1
|
Du S, Liu J, Zhang Y, Ge X, Gao S, Song J. PD-L1 peptides in cancer immunoimaging and immunotherapy. J Control Release 2025; 378:1061-1079. [PMID: 39742920 DOI: 10.1016/j.jconrel.2024.12.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025]
Abstract
The interaction between programmed death protein 1 (PD-1) and programmed death ligand 1 (PD-L1) constitutes a critical immune checkpoint pathway that leads to immune tolerance in cancer cells and impacts antitumor treatment. Monoclonal antibody blockade of the PD-L1 immunoinhibitory pathway has demonstrated significant and lasting clinical antitumor responses. Furthermore, PD-L1 serves as an important biomarker for predicting the effectiveness of immune checkpoint inhibitors (ICIs). To date, numerous studies based on monoclonal antibodies have been carried out to detect the expression levels of PD-L1 and predict the antitumor effectiveness of PD-L1 ICIs. However, due to the deficiencies of monoclonal antibodies, researches of PD-L1 peptides have received increasing attention. PD-L1 peptides present promising candidates due to their advantages, including reduced manufacturing costs, enhanced stability, decreased immunogenicity, faster clearance and improved tumor or organ penetration, thereby offering broad application prospects in cancer immunoimaging and immunotherapy. In this review, we analyze the existing evidence on PD-L1 peptides in cancer immunoimaging and immunotherapy. First, the design techniques of different types of PD-L1 targeting peptides and their strengths and weaknesses are briefly introduced. Second, the recent advancements in immunoimaging and the development trends in immunotherapy are summarized. Finally, the existing challenges and future directions in this field are comprehensively deliberated.
Collapse
Affiliation(s)
- Shiye Du
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Junzhi Liu
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Youjia Zhang
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Xiaoguang Ge
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Shi Gao
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| | - Jibin Song
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
2
|
Martinenaite E, Lecoq I, Aaboe-Jørgensen M, Ahmad SM, Perez-Penco M, Glöckner HJ, Chapellier M, Lara de la Torre L, Olsen LR, Rømer AMA, Pedersen AW, Andersen MH. Arginase-1-specific T cells target and modulate tumor-associated macrophages. J Immunother Cancer 2025; 13:e009930. [PMID: 39880485 PMCID: PMC11781113 DOI: 10.1136/jitc-2024-009930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/14/2024] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Arginase-1 (Arg1) expressing tumor-associated macrophages (TAMs) may create an immune-suppressive tumor microenvironment (TME), which is a significant challenge for cancer immunotherapy. We previously reported the existence of Arg1-specific memory T cells among peripheral blood mononuclear cells (PBMCs) and described that Arg-1-based immune modulatory vaccines (IMVs) control tumor growth and alter the M1/M2 macrophage ratio in murine models of cancer. In the present study, we investigated how Arg1-specific T cells can directly target TAMs and influence their polarization. METHODS Murine Arg1-specific CD4+T cells isolated from splenocytes of animals vaccinated with an Arg1-derived peptide in the adjuvant montanide were co-cultured with either in vitro M2-differentiated bone marrow-derived macrophages or ex vivo isolated F4/80+TAMs. Human Arg1-specific CD4+T cell clones were co-cultured with Arg1-expressing TAMs generated in vitro from either PBMC-derived CD14+cells or the myeloid cell lines MonoMac1 and THP-1. MHC class II-restricted Arg-1 peptide presentation by macrophages was confirmed by immunopeptidomics. T-cell-mediated changes in the macrophage immune phenotype and cytokine microenvironment were examined using flow cytometry, RT-qPCR and multiplex immunoassay. The effect of Arg1-derived peptide IMV on TAMs in vivo was assessed by multiplex gene analysis of F4/80+cells. RESULTS We show that Arg1-based IMV-mediated tumor control was linked to a decrease in multiple immunosuppressive pathways in the TAM population of the treated animals. Tumor-conditioned media (TCM) derived from Arg1-vaccinated mice induced significantly higher upregulation of MHC-II on exposed myeloid cells compared with controls. Furthermore, murine CD4+Arg1-specific T cells were able to target TAMs and effectively reprogram their phenotype ex vivo by secreting IL2 and IFNγ. Next, we established that human Arg1+TAMs present Arg1-derived peptides and are directly recognized by proinflammatory CD4+Arg1-specific T cell clones. These CD4+Arg1-specific T cells were able to reprogram TCM-conditioned macrophages as observed by increased expression of CD80 and HLA-DR. CONCLUSIONS TAMs may be directly targeted and modulated by Arg1-specific CD4+T cells. These findings provide a strong rationale for future clinical development of Arg1-based IMVs to alter the immune-suppressive TME by reprogramming TAMs and promoting a proinflammatory TME.
