1
|
Liang S, Li C, Ning Y, Su R, Li M, Huang Y, Zou Y, Yang L, Xu X, Yang C. DMF-Bimol: Counting mRNA and Protein Molecules in Single Cells with Digital Microfluidics. Anal Chem 2024; 96:17253-17261. [PMID: 39428609 DOI: 10.1021/acs.analchem.4c03277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Analyzing single-cell protein and mRNA levels yields invaluable insights into cellular functions and the intricacies of biologically heterogeneous systems. Current joint mRNAs and protein analysis methodologies suffer from relative quantification, low sensitivity, possible background interference, and tedious manual manipulation. Therefore, we propose DMF-Bimol that leverages addressable digital microfluidics to automate digital counting of single-cell mRNA and protein based on proximity ligation assay (PLA) and one-step RT-droplet digital PCR (RT-ddPCR). Through an engineered hydrophilic-hydrophobic interface, DMF-Bimol enables efficient single-cell isolation and lossless protein and nucleic acid processing. The closed droplet reaction system enhances the protein concentration and isolates exogenous contaminants, thereby dramatically improving the efficiency of the PLA reaction. The limit of detection of this approach achieves 3313 protein copies, marking a significant 17-fold enhancement in sensitivity over traditional benchtop PLA. This heightened sensitivity also uncovers a lower correlation between mRNA and protein levels in individual cells (Spearman r = 0.255) than bulk results, reflecting the complex relationship in heterogeneous cells. Using DMF-Bimol, we observed a significant upsurge of CD147 protein in CD138+ myeloma cells but consistent levels of CD147 mRNAs compared with normal leukocytes. This discovery indicates a possible consequence of CD147 oncogenic activation that tends to harness protein translation to bolster tumor cell survival and enhance invasiveness, highlighting the potential of DMF-Bimol in unveiling intricate dynamics in translation processes at the single-cell level.
Collapse
Affiliation(s)
- Shanshan Liang
- Collaborative Innovation Center of Chemistry for Energy Materials, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Chong Li
- Collaborative Innovation Center of Chemistry for Energy Materials, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Yu Ning
- Collaborative Innovation Center of Chemistry for Energy Materials, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Rui Su
- Collaborative Innovation Center of Chemistry for Energy Materials, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Mingyin Li
- Collaborative Innovation Center of Chemistry for Energy Materials, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Yihao Huang
- Collaborative Innovation Center of Chemistry for Energy Materials, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Yuning Zou
- Collaborative Innovation Center of Chemistry for Energy Materials, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Liu Yang
- Collaborative Innovation Center of Chemistry for Energy Materials, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Xing Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen 361005, China
- Department of Laboratory Medicine, Key Laboratory of Clinical Laboratory Technology for Precision Medicine, School of Medical Technology and Engineering Fujian Medical University, Fuzhou 350005, China
| | - Chaoyong Yang
- Collaborative Innovation Center of Chemistry for Energy Materials, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen 361005, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| |
Collapse
|
2
|
Spinello I, Labbaye C, Saulle E. Metabolic Function and Therapeutic Potential of CD147 for Hematological Malignancies: An Overview. Int J Mol Sci 2024; 25:9178. [PMID: 39273126 PMCID: PMC11395103 DOI: 10.3390/ijms25179178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Hematological malignancies refer to a heterogeneous group of neoplastic conditions of lymphoid and hematopoietic tissues classified in leukemias, Hodgkin and non-Hodgkin lymphomas and multiple myeloma, according to their presumed cell of origin, genetic abnormalities, and clinical features. Metabolic adaptation and immune escape, which influence various cellular functions, including the proliferation and survival of hematological malignant tumor cells, are major aspects of these malignancies that lead to therapeutic drug resistance. Targeting specific metabolic pathways is emerging as a novel therapeutic strategy in hematopoietic neoplasms, particularly in acute myeloid leukemia and multiple myeloma. In this context, CD147, also known as extracellular matrix metalloproteinase inducer (EMMPRIN) or Basigin, is one target candidate involved in reprograming metabolism in different cancer cells, including hematological malignant tumor cells. CD147 overexpression significantly contributes to the metabolic transformation of these cancer cells, by mediating signaling pathway, growth, metastasis and metabolic reprogramming, through its interaction, direct or not, with various membrane proteins related to metabolic regulation, including monocarboxylate transporters, integrins, P-glycoprotein, and glucose transporter 1. This review explores the metabolic functions of CD147 and its impact on the tumor microenvironment, influencing the progression and neoplastic transformation of leukemias, myeloma, and lymphomas. Furthermore, we highlight new opportunities for the development of targeted therapies against CD147, potentially improving the treatment of hematologic malignancies.
Collapse
Affiliation(s)
- Isabella Spinello
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, 00161 Rome, Italy
| | - Catherine Labbaye
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, 00161 Rome, Italy
| | - Ernestina Saulle
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, 00161 Rome, Italy
| |
Collapse
|
3
|
Bergantim R, Peixoto da Silva S, Polónia B, Barbosa MAG, Albergaria A, Lima J, Caires HR, Guimarães JE, Vasconcelos MH. Detection of Measurable Residual Disease Biomarkers in Extracellular Vesicles from Liquid Biopsies of Multiple Myeloma Patients-A Proof of Concept. Int J Mol Sci 2022; 23:13686. [PMID: 36430163 PMCID: PMC9690807 DOI: 10.3390/ijms232213686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Monitoring measurable residual disease (MRD) is crucial to assess treatment response in Multiple Myeloma (MM). Detection of MRD in peripheral blood (PB) by exploring Extracellular Vesicles (EVs), and their cargo, would allow frequent and minimally invasive monitoring of MM. This work aims to detect biomarkers of MRD in EVs isolated from MM patient samples at diagnosis and remission and compare the MRD-associated content between BM and PB EVs. EVs were isolated by size-exclusion chromatography, concentrated by ultrafiltration, and characterized according to their size and concentration, morphology, protein concentration, and the presence of EV-associated protein markers. EVs from healthy blood donors were used as controls. It was possible to isolate EVs from PB and BM carrying MM markers. Diagnostic samples had different levels of MM markers between PB and BM paired samples, but no differences between PB and BM were found at remission. EVs concentration was lower in the PB of healthy controls than of patients, and MM markers were mostly not detected in EVs from controls. This study pinpoints the potential of PB EVs from MM remission patients as a source of MM biomarkers and as a non-invasive approach for monitoring MRD.
