1
|
Gao H, Nepovimova E, Adam V, Heger Z, Valko M, Wu Q, Kuca K. Age-associated changes in innate and adaptive immunity: role of the gut microbiota. Front Immunol 2024; 15:1421062. [PMID: 39351234 PMCID: PMC11439693 DOI: 10.3389/fimmu.2024.1421062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
Aging is generally regarded as an irreversible process, and its intricate relationship with the immune system has garnered significant attention due to its profound implications for the health and well-being of the aging population. As people age, a multitude of alterations occur within the immune system, affecting both innate and adaptive immunity. In the realm of innate immunity, aging brings about changes in the number and function of various immune cells, including neutrophils, monocytes, and macrophages. Additionally, certain immune pathways, like the cGAS-STING, become activated. These alterations can potentially result in telomere damage, the disruption of cytokine signaling, and impaired recognition of pathogens. The adaptive immune system, too, undergoes a myriad of changes as age advances. These include shifts in the number, frequency, subtype, and function of T cells and B cells. Furthermore, the human gut microbiota undergoes dynamic changes as a part of the aging process. Notably, the interplay between immune changes and gut microbiota highlights the gut's role in modulating immune responses and maintaining immune homeostasis. The gut microbiota of centenarians exhibits characteristics akin to those found in young individuals, setting it apart from the microbiota observed in typical elderly individuals. This review delves into the current understanding of how aging impacts the immune system and suggests potential strategies for reversing aging through interventions in immune factors.
Collapse
Affiliation(s)
- Haoyu Gao
- College of Life Science, Yangtze University, Jingzhou, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
| |
Collapse
|
2
|
Liu Z, Xu X, Zheng L, Ding K, Yang C, Huang J, Fu R. The value of serum IL-4 to predict the survival of MDS patients. Eur J Med Res 2023; 28:7. [PMID: 36600245 PMCID: PMC9811803 DOI: 10.1186/s40001-022-00948-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Immune indicators are routinely used for the detection of myelodysplastic syndrome (MDS), but these are not utilized as a reference indicator to assess prognosis in MDS-related prognostic evaluation systems, such as the World Health Organizational prognostic scoring system, the international prostate symptom score, and the revised international prostate symptom score. METHODS We examined immune indicators, including cluster of differentiation (CD)3, CD4, CD8, CD56, CD19, interleukin (IL)-2, IL-4, IL-6, IL-10, tumor necrosis factor-a, and interferon-γ in 155 newly diagnosed MDS patients. We also conducted a correlation analysis with clinical indices. RESULTS IL-4 was found to be a predictor of survival in these 155 patients using the receiver operating characteristic curve, with 5.155 as the cut-off point. Patients with serum IL-4 levels ≥ 5.155 had a lower overall survival (OS) than those with IL-45.155 at diagnosis. Furthermore, multivariate analysis revealed that IL-4 levels > 5.155 were an independent predictor of OS (hazard ratio: 0.237; 95% confidence interval, 0.114-0.779; P = 0.013). In addition, serum IL-4 expression in the three different scoring systems showed significant differences in the survival of medium- to high-risk MDS patients (P = 0.014, P < 0.001, P < 0.001). CONCLUSIONS According to our study, IL-4 levels at the time of diagnosis can predict MDS prognosis in patients as a simple index reflecting host systemic immunity.
