1
|
Kosti J, Mervak T, Terebelo H. Extramedullary Myeloid Leukemia in the Setting of a Myeloproliferative Neoplasm. J Med Cases 2022; 13:561-568. [PMID: 36506761 PMCID: PMC9728152 DOI: 10.14740/jmc3996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/04/2022] [Indexed: 11/28/2022] Open
Abstract
Extramedullary acute myeloid leukemia (EML), also known as myeloid sarcoma (MS), is an extramedullary solid mass derived from the proliferation of myeloblasts outside of the bone marrow. EML can present independently or concurrently with intramedullary acute myeloid leukemia (iAML). It can happen de novo or secondary to iAML, myeloproliferative neoplasm (MPN), chronic myelomonocytic leukemia (CMML), or myelodysplastic syndrome (MDS). We present a 57-year-old female with a history of Janus kinase 2 (JAK-2)-positive essential thrombocythemia (ET) evolving into EML in the setting of a persistent TP53 mutation. We discuss the essential diagnostic studies including tissue biopsy and fluorodeoxyglucose positron emission tomography/computed tomography (F-FDG PET/CT) imaging. We also investigate the significance of cytogenetics and next-generation sequencing (NGS) along with the unique pathogenesis, treatment and prognostic implications.
Collapse
Affiliation(s)
- Jorgena Kosti
- Department of Hematology and Oncology, Ascension Providence Hospital, Southfield, Michigan and Michigan State University, East Lansing, MI, USA,Corresponding Author: Jorgena Kosti, Department of Hematology and Oncology, Michigan State University, Ascension Providence, 22301 Foster Winter Drive, Southfield, Michigan, 48075, USA.
| | - Timothy Mervak
- Department of Pathology, Ascension Providence Hospital, Southfield, MI, USA
| | - Howard Terebelo
- Department of Hematology and Oncology, Ascension Providence Hospital, Southfield, Michigan and Michigan State University, East Lansing, MI, USA
| |
Collapse
|
2
|
Rasl J, Grusanovic J, Klimova Z, Caslavsky J, Grousl T, Novotny J, Kolar M, Vomastek T. ERK2 signaling regulates cell-cell adhesion of epithelial cells and enhances growth factor-induced cell scattering. Cell Signal 2022; 99:110431. [PMID: 35933033 DOI: 10.1016/j.cellsig.2022.110431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/13/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022]
Abstract
The ERK signaling pathway, consisting of core protein kinases Raf, MEK and effector kinases ERK1/2, regulates various biological outcomes such as cell proliferation, differentiation, apoptosis, or cell migration. Signal transduction through the ERK signaling pathway is tightly controlled at all levels of the pathway. However, it is not well understood whether ERK pathway signaling can be modulated by the abundance of ERK pathway core kinases. In this study, we investigated the effects of low-level overexpression of the ERK2 isoform on the phenotype and scattering of cuboidal MDCK epithelial cells growing in discrete multicellular clusters. We show that ERK2 overexpression reduced the vertical size of lateral membranes that contain cell-cell adhesion complexes. Consequently, ERK2 overexpressing cells were unable to develop cuboidal shape, remained flat with increased spread area and intercellular adhesive contacts were present only on the basal side. Interestingly, ERK2 overexpression was not sufficient to increase phosphorylation of multiple downstream targets including transcription factors and induce global changes in gene expression, namely to increase the expression of pro-migratory transcription factor Fra1. However, ERK2 overexpression enhanced HGF/SF-induced cell scattering as these cells scattered more rapidly and to a greater extent than parental cells. Our results suggest that an increase in ERK2 expression primarily reduces cell-cell cohesion and that weakened intercellular adhesion synergizes with upstream signaling in the conversion of the multicellular epithelium into single migrating cells. This mechanism may be clinically relevant as the analysis of clinical data revealed that in one type of cancer, pancreatic adenocarcinoma, ERK2 overexpression correlates with a worse prognosis.
Collapse
Affiliation(s)
- Jan Rasl
- Laboratory of Cell Signalling Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Josipa Grusanovic
- Laboratory of Cell Signalling Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic
| | - Zuzana Klimova
- Laboratory of Cell Signalling Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic
| | - Josef Caslavsky
- Laboratory of Cell Signalling Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic
| | - Tomas Grousl
- Laboratory of Cell Signalling Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic
| | - Jiri Novotny
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; Department of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, 160 00 Prague, Czech Republic
| | - Michal Kolar
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Tomas Vomastek
- Laboratory of Cell Signalling Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic.
| |
Collapse
|
3
|
Hu CT, Mandal JP, Wu WS. Regulation on tumor metastasis by Raf kinase inhibitory protein: New insight with reactive oxygen species signaling. Tzu Chi Med J 2021; 33:332-338. [PMID: 34760627 PMCID: PMC8532577 DOI: 10.4103/tcmj.tcmj_296_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/19/2021] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Targeted therapy aiming at the metastatic signal pathway, such as that triggered by receptor tyrosine kinase (RTK), for the prevention of tumor progression is promising. However, RTK-based targeted therapy frequently suffered from drug resistance due to the co-expression of multiple growth factor receptors that may raise compensatory secondary signaling and acquired mutations after treatment. One alternative strategy is to manipulate the common negative regulators of the RTK signaling. Among them, Raf kinase inhibitory protein (RKIP) is highlighted and focused on this review. RKIP can associate with Raf-1, thus suppressing the downstream mitogen-activated protein kinase (MAPK) cascade. RKIP also negatively regulates other metastatic signal molecules including NF-κB, STAT3, and NOTCH1. In general, RKIP achieves this task via associating and blocking the activity of the critical molecules on upstream of the aforementioned pathways. One novel RKIP-related signaling involves reactive oxygen species (ROS). In our recent report, we found that PKCδ-mediated ROS generation may interfere with the association of RKIP with heat shock protein 60 (HSP60)/MAPK complex via oxidation of HSP60 triggered by the tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate. The departure of RKIP may impact the downstream MAPK in two aspects. One is to trigger the Mt→cytosol translocation of HSP60 coupled with MAPKs. The other is to change the conformation of HSP60, favoring more efficient activation of the associated MAPK by upstream kinases in cytosol. It is worthy of investigating whether various RTKs capable of generating ROS can drive metastatic signaling via affecting RKIP in the same manner.
Collapse
Affiliation(s)
- Chi-Tan Hu
- Division of Gastroenterology, Department of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Research Centre for Hepatology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | | | - Wen-Sheng Wu
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
4
|
Transcriptional drug repositioning and cheminformatics approach for differentiation therapy of leukaemia cells. Sci Rep 2021; 11:12537. [PMID: 34131166 PMCID: PMC8206077 DOI: 10.1038/s41598-021-91629-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/21/2021] [Indexed: 02/05/2023] Open
Abstract
Differentiation therapy is attracting increasing interest in cancer as it can be more specific than conventional chemotherapy approaches, and it has offered new treatment options for some cancer types, such as treating acute promyelocytic leukaemia (APL) by retinoic acid. However, there is a pressing need to identify additional molecules which act in this way, both in leukaemia and other cancer types. In this work, we hence developed a novel transcriptional drug repositioning approach, based on both bioinformatics and cheminformatics components, that enables selecting such compounds in a more informed manner. We have validated the approach for leukaemia cells, and retrospectively retinoic acid was successfully identified using our method. Prospectively, the anti-parasitic compound fenbendazole was tested in leukaemia cells, and we were able to show that it can induce the differentiation of leukaemia cells to granulocytes in low concentrations of 0.1 μM and within as short a time period as 3 days. This work hence provides a systematic and validated approach for identifying small molecules for differentiation therapy in cancer.