Collapse
Affiliation(s)
- Rui Bergantim
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- Clinical Hematology, Hospital Center of São João, 4200-319 Porto, Portugal
- Clinical Hematology, FMUP—Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
| | - Sara Peixoto da Silva
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Bárbara Polónia
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Mélanie A. G. Barbosa
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - André Albergaria
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Research Innovation Unit, Translational Research & Industry Partnerships Office, i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
| | - Jorge Lima
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Research Innovation Unit, Translational Research & Industry Partnerships Office, i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
| | - Hugo R. Caires
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - José E. Guimarães
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- Clinical Hematology, Hospital Center of São João, 4200-319 Porto, Portugal
- Clinical Hematology, FMUP—Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
- Instituto Universitário de Ciências da Saúde, Cooperativa de Ensino Superior Politécnico e Universitário IUCSESPU, 4585-116 Gandra-Paredes, Portugal
| | - M. Helena Vasconcelos
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- Department of Biological Sciences, FFUP—Faculty of Pharmacy of the University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
4
|
Brennan K, Iversen KF, Blanco-Fernández A, Lund T, Plesner T, Mc Gee MM. Extracellular Vesicles Isolated from Plasma of Multiple Myeloma Patients Treated with Daratumumab Express CD38, PD-L1, and the Complement Inhibitory Proteins CD55 and CD59. Cells 2022; 11:3365. [PMID: 36359760 PMCID: PMC9658084 DOI: 10.3390/cells11213365] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 09/26/2023] Open
Abstract
Daratumumab (DARA) has improved the outcome of treatment of multiple myeloma (MM). DARA acts via complement-dependent and -independent mechanisms. Resistance to DARA may result from upregulation of the complement inhibitory proteins CD55 and CD59, downregulation of the DARA target CD38 on myeloma cells or altered expression of the checkpoint inhibitor ligand programmed death ligand-1 (PD-L1) or other mechanisms. In this study, EVs were isolated from peripheral blood (PB) and bone marrow (BM) from multiple myeloma (MM) patients treated with DARA and PB of healthy controls. EV size and number and the expression of CD38, CD55, CD59 and PD-L1 as well as the EV markers CD9, CD63, CD81, CD147 were determined by flow cytometry. Results reveal that all patient EV samples express CD38, PD-L1, CD55 and CD59. The level of CD55 and CD59 are elevated on MM PB EVs compared with healthy controls, and the level of PD-L1 on MM PB EVs is higher in patients responding to treatment with DARA. CD147, a marker of various aspects of malignant behaviour of cancer cells and a potential target for therapy, was significantly elevated on MM EVs compared with healthy controls. Furthermore, mass spectrometry data suggests that MM PB EVs bind DARA. This study reveals a MM PB and BM EV protein signature that may have diagnostic and prognostic value.
Collapse
Affiliation(s)
- Kieran Brennan
- School of Biomolecular & Biomedical Science, University College Dublin (UCD), Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), Dublin 4, Ireland
| | - Katrine F. Iversen
- Institute of Regional Health Science, University of Southern Denmark, 7100 Vejle, Denmark
- Department of Internal Medicine, Section of Hematology, Lillebaelt Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark
| | - Alfonso Blanco-Fernández
- Flow Cytometry Core Technology, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Thomas Lund
- Department of Hematology, Odense University Hospital, 5000 Odense, Denmark
| | - Torben Plesner
- Institute of Regional Health Science, University of Southern Denmark, 7100 Vejle, Denmark
- Department of Internal Medicine, Section of Hematology, Lillebaelt Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark
| | - Margaret M. Mc Gee
- School of Biomolecular & Biomedical Science, University College Dublin (UCD), Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), Dublin 4, Ireland
| |
Collapse
|
5
|
Behl T, Kaur I, Aleya L, Sehgal A, Singh S, Sharma N, Bhatia S, Al-Harrasi A, Bungau S. CD147-spike protein interaction in COVID-19: Get the ball rolling with a novel receptor and therapeutic target. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152072. [PMID: 34863742 PMCID: PMC8634688 DOI: 10.1016/j.scitotenv.2021.152072] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 05/03/2023]
Abstract
The combat against the Corona virus disease of 2019 (COVID-19), has created a chaos among the healthcare institutions and researchers, in turn accelerating the dire need to curtail the infection spread. The already established entry mechanism, via ACE2 has not yet successfully aided in the development of a suitable and reliable therapy. Taking in account the constant progression and deterioration of the cases worldwide, a different perspective and mechanistic approach is required, which has thrown light onto the cluster of differentiation 147 (CD147) transmembrane protein, as a novel route for SARS-CoV-2 entry. Despite lesser affinity towards COVID-19 virus, as compared to ACE2, this receptor provides a suitable justification behind elevated blood glucose levels in infected patients, retarded COVID-19 risk in women, enhanced susceptibility in geriatrics, greater infection susceptibility of T cells, infection prevalence in non-susceptible human cardiac pericytes and so on. The manuscript invokes the title role and distribution of CD147 in COVID-19 as an entry receptor and mediator of endocytosis-promoted entry of the virus, along with the "catch and clump" hypothesis, thereby presenting its Fundamental significance as a therapeutic target for potential candidates, such as Azithromycin, melatonin, statins, beta adrenergic blockers, ivermectin, Meplazumab etc. Thus, the authors provide a comprehensive review of a different perspective in COVID-19 infection, aiming to aid the researchers and virologists in considering all aspects of viral entry, in order to develop a sustainable and potential cure for the 2019 COVID-19 disease.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, France
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Romania.
| |
Collapse
|
6
|
Łacina P, Butrym A, Frontkiewicz D, Mazur G, Bogunia-Kubik K. Soluble CD147 (BSG) as a Prognostic Marker in Multiple Myeloma. Curr Issues Mol Biol 2022; 44:350-359. [PMID: 35723405 PMCID: PMC8929000 DOI: 10.3390/cimb44010026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 02/06/2023] Open
Abstract
CD147 (basigin, BSG) is a membrane-bound glycoprotein involved in energy metabolism that plays a role in cancer cell survival. Its soluble form is a promising marker of some diseases, but it is otherwise poorly studied. CD147 is overexpressed in multiple myeloma (MM) and is known to affect MM progression, while its genetic variants are associated with MM survival. In the present study, we aimed to assess serum soluble CD147 (sCD147) expression as a potential marker in MM. We found that sCD147 level was higher in MM patients compared to healthy individuals. It was also higher in patients with more advanced disease (ISS III) compared to both patients with less advanced MM and healthy individuals, while its level was observed to drop after positive response to treatment. Patients with high sCD147 were characterized by worse overall survival. sCD147 level did not directly correlate with bone marrow CD147 mRNA expression. In conclusion, this study suggests that serum sCD147 may be a prognostic marker in MM.
Collapse
Affiliation(s)
- Piotr Łacina
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland;
- Correspondence: ; Tel.: +48-713-709-960 (ext. 236)
| | - Aleksandra Butrym
- Department of Cancer Prevention and Therapy, Wroclaw Medical University, 50-556 Wrocław, Poland;
| | - Diana Frontkiewicz
- Department of Haematology, Sokołowski Specialist Hospital, 58-309 Wałbrzych, Poland;
| | - Grzegorz Mazur
- Department of Internal, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wrocław, Poland;
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland;
| |
Collapse
|
7
|
Łacina P, Butrym A, Turlej E, Stachowicz-Suhs M, Wietrzyk J, Mazur G, Bogunia-Kubik K. BSG (CD147) Serum Level and Genetic Variants Are Associated with Overall Survival in Acute Myeloid Leukaemia. J Clin Med 2022; 11:jcm11020332. [PMID: 35054026 PMCID: PMC8779396 DOI: 10.3390/jcm11020332] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 02/04/2023] Open
Abstract
Basigin (BSG, CD147) is a multifunctional protein involved in cancer cell survival, mostly by controlling lactate transport through its interaction with monocarboxylate transporters (MCTs) such as MCT1. Previous studies have found that single nucleotide polymorphisms (SNPs) in the gene coding for BSG and MCT1, as well as levels of the soluble form of BSG (sBSG), are potential biomarkers in various diseases. The goal of this study was to confirm BSG and MCT1 RNA overexpression in AML cell lines, as well as to analyse soluble BSG levels and selected BSG/MCT1 genetic variants as potential biomarkers in AML patients. We found that BSG and MCT1 were overexpressed in most AML cell lines. Soluble BSG was increased in AML patients compared to healthy controls, and correlated with various clinical parameters. High soluble BSG was associated with worse overall survival, higher bone marrow blast percentage, and higher white blood cell count. BSG SNPs rs4919859 and rs4682, as well as MCT1 SNP rs1049434, were also associated with overall survival of AML patients. In conclusion, this study confirms the importance of BSG/MCT1 in AML, and suggests that soluble BSG and BSG/MCT1 genetic variants may act as potential AML biomarkers.
Collapse
Affiliation(s)
- Piotr Łacina
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-713-709-960-236
| | - Aleksandra Butrym
- Department of Cancer Prevention and Therapy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Eliza Turlej
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (E.T.); (M.S.-S.); (J.W.)