Collapse
Affiliation(s)
- Zhaoyun Liu
- grid.412645.00000 0004 1757 9434Department of Hematology, Tianjin Medical University General Hospital, Tianjin, 300052 China
| | - Xintong Xu
- grid.412645.00000 0004 1757 9434Department of Hematology, Tianjin Medical University General Hospital, Tianjin, 300052 China
| | - Likun Zheng
- grid.412645.00000 0004 1757 9434Department of Hematology, Tianjin Medical University General Hospital, Tianjin, 300052 China
| | - Kai Ding
- grid.412645.00000 0004 1757 9434Department of Hematology, Tianjin Medical University General Hospital, Tianjin, 300052 China
| | - Chun Yang
- grid.412645.00000 0004 1757 9434Department of Hematology, Tianjin Medical University General Hospital, Tianjin, 300052 China
| | - Jincheng Huang
- grid.412645.00000 0004 1757 9434Department of Hematology, Tianjin Medical University General Hospital, Tianjin, 300052 China
| | - Rong Fu
- grid.412645.00000 0004 1757 9434Department of Hematology, Tianjin Medical University General Hospital, Tianjin, 300052 China
| |
Collapse
|
3
|
Belić M, Sopić M, Roksandić-Milenković M, Ćeriman V, Guzonijić A, Vukašinović A, Ostanek B, Dimić N, Jovanović D, Kotur-Stevuljević J. Correlation of Short Leukocyte Telomeres and Oxidative Stress with the Presence and Severity of Lung Cancer Explored by Principal Component Analysis. Folia Biol (Praha) 2023; 69:59-68. [PMID: 38063002 DOI: 10.14712/fb2023069020059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Lung cancer (LC) is the second most common malignancy and leading cause of cancer death. The potential "culprit" for local and systemic telomere shortening in LC patients is oxidative stress. We investigated the correlation between the peripheral blood leukocyte (PBL) telomere length (TL) and the presence/severity of LC and oxidative stress, and its usefulness as LC diagnostic marker. PBL TL was measured in 89 LC patients and 83 healthy subjects using the modified Cawthon RTq-PCR method. The relative PBL TL, found to be a potential diagnostic marker for LC with very good accuracy (P < 0.001), was significantly shorter in patients compared to the control group (CG) (P < 0.001). Significantly shorter telomeres were found in patients with LC TNM stage IV than in patients with stages I-III (P = 0.014), in patients without therapy compared to those on therapy (P = 0.008), and in patients with partial response and stable/progressive disease compared to those with complete response (P = 0.039). The total oxidant status (TOS), advanced oxidation protein products (AOPP), prooxidant-antioxidant balance (PAB) and C-reactive protein (CRP) were significantly higher in patients compared to CG (P < 0.001) and correlated negatively with TL in both patients and CG (P < 0.001). PCA showed a relation between PAB and TL, and between the EGFR status and TL. Oxidative stress and PBL telomere shortening are probably associated with LC development and progression.
Collapse
Affiliation(s)
| | - Miron Sopić
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Serbia.
| | | | - Vesna Ćeriman
- Institute for Lung Diseases, Thoracic Surgery and Tuberculosis, Clinical Center of Serbia, Belgrade, Serbia
| | - Azra Guzonijić
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Serbia
| | - Aleksandra Vukašinović
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Italy
| | - Barbara Ostanek
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Slovenia
| | - Nemanja Dimić
- University Clinical-Hospital Center Dr. Dragisa Misovic, Belgrade, Serbia
| | | | | |
Collapse
|
4
|
Plyasova AA, Zhdanov DD. Alternative Splicing of Human Telomerase Reverse Transcriptase (hTERT) and Its Implications in Physiological and Pathological Processes. Biomedicines 2021; 9:526. [PMID: 34065134 PMCID: PMC8150890 DOI: 10.3390/biomedicines9050526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/24/2022] Open
Abstract
Alternative splicing (AS) of human telomerase catalytic subunit (hTERT, human telomerase reverse transcriptase) pre-mRNA strongly regulates telomerase activity. Several proteins can regulate AS in a cell type-specific manner and determine the functions of cells. In addition to being involved in telomerase activity regulation, AS provides cells with different splice variants that may have alternative biological activities. The modulation of telomerase activity through the induction of hTERT AS is involved in the development of different cancer types and embryos, and the differentiation of stem cells. Regulatory T cells may suppress the proliferation of target human and murine T and B lymphocytes and NK cells in a contact-independent manner involving activation of TERT AS. This review focuses on the mechanism of regulation of hTERT pre-mRNA AS and the involvement of splice variants in physiological and pathological processes.