Collapse
|
5
|
Lim CX, Lee B, Geiger O, Passegger C, Beitzinger M, Romberger J, Stracke A, Högenauer C, Stift A, Stoiber H, Poidinger M, Zebisch A, Meister G, Williams A, Flavell RA, Henao-Mejia J, Strobl H. miR-181a Modulation of ERK-MAPK Signaling Sustains DC-SIGN Expression and Limits Activation of Monocyte-Derived Dendritic Cells. Cell Rep 2021; 30:3793-3805.e5. [PMID: 32187550 DOI: 10.1016/j.celrep.2020.02.077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/29/2019] [Accepted: 02/20/2020] [Indexed: 01/10/2023] Open
Abstract
DC-SIGN+ monocyte-derived dendritic cells (mo-DCs) play important roles in bacterial infections and inflammatory diseases, but the factors regulating their differentiation and proinflammatory status remain poorly defined. Here, we identify a microRNA, miR-181a, and a molecular mechanism that simultaneously regulate the acquisition of DC-SIGN expression and the activation state of DC-SIGN+ mo-DCs. Specifically, we show that miR-181a promotes DC-SIGN expression during terminal mo-DC differentiation and limits its sensitivity and responsiveness to TLR triggering and CD40 ligation. Mechanistically, miR-181a sustains ERK-MAPK signaling in mo-DCs, thereby enabling the maintenance of high levels of DC-SIGN and a high activation threshold. Low miR-181a levels during mo-DC differentiation, induced by inflammatory signals, do not support the high phospho-ERK signal transduction required for DC-SIGNhi mo-DCs and lead to development of proinflammatory DC-SIGNlo/- mo-DCs. Collectively, our study demonstrates that high DC-SIGN expression levels and a high activation threshold in mo-DCs are linked and simultaneously maintained by miR-181a.
Collapse
Affiliation(s)
- Clarice X Lim
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, 8010 Graz, Austria; DK Inflammation & Immunity Program, Medical University of Vienna, 1090 Vienna, Austria
| | - Bernett Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Biopolis, 138648 Singapore, Singapore
| | - Olivia Geiger
- Division of Hematology, Medical University of Graz, 8010 Graz, Austria
| | - Christina Passegger
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, 8010 Graz, Austria
| | - Michaela Beitzinger
- Laboratory for RNA Biology, Biochemistry Center Regensburg (BZR), University of Regensburg, 93053 Regensburg, Germany
| | - Johann Romberger
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, 8010 Graz, Austria
| | - Anika Stracke
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, 8010 Graz, Austria
| | - Christoph Högenauer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Anton Stift
- Department of Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Heribert Stoiber
- Division of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Michael Poidinger
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Biopolis, 138648 Singapore, Singapore
| | - Armin Zebisch
- Division of Hematology, Medical University of Graz, 8010 Graz, Austria; Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
| | - Gunter Meister
- Laboratory for RNA Biology, Biochemistry Center Regensburg (BZR), University of Regensburg, 93053 Regensburg, Germany
| | - Adam Williams
- The Jackson Laboratory for Genomic Medicine, Department of Genetics and Genomic Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Jorge Henao-Mejia
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Herbert Strobl
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, 8010 Graz, Austria.
| |
Collapse
|
6
|
Berg JL, Perfler B, Hatzl S, Mayer MC, Wurm S, Uhl B, Reinisch A, Klymiuk I, Tierling S, Pregartner G, Bachmaier G, Berghold A, Geissler K, Pichler M, Hoefler G, Strobl H, Wölfler A, Sill H, Zebisch A. Micro-RNA-125a mediates the effects of hypomethylating agents in chronic myelomonocytic leukemia. Clin Epigenetics 2021; 13:1. [PMID: 33407852 PMCID: PMC7789782 DOI: 10.1186/s13148-020-00979-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Chronic myelomonocytic leukemia (CMML) is an aggressive hematopoietic malignancy that arises from hematopoietic stem and progenitor cells (HSPCs). Patients with CMML are frequently treated with epigenetic therapeutic approaches, in particular the hypomethylating agents (HMAs), azacitidine (Aza) and decitabine (Dec). Although HMAs are believed to mediate their efficacy via re-expression of hypermethylated tumor suppressors, knowledge about relevant HMA targets is scarce. As silencing of tumor-suppressive micro-RNAs (miRs) by promoter hypermethylation is a crucial step in malignant transformation, we asked for a role of miRs in HMA efficacy in CMML. RESULTS Initially, we performed genome-wide miR-expression profiling in a KrasG12D-induced CMML mouse model. Selected candidates with prominently decreased expression were validated by qPCR in CMML mice and human CMML patients. These experiments revealed the consistent decrease in miR-125a, a miR with previously described tumor-suppressive function in myeloid neoplasias. Furthermore, we show that miR-125a downregulation is caused by hypermethylation of its upstream region and can be reversed by HMA treatment. By employing both lentiviral and CRISPR/Cas9-based miR-125a modification, we demonstrate that HMA-induced miR-125a upregulation indeed contributes to mediating the anti-leukemic effects of these drugs. These data were validated in a clinical context, as miR-125a expression increased after HMA treatment in CMML patients, a phenomenon that was particularly pronounced in cases showing clinical response to these drugs. CONCLUSIONS Taken together, we report decreased expression of miR-125a in CMML and delineate its relevance as mediator of HMA efficacy within this neoplasia.
Collapse
Affiliation(s)
- Johannes Lorenz Berg
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria
| | - Bianca Perfler
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria
| | - Stefan Hatzl
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria
| | - Marie-Christina Mayer
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria
| | - Sonja Wurm
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria
| | - Barbara Uhl
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria
| | - Andreas Reinisch
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria
| | - Ingeborg Klymiuk
- Core Facility Molecular Biology, Medical University of Graz, Graz, Austria
| | - Sascha Tierling
- Department of Genetics, University of Saarland, Saarbrücken, Germany
| | - Gudrun Pregartner
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Gerhard Bachmaier
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Andrea Berghold
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Klaus Geissler
- 5th Medical Department with Hematology, Oncology and Palliative Medicine, Hospital Hietzing, Vienna, Austria
- Sigmund Freud University, Vienna, Austria
| | - Martin Pichler
- Division of Oncology, Medical University of Graz, Graz, Austria
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Centre, Houston, TX, USA
| | - Gerald Hoefler
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Herbert Strobl
- Otto Loewi Research Centre, Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Albert Wölfler
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria
| | - Heinz Sill
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria
| | - Armin Zebisch
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria.
- Otto-Loewi Research Centre for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010, Graz, Austria.
| |
Collapse
|
7
|
Shallis RM, Gale RP, Lazarus HM, Roberts KB, Xu ML, Seropian SE, Gore SD, Podoltsev NA. Myeloid sarcoma, chloroma, or extramedullary acute myeloid leukemia tumor: A tale of misnomers, controversy and the unresolved. Blood Rev 2020; 47:100773. [PMID: 33213985 DOI: 10.1016/j.blre.2020.100773] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/01/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023]
Abstract
The World Health Organization classification and definition of "myeloid sarcoma" is imprecise and misleading. A more accurate term is "extramedullary acute myeloid leukemia tumor (eAML)." The pathogenesis of eAML has been associated with aberrancy of cellular adhesion molecules, chemokine receptors/ligands and RAS-MAPK/ERK signaling. eAML can present with or without synchronous or metachronous intramedullary acute myeloid leukemia (AML) so a bone marrow evaluation is always recommended. Accurate diagnosis of eAML requires tissue biopsy. eAML confined to one or a few sites is frequently treated with local therapy such as radiotherapy. About 75-90% of patients with isolated eAML will develop metachronous intramedullary AML with a median latency period ranging from 4 to 12 months; thus, patients with isolated eAML may also be treated with systemic anti-leukemia therapy. eAML does not appear to have an independent prognostic impact; selection of post-remission therapy including allogeneic hematopoietic cell transplant (alloHCT) is typically guided by intramedullary disease risk. Management of isolated eAML should be individualized based on patient characteristics as well as eAML location and cytogenetic/molecular features. The role of PET/CT in eAML is also currently being elucidated. Improving outcomes of patients with eAML requires further knowledge of its etiology and mechanism(s) as well as therapeutic approaches beyond conventional chemotherapy, ideally in the context of controlled trials.