- Department of Experimental Biology, Wrocław University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Martyna Stachowicz-Suhs
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (E.T.); (M.S.-S.); (J.W.)
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (E.T.); (M.S.-S.); (J.W.)
| | - Grzegorz Mazur
- Department of Internal, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
| |
Collapse
|
8
|
MCT1 is a Predictive Marker for Lenalidomide Maintenance Therapy in Multiple Myeloma. Blood Adv 2021; 6:515-520. [PMID: 34768284 PMCID: PMC8791591 DOI: 10.1182/bloodadvances.2021005532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/22/2021] [Indexed: 11/20/2022] Open
Abstract
High gene expression levels of MCT1 are associated with reduced PFS and OS in MM with lenalidomide-based maintenance therapy. Overexpression of MCT1 impairs efficacy of lenalidomide in human myeloma cells in vitro and in vivo.
Biomarkers that predict response to lenalidomide maintenance therapy in patients with multiple myeloma (MM) have remained elusive. We have shown that immunomodulatory drugs (IMiDs) exert anti-MM activity via destabilization of MCT1 and CD147. In this study, cell samples of 654 patients with MM who received lenalidomide (n = 455), thalidomide (n = 98), or bortezomib (n = 101) maintenance were assessed by gene expression profiling and RNA sequencing, followed by correlation of MCT1 and CD147 expression with data for progression-free survival (PFS) and overall survival (OS). Patients with high expression levels of MCT1 showed significantly reduced PFS (31.9 months vs 48.2 months in MCT1high vs MCT1low; P = .03) and OS (75.9 months vs not reached [NR] in MCT1high vs MCT1low; P = .001) in cases with lenalidomide maintenance, whereas MCT1 expression had no significant impact on PFS or OS in cases with bortezomib maintenance. We validated the predictive role of MCT1 for IMiD-based maintenance in an independent cohort of patients who received thalidomide (OS, 83.6 months vs NR in MCT1high vs MCT1low; P = .03). Functional validation showed that MCT1 overexpression in human MM cell lines significantly reduced the efficacy of lenalidomide, whereas no change was observed with bortezomib treatment, either in vitro or in a MM xenograft model. Our findings have established MCT1 expression as a predictive marker for response to lenalidomide-based maintenance in patients with MM.
Collapse
|
9
|
CD147-Cyclophilin a Interactions Promote Proliferation and Survival of Cutaneous T-Cell Lymphoma. Int J Mol Sci 2021; 22:ijms22157889. [PMID: 34360654 PMCID: PMC8346093 DOI: 10.3390/ijms22157889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022] Open
Abstract
CD147, a transmembrane glycoprotein that belongs to the immunoglobulin superfamily, and cyclophilin A (CypA), one of the binding partners of CD147, are overexpressed in tumor cells and associated with the progression of several malignancies, including both solid and hematological malignancies. However, CD147 and CypA involvement in cutaneous T-cell lymphoma (CTCL) has not been reported. In this study, we examined CD147 and CypA expression and function using clinical samples of mycosis fungoides (MF) and Sézary syndrome (SS) and CTCL cell lines. CD147 and CypA were overexpressed by tumor cells of MF/SS, and CypA was also expressed by epidermal keratinocytes in MF/SS lesional skin. Serum CypA levels were increased and correlated with disease severity markers in MF/SS patients. Anti-CD147 antibody and/or anti-CypA antibody suppressed the proliferation of CTCL cell lines, both in vitro and in vivo, via downregulation of phosphorylated extracellular-regulated kinase 1/2 and Akt. These results suggest that CD147-CypA interactions can contribute to the proliferation of MF/SS tumor cells in both a autocrine and paracrine manner, and that the disruption of CD147-CypA interactions could be a new therapeutic strategy for the treatment of MF/SS.
Collapse
|
10
|
Tang W, Long T, Li F, Peng C, Zhao S, Chen X, Su J. HIF -1 α may promote glycolysis in psoriasis vulgaris via upregulation of CD147 and GLUT1. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:333-344. [PMID: 33967078 PMCID: PMC10930304 DOI: 10.11817/j.issn.1672-7347.2021.200010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Indexed: 11/03/2022]
Abstract
OBJECTIVES To analyze the expressions and distributions of hypoxia-inducible factor-1α (HIF-1α), CD147, and glucose transporter 1 (GLUT1) in epidermis from psoriasis vulgaris and normal people, and to explore the associations among these proteins and their roles in hypoxic HaCaT cell line. METHODS The expression levels of HIF-1α, CD147, and GLUT1 were determined by immunohistochemistry staining in skin biopsies from 48 psoriasis vularis patients and 33 healthy subjects. Cobalt chloride (CoCl2) was added into the culture media of HaCaT cells to mimic hypoxia while RNA interference and transfection technologies were used to explore the association among these proteins by quantitative real-time polymerase chain reaction and Western blotting. Glycolytic capacity was detected by ATP and lactate measurements. RESULTS HIF-1α, CD147, and GLUT1 were highly expressed and the glycolytic capacity was increased in lesions of psoriasis vulgaris; HIF-1α upregulated the expression of CD147 and GLUT1, increased the lactate production and decreased the ATP level in CoCl2-treated HaCaT cells, while CD147 and GLUT1 directly or indirectly bound to each other. CONCLUSIONS Glycolytic capacity increases in the injured keratinocytes of psoriasis vulgaris, suggesting that HIF-1α, CD147, and GLUT1 are associated with glycolysis, which can be considered as the promising targets for psoriasis therapy.
Collapse
Affiliation(s)
- Wen Tang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008.
| | - Tingting Long
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Fangfang Li
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Cong Peng
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Shuang Zhao
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiang Chen
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Juan Su
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
11
|
Abstract
In the following continuation article, the author will expand on how the mechanisms discussed in Part One capitalise on host characteristics to produce the organ specific damage seen in severe coronavirus disease (COVID-19), with specific reference to pulmonary and cardiac manifestations. Pneumonia is the primary manifestation of COVID-19; presentation varies from a mild, self-limiting pneumonitis to a fulminant and progressive respiratory failure. Features of disease severity tend to directly correlate with patient age, with elderly populations faring poorest. Advancing age parallels an increasingly pro-oxidative pulmonary milieu, a consequence of increasing host expression of phospholipase A2 Group IID. Virally induced expression of NADPH oxidase intensifies this pro-oxidant environment. The virus avails of the host response by exploiting caveolin-1 to assist in disabling host defenses and adopting a glycolytic metabolic pathway to self-replicate.
Collapse
|
12
|
Abstract
In Part One of this exploration of the pathogenesis of coronavirus disease (COVID-19), the author will evaluate the viral and cellular immunological basis for the condition. The virus demonstrates a remarkable capability not just to evade, but to exploit host immune characteristics to perpetuate viral replication. In this regard, severe acute respiratory syndrome (SARS)/severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) disables most antiviral mechanisms, including the early interferon response, and avoids detection to permit unimpeded viral multiplication. Consequently, antigen-presenting cells fail to adequately stimulate the T-cell receptor. As a consequence, T-cell p53 remains highly expressed, which in turn disables an adequate effector T-cell response.
Replicating SARS-CoV-2 double-strand RNA robustly activates protein kinase R (PKR)/PKR-like endoplasmic reticulum kinase (PERK). While the virus is grossly invulnerable to its antiviral effects, PKR is crucial for effecting the cytokine milieu in COVID-19. PERK is a component of the unfolded protein response, which eventuates in autophagy. SARS virions use double-membrane vesicles and adapt PERK signalling not only to avoid autophagy, but to facilitate replication. Viral activation of PKR/PERK is mutually exclusive to NLRP3 stimulation. The NLRP3 pathway elaborates IL-1β. This is chiefly a feature of paediatric SARS/SARS-CoV-2 cases. The difficulties encountered in predicting outcome and forging effective therapeutics speaks to the breadth of complexity of the immunopathogenesis of this virus.
