MCL-1 and thus has tumor suppressor properties. In AML, inactivation of GSK3 is associated with poor overall survival. Interestingly in some leukemias GSK3 targets a tumor suppressor and thus the kinases can act as tumor promoters in those instances. An example is GSK3 targeting p27Kip1 in AML with MLL translocation. This review will cover the role of GSK3 in various leukemias both as tumor suppressor and tumor promoter. We will also briefly cover current state of GSK3 inhibitors for leukemia therapy.
Collapse
Affiliation(s)
- Peter P Ruvolo
- Department of Leukemia, Unit 448, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, United States.
| |
Collapse
|
30
|
Hu S, Ueda M, Stetson L, Ignatz-Hoover J, Moreton S, Chakrabarti A, Xia Z, Karan G, de Lima M, Agrawal MK, Wald DN. A Novel Glycogen Synthase Kinase-3 Inhibitor Optimized for Acute Myeloid Leukemia Differentiation Activity. Mol Cancer Ther 2016; 15:1485-1494. [PMID: 27196775 DOI: 10.1158/1535-7163.mct-15-0566] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 04/06/2016] [Indexed: 11/16/2022]
Abstract
Standard therapies used for the treatment of acute myeloid leukemia (AML) are cytotoxic agents that target rapidly proliferating cells. Unfortunately, this therapeutic approach has limited efficacy and significant toxicity and the majority of AML patients still die of their disease. In contrast to the poor prognosis of most AML patients, most individuals with a rare subtype of AML, acute promyelocytic leukemia, can be cured by differentiation therapy using regimens containing all-trans retinoic acid. GSK3 has been previously identified as a therapeutic target in AML where its inhibition can lead to the differentiation and growth arrest of leukemic cells. Unfortunately, existing GSK3 inhibitors lead to suboptimal differentiation activity making them less useful as clinical AML differentiation agents. Here, we describe the discovery of a novel GSK3 inhibitor, GS87. GS87 was discovered in efforts to optimize GSK3 inhibition for AML differentiation activity. Despite GS87's dramatic ability to induce AML differentiation, kinase profiling reveals its high specificity in targeting GSK3 as compared with other kinases. GS87 demonstrates high efficacy in a mouse AML model system and unlike current AML therapeutics, exhibits little effect on normal bone marrow cells. GS87 induces potent differentiation by more effectively activating GSK3-dependent signaling components including MAPK signaling as compared with other GSK3 inhibitors. GS87 is a novel GSK3 inhibitor with therapeutic potential as a differentiation agent for non-promyelocytic AML. Mol Cancer Ther; 15(7); 1485-94. ©2016 AACR.
Collapse
Affiliation(s)
- Sophia Hu
- Department of Pathology Case Western Reserve University
| | | | | | | | | | - Amit Chakrabarti
- University Hospitals Case Medical Center and Case Western Reserve University, Cleveland, Ohio; Invenio Therapeutics Inc. Cleveland, Ohio
| | - Zhiqiang Xia
- University Hospitals Case Medical Center and Case Western Reserve University, Cleveland, Ohio; Invenio Therapeutics Inc. Cleveland, Ohio
| | - Goutam Karan
- University Hospitals Case Medical Center and Case Western Reserve University, Cleveland, Ohio; Invenio Therapeutics Inc. Cleveland, Ohio
| | | | - Mukesh K Agrawal
- University Hospitals Case Medical Center and Case Western Reserve University, Cleveland, Ohio; Invenio Therapeutics Inc. Cleveland, Ohio.,MirX Pharmaceuticals Cleveland, Ohio
| | - David N Wald
- Department of Pathology Case Western Reserve University.,University Hospitals Case Medical Center and Case Western Reserve University, Cleveland, Ohio; Invenio Therapeutics Inc. Cleveland, Ohio.,University Hospitals Case Medical Center, Cleveland, Ohio
| |
Collapse
|
31
|
Repression of GSK3 restores NK cell cytotoxicity in AML patients. Nat Commun 2016; 7:11154. [PMID: 27040177 PMCID: PMC4822012 DOI: 10.1038/ncomms11154] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 02/25/2016] [Indexed: 02/08/2023] Open
Abstract
Natural killer cells from acute myeloid leukaemia patients (AML-NK) show a dramatic impairment in cytotoxic activity. The exact reasons for this dysfunction are not fully understood. Here we show that the glycogen synthase kinase beta (GSK3β) expression is elevated in AML-NK cells. Interestingly, GSK3 overexpression in normal NK cells impairs their ability to kill AML cells, while genetic or pharmacological GSK3 inactivation enhances their cytotoxic activity. Mechanistic studies reveal that the increased cytotoxic activity correlates with an increase in AML-NK cell conjugates. GSK3 inhibition promotes the conjugate formation by upregulating LFA expression on NK cells and by inducing ICAM-1 expression on AML cells. The latter is mediated by increased NF-κB activation in response to TNF-α production by NK cells. Finally, GSK3-inhibited NK cells show significant efficacy in human AML mouse models. Overall, our work provides mechanistic insights into the AML-NK dysfunction and a potential NK cell therapy strategy. Natural killer cells of acute myeloid leukaemia patients lack cytotoxic activity. Here the authors show that these cells have elevated GSK3β, and that its inhibition prolongs survival of mice transplanted with human AML and stimulates NK cytotoxicity via increased adhesion of NK cells to their targets.