Collapse
Affiliation(s)
- Rory M Shallis
- Section of Hematology, Department of Medicine, Yale University School of Medicine and Yale Cancer Center, New Haven, USA
| | - Robert P Gale
- Haematology Section, Division of Experimental Medicine, Department of Medicine, Imperial College London, London, UK
| | - Hillard M Lazarus
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Kenneth B Roberts
- Department of Radiation Oncology, Yale University School of Medicine, New Haven, USA
| | - Mina L Xu
- Department of Pathology, Yale University School of Medicine, New Haven, USA
| | - Stuart E Seropian
- Section of Hematology, Department of Medicine, Yale University School of Medicine and Yale Cancer Center, New Haven, USA
| | - Steven D Gore
- Section of Hematology, Department of Medicine, Yale University School of Medicine and Yale Cancer Center, New Haven, USA
| | - Nikolai A Podoltsev
- Section of Hematology, Department of Medicine, Yale University School of Medicine and Yale Cancer Center, New Haven, USA.
| |
Collapse
|
8
|
Penas C, Apraiz A, Muñoa I, Arroyo-Berdugo Y, Rasero J, Ezkurra PA, Velasco V, Subiran N, Bosserhoff AK, Alonso S, Asumendi A, Boyano MD. RKIP Regulates Differentiation-Related Features in Melanocytic Cells. Cancers (Basel) 2020; 12:cancers12061451. [PMID: 32503139 PMCID: PMC7352799 DOI: 10.3390/cancers12061451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 12/26/2022] Open
Abstract
Raf Kinase Inhibitor Protein (RKIP) has been extensively reported as an inhibitor of key signaling pathways involved in the aggressive tumor phenotype and shows decreased expression in several types of cancers. However, little is known about RKIP in melanoma or regarding its function in normal cells. We examined the role of RKIP in both primary melanocytes and malignant melanoma cells and evaluated its diagnostic and prognostic value. IHC analysis revealed a significantly higher expression of RKIP in nevi compared with early-stage (stage I–II, AJCC 8th) melanoma biopsies. Proliferation, wound healing, and collagen-coated transwell assays uncovered the implication of RKIP on the motility but not on the proliferative capacity of melanoma cells as RKIP protein levels were inversely correlated with the migration capacity of both primary and metastatic melanoma cells but did not alter other parameters. As shown by RNA sequencing, endogenous RKIP knockdown in primary melanocytes triggered the deregulation of cellular differentiation-related processes, including genes (i.e., ZEB1, THY-1) closely related to the EMT. Interestingly, NANOG was identified as a putative transcriptional regulator of many of the deregulated genes, and RKIP was able to decrease the activation of the NANOG promoter. As a whole, our data support the utility of RKIP as a diagnostic marker for early-stage melanomas. In addition, these findings indicate its participation in the maintenance of a differentiated state of melanocytic cells by modulating genes intimately linked to the cellular motility and explain the progressive decrease of RKIP often described in tumors.
Collapse
Affiliation(s)
- Cristina Penas
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940 Leioa, Spain; (C.P.); (A.A.); (Y.A.-B.); (P.A.E.); (A.A.)
| | - Aintzane Apraiz
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940 Leioa, Spain; (C.P.); (A.A.); (Y.A.-B.); (P.A.E.); (A.A.)
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.M.); (J.R.); (V.V.); (N.S.)
| | - Iraia Muñoa
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.M.); (J.R.); (V.V.); (N.S.)
- Department of Physiology, Faculty of Medicine and Nursing, UPV/EHU, 48940 Leioa, Spain
| | - Yoana Arroyo-Berdugo
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940 Leioa, Spain; (C.P.); (A.A.); (Y.A.-B.); (P.A.E.); (A.A.)
| | - Javier Rasero
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.M.); (J.R.); (V.V.); (N.S.)
- Department of Psychology, Carnegie Mellon University, Pittsburg, PA 15213, USA
| | - Pilar A. Ezkurra
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940 Leioa, Spain; (C.P.); (A.A.); (Y.A.-B.); (P.A.E.); (A.A.)
| | - Veronica Velasco
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.M.); (J.R.); (V.V.); (N.S.)
| | - Nerea Subiran
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.M.); (J.R.); (V.V.); (N.S.)
- Department of Physiology, Faculty of Medicine and Nursing, UPV/EHU, 48940 Leioa, Spain
| | - Anja K. Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany;
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054 Erlangen, Germany
| | - Santos Alonso
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, UPV/EHU, 48940 Leioa, Spain;
| | - Aintzane Asumendi
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940 Leioa, Spain; (C.P.); (A.A.); (Y.A.-B.); (P.A.E.); (A.A.)
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.M.); (J.R.); (V.V.); (N.S.)
| | - Maria D. Boyano
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940 Leioa, Spain; (C.P.); (A.A.); (Y.A.-B.); (P.A.E.); (A.A.)
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.M.); (J.R.); (V.V.); (N.S.)
- Correspondence: ; Tel.: +34-946015689
| |
Collapse
|
9
|
Hatzl S, Perfler B, Wurm S, Uhl B, Quehenberger F, Ebner S, Troppmair J, Reinisch A, Wölfler A, Sill H, Zebisch A. Increased Expression of Micro-RNA-23a Mediates Chemoresistance to Cytarabine in Acute Myeloid Leukemia. Cancers (Basel) 2020; 12:496. [PMID: 32093419 PMCID: PMC7072365 DOI: 10.3390/cancers12020496] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022] Open
Abstract
Resistance to chemotherapy is one of the primary obstacles in acute myeloid leukemia (AML) therapy. Micro-RNA-23a (miR-23a) is frequently deregulated in AML and has been linked to chemoresistance in solid cancers. We, therefore, studied its role in chemoresistance to cytarabine (AraC), which forms the backbone of all cytostatic AML treatments. Initially, we assessed AraC sensitivity in three AML cell lines following miR-23a overexpression/knockdown using MTT-cell viability and soft-agar colony-formation assays. Overexpression of miR-23a decreased the sensitivity to AraC, whereas its knockdown had the opposite effect. Analysis of clinical data revealed that high miR-23a expression correlated with relapsed/refractory (R/R) AML disease stages, the leukemic stem cell compartment, as well as with inferior overall survival (OS) and event-free survival (EFS) in AraC-treated patients. Mechanistically, we demonstrate that miR-23a targets and downregulates topoisomerase-2-beta (TOP2B), and that TOP2B knockdown mediates AraC chemoresistance as well. Likewise, low TOP2B expression also correlated with R/R-AML disease stages and inferior EFS/OS. In conclusion, we show that increased expression of miR-23a mediates chemoresistance to AraC in AML and that it correlates with an inferior outcome in AraC-treated AML patients. We further demonstrate that miR-23a causes the downregulation of TOP2B, which is likely to mediate its effects on AraC sensitivity.