Collapse
Affiliation(s)
- Thomas Walsh
- Rheumatology Department, Harrogate and District Hospital, Harrogate, UK
| |
Collapse
|
13
|
Moloudizargari M, Redegeld F, Asghari MH, Mosaffa N, Mortaz E. Long-chain polyunsaturated omega-3 fatty acids reduce multiple myeloma exosome-mediated suppression of NK cell cytotoxicity. ACTA ACUST UNITED AC 2020; 28:647-659. [PMID: 32974883 DOI: 10.1007/s40199-020-00372-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Despite the advances in the treatment of multiple myeloma (MM), complete remission is usually challenging. The interactions between tumor and host cells, in which exosomes (EXs) play critical roles, have been shown to be among the major deteriorative tumor-promoting factors herein. Therefore, any endeavor to beneficially target these EX-mediated interactions could be of high importance. OBJECTIVES a) To investigate the effects of myeloma EXs on natural killer (NK) cell functions. b) To check whether treatment of myeloma cells with eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA), two polyunsaturated omega-3 fatty acids with known anti-cancer effects, can modify myeloma EXs in terms of their effects on natural killer functions. METHODS L363 cells were treated with either EPA or DHA or left untreated and the released EXs (designated as E-EX, D-EX and C-EX, respectively) were used to treat NK cells for functional studies. RESULTS Myeloma EXs (C-EXs) significantly reduced NK cytotoxicity against K562 cells (P ≤ 0.05), while the cytotoxicity suppression was significantly lower (P ≤ 0.05) in the (E-EX)- and (D-EX)-treated NK cells compared to the (C-EX)-treated cells. The expression of the activating NK receptor NKG2D and NK degranulation, after treatment with the EXs, were both altered following the same pattern. However, C-EXs could increase IFN-γ production in NK cells (P < 0.01), which was not significantly affected by EPA/DHA treatment. This indicates a dual effect of myeloma EXs on NK cells functions. CONCLUSION Our observations showed that myeloma EXs have both suppressive and stimulatory effects on different NK functions. Treatment of myeloma cells with EPA/DHA can reduce the suppressive effects of myeloma EXs while maintaining their stimulatory effects. These findings, together with the previous findings on the anti-cancer effects of EPA/DHA, provide stronger evidence for the repositioning of the currently existing EPA/DHA supplements to be used in the treatment of MM as an adjuvant treatment. EXs released from L363 (myeloma) cells in their steady state increase IFN-γ production of NK cells, while reduce their cytotoxicity against the K562 cell line (right blue trace). EXs from L363 cells pre-treated with either EPA or DHA are weaker stimulators of IFN-γ production. These EXs also increase NK cytotoxicity and NKG2D expression (left brown trace) compared to the EXs obtained from untreated L363 cells. Based on these findings, myeloma EXs have both suppressive and stimulatory effects on different NK functions depending on the properties of their cells of origin, which can be exploited in the treatment of myeloma.
Collapse
Affiliation(s)
- Milad Moloudizargari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Frank Redegeld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Mohammad Hossein Asghari
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Esmaeil Mortaz
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands. .,Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Cheng XS, Huo YN, Fan YY, Xiao CX, Ouyang XM, Liang LY, Lin Y, Wu JF, Ren JL, Guleng B. Mindin serves as a tumour suppressor gene during colon cancer progression through MAPK/ERK signalling pathway in mice. J Cell Mol Med 2020; 24:8391-8404. [PMID: 32614521 PMCID: PMC7412704 DOI: 10.1111/jcmm.15332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 01/14/2020] [Accepted: 02/06/2020] [Indexed: 12/13/2022] Open
Abstract
Mindin is important in broad spectrum of immune responses. On the other hand, we previously reported that mindin attenuated human colon cancer development by blocking angiogenesis through Egr-1-mediated regulation. However, the mice original mindin directly suppressed the syngenic colorectal cancer (CRC) growth in our recent study and we aimed to further define the role of mindin during CRC development in mice. We established the mouse syngeneic CRC CMT93 and CT26 WT cell lines with stable mindin knock-down or overexpression. These cells were also subcutaneously injected into C57BL/6 and BALB/c mice as well as established a colitis-associated colorectal cancer (CAC) mouse model treated with lentiviral-based overexpression and knocked-down of mindin. Furthermore, we generated mindin knockout mice using a CRISPR-Cas9 system with CAC model. Our data showed that overexpression of mindin suppressed cell proliferation in both of CMT93 and CT26 WT colon cancer cell lines, while the silencing of mindin promoted in vitro cell proliferation via the ERK and c-Fos pathways and cell cycle control. Moreover, the overexpression of mindin significantly suppressed in vivo tumour growth in both the subcutaneous transplantation and the AOM/DSS-induced CAC models. Consistently, the silencing of mindin reversed these in vivo observations. Expectedly, the tumour growth was promoted in the CAC model on mindin-deficient mice. Thus, mindin plays a direct tumour suppressive function during colon cancer progression and suggesting that mindin might be exploited as a therapeutic target for CRC.
Collapse
Affiliation(s)
- Xiao-Shen Cheng
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| | - Ya-Ni Huo
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| | - Yan-Yun Fan
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| | - Chuan-Xing Xiao
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| | - Xiao-Mei Ouyang
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| | - Lai-Ying Liang
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| | - Ying Lin
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| | - Jian-Feng Wu
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Jian-Lin Ren
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| | - Bayasi Guleng
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China.,School of Medicine, Cancer Research Center & Institute of Microbial Ecology, Xiamen University, Xiamen, China.,State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, China
| |
Collapse
|
15
|
De Luca L, Laurenzana I, Trino S, Lamorte D, Caivano A, Musto P. An update on extracellular vesicles in multiple myeloma: a focus on their role in cell-to-cell cross-talk and as potential liquid biopsy biomarkers. Expert Rev Mol Diagn 2019; 19:249-258. [PMID: 30782029 DOI: 10.1080/14737159.2019.1583103] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Multiple myeloma (MM) is characterized by a clonal proliferation of neoplastic plasma cells (PCs) in bone marrow (BM) and the interplay between MM PCs and the BM microenvironment, which plays a relevant role in its pathogenesis. In this important cross-talk, extracellular vesicles (EVs) are active. EVs, including small and medium/large EVs, are lipid bi-layer particles released in circulation by normal and neoplastic cells. A selected cargo of lipids, proteins, and nucleic acids is loaded into EVs, and delivered locally and to distant sites, thus influencing the physiology of recipient cells. In the 'liquid biopsy' context, EVs can be isolated from human biofluids proving to be powerful markers in cancer. Areas covered: Here, we summarize the recent advances on EVs in MM field. Expert commentary: EVs from MM PCs: i) enhance malignant cell proliferation and aggressiveness through an autocrine loop; ii) are able to transfer drug resistance in sensitive-drug cells; iii) stimulate angiogenesis; iv) increase the activity of osteoclasts; v) have immunosuppressive effects. In addition, EVs from MM stromal cells also promote MM cell proliferation and drug resistance. Finally, we underline the importance of EVs as MM potential biomarkers in 'cancer liquid biopsy' and as a potential new therapeutic target.