Collapse
Affiliation(s)
| | - Dmitry D. Zhdanov
- Institute of Biomedical Chemistry, Pogodinskaya st 10/8, 119121 Moscow, Russia;
| |
Collapse
|
5
|
Nofrini V, Matteucci C, Pellanera F, Gorello P, Di Giacomo D, Lema Fernandez AG, Nardelli C, Iannotti T, Brandimarte L, Arniani S, Moretti M, Gili A, Roti G, Di Battista V, Colla S, Mecucci C. Activating somatic and germline TERT promoter variants in myeloid malignancies. Leukemia 2020; 35:274-278. [PMID: 32366939 PMCID: PMC7787968 DOI: 10.1038/s41375-020-0837-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/12/2020] [Accepted: 04/08/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Valeria Nofrini
- University of Perugia, Section of Hematology and Center for Hemato-Oncology Research (C.R.E.O.), Perugia, Italy
| | - Caterina Matteucci
- University of Perugia, Section of Hematology and Center for Hemato-Oncology Research (C.R.E.O.), Perugia, Italy
| | - Fabrizia Pellanera
- University of Perugia, Section of Hematology and Center for Hemato-Oncology Research (C.R.E.O.), Perugia, Italy
| | - Paolo Gorello
- University of Perugia, Section of Hematology and Center for Hemato-Oncology Research (C.R.E.O.), Perugia, Italy
| | - Danika Di Giacomo
- University of Perugia, Section of Hematology and Center for Hemato-Oncology Research (C.R.E.O.), Perugia, Italy
| | | | - Carlotta Nardelli
- University of Perugia, Section of Hematology and Center for Hemato-Oncology Research (C.R.E.O.), Perugia, Italy
| | - Tamara Iannotti
- University of Perugia, Section of Hematology and Center for Hemato-Oncology Research (C.R.E.O.), Perugia, Italy
| | - Lucia Brandimarte
- University of Perugia, Section of Hematology and Center for Hemato-Oncology Research (C.R.E.O.), Perugia, Italy
| | - Silvia Arniani
- University of Perugia, Section of Hematology and Center for Hemato-Oncology Research (C.R.E.O.), Perugia, Italy
| | - Martina Moretti
- University of Perugia, Section of Hematology and Center for Hemato-Oncology Research (C.R.E.O.), Perugia, Italy
| | - Alessio Gili
- Public Health Section, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Giovanni Roti
- Hematology and Bone Marrow Transplantation Unit, University of Parma, Parma, Italy
| | - Valeria Di Battista
- University of Perugia, Section of Hematology and Center for Hemato-Oncology Research (C.R.E.O.), Perugia, Italy
| | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cristina Mecucci
- University of Perugia, Section of Hematology and Center for Hemato-Oncology Research (C.R.E.O.), Perugia, Italy.
| |
Collapse
|
6
|
Patrick M, Weng NP. Expression and regulation of telomerase in human T cell differentiation, activation, aging and diseases. Cell Immunol 2019; 345:103989. [PMID: 31558266 DOI: 10.1016/j.cellimm.2019.103989] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/18/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022]
Abstract
Telomeres are essential for chromosomal integrity. Telomere shortening during cell division restricts cellular proliferative capacity and leads to cellular senescence when critically shortened telomere lengths are reached. Similar to hematopoietic stem cells, T cells can upregulate telomerase activity to compensate for telomere loss incurred during proliferation in response to engagement of the T cell antigen receptor (TCR) or exposure to homeostatic cytokines. However, this compensation for telomere loss by telomerase in T cells is imperfect or limited, as shortening of T cell telomeres is observed in human aging and during in vitro longterm culture. In this review, we summarize the current state of knowledge regarding the expression and regulation of telomerase in human T cells and changes of telomerase expression during development, activation, differentiation, aging and disease conditions. In conclusion, we discuss how controlled enhancement of telomerase activity could be a potential strategy to improve T cell function in the elderly and in immunotherapy.
Collapse
Affiliation(s)
- Michael Patrick
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Nan-Ping Weng
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
7
|
Dreis C, Ottenlinger FM, Putyrski M, Ernst A, Huhn M, Schmidt KG, Pfeilschifter JM, Radeke HH. Tissue Cytokine IL-33 Modulates the Cytotoxic CD8 T Lymphocyte Activity During Nutrient Deprivation by Regulation of Lineage-Specific Differentiation Programs. Front Immunol 2019; 10:1698. [PMID: 31396219 PMCID: PMC6667839 DOI: 10.3389/fimmu.2019.01698] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/08/2019] [Indexed: 12/18/2022] Open
Abstract
IL-1 family member IL-33 exerts a variety of immune activating and regulating properties and has recently been proposed as a prognostic biomarker for cancer diseases, although its precise role in tumor immunity is unclear. Here we analyzed in vitro conditions influencing the function of IL-33 as an alarmin and a co-factor for the activity of cytotoxic CD8+ T cells in order to explain the widely discussed promiscuous behavior of IL-33 in vivo. Circulating IL-33 detected in the serum of healthy human volunteers was biologically inactive. Additionally, bioactivity of exogenous recombinant IL-33 was significantly reduced in plasma, suggesting local effects of IL-33, and inactivation in blood. Limited availability of nutrients in tissue causes necrosis and thus favors release of IL-33, which-as described before-leads to a locally high expression of the cytokine. The harsh conditions however influence T cell fitness and their responsiveness to stimuli. Nutrient deprivation and pharmacological inhibition of mTOR mediated a distinctive phenotype characterized by expression of IL-33 receptor ST2L on isolated CD8+ T cells, downregulation of CD8, a transitional CD45RAlowROlow phenotype and high expression of secondary lymphoid organ chemokine receptor CCR7. Under nutrient deprivation, IL-33 inhibited an IL-12 induced increase in granzyme B protein expression and increased expression of GATA3 and FOXP3 mRNA. IL-33 enhanced the TCR-dependent activation of CD8+ T cells and co-stimulated the IL-12/TCR-dependent expression of IFNγ. Respectively, GATA3 and FOXP3 mRNA were not regulated during TCR-dependent activation. TCR-dependent stimulation of PBMC, but not LPS, initiated mRNA expression of soluble IL-33 decoy receptor sST2, a control mechanism limiting IL-33 bioactivity to avoid uncontrolled inflammation. Our findings contribute to the understanding of the compartment-specific activity of IL-33. Furthermore, we newly describe conditions, which promote an IL-33-dependent induction of pro- or anti-inflammatory activity in CD8+ T cells during nutrient deprivation.