Collapse
Affiliation(s)
- Stefan Hatzl
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (S.H.); (B.P.); (S.W.); (B.U.); (A.R.); (A.W.); (H.S.)
| | - Bianca Perfler
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (S.H.); (B.P.); (S.W.); (B.U.); (A.R.); (A.W.); (H.S.)
| | - Sonja Wurm
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (S.H.); (B.P.); (S.W.); (B.U.); (A.R.); (A.W.); (H.S.)
| | - Barbara Uhl
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (S.H.); (B.P.); (S.W.); (B.U.); (A.R.); (A.W.); (H.S.)
| | - Franz Quehenberger
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, 8036 Graz, Austria;
| | - Susanne Ebner
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.E.); (J.T.)
| | - Jakob Troppmair
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.E.); (J.T.)
| | - Andreas Reinisch
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (S.H.); (B.P.); (S.W.); (B.U.); (A.R.); (A.W.); (H.S.)
| | - Albert Wölfler
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (S.H.); (B.P.); (S.W.); (B.U.); (A.R.); (A.W.); (H.S.)
| | - Heinz Sill
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (S.H.); (B.P.); (S.W.); (B.U.); (A.R.); (A.W.); (H.S.)
| | - Armin Zebisch
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (S.H.); (B.P.); (S.W.); (B.U.); (A.R.); (A.W.); (H.S.)
- Otto-Loewi-Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| |
Collapse
|
10
|
Caraffini V, Geiger O, Rosenberger A, Hatzl S, Perfler B, Berg JL, Lim C, Strobl H, Kashofer K, Schauer S, Beham-Schmid C, Hoefler G, Geissler K, Quehenberger F, Kolch W, Athineos D, Blyth K, Wölfler A, Sill H, Zebisch A. Loss of RAF kinase inhibitor protein is involved in myelomonocytic differentiation and aggravates RAS-driven myeloid leukemogenesis. Haematologica 2020; 105:375-386. [PMID: 31097632 PMCID: PMC7012480 DOI: 10.3324/haematol.2018.209650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 05/15/2019] [Indexed: 12/11/2022] Open
Abstract
RAS-signaling mutations induce the myelomonocytic differentiation and proliferation of hematopoietic stem and progenitor cells. Moreover, they are important players in the development of myeloid neoplasias. RAF kinase inhibitor protein (RKIP) is a negative regulator of RAS-signaling. As RKIP loss has recently been described in RAS-mutated myelomonocytic acute myeloid leukemia, we now aimed to analyze its role in myelomonocytic differentiation and RAS-driven leukemogenesis. Therefore, we initially analyzed RKIP expression during human and murine hematopoietic differentiation and observed that it is high in hematopoietic stem and progenitor cells and lymphoid cells but decreases in cells belonging to the myeloid lineage. By employing short hairpin RNA knockdown experiments in CD34+ umbilical cord blood cells and the undifferentiated acute myeloid leukemia cell line HL-60, we show that RKIP loss is indeed functionally involved in myelomonocytic lineage commitment and drives the myelomonocytic differentiation of hematopoietic stem and progenitor cells. These results could be confirmed in vivo, where Rkip deletion induced a myelomonocytic differentiation bias in mice by amplifying the effects of granulocyte macrophage-colony-stimulating factor. We further show that RKIP is of relevance for RAS-driven myelomonocytic leukemogenesis by demonstrating that Rkip deletion aggravates the development of a myeloproliferative disease in NrasG12D -mutated mice. Mechanistically, we demonstrate that RKIP loss increases the activity of the RAS-MAPK/ERK signaling module. Finally, we prove the clinical relevance of these findings by showing that RKIP loss is a frequent event in chronic myelomonocytic leukemia, and that it co-occurs with RAS-signaling mutations. Taken together, these data establish RKIP as novel player in RAS-driven myeloid leukemogenesis.
Collapse
Affiliation(s)
| | - Olivia Geiger
- Division of Hematology, Medical University of Graz, Graz, Austria
| | | | - Stefan Hatzl
- Division of Hematology, Medical University of Graz, Graz, Austria
| | - Bianca Perfler
- Division of Hematology, Medical University of Graz, Graz, Austria
| | - Johannes L Berg
- Division of Hematology, Medical University of Graz, Graz, Austria
| | - Clarice Lim
- Otto Loewi Research Center, Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Herbert Strobl
- Otto Loewi Research Center, Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Karl Kashofer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Silvia Schauer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Christine Beham-Schmid
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Gerald Hoefler
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Klaus Geissler
- 5 Medical Department with Hematology, Oncology and Palliative Medicine, Hospital Hietzing, Vienna, Austria
- Sigmund Freud University, Vienna, Austria
| | - Franz Quehenberger
- Institute of Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Walter Kolch
- Systems Biology Ireland and Conway Institute, University College Dublin, Dublin, Ireland
| | | | - Karen Blyth
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Albert Wölfler
- Division of Hematology, Medical University of Graz, Graz, Austria
| | - Heinz Sill
- Division of Hematology, Medical University of Graz, Graz, Austria
| | - Armin Zebisch
- Division of Hematology, Medical University of Graz, Graz, Austria
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| |
Collapse
|
11
|
RAF Kinase Inhibitor Protein in Myeloid Leukemogenesis. Int J Mol Sci 2019; 20:ijms20225756. [PMID: 31744053 PMCID: PMC6888401 DOI: 10.3390/ijms20225756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023] Open
Abstract
RAF kinase inhibitor protein (RKIP) is an essential regulator of intracellular signaling. A somatic loss of RKIP expression is a frequent event in solid human cancers, and a role of RKIP as metastasis-suppressor is widely accepted nowadays. Recently, RKIP loss has been described in acute myeloid leukemia (AML) and a series of other myeloid neoplasias (MNs). Functional in vitro and in vivo experiments revealed that RKIP is an essential player within the development of these liquid tumors; however, the respective role of RKIP seems to be complex and multi-faceted. In this review, we will summarize the current knowledge about RKIP in myeloid leukemogenesis. We will initially describe its involvement in physiologic hematopoiesis, and will then proceed to discuss its role in the development of AML and other MNs. Finally, we will discuss potential therapeutic implications arising thereof.
Collapse
|
12
|
Aster I, Barth LM, Rink L, Wessels I. Alterations in membrane fluidity are involved in inhibition of GM-CSF-induced signaling in myeloid cells by zinc. J Trace Elem Med Biol 2019; 54:214-220. [PMID: 31109615 DOI: 10.1016/j.jtemb.2019.04.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 01/09/2023]
Abstract
Zinc has a strong influence on the function of the immune system and is a driving factor for immune cell development. In this regard, studies revealed cell type specific effects of zinc. During zinc deficiency for example, development and activity of myeloid cells seems to be prioritized at the cost of cells from the lymphoid lineage. In T-cells, the altered proliferation was found to be due to zinc's effect on IL-2-induced signaling processes, but in contrast to lymphoid cells, effects of zinc homeostasis on growth-factor-induced signaling in myeloid cells have not been investigated yet. The granulocyte-macrophage colony-stimulating factor (GM-CSF) is one of the major factors inducing monopoiesis. Considering the structural similarities between the GM-CSF receptor and those of the IL-receptor family as well as a similar set of signaling molecules involved, an impact of zinc on the GM-CSF signaling seems to be likely. Therefore, the effect of zinc on GM-CSF-induced signaling molecules was investigated here, using U937 cells as a model myeloid cell line. GM-CSF stimulation significantly increased STAT5 phosphorylation which was prevented completely by pre-incubation with zinc and pyrithione. U937 cells showed a strong pre-activation regarding c-Raf, which was significantly decreased by zinc and pyrithione incubation, independently from GM-CSF stimulation. As current literature was not sufficient to explain the observed effects, we hypothesized an altered receptor-complex assembly. As membrane composition and plasticity, subsumed under the term of membrane fluidity, was found to affect receptor multimerization, the impact of zinc on membrane fluidity was considered as a completely novel approach. Indeed, addition of zinc also decreased GM-CSFR expression on the cell surface and most interestingly altered membrane fluidity. In conclusion, we hypothesize that the incubation with zinc causes an alteration of membrane fluidity that hinders efficient receptor assembly as well as phosphorylation of signal molecules and therefore signal transduction.