Collapse
Affiliation(s)
- Luciana De Luca
- a Laboratory of Preclinical and Translational Research , IRCCS-Referral Cancer Center of Basilicata (CROB) , Rionero in Vulture (PZ) , Italy
| | - Ilaria Laurenzana
- a Laboratory of Preclinical and Translational Research , IRCCS-Referral Cancer Center of Basilicata (CROB) , Rionero in Vulture (PZ) , Italy
| | - Stefania Trino
- a Laboratory of Preclinical and Translational Research , IRCCS-Referral Cancer Center of Basilicata (CROB) , Rionero in Vulture (PZ) , Italy
| | - Daniela Lamorte
- a Laboratory of Preclinical and Translational Research , IRCCS-Referral Cancer Center of Basilicata (CROB) , Rionero in Vulture (PZ) , Italy
| | - Antonella Caivano
- a Laboratory of Preclinical and Translational Research , IRCCS-Referral Cancer Center of Basilicata (CROB) , Rionero in Vulture (PZ) , Italy
| | - Pellegrino Musto
- b Hematology and Stem Cell Transplantation Unit , IRCCS-Referral Cancer Center of Basilic`ata (CROB) , Rionero in Vulture (PZ) , Italy
| |
Collapse
|
16
|
Łacina P, Butrym A, Mazur G, Bogunia-Kubik K. BSG and MCT1 Genetic Variants Influence Survival in Multiple Myeloma Patients. Genes (Basel) 2018; 9:genes9050226. [PMID: 29695106 PMCID: PMC5977166 DOI: 10.3390/genes9050226] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 01/20/2023] Open
Abstract
Multiple myeloma (MM) is a haematologic malignancy characterized by the presence of atypical plasma cells. Basigin (BSG, CD147) controls lactate export through the monocarboxylic acid transporter 1 (MCT1, SLC16A1) and supports MM survival and proliferation. Additionally, BSG is implicated in response to treatment with immunomodulatory drugs (thalidomide and its derivatives). We investigated the role of single nucleotide polymorphisms (SNPs) in the gene coding for BSG and SLC16A1 in MM. Following an in silico analysis, eight SNPs (four in BSG and four in SLC16A1) predicted to have a functional effect were selected and analyzed in 135 MM patients and 135 healthy individuals. Alleles rs4919859 C, rs8637 G, and haplotype CG were associated with worse progression-free survival (p = 0.006, p = 0.017, p = 0.002, respectively), while rs7556664 A, rs7169 T and rs1049434 A (all in linkage disequilibrium (LD), r² > 0.98) were associated with better overall survival (p = 0.021). Similar relationships were observed in thalidomide-treated patients. Moreover, rs4919859 C, rs8637 G, rs8259 A and the CG haplotype were more common in patients in stages II⁻III of the International Staging System (p < 0.05), while rs8259 A correlated with higher levels of β-2-microglobulin and creatinine (p < 0.05). Taken together, our results show that BSG and SLC16A1 variants affect survival, and may play an important role in MM.
Collapse
Affiliation(s)
- Piotr Łacina
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland.
| | - Aleksandra Butrym
- Department of Internal, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wrocław, Poland.
| | - Grzegorz Mazur
- Department of Internal, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wrocław, Poland.
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland.
| |
Collapse
|
17
|
Nabissi M, Morelli MB, Offidani M, Amantini C, Gentili S, Soriani A, Cardinali C, Leoni P, Santoni G. Cannabinoids synergize with carfilzomib, reducing multiple myeloma cells viability and migration. Oncotarget 2018; 7:77543-77557. [PMID: 27769052 PMCID: PMC5363603 DOI: 10.18632/oncotarget.12721] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/05/2016] [Indexed: 02/06/2023] Open
Abstract
Several studies showed a potential anti-tumor role for cannabinoids, by modulating cell signaling pathways involved in cancer cell proliferation, chemo-resistance and migration. Cannabidiol (CBD) was previously noted in multiple myeloma (MM), both alone and in synergy with the proteasome inhibitor bortezomib, to induce cell death. In other type of human cancers, the combination of CBD with Δ9-tetrahydrocannabinol (THC) was found to act synergistically with other chemotherapeutic drugs suggesting their use in combination therapy. In the current study, we evaluated the effects of THC alone and in combination with CBD in MM cell lines. We found that CBD and THC, mainly in combination, were able to reduce cell viability by inducing autophagic-dependent necrosis. Moreover, we showed that the CBD-THC combination was able to reduce MM cells migration by down-regulating expression of the chemokine receptor CXCR4 and of the CD147 plasma membrane glycoprotein. Furthermore, since the immuno-proteasome is considered a new target in MM and also since carfilzomib (CFZ) is a new promising immuno-proteasome inhibitor that creates irreversible adducts with the β5i subunit of immuno-proteasome, we evaluated the effect of CBD and THC in regulating the expression of the β5i subunit and their effect in combination with CFZ. Herein, we also found that the CBD and THC combination is able to reduce expression of the β5i subunit as well as to act in synergy with CFZ to increase MM cell death and inhibits cell migration. In summary, these results proved that this combination exerts strong anti-myeloma activities.
Collapse
Affiliation(s)
- Massimo Nabissi
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy
| | | | - Massimo Offidani
- Clinica di Ematologia, Azienda Ospedaliero Universitaria Ospedali Riuniti di Ancona, Ancona, Italy
| | - Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Silvia Gentili
- Clinica di Ematologia, Azienda Ospedaliero Universitaria Ospedali Riuniti di Ancona, Ancona, Italy
| | | | | | - Pietro Leoni
- Clinica di Ematologia, Azienda Ospedaliero Universitaria Ospedali Riuniti di Ancona, Ancona, Italy
| | - Giorgio Santoni
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy
| |
Collapse
|
18
|
Callahan TJ, Baumgartner WA, Bada M, Stefanski AL, Tripodi I, White EK, Hunter LE. OWL-NETS: Transforming OWL Representations for Improved Network Inference. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2018; 23:133-144. [PMID: 29218876 PMCID: PMC5737627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Our knowledge of the biological mechanisms underlying complex human disease is largely incomplete. While Semantic Web technologies, such as the Web Ontology Language (OWL), provide powerful techniques for representing existing knowledge, well-established OWL reasoners are unable to account for missing or uncertain knowledge. The application of inductive inference methods, like machine learning and network inference are vital for extending our current knowledge. Therefore, robust methods which facilitate inductive inference on rich OWL-encoded knowledge are needed. Here, we propose OWL-NETS (NEtwork Transformation for Statistical learning), a novel computational method that reversibly abstracts OWL-encoded biomedical knowledge into a network representation tailored for network inference. Using several examples built with the Open Biomedical Ontologies, we show that OWL-NETS can leverage existing ontology-based knowledge representations and network inference methods to generate novel, biologically-relevant hypotheses. Further, the lossless transformation of OWL-NETS allows for seamless integration of inferred edges back into the original knowledge base, extending its coverage and completeness.
Collapse
Affiliation(s)
- Tiffany J Callahan
- Computational Bioscience Program, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA,
| | | | | | | | | | | | | |
Collapse
|
19
|
Luo Z, Zhang X, Zeng W, Su J, Yang K, Lu L, Lim CB, Tang W, Wu L, Zhao S, Jia X, Peng C, Chen X. TRAF6 regulates melanoma invasion and metastasis through ubiquitination of Basigin. Oncotarget 2016; 7:7179-92. [PMID: 26769849 PMCID: PMC4872777 DOI: 10.18632/oncotarget.6886] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/02/2016] [Indexed: 01/01/2023] Open
Abstract
TRAF6 plays a crucial role in the regulation of the innate and adaptive immune responses. Although studies have shown that TRAF6 has oncogenic activity, the role of TRAF6 in melanoma is unclear. Here, we report that TRAF6 is overexpressed in primary as well as metastatic melanoma tumors and melanoma cell lines. Knockdown of TRAF6 with shRNA significantly suppressed malignant phenotypes including cell proliferation, anchorage-independent cell growth and metastasis in vitro and in vivo. Notably, we demonstrated that Basigin (BSG)/CD147, a critical molecule for cancer cell invasion and metastasis, is a novel interacting partner of TRAF6. Furthermore, depletion of TRAF6 by shRNA reduced the recruitment of BSG to the plasma membrane and K63-linked ubiquitination, in turn, which impaired BSG-dependent MMP9 induction. Taken together, our findings indicate that TRAF6 is involved in regulating melanoma invasion and metastasis, suggesting that TRAF6 may be a potential target for therapy or chemo-prevention in melanoma.