Collapse
|
32
|
Gupta K, Stefan T, Ignatz-Hoover J, Moreton S, Parizher G, Saunthararajah Y, Wald DN. GSK-3 Inhibition Sensitizes Acute Myeloid Leukemia Cells to 1,25D-Mediated Differentiation. Cancer Res 2016; 76:2743-53. [PMID: 26964622 DOI: 10.1158/0008-5472.can-15-2290] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 02/16/2016] [Indexed: 11/16/2022]
Abstract
1,25-dihydroxyvitamin D3 (1,25D), the biologically active form of vitamin D, is widely considered a promising therapy for acute myeloid leukemia (AML) based on its ability to drive differentiation of leukemic cells. However, clinical trials have been disappointing in part to dose-limiting hypercalcemia. Here we show how inhibiting glycogen synthase kinase 3 (GSK3) can improve the differentiation response of AML cells to 1,25D-mediated differentiation. GSK3 inhibition in AML cells enhanced the differentiating effects of low concentrations of 1,25D. In addition, GSK3 inhibition augmented the ability of 1,25D to induce irreversible growth inhibition and slow the progression of AML in mouse models. Mechanistic studies revealed that GSK3 inhibition led to the hyperphosphorylation of the vitamin D receptor (VDR), enabling an interaction between VDR and the coactivator, SRC-3 (NCOA3), thereby increasing transcriptional activity. We also found that activation of JNK-mediated pathways in response to GSK3 inhibition contributed to the potentiation of 1,25D-induced differentiation. Taken together, our findings offer a preclinical rationale to explore the repositioning of GSK3 inhibitors to enhance differentiation-based therapy for AML treatment. Cancer Res; 76(9); 2743-53. ©2016 AACR.
Collapse
Affiliation(s)
- Kalpana Gupta
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Tammy Stefan
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - James Ignatz-Hoover
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Stephen Moreton
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio. Invenio Therapeutics, Cleveland, Ohio
| | - Gary Parizher
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | | | - David N Wald
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio. Invenio Therapeutics, Cleveland, Ohio. University Hospitals Case Medical Center, Cleveland, Ohio.