Collapse
Affiliation(s)
- Isabell Aster
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, D-52074 Aachen, Germany
| | - Lisa-Marie Barth
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, D-52074 Aachen, Germany
| | - Lothar Rink
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, D-52074 Aachen, Germany
| | - Inga Wessels
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, D-52074 Aachen, Germany.
| |
Collapse
|
13
|
Yesilkanal AE, Rosner MR. Targeting Raf Kinase Inhibitory Protein Regulation and Function. Cancers (Basel) 2018; 10:cancers10090306. [PMID: 30181452 PMCID: PMC6162369 DOI: 10.3390/cancers10090306] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/24/2018] [Accepted: 08/30/2018] [Indexed: 12/22/2022] Open
Abstract
Raf Kinase Inhibitory Protein (RKIP) is a highly conserved kinase inhibitor that functions as a metastasis suppressor in a variety of cancers. Since RKIP can reprogram tumor cells to a non-metastatic state by rewiring kinase networks, elucidating the mechanism by which RKIP acts not only reveals molecular mechanisms that regulate metastasis, but also represents an opportunity to target these signaling networks therapeutically. Although RKIP is often lost during metastatic progression, the mechanism by which this occurs in tumor cells is complex and not well understood. In this review, we summarize our current understanding of RKIP regulation in tumors and consider experimental and computational strategies for recovering or mimicking its function by targeting mediators of metastasis.
Collapse
Affiliation(s)
- Ali Ekrem Yesilkanal
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA.
- Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA.
| | - Marsha Rich Rosner
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA.
- Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
14
|
Zaravinos A, Bonavida B, Chatzaki E, Baritaki S. RKIP: A Key Regulator in Tumor Metastasis Initiation and Resistance to Apoptosis: Therapeutic Targeting and Impact. Cancers (Basel) 2018; 10:287. [PMID: 30149591 PMCID: PMC6162400 DOI: 10.3390/cancers10090287] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/12/2018] [Accepted: 08/18/2018] [Indexed: 02/07/2023] Open
Abstract
RAF-kinase inhibitor protein (RKIP) is a well-established tumor suppressor that is frequently downregulated in a plethora of solid and hematological malignancies. RKIP exerts antimetastatic and pro-apoptotic properties in cancer cells, via modulation of signaling pathways and gene products involved in tumor survival and spread. Here we review the contribution of RKIP in the regulation of early metastatic steps such as epithelial⁻mesenchymal transition (EMT), migration, and invasion, as well as in tumor sensitivity to conventional therapeutics and immuno-mediated cytotoxicity. We further provide updated justification for targeting RKIP as a strategy to overcome tumor chemo/immuno-resistance and suppress metastasis, through the use of agents able to modulate RKIP expression in cancer cells.
Collapse
Affiliation(s)
- Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus.
- Centre for Risk and Decision Sciences (CERIDES), Nicosia 2404, Cyprus.
| | - Benjamin Bonavida
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis 68100, Greece.
| | - Stavroula Baritaki
- Division of Surgical Oncology, School of Medicine, University of Crete, Heraklion, Crete 71500, Greece.
| |
Collapse
|
15
|
Loss of RKIP is a frequent event in myeloid sarcoma and promotes leukemic tissue infiltration. Blood 2018; 131:826-830. [PMID: 29295844 DOI: 10.1182/blood-2017-09-804906] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
16
|
Zebisch A, Hatzl S, Pichler M, Wölfler A, Sill H. Therapeutic Resistance in Acute Myeloid Leukemia: The Role of Non-Coding RNAs. Int J Mol Sci 2016; 17:2080. [PMID: 27973410 PMCID: PMC5187880 DOI: 10.3390/ijms17122080] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/01/2016] [Accepted: 12/05/2016] [Indexed: 01/12/2023] Open
Abstract
Acute myeloid leukemia (AML) is caused by malignant transformation of hematopoietic stem or progenitor cells and displays the most frequent acute leukemia in adults. Although some patients can be cured with high dose chemotherapy and allogeneic hematopoietic stem cell transplantation, the majority still succumbs to chemoresistant disease. Micro-RNAs (miRNAs) and long non-coding RNAs (lncRNAs) are non-coding RNA fragments and act as key players in the regulation of both physiologic and pathologic gene expression profiles. Aberrant expression of various non-coding RNAs proved to be of seminal importance in the pathogenesis of AML, as well in the development of resistance to chemotherapy. In this review, we discuss the role of miRNAs and lncRNAs with respect to sensitivity and resistance to treatment regimens currently used in AML and provide an outlook on potential therapeutic targets emerging thereof.
Collapse
Affiliation(s)
- Armin Zebisch
- Division of Hematology, Medical University of Graz, 8036 Graz, Austria.
| | - Stefan Hatzl
- Division of Hematology, Medical University of Graz, 8036 Graz, Austria.
| | - Martin Pichler
- Division of Oncology, Medical University of Graz, 8036 Graz, Austria.
| | - Albert Wölfler
- Division of Hematology, Medical University of Graz, 8036 Graz, Austria.
| | - Heinz Sill
- Division of Hematology, Medical University of Graz, 8036 Graz, Austria.
| |
Collapse
|
17
|
Chen WL, Wang YY, Zhao A, Xia L, Xie G, Su M, Zhao L, Liu J, Qu C, Wei R, Rajani C, Ni Y, Cheng Z, Chen Z, Chen SJ, Jia W. Enhanced Fructose Utilization Mediated by SLC2A5 Is a Unique Metabolic Feature of Acute Myeloid Leukemia with Therapeutic Potential. Cancer Cell 2016; 30:779-791. [PMID: 27746145 PMCID: PMC5496656 DOI: 10.1016/j.ccell.2016.09.006] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 04/08/2016] [Accepted: 09/13/2016] [Indexed: 12/28/2022]
Abstract
Rapidly proliferating leukemic progenitor cells consume substantial glucose, which may lead to glucose insufficiency in bone marrow. We show that acute myeloid leukemia (AML) cells are prone to fructose utilization with an upregulated fructose transporter GLUT5, which compensates for glucose deficiency. Notably, AML patients with upregulated transcription of the GLUT5-encoding gene SLC2A5 or increased fructose utilization have poor outcomes. Pharmacological blockage of fructose uptake ameliorates leukemic phenotypes and potentiates the cytotoxicity of the antileukemic agent, Ara-C. In conclusion, this study highlights enhanced fructose utilization as a metabolic feature of AML and a potential therapeutic target.