Collapse
Affiliation(s)
- Zhongling Luo
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xu Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weiqi Zeng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Keda Yang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lixia Lu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chuan Bian Lim
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Wen Tang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lisha Wu
- Institute of Medical Science Research, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuang Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuekun Jia
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
20
|
Hanson DJ, Nakamura S, Amachi R, Hiasa M, Oda A, Tsuji D, Itoh K, Harada T, Horikawa K, Teramachi J, Miki H, Matsumoto T, Abe M. Effective impairment of myeloma cells and their progenitors by blockade of monocarboxylate transportation. Oncotarget 2016; 6:33568-86. [PMID: 26384349 PMCID: PMC4741786 DOI: 10.18632/oncotarget.5598] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 08/26/2015] [Indexed: 02/04/2023] Open
Abstract
Cancer cells robustly expel lactate produced through enhanced glycolysis via monocarboxylate transporters (MCTs) and maintain alkaline intracellular pH. To develop a novel therapeutic strategy against multiple myeloma (MM), which still remains incurable, we explored the impact of perturbing a metabolism via inhibiting MCTs. All MM cells tested constitutively expressed MCT1 and MCT4, and most expressed MCT2. Lactate export was substantially suppressed to induce death along with lowering intracellular pH in MM cells by blockade of all three MCT molecules with α-cyano-4-hydroxy cinnamate (CHC) or the MCT1 and MCT2 inhibitor AR-C155858 in combination with MCT4 knockdown, although only partially by knockdown of each MCT. CHC lowered intracellular pH and severely curtailed lactate secretion even when combined with metformin, which further lowered intracellular pH and enhanced cytotoxicity. Interestingly, an ambient acidic pH markedly enhanced CHC-mediated cytotoxicity, suggesting preferential targeting of MM cells in acidic MM bone lesions. Furthermore, treatment with CHC suppressed hexokinase II expression and ATP production to reduce side populations and colony formation. Finally, CHC caused downregulation of homing receptor CXCR4 and abrogated SDF-1-induced migration. Targeting tumor metabolism by MCT blockade therefore may become an effective therapeutic option for drug-resistant MM cells with elevated glycolysis.
Collapse
Affiliation(s)
- Derek James Hanson
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Shingen Nakamura
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Ryota Amachi
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.,Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Masahiro Hiasa
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.,Department of Biomaterials and Bioengineering, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Asuka Oda
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Daisuke Tsuji
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kohji Itoh
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takeshi Harada
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kazuki Horikawa
- Division of Bio-imaging, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Jumpei Teramachi
- Department of Histology and Oral Histology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hirokazu Miki
- Division of Transfusion Medicine and Cell Therapy, Tokushima University Hospital, Tokushima, Japan
| | - Toshio Matsumoto
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Masahiro Abe
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
21
|
Immunomodulatory drugs disrupt the cereblon–CD147–MCT1 axis to exert antitumor activity and teratogenicity. Nat Med 2016; 22:735-43. [DOI: 10.1038/nm.4128] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/18/2016] [Indexed: 12/14/2022]
|
22
|
Rahat MA, Preis M. Role of microRNA in regulation of myeloma-related angiogenesis and survival. World J Hematol 2016; 5:51-60. [DOI: 10.5315/wjh.v5.i2.51] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/19/2015] [Accepted: 01/22/2016] [Indexed: 02/05/2023] Open
Abstract
Multiple myeloma (MM) is a malignant disease caused by clonal proliferation of plasma cells that result in monoclonal gammopathy and severe end organ damage. Despite the uniform clinical signs, the disease is very diverse in terms of the nature and sequence of the underlying molecular events. Multiple cellular processes are involved in helping the malignant cells to remain viable and maintain proliferative properties in the hypoxic microenvironment of the bone marrow. Specifically, the process of angiogenesis, triggered by the interactions between the malignant MM cells and the stroma cells around them, was found to be critical for MM progression. In this review we highlight the current understanding about the epigenetic regulation of the proliferation and apoptosis of MM cells and its dependency on angiogenesis in the bone marrow that is carried out by different microRNAs.
Collapse
|
23
|
Lin ZL, Wu HJ, Chen JA, Lin KC, Hsu JH. Cyclophilin A as a downstream effector of PI3K/Akt signalling pathway in multiple myeloma cells. Cell Biochem Funct 2016; 33:566-74. [PMID: 26833980 DOI: 10.1002/cbf.3156] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/23/2015] [Accepted: 10/23/2015] [Indexed: 12/12/2022]
Abstract
Cyclophilin A (Cyp A), a member of the peptidyl-prolyl isomerase (PPI) family, may function as a molecular signalling switch. Comparative proteomic studies have identified Cyp A as a potential downstream target of protein kinase B (Akt). This study confirmed that Cyp A is a downstream effector of the phosphatidylinositide 3-kinase (PI3K)/Akt signalling pathway. Cyp A was highly phosphorylated in response to interleukin-6 treatment, which was consistent with the accumulation of phosphorylated Akt, suggesting that Cyp A is a phosphorylation target of Akt and downstream effector of the PI3K/Akt pathway. Cyclosporine A (CsA), a PPI inhibitor, inhibited the growth of multiple myeloma (MM) U266 cells. Moreover, CsA treatment inhibited the activation of the signal transducer and activator of transcription 3 (STAT3) in MM U266 cells. Several Cyp A mutants were generated. Mutants with mutated AKT phosphorylation sites increased the G1 phase arrest in MM U266 cells. The other mutants that mimicked the phosphorylated state of Cyp A decreased the percentage of G1 phase. These results demonstrated that the states of phosphorylation of Cyp A by Akt can influence the progress of the cell cycle in MM U266 cells and that this effect is probably mediated through the Janus-activated kinase 2/STAT3 signalling pathway.
Collapse
Affiliation(s)
- Zuo-Lin Lin
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| | - Hsin-Jou Wu
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| | - Jin-An Chen
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| | - Kuo-Chih Lin
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| | - Jung-Hsin Hsu
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| |
Collapse
|
24
|
Abstract
Unprecedented advances in multiple myeloma (MM) therapy during the last 15 years are predominantly based on our increasing understanding of the pathophysiologic role of the bone marrow (BM) microenvironment. Indeed, new treatment paradigms, which incorporate thalidomide, immunomodulatory drugs (IMiDs), and proteasome inhibitors, target the tumor cell as well as its BM microenvironment. Ongoing translational research aims to understand in more detail how disordered BM-niche functions contribute to MM pathogenesis and to identify additional derived targeting agents. One of the most exciting advances in the field of MM treatment is the emergence of immune therapies including elotuzumab, daratumumab, the immune checkpoint inhibitors, Bispecific T-cell engagers (BiTes), and Chimeric antigen receptor (CAR)-T cells. This chapter will review our knowledge on the pathophysiology of the BM microenvironment and discuss derived novel agents that hold promise to further improve outcome in MM.