Collapse
Affiliation(s)
- Caroline Dreis
- pharmazentrum Frankfurt/ZAFES, Institute of Pharmacology and Toxicology, Hospital of the Goethe University, Frankfurt am Main, Germany
| | - Florian M. Ottenlinger
- pharmazentrum Frankfurt/ZAFES, Institute of Pharmacology and Toxicology, Hospital of the Goethe University, Frankfurt am Main, Germany
| | - Mateusz Putyrski
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt am Main, Germany
| | - Andreas Ernst
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt am Main, Germany
- Institute of Clinical Pharmacology, Goethe-University, Frankfurt am Main, Germany
| | - Meik Huhn
- pharmazentrum Frankfurt/ZAFES, Institute of Pharmacology and Toxicology, Hospital of the Goethe University, Frankfurt am Main, Germany
| | - Katrin G. Schmidt
- pharmazentrum Frankfurt/ZAFES, Institute of Pharmacology and Toxicology, Hospital of the Goethe University, Frankfurt am Main, Germany
| | - Josef M. Pfeilschifter
- pharmazentrum Frankfurt/ZAFES, Institute of Pharmacology and Toxicology, Hospital of the Goethe University, Frankfurt am Main, Germany
| | - Heinfried H. Radeke
- pharmazentrum Frankfurt/ZAFES, Institute of Pharmacology and Toxicology, Hospital of the Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
8
|
Dong W, Wu L, Sun H, Ren X, Epling-Burnette PK, Yang L. MDS shows a higher expression of hTERT and alternative splice variants in unactivated T-cells. Oncotarget 2018; 7:71904-71914. [PMID: 27655690 PMCID: PMC5342131 DOI: 10.18632/oncotarget.12115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/10/2016] [Indexed: 12/19/2022] Open
Abstract
Telomere instability and telomerase reactivation are believed to play an important role in the development of myelodysplastic syndromes (MDS). Abnormal enzymatic activity of human telomerase reverse transcriptase (hTERT), and its alternative splice variants have been reported to account for deregulated telomerase function in many cancers. In this study, we aim to compare the differences in expression of hTERT and hTERT splice variants, as well as telomere length and telomerase activity in unstimulated T-cells between MDS subgroups and healthy controls. Telomere length in MDS cases was significantly shorter than controls (n = 20, p<0.001) and observed across all subtypes of MDS using World Health Organization classification (WHO subgroups versus control: RARS, p= 0.009; RCMD, p=0.0002; RAEB1/2, p=0.004, respectively) and the International Prognostic Scoring System (IPSS subgroups: Low+Int-1, p<0.001; Int-2+High, p=0.004). However, unstimulated T-cells from MDS patients (n=20) had significantly higher telomerase activity (p=0.002), higher total hTERT mRNA levels (p=0.001) and hTERT α+β- splice variant expression (p<0.001) compared to controls. Other hTERT splice variants were lower in expression and not significantly different among cases and controls. Telomerase activity was positively correlated with total hTERT levels in MDS (r=0.58, p=0.007). This data is in sharp contrast to data published previously by our group showing a reduction in telomerase and hTERT mRNA in MDS T-cells after activation. In conclusion, this study provides additional insight into hTERT transcript patterns and activity in peripheral T-cells of MDS patients. Additional studies are necessary to better understand the role of this pathway in MDS development and progression.