Collapse
Affiliation(s)
- Evelina Martinenaite
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
- IO Biotech ApS, Copenhagen, Denmark
| | - Inés Lecoq
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
- IO Biotech ApS, Copenhagen, Denmark
| | - Mia Aaboe-Jørgensen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
| | - Shamaila Munir Ahmad
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
| | - Maria Perez-Penco
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
| | - Hannah Jorinde Glöckner
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
| | | | - Lucía Lara de la Torre
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
| | - Lars Rønn Olsen
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Anne Mette Askehøj Rømer
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
| | | | - Mads Hald Andersen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
- Department of Immunology, University of Copenhagen, Kobenhavn, Denmark
| |
Collapse
|
3
|
Strum S, Andersen MH, Svane IM, Siu LL, Weber JS. State-Of-The-Art Advancements on Cancer Vaccines and Biomarkers. Am Soc Clin Oncol Educ Book 2024; 44:e438592. [PMID: 38669611 DOI: 10.1200/edbk_438592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The origins of cancer vaccines date back to the 1800s. Since then, there have been significant efforts to generate vaccines against solid and hematologic malignancies using a variety of platforms. To date, these efforts have generally been met with minimal success. However, in the era of improved methods and technological advancements, supported by compelling preclinical and clinical data, a wave of renewed interest in the field offers the promise of discovering field-changing paradigms in the management of established and resected disease using cancer vaccines. These include novel approaches to personalized neoantigen vaccine development, as well as innovative immune-modulatory vaccines (IMVs) that facilitate activation of antiregulatory T cells to limit immunosuppression caused by regulatory immune cells. This article will introduce some of the limitations that have affected cancer vaccine development over the past several decades, followed by an introduction to the latest advancements in neoantigen vaccine and IMV therapy, and then conclude with a discussion of some of the newest technologies and progress that are occurring across the cancer vaccine space. Cancer vaccines are among the most promising frontiers for breakthrough innovations and strategies poised to make a measurable impact in the ongoing fight against cancer.
Collapse
Affiliation(s)
- Scott Strum
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Lillian L Siu
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada
| | - Jeffrey S Weber
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY
| |
Collapse
|
4
|
Mortensen REJ, Holmström MO, Lisle TL, Hasselby JP, Willemoe GL, Met Ö, Marie Svane I, Johansen J, Nielsen DL, Chen IM, Andersen MH. Pre-existing TGF-β-specific T-cell immunity in patients with pancreatic cancer predicts survival after checkpoint inhibitors combined with radiotherapy. J Immunother Cancer 2023; 11:jitc-2022-006432. [PMID: 36948507 PMCID: PMC10040073 DOI: 10.1136/jitc-2022-006432] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Circulating transforming growth factor-β (TGF-β)-specific T cells that recognize TGF-β-expressing immune regulatory cells have been described in patients with cancer. TGF-β-derived peptide vaccination modulates the tumor microenvironment and has shown clinical effects in animal models of pancreatic cancer (PC). TGF-β-expressing regulatory cells are especially elevated in PC and may prevent the clinical response to immune checkpoint inhibitors (ICIs). Thus, in the present study we investigated the significance of TGF-β-specific T-cell immunity in patients with PC treated with ICI combined with radiotherapy in a randomized phase 2 study (CheckPAC). METHODS Immune responses to a TGF-β-derived epitope entitled TGF-β-15 as well as epitopes from Clostridium tetani (tetanus) and influenza were measured in peripheral blood mononuclear cells (PBMCs) with interferon-ɣ enzyme-linked immunospot assays. PBMCs were isolated before and after treatment. Correlations between immune response data and clinical data were evaluated with parametric and non-parametric statistical methods. Survival was analyzed with univariate and multivariate Cox-regression. TGF-β-15 specific T cells were isolated and expanded and examined for recognition of autologous regulatory immune cells by flow cytometry. RESULTS PBMCs from 32 patients were analyzed for immune responses to the TGF-β-derived epitope entitled TGF-β-15. Patients with a strong TGF-β-specific immune response at treatment initiation had longer progression-free and overall survival, compared with patients with a weak or no TGF-β-specific immune response. This remained significant in multivariate analysis. Patients with weak and strong TGF-β-specific responses displayed similar responses towards viral antigens. Furthermore, we show that TGF-β-specific T cells from a clinical responder specifically reacted to and lysed autologous, regulatory immune cells. Finally, mimicking a TGF-β-15 vaccination, we showed that repeated stimulations with the TGF-β-15 epitope in vitro enhanced the immune response to TGF-β-15. CONCLUSION A strong TGF-β-15 specific immune response was associated with clinical benefit and improved survival after ICI/radiotherapy for patients with PC. Importantly, the lack of TGF-β-specific T cells in some patients was not caused by a general immune dysfunction. TGF-β-specific T cells recognized regulatory immune cells and could be introduced in vitro in patients without spontaneous responses. Taken together, our data suggest that combining TGF-β-based vaccination with ICI/radiotherapy will be beneficial for patients with PC.