Collapse
Affiliation(s)
- Michele Moschetta
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yawara Kawano
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Klaus Podar
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
25
|
How, with whom and when: an overview of CD147-mediated regulatory networks influencing matrix metalloproteinase activity. Biosci Rep 2015; 36:e00283. [PMID: 26604323 PMCID: PMC4718507 DOI: 10.1042/bsr20150256] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/24/2015] [Indexed: 12/11/2022] Open
Abstract
Matrix metalloproteinases (MMPs) comprise a family of 23 zinc-dependent enzymes involved in various pathologic and physiologic processes. In cancer, MMPs contribute to processes from tumour initiation to establishment of distant metastases. Complex signalling and protein transport networks regulate MMP synthesis, cell surface presentation and release. Earlier attempts to disrupt MMP activity in patients have proven to be intolerable and with underwhelming clinical efficacy; thus targeting ancillary proteins that regulate MMP activity may be a useful therapeutic approach. Extracellular matrix metalloproteinase inducer (EMMPRIN) was originally characterized as a factor present on lung cancer cells, which stimulated collagenase (MMP-1) production in fibroblasts. Subsequent studies demonstrated that EMMPRIN was identical with several other protein factors, including basigin (Bsg), all of which are now commonly termed CD147. CD147 modulates the synthesis and activity of soluble and membrane-bound [membrane-type MMPs (MT-MMPs)] in various contexts via homophilic/heterophilic cell interactions, vesicular shedding or cell-autonomous processes. CD147 also participates in inflammation, nutrient and drug transporter activity, microbial pathology and developmental processes. Despite the hundreds of manuscripts demonstrating CD147-mediated MMP regulation, the molecular underpinnings governing this process have not been fully elucidated. The present review summarizes our present knowledge of the complex regulatory systems influencing CD147 biology and provides a framework to understand how CD147 may influence MMP activity.
Collapse
|
26
|
Panchabhai S, Kelemen K, Ahmann G, Sebastian S, Mantei J, Fonseca R. Tumor-associated macrophages and extracellular matrix metalloproteinase inducer in prognosis of multiple myeloma. Leukemia 2015. [PMID: 26202926 DOI: 10.1038/leu.2015.191] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- S Panchabhai
- Division of Hematology/Oncology, Mayo Clinic, Scottsdale, AZ, USA
| | - K Kelemen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, AZ, USA
| | - G Ahmann
- Division of Hematology/Oncology, Mayo Clinic, Scottsdale, AZ, USA
| | - S Sebastian
- Division of Hematology/Oncology, Mayo Clinic, Scottsdale, AZ, USA
| | - J Mantei
- Division of Hematology/Oncology, Mayo Clinic, Scottsdale, AZ, USA
| | - R Fonseca
- Division of Hematology/Oncology, Mayo Clinic, Scottsdale, AZ, USA
| |
Collapse
|
27
|
Arendt BK, Walters DK, Wu X, Tschumper RC, Jelinek DF. Multiple myeloma dell-derived microvesicles are enriched in CD147 expression and enhance tumor cell proliferation. Oncotarget 2015; 5:5686-99. [PMID: 25015330 PMCID: PMC4170605 DOI: 10.18632/oncotarget.2159] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Multiple myeloma (MM) is characterized by the clonal expansion of malignant plasma cells within the bone marrow. There is a growing literature that tumor cells release biologically active microvesicles (MVs) that modify both local and distant microenvironments. In this study, our goals were to determine if MM cells release MVs, and if so, begin to characterize their biologic activity. Herein we present clear evidence that not only do both patient MM cells and human MM cell lines (HMCLs) release MVs, but that these MVs stimulate MM cell growth. Of interest, MM-derived MVs were enriched with the biologically active form of CD147, a transmembrane molecule previously shown by us to be crucial for MM cell proliferation. Using MVs isolated from HMCLs stably transfected with a CD147-GFP fusion construct (CD147GFP), we observed binding and internalization of MV-derived CD147 with HMCLs. Cells with greater CD147GFP internalization proliferated at a higher rate than did cells with less CD147GFP association. Lastly, MVs obtained from CD147 downregulated HMCLs were attenuated in their ability to stimulate HMCL proliferation. In summary, this study demonstrates the significance of MV shedding and MV-mediated intercellular communication on malignant plasma cell proliferation, and identifies the role of MV-enriched CD147 in this process.
Collapse
Affiliation(s)
- Bonnie K Arendt
- Department of Immunology, Division of Hematology, Mayo Clinic, College of Medicine, Rochester, MN
| | - Denise K Walters
- Department of Immunology, Division of Hematology, Mayo Clinic, College of Medicine, Rochester, MN
| | - Xiaosheng Wu
- Department of Immunology, Division of Hematology, Mayo Clinic, College of Medicine, Rochester, MN
| | - Renee C Tschumper
- Department of Immunology, Division of Hematology, Mayo Clinic, College of Medicine, Rochester, MN
| | - Diane F Jelinek
- Department of Immunology, Division of Hematology, Mayo Clinic, College of Medicine, Rochester, MN. Department of Medicine, Mayo Clinic, College of Medicine, Rochester, MN
| |
Collapse
|
28
|
Zhu D, Wang Z, Zhao JJ, Calimeri T, Meng J, Hideshima T, Fulciniti M, Kang Y, Ficarro S, Tai YT, Hunter Z, McMilin D, Tong H, Mitsiades CS, Wu C, Treon S, Dorfman DM, Pinkus G, Munshi N, Tassone P, Marto J, Anderson K, Carrasco RD. The Cyclophilin A-CD147 complex promotes the proliferation and homing of multiple myeloma cells. Nat Med 2015; 21:572-80. [PMID: 26005854 PMCID: PMC4567046 DOI: 10.1038/nm.3867] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 04/22/2015] [Indexed: 12/12/2022]
Abstract
B cell malignancies frequently colonize the bone marrow. The mechanisms responsible for this preferential homing are incompletely understood. Here we studied multiple myeloma (MM) as a model of a terminally differentiated B cell malignancy that selectively colonizes the bone marrow. We found that extracellular CyPA (eCyPA), secreted by bone marrow endothelial cells (BMECs), promoted the colonization and proliferation of MM cells in an in vivo scaffold system via binding to its receptor, CD147, on MM cells. The expression and secretion of eCyPA by BMECs was enhanced by BCL9, a Wnt-β-catenin transcriptional coactivator that is selectively expressed by these cells. eCyPA levels were higher in bone marrow serum than in peripheral blood in individuals with MM, and eCyPA-CD147 blockade suppressed MM colonization and tumor growth in the in vivo scaffold system. eCyPA also promoted the migration of chronic lymphocytic leukemia and lymphoplasmacytic lymphoma cells, two other B cell malignancies that colonize the bone marrow and express CD147. These findings suggest that eCyPA-CD147 signaling promotes the bone marrow homing of B cell malignancies and offer a compelling rationale for exploring this axis as a therapeutic target for these malignancies.