Collapse
Affiliation(s)
- Wen Dong
- Department of Orthopaedic Surgery, Tianjin Hongqiao Hospital, Tianjin, P.R. China
| | - Lei Wu
- Department of Immunology, Tianjin Cancer Institute and Hospital, Tianjin Medical University, P.R. China.,National Clinical Research Center of Cancer, P.R. China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P.R. China
| | - Houfang Sun
- Department of Immunology, Tianjin Cancer Institute and Hospital, Tianjin Medical University, P.R. China.,National Clinical Research Center of Cancer, P.R. China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P.R. China
| | - Xiubao Ren
- Department of Immunology, Tianjin Cancer Institute and Hospital, Tianjin Medical University, P.R. China.,National Clinical Research Center of Cancer, P.R. China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P.R. China
| | | | - Lili Yang
- Department of Immunology, Tianjin Cancer Institute and Hospital, Tianjin Medical University, P.R. China.,National Clinical Research Center of Cancer, P.R. China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P.R. China
| |
Collapse
|
9
|
Prasad KN, Wu M, Bondy SC. Telomere shortening during aging: Attenuation by antioxidants and anti-inflammatory agents. Mech Ageing Dev 2017; 164:61-66. [DOI: 10.1016/j.mad.2017.04.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/08/2017] [Accepted: 04/13/2017] [Indexed: 02/07/2023]
|
10
|
Allegra A, Innao V, Penna G, Gerace D, Allegra AG, Musolino C. Telomerase and telomere biology in hematological diseases: A new therapeutic target. Leuk Res 2017; 56:60-74. [PMID: 28196338 DOI: 10.1016/j.leukres.2017.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/24/2017] [Accepted: 02/05/2017] [Indexed: 11/29/2022]
Abstract
Telomeres are structures confined at the ends of eukaryotic chromosomes. With each cell division, telomeric repeats are lost because DNA polymerases are incapable to fully duplicate the very ends of linear chromosomes. Loss of repeats causes cell senescence, and apoptosis. Telomerase neutralizes loss of telomeric sequences by adding telomere repeats at the 3' telomeric overhang. Telomere biology is frequently associated with human cancer and dysfunctional telomeres have been proved to participate to genetic instability. This review covers the information on telomerase expression and genetic alterations in the most relevant types of hematological diseases. Telomere erosion hampers the capability of hematopoietic stem cells to effectively replicate, clinically resulting in bone marrow failure. Furthermore, telomerase mutations are genetic risk factors for the occurrence of some hematologic cancers. New discoveries in telomere structure and telomerase functions have led to an increasing interest in targeting telomeres and telomerase in anti-cancer therapy.
Collapse
Affiliation(s)
- Alessandro Allegra
- Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva "Gaetano Barresi", University of Messina Via Consolare Valeria, 1, 98125 Messina, Italy.
| | - Vanessa Innao
- Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva "Gaetano Barresi", University of Messina Via Consolare Valeria, 1, 98125 Messina, Italy
| | - Giuseppa Penna
- Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva "Gaetano Barresi", University of Messina Via Consolare Valeria, 1, 98125 Messina, Italy
| | - Demetrio Gerace
- Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva "Gaetano Barresi", University of Messina Via Consolare Valeria, 1, 98125 Messina, Italy
| | - Andrea G Allegra
- Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva "Gaetano Barresi", University of Messina Via Consolare Valeria, 1, 98125 Messina, Italy
| | - Caterina Musolino
- Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva "Gaetano Barresi", University of Messina Via Consolare Valeria, 1, 98125 Messina, Italy
| |
Collapse
|
11
|
Glenthøj A, Ørskov AD, Hansen JW, Hadrup SR, O'Connell C, Grønbæk K. Immune Mechanisms in Myelodysplastic Syndrome. Int J Mol Sci 2016; 17:ijms17060944. [PMID: 27314337 PMCID: PMC4926477 DOI: 10.3390/ijms17060944] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 05/31/2016] [Accepted: 06/08/2016] [Indexed: 12/12/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is a spectrum of diseases, characterized by debilitating cytopenias and a propensity of developing acute myeloid leukemia. Comprehensive sequencing efforts have revealed a range of mutations characteristic, but not specific, of MDS. Epidemiologically, autoimmune diseases are common in patients with MDS, fueling hypotheses of common etiological mechanisms. Both innate and adaptive immune pathways are overly active in the hematopoietic niche of MDS. Although supportive care, growth factors, and hypomethylating agents are the mainstay of MDS treatment, some patients—especially younger low-risk patients with HLA-DR15 tissue type—demonstrate impressive response rates after immunosuppressive therapy. This is in contrast to higher-risk MDS patients, where several immune activating treatments, such as immune checkpoint inhibitors, are in the pipeline. Thus, the dual role of immune mechanisms in MDS is challenging, and rigorous translational studies are needed to establish the value of immune manipulation as a treatment of MDS.