Collapse
Affiliation(s)
- Wen-Lian Chen
- State Key Laboratory of Medical Genomics, Department of Hematology, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Yue-Ying Wang
- State Key Laboratory of Medical Genomics, Department of Hematology, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Aihua Zhao
- Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Li Xia
- State Key Laboratory of Medical Genomics, Department of Hematology, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guoxiang Xie
- Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Mingming Su
- Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Linjing Zhao
- University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Jiajian Liu
- Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Chun Qu
- Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Runmin Wei
- University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Cynthia Rajani
- University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Yan Ni
- Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Zhen Cheng
- Molecular Imaging Program at Stanford, Department of Radiology and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Zhu Chen
- State Key Laboratory of Medical Genomics, Department of Hematology, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sai-Juan Chen
- State Key Laboratory of Medical Genomics, Department of Hematology, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Wei Jia
- Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; University of Hawaii Cancer Center, Honolulu, HI 96813, USA.
| |
Collapse
|
18
|
Dai H, Chen H, Liu W, You Y, Tan J, Yang A, Lai X, Bie P. Effects of Raf kinase inhibitor protein expression on pancreatic cancer cell growth and motility: an in vivo and in vitro study. J Cancer Res Clin Oncol 2016; 142:2107-17. [PMID: 27444299 DOI: 10.1007/s00432-016-2206-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/08/2016] [Indexed: 01/05/2023]
Abstract
PURPOSE Raf kinase inhibitor protein (RKIP) is a tumor suppressor that inhibits cell growth and metastasis of malignant tumors. Pancreatic cancer is a leading cause of cancer death with a low survival rate. RKIP expression and its role in tumorigenesis and metastasis in pancreatic cancer are poorly understood. The aims of our study were to assess the effects of RKIP on pancreatic carcinoma cells in vitro and in tumor tissues in vivo. METHODS This study included 84 patients with histologically confirmed pancreatic adenocarcinoma. The expression levels of RKIP were measured in pancreatic cancer tissues and adjacent normal tissues using real-time PCR and immunohistochemistry. Overexpression plasmid of RKIP was transfected into SW1990 and AsPC-1 cell lines, and the effects on cell proliferation were studied using a Cell Counting Kit-8 assay. MEK1/2 and ERK1/2 were detected by Western blot and immunofluorescence assay. RESULTS Results showed a reduced expression of RKIP in pancreatic carcinoma tissues compared with adjacent normal tissues, which closely correlated with patient outcomes. Overexpression of RKIP suppressed cell proliferation and promoted apoptosis in cultured SW1990 and AsPC-1 cell lines. Transwell assay showed RKIP can inhibit cell migration and invasion, and in vivo RKIP can suppress tumorigenesis by diminishing the volume of the tumors. CONCLUSIONS In conclusion, expression of RKIP is closely correlated with the survival of pancreatic cancer patients. RKIP can inhibit pancreatic adenocarcinoma cells proliferation, activities of migration and invasion, through downregulating Raf-1-MEK1/2-ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Haisu Dai
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 404100, People's Republic of China
| | - Haowei Chen
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 404100, People's Republic of China
| | - Wei Liu
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 404100, People's Republic of China
| | - Yu You
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 404100, People's Republic of China
| | - Jiaxin Tan
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 404100, People's Republic of China
| | - Aigang Yang
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 404100, People's Republic of China
| | - Xiangdong Lai
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 404100, People's Republic of China
| | - Ping Bie
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 404100, People's Republic of China.
| |
Collapse
|
19
|
|
20
|
Hatzl S, Geiger O, Kuepper MK, Caraffini V, Seime T, Furlan T, Nussbaumer E, Wieser R, Pichler M, Scheideler M, Nowek K, Jongen-Lavrencic M, Quehenberger F, Wölfler A, Troppmair J, Sill H, Zebisch A. Increased Expression of miR-23a Mediates a Loss of Expression in the RAF Kinase Inhibitor Protein RKIP. Cancer Res 2016; 76:3644-54. [PMID: 27197200 DOI: 10.1158/0008-5472.can-15-3049] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 04/07/2016] [Indexed: 02/07/2023]
Abstract
RAF kinase inhibitor protein (RKIP) is a seminal regulator of intracellular signaling and exhibits both antimetastatic and antitumorigenic properties. Decreased expression of RKIP has been described in several human malignancies, including acute myelogenous leukemia (AML). As the mechanisms leading to RKIP loss in AML are still unclear, we aimed to analyze the potential involvement of miRNAs within this study. miRNA microarray and qPCR data of more than 400 AML patient specimens revealed correlation between decreased expression of RKIP and increased expression of miR-23a, a member of the miR-23a/27a/24-2 cluster. In functional experiments, overexpression of miR-23a decreased RKIP mRNA and protein expression, whereas miR-23a inhibition caused the opposite effect. By using an RKIP 3'-untranslated region luciferase reporter construct with and without mutation or deletion of the putative miR-23a-binding site, we could show that RKIP modulation by miR-23a is mediated via direct binding to this region. Importantly, miR-23a overexpression induced a significant increase of proliferation in hematopoietic cells. Simultaneous transfection of an RKIP expression construct lacking the miR-23a-binding sites reversed this phenotype, indicating that this effect is truly mediated via downregulation of RKIP. Finally, by analyzing more than 4,300 primary patient specimens via database retrieval from The Cancer Genome Atlas, we could highlight the importance of the miR-23a/RKIP axis in a broad range of human cancer entities. In conclusion, we have identified miR-23a as a negative regulator of RKIP expression in AML and have provided data that suggest the importance of our observation beyond this tumor entity. Cancer Res; 76(12); 3644-54. ©2016 AACR.
Collapse
Affiliation(s)
- Stefan Hatzl
- Division of Hematology, Medical University of Graz, Graz, Austria
| | - Olivia Geiger
- Division of Hematology, Medical University of Graz, Graz, Austria
| | - Maja Kim Kuepper
- Division of Hematology, Medical University of Graz, Graz, Austria
| | | | - Till Seime
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Tobias Furlan
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Erika Nussbaumer
- Division of Hematology, Medical University of Graz, Graz, Austria
| | - Rotraud Wieser
- Department of Medicine I, Medical University of Vienna, Vienna, Austria and Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria
| | - Martin Pichler
- Division of Oncology, Medical University of Graz, Graz, Austria. Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Marcel Scheideler
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Munich, Germany. University Hospital, Heidelberg University, Heidelberg, Germany. German Center for Diabetes Research (DZD), Neuherberg, Germany. Technical University of Munich, Munich, Germany
| | - Katarzyna Nowek
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Franz Quehenberger
- Institute of Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Albert Wölfler
- Division of Hematology, Medical University of Graz, Graz, Austria
| | - Jakob Troppmair
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Heinz Sill
- Division of Hematology, Medical University of Graz, Graz, Austria
| | - Armin Zebisch
- Division of Hematology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
21
|
|
22
|
Milewska M, Romano D, Herrero A, Guerriero ML, Birtwistle M, Quehenberger F, Hatzl S, Kholodenko BN, Segatto O, Kolch W, Zebisch A. Mitogen-Inducible Gene-6 Mediates Feedback Inhibition from Mutated BRAF towards the Epidermal Growth Factor Receptor and Thereby Limits Malignant Transformation. PLoS One 2015; 10:e0129859. [PMID: 26065894 PMCID: PMC4466796 DOI: 10.1371/journal.pone.0129859] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 05/13/2015] [Indexed: 01/15/2023] Open
Abstract
BRAF functions in the RAS-extracellular signal-regulated kinase (ERK) signaling cascade. Activation of this pathway is necessary to mediate the transforming potential of oncogenic BRAF, however, it may also cause a negative feedback that inhibits the epidermal growth factor receptor (EGFR). Mitogen-inducible gene-6 (MIG-6) is a potent inhibitor of the EGFR and has been demonstrated to function as a tumor suppressor. As MIG-6 can be induced via RAS-ERK signaling, we investigated its potential involvement in this negative regulatory loop. Focus formation assays were performed and demonstrated that MIG-6 significantly reduces malignant transformation induced by oncogenic BRAF. Although this genetic interaction was mirrored by a physical interaction between MIG-6 and BRAF, we did not observe a direct regulation of BRAF kinase activity by MIG-6. Interestingly, a selective chemical EGFR inhibitor suppressed transformation to a similar degree as MIG-6, whereas combining these approaches had no synergistic effect. By analyzing a range of BRAF mutated and wildtype cell line models, we could show that BRAF V600E causes a strong upregulation of MIG-6, which was mediated at the transcriptional level via the RAS-ERK pathway and resulted in downregulation of EGFR activation. This feedback loop is operational in tumors, as shown by the analysis of almost 400 patients with papillary thyroid cancer (PTC). Presence of BRAF V600E correlated with increased MIG-6 expression on the one hand, and with inactivation of the EGFR and of PI3K/AKT signaling on the other hand. Importantly, we also observed a more aggressive disease phenotype when BRAF V600E coexisted with low MIG-6 expression. Finally, analysis of methylation data was performed and revealed that higher methylation of MIG-6 correlated to its decreased expression. Taken together, we demonstrate that MIG-6 efficiently reduces cellular transformation driven by oncogenic BRAF by orchestrating a negative feedback circuit directed towards the EGFR.