Collapse
Affiliation(s)
| | - Morten Orebo Holmström
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev Hospital, Herlev, Denmark
- Department of Immunology and Microbiology, Copenhagen University, Copenhagen, Denmark
| | | | - Jane P Hasselby
- Department of Pathology, Rigshospitalet, Copenhagen, Denmark
| | - Gro L Willemoe
- Department of Pathology, Rigshospitalet, Copenhagen, Denmark
| | - Özcan Met
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev Hospital, Herlev, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev Hospital, Herlev, Denmark
| | - Julia Johansen
- Department of Oncology, Herlev Hospital, Herlev, Denmark
| | - Dorte L Nielsen
- Department of Oncology, Herlev Hospital, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Inna M Chen
- Department of Oncology, Herlev Hospital, Herlev, Denmark
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev Hospital, Herlev, Denmark
- Department of Immunology and Microbiology, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
5
|
Grauslund JH, Holmström MO, Martinenaite E, Lisle TL, Glöckner HJ, El Fassi D, Klausen U, Mortensen REJ, Jørgensen N, Kjær L, Skov V, Svane IM, Hasselbalch HC, Andersen MH. An arginase1- and PD-L1-derived peptide-based vaccine for myeloproliferative neoplasms: A first-in-man clinical trial. Front Immunol 2023; 14:1117466. [PMID: 36911725 PMCID: PMC9996128 DOI: 10.3389/fimmu.2023.1117466] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction Arginase-1 (ARG1) and Programed death ligand-1 (PD-L1) play a vital role in immunosuppression in myeloproliferative neoplasms (MPNs) and directly inhibit T-cell activation and proliferation. We previously identified spontaneous T-cell responses towards PD-L1 and ARG1 derived peptide epitopes in patients with MPNs. In the present First-in-Man study we tested dual vaccinations of ARG1- derived and PD-L1-derived peptides, combined with Montanide ISA-51 as adjuvant, in patients with Janus Kinase 2 (JAK2) V617F-mutated MPN. Methods Safety and efficacy of vaccination with ARG1- derived and PD-L1-derived peptides with montanide as an adjuvant was tested in 9 patients with MPN The primary end point was safety and toxicity evaluation. The secondary end point was assessment of the immune response to the vaccination epitope (www.clinicaltrials.gov identifier NCT04051307). Results The study included 9 patients with JAK2-mutant MPN of which 8 received all 24 planned vaccines within a 9-month treatment period. Patients reported only grade 1 and 2 vaccine related adverse events. No alterations in peripheral blood counts were identified, and serial measurements of the JAK2V617F allelic burden showed that none of the patients achieved a molecular response during the treatment period. The vaccines induced strong immune responses against both ARG1 and PD-L1- derived epitopes in the peripheral blood of all patients, and vaccine-specific skin-infiltrating lymphocytes from 5/6 patients could be expanded in vitro after a delayed-type hypersensitivity test. In two patients we also detected both ARG1- and PD-L1-specific T cells in bone marrow samples at the end of trial. Intracellular cytokine staining revealed IFNγ and TNFγ producing CD4+- and CD8+- T cells specific against both vaccine epitopes. Throughout the study, the peripheral CD8/CD4 ratio increased significantly, and the CD8+ TEMRA subpopulation was enlarged. We also identified a significant decrease in PD-L1 mRNA expression in CD14+ myeloid cells in the peripheral blood in all treated patients and a decrease in ARG1 mRNA expression in bone marrow of 6 out of 7 evaluated patients. Conclusion Overall, the ARG1- and PD-L1-derived vaccines were safe and tolerable and induced strong T-cell responses in all patients. These results warrant further studies of the vaccine in other settings or in combination with additional immune-activating treatments.