Collapse
Affiliation(s)
- Andreas Glenthøj
- Epi-/Genome Laboratory, Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen 2100, Denmark.
| | - Andreas Due Ørskov
- Epi-/Genome Laboratory, Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen 2100, Denmark.
| | - Jakob Werner Hansen
- Epi-/Genome Laboratory, Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen 2100, Denmark.
| | - Sine Reker Hadrup
- Section for Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, Frederiksberg 1870, Denmark.
| | - Casey O'Connell
- Jane Anne Nohl Division of Hematology, USC Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA.
- Stand up to Cancer Epigenetics Dream Team, Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| | - Kirsten Grønbæk
- Epi-/Genome Laboratory, Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen 2100, Denmark.
- Stand up to Cancer Epigenetics Dream Team, Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
12
|
Qian Y, Ding T, Wei L, Cao S, Yang L. Shorter telomere length of T-cells in peripheral blood of patients with lung cancer. Onco Targets Ther 2016; 9:2675-82. [PMID: 27226730 PMCID: PMC4863689 DOI: 10.2147/ott.s98488] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Telomere shortening occurs in tumor tissues and peripheral blood lymphocytes of many common human malignancies, including lung cancer, but its variation in T-cells has never been investigated. Thus, the aim of this study was to assess telomere length in T-cells and its correlation with the clinical characteristics of patients with lung cancer. PATIENTS AND METHODS A total of 40 patients with lung cancer but without prior cancer history and 25 healthy individuals were selected. T-cells were isolated and their telomere lengths were measured using quantitative real-time polymerase chain reaction methods. RESULTS Telomere length in T-cells was significantly shorter in patients with lung cancer than in controls (P<0.001). Shorter telomere length was significantly associated with increased clinical stage (P=0.008) and distant metastasis (P=0.028). Naïve T-cells from patients with lung cancer had significantly decreased telomere length when compared with those from controls (P=0.012). CONCLUSION The shortened telomere length in T-cells occurred in naïve T-cells and might be related to lung cancer progression.
Collapse
Affiliation(s)
- Yaqin Qian
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, People's Republic of China; National Clinical Research Center of Cancer, Tianjin, People's Republic of China; Tianjin Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, People's Republic of China
| | - Tingting Ding
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, People's Republic of China; National Clinical Research Center of Cancer, Tianjin, People's Republic of China; Tianjin Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, People's Republic of China
| | - Lijuan Wei
- National Clinical Research Center of Cancer, Tianjin, People's Republic of China
| | - Shui Cao
- National Clinical Research Center of Cancer, Tianjin, People's Republic of China; Tianjin Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, People's Republic of China; Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, People's Republic of China
| | - Lili Yang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, People's Republic of China; National Clinical Research Center of Cancer, Tianjin, People's Republic of China; Tianjin Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, People's Republic of China
| |
Collapse
|
13
|
Zhang J, Wei MH, Lu R, Du GF, Zhou G. Declined hTERT expression of peripheral blood CD4+
T cells in oral lichen planus correlated with clinical parameter. J Oral Pathol Med 2015; 45:516-22. [PMID: 26662465 DOI: 10.1111/jop.12399] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Jing Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan China
- Department of Oral Medicine; School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - Ming-hui Wei
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - Rui Lu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan China
- Department of Oral Medicine; School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - Ge-fei Du
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan China
- Department of Oral Medicine; School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - Gang Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan China
- Department of Oral Medicine; School and Hospital of Stomatology; Wuhan University; Wuhan China
| |
Collapse
|
14
|
Wang L, Xiao H, Zhang X, Wang C, Huang H. The role of telomeres and telomerase in hematologic malignancies and hematopoietic stem cell transplantation. J Hematol Oncol 2014; 7:61. [PMID: 25139287 PMCID: PMC4237881 DOI: 10.1186/s13045-014-0061-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 08/06/2014] [Indexed: 01/22/2023] Open
Abstract
Telomeres are specific nucleoprotein structures at the ends of eukaryotic chromosomes. Telomeres and telomere-associated proteins maintain genome stability by protecting the ends of chromosomes from fusion and degradation. In normal somatic cells, the length of the telomeres gradually becomes shortened with cell division. In tumor cells, the shortening of telomeres length is accelerated under the increased proliferation pressure. However, it will be maintained at an extremely short length as the result of activation of telomerase. Significantly shortened telomeres, activation of telomerase, and altered expression of telomere-associated proteins are common features of various hematologic malignancies and are related with progression or chemotherapy resistance in these diseases. In patients who have received hematopoietic stem cell transplantation (HSCT), the telomere length and the telomerase activity of the engrafted donor cells have a significant influence on HSCT outcomes. Transplantation-related factors should be taken into consideration because of their impacts on telomere homeostasis. As activation of telomerase is widespread in tumor cells, it has been employed as a target point in the treatment of neoplastic hematologic disorders. In this review, the characteristics and roles of telomeres and telomerase both in hematologic malignancies and in HSCT will be summarized. The current status of telomerase-targeted therapies utilized in the treatment of hematologic malignancies will also be reviewed.