| |
Collapse
|
33
|
Werner K, Neumann D, Seifert R. High constitutive Akt2 activity in U937 promonocytes: effective reduction of Akt2 phosphorylation by the histamine H2-receptor and the β2-adrenergic receptor. Naunyn Schmiedebergs Arch Pharmacol 2015; 389:87-101. [PMID: 26475619 DOI: 10.1007/s00210-015-1179-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/30/2015] [Indexed: 02/07/2023]
Abstract
Histamine (HA) is approved for the treatment of acute myeloid leukemia (AML). Its antileukemic activity is related to histamine H2-receptor (H2R)-mediated inhibition of reactive oxygen species (ROS) production in myeloid cells facilitating survival of antineoplastic lymphocytes. The phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway, which plays a crucial role in cell survival and proliferation, is constitutively activated in leukemic cells of most AML patients resulting in poor survival prognosis. In a proof-of-principle experiment using a human phosphorylated mitogen-activated protein kinase (MAPK) array, we found high phosphorylation levels of Akt2 in U937 promonocytes that was abrogated by HA or selective H2R agonists. The H2R and the β2-adrenergic receptor (β2AR) are Gs-protein-coupled receptors. Stimulation results in adenylyl cyclase activation followed by generation of the second messenger adenosine 3′,5′-cyclic monophosphate (cAMP). In our present study, we evaluated the pharmacological profile of the H2R and the β2AR regarding Akt2 phosphorylation at Ser474 via western blot analysis and ELISA and cAMP accumulation via HPLC-MS/MS in U937 promonocytes. H2R and β2AR agonists concentration-dependently decreased Akt2 phosphorylation at Ser474. Deviations of potencies and efficacies of agonists in Akt2 phosphorylation and cAMP accumulation assays indicated participation of cAMP-independent signaling in GPCR-induced reduction of Akt2 phosphorylation. Accordingly, our study supports the concept of functional selectivity of the H2R and the β2AR in U937 promonocytes. In summary, we extended the antileukemic mechanism of HA via H2R and revealed the potential of β2AR agonists, which are already approved in the treatment of bronchial asthma and chronic obstructive pulmonary disease, as antileukemic drugs.
Collapse
|
34
|
Wang R, Xia L, Gabrilove J, Waxman S, Jing Y. Sorafenib Inhibition of Mcl-1 Accelerates ATRA-Induced Apoptosis in Differentiation-Responsive AML Cells. Clin Cancer Res 2015; 22:1211-21. [PMID: 26459180 DOI: 10.1158/1078-0432.ccr-15-0663] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 10/06/2015] [Indexed: 01/04/2023]
Abstract
PURPOSE All trans-retinoic acid (ATRA) is successful in treating acute promyelocytic leukemia (APL) by inducing terminal differentiation-mediated cell death, but it has limited activity in non-APL acute myeloid leukemia (AML). We aim to improve ATRA therapy of AML by enhancing apoptosis through repression of the antiapoptotic proteins Bcl-2 and Mcl-1. EXPERIMENTAL DESIGN APL and AML cell lines, as well as primary AML samples, were used to explore the mechanisms regulating differentiation and apoptosis during ATRA treatment. Stable transfection and gene silencing with siRNA were used to identify the key factors that inhibit apoptosis during induction of differentiation and drugs that accelerate apoptosis. RESULTS In differentiation-responsive AML cells, ATRA treatment induces long-lasting repression of Bcl-2 while first upmodulating and then reducing the Mcl-1 level. The Mcl-1 level appears to serve as a gatekeeper between differentiation and apoptosis. During differentiation induction, activation of MEK/ERK and PI3K/Akt pathways by ATRA leads to activation of p90RSK and inactivation of glycogen synthase kinase 3β (GSK3β), which increase Mcl-1 levels by increasing its translation and stability. Sorafenib blocks ATRA-induced Mcl-1 increase by reversing p90RSK activation and GSK3β inactivation, maintains the repressed Bcl-2 level, and enhances ATRA induced apoptosis in non-APL AML cell lines and in primary AML cells. CONCLUSIONS Inhibition of Mcl-1 is required for apoptosis induction in ATRA differentiation-responsive AML cells. ATRA and sorafenib can be developed as a novel drug combination therapy for AML patients because this drug combination augments apoptosis by inhibiting Bcl-2 and Mcl-1.