Collapse
Affiliation(s)
- Di Zhu
- Department of Medical Oncology, Dana-Farber Cancer Institute,
Harvard Medical School, Boston, Massachusetts, USA
| | - Zhongqiu Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute,
Harvard Medical School, Boston, Massachusetts, USA
- Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang
Hospital, Southern Medical University, Guangdong, China
| | - Jian-Jun Zhao
- Department of Medical Oncology, Dana-Farber Cancer Institute,
Harvard Medical School, Boston, Massachusetts, USA
| | - Teresa Calimeri
- Department of Experimental and Clinical Medicine, Magna Graecia
University and Cancer Center, Catanzaro, Italy
| | - Jiang Meng
- Department of Medical Oncology, Dana-Farber Cancer Institute,
Harvard Medical School, Boston, Massachusetts, USA
- Fourth Affiliated Hospital of Harbin Medical University,
Heilongjiang, China
| | - Teru Hideshima
- Department of Medical Oncology, Dana-Farber Cancer Institute,
Harvard Medical School, Boston, Massachusetts, USA
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Mariateresa Fulciniti
- Department of Medical Oncology, Dana-Farber Cancer Institute,
Harvard Medical School, Boston, Massachusetts, USA
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Yue Kang
- Department of Medical Oncology, Dana-Farber Cancer Institute,
Harvard Medical School, Boston, Massachusetts, USA
- Institute of Biophysics, Chinese Academy of Sciences, China
| | - Scott Ficarro
- Department of Cancer Biology and Blais Proteomics Center,
Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biological Chemistry and Molecular Pharmacology,
Harvard Medical School, Boston, Massachusetts, USA
| | - Yu-Tzu Tai
- Department of Medical Oncology, Dana-Farber Cancer Institute,
Harvard Medical School, Boston, Massachusetts, USA
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Zachary Hunter
- Department of Medical Oncology, Dana-Farber Cancer Institute,
Harvard Medical School, Boston, Massachusetts, USA
| | - Douglas McMilin
- Department of Medical Oncology, Dana-Farber Cancer Institute,
Harvard Medical School, Boston, Massachusetts, USA
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Haoxuan Tong
- Department of Cancer Biology and Blais Proteomics Center,
Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Constantine S. Mitsiades
- Department of Medical Oncology, Dana-Farber Cancer Institute,
Harvard Medical School, Boston, Massachusetts, USA
| | - Catherine Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute,
Harvard Medical School, Boston, Massachusetts, USA
| | - Steven Treon
- Department of Medical Oncology, Dana-Farber Cancer Institute,
Harvard Medical School, Boston, Massachusetts, USA
| | - David M. Dorfman
- Department of Pathology, Brigham & Women's Hospital, Boston,
Massachusetts, USA
| | - Geraldine Pinkus
- Department of Pathology, Brigham & Women's Hospital, Boston,
Massachusetts, USA
| | - Nikhil Munshi
- Department of Medical Oncology, Dana-Farber Cancer Institute,
Harvard Medical School, Boston, Massachusetts, USA
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia
University and Cancer Center, Catanzaro, Italy
| | - Jarrod Marto
- Department of Cancer Biology and Blais Proteomics Center,
Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biological Chemistry and Molecular Pharmacology,
Harvard Medical School, Boston, Massachusetts, USA
| | - Kenneth Anderson
- Department of Medical Oncology, Dana-Farber Cancer Institute,
Harvard Medical School, Boston, Massachusetts, USA
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Ruben D. Carrasco
- Department of Medical Oncology, Dana-Farber Cancer Institute,
Harvard Medical School, Boston, Massachusetts, USA
- Department of Pathology, Brigham & Women's Hospital, Boston,
Massachusetts, USA
| |
Collapse
|
29
|
Wong TW, Doyle AD, Lee JJ, Jelinek DF. Eosinophils regulate peripheral B cell numbers in both mice and humans. THE JOURNAL OF IMMUNOLOGY 2014; 192:3548-58. [PMID: 24616476 DOI: 10.4049/jimmunol.1302241] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The view of eosinophils (Eos) as solely effector cells involved in host parasite defense and in the pathophysiology of allergic diseases has been challenged in recent years. In fact, there is a growing realization that these cells interact with other components of innate and adaptive immunity. For example, mouse Eos were recently demonstrated to promote plasma cell retention in the bone marrow. However, it remains unknown whether Eos influence the biology of normal B lymphocytes. In this study, we specifically assessed the effect of Eos on B cell survival, proliferation, and Ig secretion. Our data first revealed that the genetic deletion of Eos from NJ1638 IL-5 transgenic hypereosinophilic mice (previously shown to display profound B cell expansion) resulted in the near abolishment of the B cell lymphocytosis. In vitro studies using human tissues demonstrated Eos' proximity to B cell follicles and their ability to promote B cell survival, proliferation, and Ig secretion via a contact-independent mechanism. Additionally, this ability of Eos to enhance B cell responsiveness was observed in both T-independent and T-dependent B cell activation and appears to be independent of the activation state of Eos. Finally, a retrospective clinical study of hypereosinophilic patients revealed a direct correlation between peripheral blood eosinophil levels and B cell numbers. Taken together, our study identifies a novel role for Eos in the regulation of humoral immunity via their impact on B cell homeostasis and proliferation upon activation.
Collapse
Affiliation(s)
- Tina W Wong
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
| | | | | | | |
Collapse
|
30
|
Slany A, Haudek-Prinz V, Meshcheryakova A, Bileck A, Lamm W, Zielinski C, Gerner C, Drach J. Extracellular matrix remodeling by bone marrow fibroblast-like cells correlates with disease progression in multiple myeloma. J Proteome Res 2013; 13:844-54. [PMID: 24256566 DOI: 10.1021/pr400881p] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The pathogenesis of multiple myeloma (MM) is regarded as a multistep process, in which an asymptomatic stage of monoclonal gammopathy of undetermined significance (MGUS) precedes virtually all cases of MM. Molecular events characteristic for the transition from MGUS to MM are still poorly defined. We hypothesized that fibroblast-like cells in the tumor microenvironment are critically involved in the pathogenesis of MM. Therefore, we performed a comparative proteome profiling study, analyzing primary human fibroblast-like cells isolated from the bone marrow of MM, of MGUS, as well as of non-neoplastic control patients. Thereby, a group of extracellular matrix (ECM) proteins, ECM receptors, and ECM-modulating enzymes turned out to be progressively up-regulated in MGUS and MM. These proteins include laminin α4, lysyl-hydroxylase 2, prolyl 4-hydroxylase 1, nidogen-2, integrin α5β5, c-type mannose receptor 2, PAI-1, basigin, and MMP-2, in addition to PDGF-receptor β and the growth factor periostin, which are likewise involved in ECM activities. Our results indicate that ECM remodeling by fibroblast-like cells may take place already at the level of MGUS and may become even more pronounced in MM. The identified proteins which indicate the stepwise progression from MGUS to MM may offer new tools for therapeutic strategies.
Collapse
Affiliation(s)
- Astrid Slany
- Faculty of Chemistry, Institute of Analytical Chemistry, University of Vienna , Währingerstraße 38, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Walters DK, Arendt BK, Jelinek DF. CD147 regulates the expression of MCT1 and lactate export in multiple myeloma cells. Cell Cycle 2013; 12:3175-83. [PMID: 24013424 DOI: 10.4161/cc.26193] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Increased use of the glycolytic pathway, even in the presence of oxygen, has recently been recognized as a key characteristic of malignant cells. However, the glycolytic phenotype results in increased lactic acid production and, in order to prevent cellular acidosis, tumor cells must increase proton efflux via upregulation of pH regulators such as proton-pumps, sodium-proton exchangers, and/or monocarboxylate transporters (MCT) (e.g., MCT1, MCT4). Interestingly, expression of MCT1 and MCT4 has been previously shown to be dependent upon expression of the transmembrane glycoprotein CD147. Recently, we demonstrated that primary patient multiple myeloma (MM) cells and human MM cell lines (HMCLs) overexpress CD147. Therefore, the goal of the current study was to specifically determine if MCT1 and MCT4 were also overexpressed in MM cells. RT-PCR analysis demonstrated both primary patient MM cells and HMCLs overexpress MCT1 and MCT4 mRNA. Notably, primary MM cells or HMCLs were found to express variable levels of MCT1 and/or MCT4 at the protein level despite CD147 expression. In those HMCLs positive for MCT1 and/or MCT4 protein expression, MCT1 and/or MCT4 were found to be associated with CD147. Specific siRNA-mediated downregulation of MCT1 but not MCT4 resulted in decreased HMCL proliferation, decreased lactate export, and increased cellular media pH. However, western blot analysis revealed that downregulation of MCT1 also downregulated CD147 and vice versa despite no effect on mRNA levels. Taken together, these data demonstrate the association between MCT1 and CD147 proteins in MM cells and importance of their association for lactate export and proliferation in MM cells.
Collapse
Affiliation(s)
- Denise K Walters
- Department of Immunology; Mayo Clinic; College of Medicine; Rochester, MN USA
| | | | | |
Collapse
|