Collapse
|
15
|
Dong W, Qian Y, Yang L. Telomerase, hTERT and splice variants in patients with myelodysplastic syndromes. Leuk Res 2014; 38:830-5. [PMID: 24844605 DOI: 10.1016/j.leukres.2014.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/07/2014] [Accepted: 04/21/2014] [Indexed: 01/17/2023]
Abstract
Telomeres are specialized structures maintaining chromosome integrity during cellular division and preventing from premature senescence and apoptosis. The rate-limiting component of telomerase is human telomerase reverse transcriptase (hTERT), for which multiple transcripts exist. The aim of this work was to characterize hTERT splice variants in MDS and its relation to telomerase activity, telomere length and hTERT expression. The telomere length in PBMCs of patients with MDS cases was significantly shorter compared to controls (n=30, p=0.002). MDS patients had significantly higher basal telomerase activity (p=0.022) and higher total hTERT (p=0.007), α+β+ hTERT variant (p=0.016) and α+β- hTERT variant expression than control. The ratio of α+β- transcript to α+β+ transcript was significantly increased in cases (p=0.039). This study provided a detailed insight into the hTERT transcript pattern in MDS while correlation analysis showed that only telomerase activity was significantly correlated with total hTERT expression in MDS.
Collapse
Affiliation(s)
- Wen Dong
- Department of Orthopaedic Surgery, Tianjin Hongqiao Hospital, Tianjin, PR China
| | - Yaqin Qian
- Department of Immunology, Tianjin Cancer Institute and Hospital, Tianjin Medical University, PR China; National Clinical Research Center of Cancer, PR China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, PR China
| | - Lili Yang
- Department of Immunology, Tianjin Cancer Institute and Hospital, Tianjin Medical University, PR China; National Clinical Research Center of Cancer, PR China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, PR China.
| |
Collapse
|
16
|
Qian Y, Yang L, Cao S. Telomeres and telomerase in T cells of tumor immunity. Cell Immunol 2014; 289:63-9. [PMID: 24727158 DOI: 10.1016/j.cellimm.2014.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 03/05/2014] [Accepted: 03/24/2014] [Indexed: 02/08/2023]
Abstract
Telomeres are specific nucleoprotein structures at the end of a eukaryotic chromosomes characterized by repeats of the sequence TTAGGG and regulated by the enzyme telomerase which prevents their degradation, loss, rearrangement and end-to-end fusion. During activation, T lymphocytes actively divide, albeit through only a finite number of cell divisions due to shortening of telomeres. However, studies have demonstrated that human telomerase reverse transcriptase (hTERT), thought to be the major component regulating telomerase activity, can enhance the proliferation of T cells when overexpressed. There are many treatments for cancers, most of which are targeting the telomere and telomerase of tumor cells. However, the hTERT-transduced T cells improve their potential for proliferation, making them an appropriate cell resource for tumor adoptive immunotherapy, a procedure whereby T cells are isolated from patients, expanded ex vivo and eventually delivered back into the patients, provides a new approach for tumor therapy through improved overall survival rates in cancer patients. In this review, we will focus on the telomerase activity in T cells, the regulation of telomerase activity, and hTERT-transduced T cells used in adoptive immunotherapy for cancer.