Collapse
Affiliation(s)
- Rui Wang
- The Division of Hematology/Oncology, Department of Medicine, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Lijuan Xia
- The Division of Hematology/Oncology, Department of Medicine, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Janice Gabrilove
- The Division of Hematology/Oncology, Department of Medicine, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Samuel Waxman
- The Division of Hematology/Oncology, Department of Medicine, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Yongkui Jing
- The Division of Hematology/Oncology, Department of Medicine, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
35
|
Orfali N, O'Donovan TR, Nyhan MJ, Britschgi A, Tschan MP, Cahill MR, Mongan NP, Gudas LJ, McKenna SL. Induction of autophagy is a key component of all-trans-retinoic acid-induced differentiation in leukemia cells and a potential target for pharmacologic modulation. Exp Hematol 2015; 43:781-93.e2. [PMID: 25986473 PMCID: PMC4948855 DOI: 10.1016/j.exphem.2015.04.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 04/27/2015] [Accepted: 04/29/2015] [Indexed: 12/16/2022]
Abstract
Acute myeloid leukemia (AML) is characterized by the accumulation of immature blood cell precursors in the bone marrow. Pharmacologically overcoming the differentiation block in this condition is an attractive therapeutic avenue, which has achieved success only in a subtype of AML, acute promyelocytic leukemia (APL). Attempts to emulate this success in other AML subtypes have thus far been unsuccessful. Autophagy is a conserved protein degradation pathway with important roles in mammalian cell differentiation, particularly within the hematopoietic system. In the study described here, we investigated the functional importance of autophagy in APL cell differentiation. We found that autophagy is increased during all-trans-retinoic acid (ATRA)-induced granulocytic differentiation of the APL cell line NB4 and that this is associated with increased expression of LC3II and GATE-16 proteins involved in autophagosome formation. Autophagy inhibition, using either drugs (chloroquine/3-methyladenine) or short-hairpin RNA targeting the essential autophagy gene ATG7, attenuates myeloid differentiation. Importantly, we found that enhancing autophagy promotes ATRA-induced granulocytic differentiation of an ATRA-resistant derivative of the non-APL AML HL60 cell line (HL60-Diff-R). These data support the development of strategies to stimulate autophagy as a novel approach to promote differentiation in AML.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Adenine/analogs & derivatives
- Adenine/pharmacology
- Antineoplastic Agents/pharmacology
- Antirheumatic Agents/pharmacology
- Autophagy/drug effects
- Autophagy-Related Protein 7
- Autophagy-Related Protein 8 Family
- Cell Differentiation/drug effects
- Chloroquine/pharmacology
- Granulocytes/metabolism
- Granulocytes/pathology
- HL-60 Cells
- Humans
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Microfilament Proteins/genetics
- Microfilament Proteins/metabolism
- Microtubule-Associated Proteins/genetics
- Microtubule-Associated Proteins/metabolism
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Tretinoin/pharmacology
- Ubiquitin-Activating Enzymes/antagonists & inhibitors
- Ubiquitin-Activating Enzymes/genetics
- Ubiquitin-Activating Enzymes/metabolism
Collapse
Affiliation(s)
- Nina Orfali
- Cork Cancer Research Centre, Leslie C. Quick, Jr., Laboratory, Biosciences Institute, University College Cork, Cork, Ireland; Department of Hematology, Cork University Hospital, Cork, Ireland; Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA
| | - Tracey R O'Donovan
- Cork Cancer Research Centre, Leslie C. Quick, Jr., Laboratory, Biosciences Institute, University College Cork, Cork, Ireland
| | - Michelle J Nyhan
- Cork Cancer Research Centre, Leslie C. Quick, Jr., Laboratory, Biosciences Institute, University College Cork, Cork, Ireland
| | - Adrian Britschgi
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Mario P Tschan
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Mary R Cahill
- Department of Hematology, Cork University Hospital, Cork, Ireland
| | - Nigel P Mongan
- Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA; Faculty of Medicine and Health Science, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA
| | - Sharon L McKenna
- Cork Cancer Research Centre, Leslie C. Quick, Jr., Laboratory, Biosciences Institute, University College Cork, Cork, Ireland.