Collapse
Affiliation(s)
| | - David Romano
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Ana Herrero
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | | | - Marc Birtwistle
- Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Franz Quehenberger
- Institute of Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Stefan Hatzl
- Division of Hematology, Medical University of Graz, Graz, Austria
| | - Boris N. Kholodenko
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Oreste Segatto
- Laboratory of Immunology, Regina Elena Cancer Institute, Rome, Italy
| | - Walter Kolch
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Armin Zebisch
- Division of Hematology, Medical University of Graz, Graz, Austria
- * E-mail:
| |
Collapse
|
23
|
Zebisch A, Schulz E, Grosso M, Lombardo B, Acierno G, Sill H, Iolascon A. Identification of a novel variant of epsilon-gamma-delta-beta thalassemia highlights limitations of next generation sequencing. Am J Hematol 2015; 90:E52-4. [PMID: 25488195 DOI: 10.1002/ajh.23913] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/02/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Armin Zebisch
- Division of Hematology; Medical University of Graz; Graz Austria
| | - Eduard Schulz
- Division of Hematology; Medical University of Graz; Graz Austria
| | - Michela Grosso
- Department of Molecular Medicine and Medical Biotechnology; University Federico II of Naples; Naples Italy
- CEINGE-Advanced Biotechnologies; Naples Italy
| | - Barbara Lombardo
- Department of Molecular Medicine and Medical Biotechnology; University Federico II of Naples; Naples Italy
- CEINGE-Advanced Biotechnologies; Naples Italy
| | - Giovanni Acierno
- Department of Molecular Medicine and Medical Biotechnology; University Federico II of Naples; Naples Italy
- CEINGE-Advanced Biotechnologies; Naples Italy
| | - Heinz Sill
- Division of Hematology; Medical University of Graz; Graz Austria
| | - Achille Iolascon
- Department of Molecular Medicine and Medical Biotechnology; University Federico II of Naples; Naples Italy
- CEINGE-Advanced Biotechnologies; Naples Italy
| |
Collapse
|
24
|
Expression of RKIP in chronic myelogenous leukemia K562 cell and inhibits cell proliferation by regulating the ERK/MAPK pathway. Tumour Biol 2015; 35:10057-66. [PMID: 25015191 DOI: 10.1007/s13277-014-2312-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/03/2014] [Indexed: 01/03/2023] Open
Abstract
RAF kinase inhibitor protein (RKIP) is a negative regulator of the RAS-mitogen-activated protein kinase/extracellular signal-regulated kinase signaling cascade. We investigated the expression of RKIP in chronic myelogenous leukemia (CML) K562 cells and the effects of RKIP on the characteristics of K562 cells. The recombinant plasmid pcDNA3.1-RKIP was established and transfected into K562 cells with the help of Lipofectamine 2000. At the same time, the RKIP-siRNA was transfected into K562 cells in another group. The expressions of RKIP in all groups were assayed by Western blot after 48 h. MTT (3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was used to analyze the cell viability. Flow cytometry (FCM) was used to examine the cell cycle and cell apoptosis. Colony forming unit (CFU) assay was used to analyze the effect of RKIP on the clonogenic growth of CML cells. Western blot or luciferase reporter assay was used to detect the effect of RKIP on the level of phospho-ERK1/2 or the transcriptional activity of NF-κB. Western blot analysis showed that the plasmid pcDNA3.1-RKIP or RKIP-siRNA significantly enhanced or decreased RKIP expression (p < 0.01), respectively. In addition, MTT, FCM, and CFU assay indicated that the overexpression of RKIP significantly lowered the cell viability, cell proliferation and the clonogenic growth (p < 0.05), but improved cell apoptosis (p < 0.01). Western blot analysis or luciferase reporter assay showed that the level of phospho-ERK1/2 or the transcriptional activity of NF-κB was strongly inhibited by overexpression of RKIP. All these results could bring us a new perspective for biological therapy in myelogenous leukemia in the future.
Collapse
|
25
|
Li DX, Cai HY, Wang X, Feng YL, Cai SW. Promoter methylation of Raf kinase inhibitory protein: A significant prognostic indicator for patients with gastric adenocarcinoma. Exp Ther Med 2014; 8:844-850. [PMID: 25120612 PMCID: PMC4113522 DOI: 10.3892/etm.2014.1833] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 06/20/2014] [Indexed: 12/23/2022] Open
Abstract
DNA methylation has an important role in the development of carcinomas. As a metastasis suppressor gene, Raf kinase inhibitory protein (RKIP) suppresses tumor cell invasion and metastasis. In the present study, the associations between RKIP protein expression and promoter methylation with clinicopathological parameters, prognosis and survival rates in gastric adenocarcinoma were investigated. RKIP protein expression and promoter methylation were measured in 135 cases of surgically resected gastric adenocarcinoma specimens and corresponding normal tissues using immunohistochemistry and methylation-specific polymerase chain reaction, respectively. Kaplan-Meier analyses were performed to analyze the patient survival rate. Prognostic factors were determined using multivariate Cox analysis. RKIP promoter methylation was detected in 48.9% of gastric carcinoma tissues and 5.17% of adjacent tissues (P<0.05). RKIP protein expression was detected in 43.0% of gastric carcinoma tissues and 91.1% of adjacent tissues (P<0.05). The protein expression levels and promoter methylation of RKIP were shown to correlate with pathological staging, Union for International Cancer Control-stage, tumor differentiation and lymph node metastasis (P<0.05). In addition, the protein expression of RKIP in gastric carcinomas was demonstrated to be associated with promoter methylation of RKIP. Survival analysis of gastric carcinoma patients revealed that promoter methylation in RKIP-positive tumors correlated with a significantly shorter survival time when compared with RKIP-negative tumors (P=0.0002, using the log-rank test). Using multivariate Cox analysis, promoter methylation of RKIP was shown to be an independent prognostic factor (P=0.033). These results indicated that abnormal promoter methylation of RKIP may be one cause of downregulated RKIP expression. Downregulation of RKIP expression was shown to correlate with the incidence and development of gastric carcinomas. Thus, abnormal promoter methylation of RKIP may be a valuable biomarker for estimating gastric carcinoma prognosis.