Collapse
Affiliation(s)
- Yaqin Qian
- Department of Immunology, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, China; National Clinical Research Center of Cancer, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China; Research Center of Lung Cancer, Tianjin, China
| | - Lili Yang
- Department of Immunology, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, China; National Clinical Research Center of Cancer, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China; Research Center of Lung Cancer, Tianjin, China.
| | - Shui Cao
- Department of Immunology, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, China; National Clinical Research Center of Cancer, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China; Research Center of Lung Cancer, Tianjin, China.
| |
Collapse
|
17
|
Komrokji RS, Mailloux AW, Chen DT, Sekeres MA, Paquette R, Fulp WJ, Sugimori C, Paleveda-Pena J, Maciejewski JP, List AF, Epling-Burnette PK. A phase II multicenter rabbit anti-thymocyte globulin trial in patients with myelodysplastic syndromes identifying a novel model for response prediction. Haematologica 2014; 99:1176-83. [PMID: 24488560 DOI: 10.3324/haematol.2012.083345] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Immune dysregulation is a mechanism contributing to ineffective hematopoiesis in a subset of myelodysplastic syndrome patients. We report the first US multicenter non-randomized, phase II trial examining the efficacy of rabbit(r)-anti-thymocyte globulin using 2.5 mg/kg/day administered daily for 4 doses. The primary end point was hematologic response; secondary end points included duration of response, time to response, time to progression, and tolerance. Nine (33%;95% confidence interval=17%-54%) of the 27 patients treated experienced durable hematologic improvement in an intent-to-treat analysis with a median time to response and median response duration of 75 and 245 days, respectively. While younger age is the most significant factor favoring equine(e)-anti-thymocyte globulin response, treatment outcome on this study was independent of age (P=0.499). A shorter duration between diagnosis and treatment showed a positive trend (P=0.18), but International Prognostic Scoring System score (P=0.150), karyotype (P=0.319), and age-adjusted bone marrow cellularity (P=0.369) were not associated with response classification. Since activated T-lymphocytes are the primary cellular target of anti-thymocyte globulin, a T-cell expression profiling was conducted in a cohort of 38 patients consisting of rabbit and equine-antithymocyte globulin-treated patients. A model containing disease duration, CD8 terminal memory T cells and T-cell proliferation-associated-antigen expression predicted response with the greatest accuracy using a leave-one-out cross validation approach. This profile categorized patients independent of other covariates, including treatment type and age using a leave-one-out-cross-validation approach (75.7%). Therefore, rabbit-anti-thymocyte globulin has hematologic remitting activity in myelodysplastic syndrome and a T-cell activation profile has potential utility classifying those who are more likely to respond (NCT00466843 clinicaltrials.gov).
Collapse
Affiliation(s)
- Rami S Komrokji
- Malignant Hematology Division, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Adam W Mailloux
- Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Dung-Tsa Chen
- Biostatistics Program, H. Lee H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | | | | | - William J Fulp
- Biostatistics Program, H. Lee H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Chiharu Sugimori
- Ishikawa Prefectural Central Hospital, Kuratsukihigashi, Kanazawa, Japan
| | | | | | - Alan F List
- Malignant Hematology Division, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | | |
Collapse
|
18
|
Yang L, Eksioglu EA, Wei S. hTERT deficiency in naïve T cells affects lymphocyte homeostasis in myelodysplastic syndrome patients. Oncoimmunology 2013; 2:e26329. [PMID: 24386611 PMCID: PMC3875656 DOI: 10.4161/onci.26329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 08/31/2013] [Indexed: 01/14/2023] Open
Abstract
Myelodysplastic syndromes (MDSs) are hematopoietic stem cell disorders with a high potential to develop into acute myeloid leukemia (AML). We have recently demonstrated that naïve T cells, but not memory T cells, from MDS patients exhibit a pronounced deficiency in the mRNA coding for the catalytic subunit of telomerase (hTERT). We discuss the importance of this finding for lymphocytic homeostasis in MDS patients.
Collapse
Affiliation(s)
- Lili Yang
- Department of Immunology; Tianjin Cancer Institute and Hospital; Tianjin Medical University; Tianjin, China ; Key Laboratory of Cancer Immunology and Biotherapy; Tianjin, China
| | - Erika A Eksioglu
- Immunology Program at the H. Lee Moffitt Cancer Center; Tampa, FL USA
| | - Sheng Wei
- Immunology Program at the H. Lee Moffitt Cancer Center; Tampa, FL USA
| |
Collapse
|