| |
Collapse
|
36
|
Lithium chloride antileukemic activity in acute promyelocytic leukemia is GSK-3 and MEK/ERK dependent. Leukemia 2015; 29:2277-84. [PMID: 26108692 DOI: 10.1038/leu.2015.159] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 06/04/2015] [Accepted: 06/09/2015] [Indexed: 11/08/2022]
Abstract
We recently identified that the MEK/ERK1/2 pathway synergized with retinoic acid (RA) to restore both transcriptional activity and RA-induced differentiation in RA-resistant acute promyelocytic leukemia (APL) cells. To target the MEK/ERK pathway, we identified glycogen synthase kinase-3β (GSK-3β) inhibitors including lithium chloride (LiCl) as activators of this pathway in APL cells. Using NB4 (RA-sensitive) and UF-1 (RA-resistant) APL cell lines, we observed that LiCl as well as synthetic GSK-3β inhibitors decreased proliferation, induced apoptosis and restored, in RA-resistant cells, the expression of RA target genes and the RA-induced differentiation. Inhibition of the MEK/ERK1/2 pathway abolished these effects. These results were corroborated in primary APL patient cells and translated in vivo using an APL preclinical mouse model in which LiCl given alone was as efficient as RA in increasing survival of leukemic mice compared with untreated mice. When LiCl was combined with RA, we observed a significant survival advantage compared with mice treated by RA alone. In this work, we demonstrate that LiCl, a well-tolerated agent in humans, has antileukemic activity in APL and that it has the potential to restore RA-induced transcriptional activation and differentiation in RA-resistant APL cells in an MEK/ERK-dependent manner.
Collapse
|
37
|
Johnson DE, Redner RL. An ATRActive future for differentiation therapy in AML. Blood Rev 2015; 29:263-8. [PMID: 25631637 DOI: 10.1016/j.blre.2015.01.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 01/13/2015] [Indexed: 01/17/2023]
Abstract
The success of all-trans retinoic acid (ATRA) therapy in acute promeylocytic leukemia (APL) has spawned numerous attempts to translate the paradigm of differentiation therapy to non-APL acute myelocytic leukemia (AML). However, the results of clinical trials have been overall disappointing. In this review we discuss the mechanism of retinoic acid signaling and the results of major clinical trials that have attempted to incorporate ATRA into AML regimens. We discuss recent evidence that indicate that the retinoic acid signaling pathway may be dysfunctional in AML. Preliminary studies suggest that targeting the pathways that modify retinoic acid receptor activity may reactivate the dormant retinoic acid-signaling pathway. Such strategies may revive the ability of ATRA to induce myeloid differentiation and apoptosis in non-APL AML.
Collapse
Affiliation(s)
- Daniel E Johnson
- Department of Medicine and University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh PA 15213 USA
| | - Robert L Redner
- Department of Medicine and University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh PA 15213 USA.
| |
Collapse
|
38
|
Adorno-Cruz V, Kibria G, Liu X, Doherty M, Junk DJ, Guan D, Hubert C, Venere M, Mulkearns-Hubert E, Sinyuk M, Alvarado A, Caplan AI, Rich J, Gerson SL, Lathia J, Liu H. Cancer stem cells: targeting the roots of cancer, seeds of metastasis, and sources of therapy resistance. Cancer Res 2015; 75:924-9. [PMID: 25604264 DOI: 10.1158/0008-5472.can-14-3225] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With the goal to remove the roots of cancer, eliminate metastatic seeds, and overcome therapy resistance, the 2014 inaugural International Cancer Stem Cell (CSC) Conference at Cleveland, OH, convened together over 320 investigators, including 55 invited world-class speakers, 25 short oral presenters, and 100 poster presenters, to gain an in-depth understanding of CSCs and explore therapeutic opportunities targeting CSCs. The meeting enabled intriguing discussions on several topics including: genetics and epigenetics; cancer origin and evolution; microenvironment and exosomes; metabolism and inflammation; metastasis and therapy resistance; single cell and heterogeneity; plasticity and reprogramming; as well as other new concepts. Reports of clinical trials targeting CSCs emphasized the urgent need for strategically designing combinational CSC-targeting therapies against cancer.
Collapse
Affiliation(s)
- Valery Adorno-Cruz
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Golam Kibria
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Xia Liu
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Mary Doherty
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Damian J Junk
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Dongyin Guan
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Chris Hubert
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Monica Venere
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Erin Mulkearns-Hubert
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Maksim Sinyuk
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Alvaro Alvarado
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Arnold I Caplan
- Department of Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio. National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Jeremy Rich
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio. National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, Ohio. Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Stanton L Gerson
- National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, Ohio. Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio. Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Justin Lathia
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio. National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, Ohio. Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Huiping Liu
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio. National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, Ohio. Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio.