Collapse
Affiliation(s)
- Dong-Xia Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Hai-Yang Cai
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Xia Wang
- The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Yan-Ling Feng
- Department of Pathology, Public Health Clinical Center of Fudan University, Shanghai 201508, P.R. China
| | - Song-Wang Cai
- Department of Cardiothoracic Surgery, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
26
|
Fried I, Artl M, Cota C, Müller H, Bartolo E, Boi S, Chiarelli C, Vale E, Schmuth M, Wiesner T, Speicher MR, Cerroni L. Clinicopathologic and molecular features in cutaneous extranodal natural killer-/T-cell lymphoma, nasal type, with aggressive and indolent course. J Am Acad Dermatol 2014; 70:716-723. [PMID: 24433873 DOI: 10.1016/j.jaad.2013.11.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/17/2013] [Accepted: 11/20/2013] [Indexed: 01/08/2023]
Abstract
BACKGROUND Extranodal natural killer-/T-cell lymphoma, nasal type (ENKTCL-NT) is a highly aggressive lymphoma and prognosis is usually poor. The genetic background of primary cutaneous cases is poorly understood. OBJECTIVE We sought to evaluate the clinicopathologic features of cutaneous ENKTCL-NT, and the prognostic significance of genomic copy number alterations. METHODS Eight cases of cutaneous ENKTCL-NT (5 primary, 2 secondary, 1 no staging performed), including 2 patients with an unusually prolonged course of 5 and 23 years, were investigated using array comparative genomic hybridization. RESULTS All patients presented with typical clinicopathologic features. Epstein-Barr virus was found in neoplastic cells in all specimens. Copy number alterations were detected in all 8 cases with losses on 6q (37.5% of cases) and 7p (37.5% of cases), and gains on 7q (37.5% of cases) being the most frequent. Complexity of array comparative genomic hybridization profile did not correlate with the course of the disease. However, an increase of copy number alterations was detected in sequential biopsy specimens of 1 long-term survivor. LIMITATIONS This was a small case series retrospective study. CONCLUSION Clinicopathologic features of cutaneous ENKTCL-NT are distinctive. Lower number of copy number alterations cannot be used as predictor for prolonged survival in cutaneous ENKTCL-NT.
Collapse
Affiliation(s)
- Isabella Fried
- Research Unit Dermatopathology, Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Monika Artl
- Institute of Human Genetics, Medical University of Graz, Graz, Austria
| | - Carlo Cota
- Dermatopathology Unit, San Gallicano Dermatological Institute, Rome, Italy
| | - Hansgeorg Müller
- Department of Dermatology, Innsbruck Medical University, Innsbruck, Austria
| | - Elvira Bartolo
- Dermatology Department, Hospital Garcia de Orta, Almada, Portugal
| | - Sebastiana Boi
- Department of Pathology, Santa Chiara Hospital, Trento, Italy
| | | | - Esmeralda Vale
- Departments of Dermatology and Pathology, Hospital da Luz, Lisbon, Portugal
| | - Matthias Schmuth
- Department of Dermatology, Innsbruck Medical University, Innsbruck, Austria
| | - Thomas Wiesner
- Research Unit Dermatopathology, Department of Dermatology, Medical University of Graz, Graz, Austria
| | | | - Lorenzo Cerroni
- Research Unit Dermatopathology, Department of Dermatology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
27
|
Al-Mulla F, Bitar MS, Taqi Z, Yeung KC. RKIP: much more than Raf kinase inhibitory protein. J Cell Physiol 2013; 228:1688-702. [PMID: 23359513 DOI: 10.1002/jcp.24335] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/16/2013] [Indexed: 12/11/2022]
Abstract
From its discovery as a phosphatidylethanolamine-binding protein in bovine brain to its designation as a physiological inhibitor of Raf kinase protein, RKIP has emerged as a critical molecule for maintaining subdued, well-orchestrated cellular responses to stimuli. The disruption of RKIP in a wide range of pathologies, including cancer, Alzheimer's disease, and pancreatitis, makes it an exciting target for individualized therapy and disease-specific interventions. This review attempts to highlight recent advances in the RKIP field underscoring its potential role as a master modulator of many pivotal intracellular signaling cascades that control cellular growth, motility, apoptosis, genomic integrity, and therapeutic resistance. Specific biological and functional niches are highlighted to focus future research towards an enhanced understanding of the multiple roles of RKIP in health and disease.
Collapse
Affiliation(s)
- Fahd Al-Mulla
- Faculty of Medicine, Department of Pathology, Kuwait University Health Sciences Centre, Safat, Kuwait.
| | | | | | | |
Collapse
|
28
|
Abstract
INTRODUCTION In patients with metastatic colorectal cancers, multimodal management and the use of biological agents such as monoclonal antibodies have had major positive effects on survival. The ability to predict which patients may be at 'high risk' of distant metastasis could have major implications on patient management. Histomorphological, immunohistochemical or molecular biomarkers are currently being investigated in order to test their potential value as predictors of metastasis. AREAS COVERED Here, the author reviews the clinical and functional data supporting the investigation of three novel promising biomarkers for the prediction of metastasis in patients with colorectal cancer: tumor budding, Raf1 kinase inhibitor protein (RKIP) and metastasis-associated in colon cancer-1 (MACC1). EXPERT OPINION The lifespan of most potential biomarkers is short as evidenced by the rare cases that have successfully made their way into daily practice such as KRAS or microsatellite instability (MSI) status. Although the three biomarkers reviewed herein have the potential to become important predictive biomarkers of metastasis, they have similar hurdles to overcome before they can be implemented into clinical management: standardization and validation in prospective patient cohorts.
Collapse
Affiliation(s)
- Inti Zlobec
- University of Bern, Institute of Pathology L414, Translational Research Unit (TRU), Bern, Switzerland.
| |
Collapse
|
29
|
Kim SO, Kim MR. (-)-Epigallocatechin 3-gallate inhibits invasion by inducing the expression of Raf kinase inhibitor protein in AsPC‑1 human pancreatic adenocarcinoma cells through the modulation of histone deacetylase activity. Int J Oncol 2012; 42:349-58. [PMID: 23135610 DOI: 10.3892/ijo.2012.1686] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 10/02/2012] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to assess whether (-)-epigallocatechin 3-gallate (EGCG) via epigenetic modifications, regulates Raf kinase inhibitor protein (RKIP) expression and invasive metastatic activity in AsPC-1 pancreatic adenocarcinoma cells. Basal levels of RKIP were examined in various human pancreatic cancer cell lines and MTT assay was used to assess cell viability. AsPC-1 cells were treated with EGCG with/without trichostatin A (TSA), as the positive control, for 24 h. The levels of RKIP and histone H3 induction were analyzed by immunoblot analysis. In order to determine the role of RKIP induction in NF-κB translocation and invasive metastatic activity in AsPC-1 cells, we examined NF-κB translocation, invasive metastatic parameters by RT-PCR, metastasis-related proteins by western blot analysis and matrix metalloproteinase (MMP)-2 and -9 activity by gelatin zymography. To validate RKIP induction through the extracellular signal regulated kinase (ERK) pathway, the cells were treated with U0126, an ERK inhibitor. Our results showed that EGCG induced RKIP upregulation via the inhibition of histone deacetylase (HDAC) activity which increased histone H3 expression and inhibited Snail expression, NF-κB nuclear translocation, MMP-2 and -9 activity and Matrigel invasion in AsPC-1 cells. The expression of E-cadherin in the cells was upregulated. The phosphorylation of ERK was decreased by RKIP induction following EGCG treatment. Furthermore, our results confirmed that U0126 treatment repressed ERK phosphorylation and induced RKIP expression. Taken together, our results strongly suggest that EGCG regulates RKIP/ERK/NF-κB and/or RKIP/NF-κB/Snail and inhibits invasive metastasis in the AsPC-1 human pancreatic adenocarcinoma cell line.
Collapse
Affiliation(s)
- Sung Ok Kim
- Department of Herbal Pharmacology of Oriental Medicine, Daegu Hanny University, Daegu, Republic of Korea.
| | | |
Collapse
|
30
|
Fried I, Wölfler A, Quehenberger F, Hoefler G, Sill H, Zebisch A. Mutations inDNMT3A and loss of RKIP are independent events in acute monocytic leukemia. Haematologica 2012; 97:1936-7. [PMID: 22875620 DOI: 10.3324/haematol.2012.068429] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|