| |
Collapse
|
39
|
Sasine JP, Schiller GJ. Emerging strategies for high-risk and relapsed/refractory acute myeloid leukemia: Novel agents and approaches currently in clinical trials. Blood Rev 2015; 29:1-9. [DOI: 10.1016/j.blre.2014.07.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/17/2014] [Accepted: 07/11/2014] [Indexed: 01/26/2023]
|
40
|
Ignatz-Hoover JJ, Wang H, Moreton SA, Chakrabarti A, Agarwal MK, Sun K, Gupta K, Wald DN. The role of TLR8 signaling in acute myeloid leukemia differentiation. Leukemia 2014; 29:918-926. [PMID: 25283842 PMCID: PMC4387126 DOI: 10.1038/leu.2014.293] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/23/2014] [Accepted: 09/22/2014] [Indexed: 02/02/2023]
Abstract
Acute myeloid leukemia (AML) is an aggressive disease with a poor 5-year survival of 21% that is characterized by a differentiation arrest of immature myeloid cells. For a rare subtype of AML (acute promyeloctyic leukemia, 5-10% of cases) all-trans retinoic acid therapy removes the differentiation block, yielding over a 90% cure rate. However, this treatment is not effective for the other 90-95% of AML patients, suggesting new differentiation strategies are needed. Interestingly, differentiation is induced in normal hematopoietic cells through Toll-like receptor (TLR) stimulation and TLRs are expressed on AML cells. We present evidence that the TLR8 activation promotes AML differentiation and growth inhibition in a TLR8/MyD88/p38 dependent manner. We also show that that TLR7/TLR8 agonist, R848, considerably impairs the growth of human AML cells in immunodeficient mice. Our data suggests TLR8 activation has direct anti-leukemic effects independent of its immunomodulating properties that are currently under investigation for cancer therapy. Taken together, our results suggest that treatment with TLR8 agonists may be a promising new therapeutic strategy for AML.
Collapse
Affiliation(s)
| | - Huaiyu Wang
- Department of Pathology, Case Western Reserve University, Cleveland OH.,Department of Hematology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Stephen A Moreton
- Department of Pathology, Case Western Reserve University, Cleveland OH
| | | | | | - Kevin Sun
- Department of Pathology, Case Western Reserve University, Cleveland OH
| | - Kalpana Gupta
- Department of Pathology, Case Western Reserve University, Cleveland OH
| | - David N Wald
- Department of Pathology, Case Western Reserve University, Cleveland OH
| |
Collapse
|
41
|
Reactive oxygen species-regulated glycogen synthase kinase-3β activation contributes to all-trans retinoic acid-induced apoptosis in granulocyte-differentiated HL60 cells. Biochem Pharmacol 2014; 88:86-94. [DOI: 10.1016/j.bcp.2013.12.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 12/26/2022]
|
42
|
Bavelloni A, Piazzi M, Faenza I, Raffini M, D'Angelo A, Cattini L, Cocco L, Blalock WL. Prohibitin 2 represents a novel nuclear AKT substrate during all-trans retinoic acid-induced differentiation of acute promyelocytic leukemia cells. FASEB J 2014; 28:2009-19. [PMID: 24522204 DOI: 10.1096/fj.13-244368] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The AKT/PKB kinase is essential for cell survival, proliferation, and differentiation; however, aberrant AKT activation leads to the aggressiveness and drug resistance of many human neoplasias. In the human acute promyelocytic leukemia cell line NB4, nuclear AKT activity increases during all-trans retinoic acid (ATRA)-mediated differentiation. As nuclear AKT activity is associated with differentiation, we sought to identify the nuclear substrates of AKT that were phosphorylated after ATRA treatment. A proteomics-based search for nuclear substrates of AKT in ATRA-treated NB4 cells was undertaken by using 2D-electrophoresis/mass spectrometry (MS) in combination with an anti-AKT phospho-substrate antibody. Western blot analysis, an in vitro kinase assay, and/or site-directed mutagenesis were performed to further characterize the MS findings. MS analysis revealed prohibitin (PHB)-2, a multifunctional protein involved in cell cycle progression and the suppression of oxidative stress, to be a putative nuclear substrate of AKT. Follow-up studies confirmed that AKT phosphorylates PHB2 on Ser-91 and that forced expression of the PHB2(S91A) mutant results in a rapid loss of viability and apoptotic cell death. Activation of nuclear AKT during ATRA-mediated differentiation results in the phosphorylation of several proteins, including PHB2, which may serve to coordinate nuclear-mitochondrial events during differentiation.
Collapse
Affiliation(s)
- Alberto Bavelloni
- 2IGM-CNR, Bologna, Rizzoli Orthopedic Institute, via di Barbiano, 1/10, 40136 Bologna, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
McCubrey JA, Davis NM, Abrams SL, Montalto G, Cervello M, Basecke J, Libra M, Nicoletti F, Cocco L, Martelli AM, Steelman LS. Diverse roles of GSK-3: tumor promoter-tumor suppressor, target in cancer therapy. Adv Biol Regul 2013; 54:176-96. [PMID: 24169510 DOI: 10.1016/j.jbior.2013.09.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 12/22/2022]
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA.
| | - Nicole M Davis
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Jorg Basecke
- Department of Medicine, University of Göttingen, Göttingen, Germany; Sanct-Josef-Hospital Cloppenburg, Department of Hematology and Oncology, Cloppenburg, Germany
| | - Massimo Libra
- Department of Bio-Medical Sciences, University of Catania, Catania, Italy
| | | | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy; Institute of Molecular Genetics, National Research Council-IOR, Bologna, Italy
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| |
Collapse
|
44
|
Multifaceted roles of GSK-3 and Wnt/β-catenin in hematopoiesis and leukemogenesis: opportunities for therapeutic intervention. Leukemia 2013; 28:15-33. [PMID: 23778311 PMCID: PMC3887408 DOI: 10.1038/leu.2013.184] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/08/2013] [Accepted: 06/11/2013] [Indexed: 02/08/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) is well documented to participate in a complex array of critical cellular processes. It was initially identified in rat skeletal muscle as a serine/threonine kinase that phosphorylated and inactivated glycogen synthase. This versatile protein is involved in numerous signaling pathways that influence metabolism, embryogenesis, differentiation, migration, cell cycle progression and survival. Recently, GSK-3 has been implicated in leukemia stem cell pathophysiology and may be an appropriate target for its eradication. In this review, we will discuss the roles that GSK-3 plays in hematopoiesis and leukemogenesis as how this pivotal kinase can interact with multiple signaling pathways such as: Wnt/β-catenin, phosphoinositide 3-kinase (PI3K)/phosphatase and tensin homolog (PTEN)/Akt/mammalian target of rapamycin (mTOR), Ras/Raf/MEK/extracellular signal-regulated kinase (ERK), Notch and others. Moreover, we will discuss how targeting GSK-3 and these other pathways can improve leukemia therapy and may overcome therapeutic resistance. In summary, GSK-3 is a crucial regulatory kinase interacting with multiple pathways to control various physiological processes, as well as leukemia stem cells, leukemia progression and therapeutic resistance. GSK-3 and Wnt are clearly intriguing therapeutic targets.
Collapse
|
45
|
Retinoid differentiation therapy for common types of acute myeloid leukemia. LEUKEMIA RESEARCH AND TREATMENT 2012; 2012:939021. [PMID: 23213553 PMCID: PMC3504222 DOI: 10.1155/2012/939021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 03/05/2012] [Indexed: 11/25/2022]
Abstract
Many cancers arise in a tissue stem cell, and cell differentiation is impaired resulting in an accumulation of immature cells. The introduction of all-trans retinoic acid (ATRA) in 1987 to treat acute promyelocytic leukemia (APL), a rare subtype of acute myeloid leukemia (AML), pioneered a new approach to obtain remission in malignancies by restoring the terminal maturation of leukemia cells resulting in these cells having a limited lifespan. Differentiation therapy also offers the prospect of a less aggressive treatment by virtue of attenuated growth of leukemia cells coupled to limited damage to normal cells. The success of ATRA in differentiation therapy of APL is well known. However, ATRA does not work in non-APL AML. Here we examine some of the molecular pathways towards new retinoid-based differentiation therapy of non-APL AML. Prospects include modulation of the epigenetic status of ATRA-insensitive AML cells, agents that influence intracellular signalling events that are provoked by ATRA, and the use of novel synthetic retinoids.
Collapse
|