Collapse
Affiliation(s)
- Jacob Handlos Grauslund
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Morten Orebo Holmström
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- Institute for Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Evelina Martinenaite
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- Research and Development, IO Biotech ApS, Copenhagen, Denmark
| | - Thomas Landkildehus Lisle
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Hannah Jorinde Glöckner
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Daniel El Fassi
- Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Uffe Klausen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Rasmus E. J. Mortensen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Nicolai Jørgensen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Lasse Kjær
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Vibe Skov
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | | | - Mads Hald Andersen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- Institute for Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Abstract
The identification and characterization of tumor antigens are central objectives in developing anti-cancer immunotherapy. Traditionally, tumor-associated antigens (TAAs) are considered relatively restricted to tumor cells (i.e., overexpressed proteins in tumor cells), whereas tumor-specific antigens (TSAs) are considered unique to tumor cells. Recent studies have focused on identifying patient-specific neoantigens, which might be highly immunogenic because they are not expressed in normal tissues. The opposite strategy has emerged with the discovery of anti-regulatory T cells (anti-Tregs) that recognize and attack many cell types in the tumor microenvironment, such as regulatory immune cells, in addition to tumor cells. The term proposed in this review is "tumor microenvironment antigens" (TMAs) to describe the antigens that draw this attack. As therapeutic targets, TMAs offer several advantages that differentiate them from more traditional tumor antigens. Targeting TMAs leads not only to a direct attack on tumor cells but also to modulation of the tumor microenvironment, rendering it immunocompetent and tumor-hostile. Of note, in contrast to TAAs and TSAs, TMAs also are expressed in non-transformed cells with consistent human leukocyte antigen (HLA) expression. Inflammation often induces HLA expression in malignant cells, so that targeting TMAs could additionally affect tumors with no or very low levels of surface HLA expression. This review defines the characteristics, differences, and advantages of TMAs compared with traditional tumor antigens and discusses the use of these antigens in immune modulatory vaccines as an attractive approach to immunotherapy. Different TMAs are expressed by different cells and could be combined in anti-cancer immunotherapies to attack tumor cells directly and modulate local immune cells to create a tumor-hostile microenvironment and inhibit tumor angiogenesis. Immune modulatory vaccines offer an approach for combinatorial therapy with additional immunotherapy including checkpoint blockade, cellular therapy, or traditional cancer vaccines. These combinations would increase the number of patients who can benefit from such therapeutic measures, which all have optimal efficiency in inflamed tumors.
Collapse
Affiliation(s)
- Mads Hald Andersen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Borgmester Ib Juuls Vej 25C, 5th floor, DK-2730, Herlev, Denmark.
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
7
|
Pan J, Zeng W, Jia J, Shi Y, Wang D, Dong J, Fang Z, He J, Yang X, Zhang R, He M, Huang M, Fu B, Zhong B, Liu H. A Novel Therapeutic Tumor Vaccine Targeting MUC1 in Combination with PD-L1 Elicits Specific Anti-Tumor Immunity in Mice. Vaccines (Basel) 2022; 10:vaccines10071092. [PMID: 35891256 PMCID: PMC9325010 DOI: 10.3390/vaccines10071092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Dendritic cells (DCs), as professional antigen-presenting cells (APCs), play a key role in the initiation and regulation of humoral and cellular immunity. DC vaccines loaded with different tumor-associated antigens (TAAs) have been widely used to study their therapeutic effects on cancer. A number of clinical trials have shown that DCs are safe as an antitumor vaccine and can activate certain anti-tumor immune responses; however, the overall clinical efficacy of DC vaccine is not satisfactory, so its efficacy needs to be enhanced. MUC1 is a TAA with great potential, and the immune checkpoint PD-L1 also has great potential for tumor treatment. Both of them are highly expressed on the surface of various tumors. In this study, we generated a novel therapeutic MUC1-Vax tumor vaccine based on the method of PD-L1-Vax vaccine we recently developed; this novel PD-L1-containing MUC1-Vax vaccine demonstrated an elevated persistent anti-PD-L1 antibody production and elicited a much stronger protective cytotoxic T lymphocyte (CTL) response in immunized mice. Furthermore, the MUC1-Vax vaccine exhibited a significant therapeutic anti-tumor effect, which significantly inhibited tumor growth by expressing a high MUC1+ and PD-L1+ level of LLC and Panc02 tumor cells, and prolonged the survival of cancer-bearing animals. Taken together, our study provides a new immunotherapy strategy for improving the cross-presentation ability of therapeutic vaccine, which may be applicable to pancreatic cancer, lung cancer and for targeting other types of solid tumors that highly express MUC1 and PD-L1.
Collapse
Affiliation(s)
- Jiayi Pan
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 510182, China; (J.P.); (W.Z.); (J.J.); (Y.S.); (D.W.); (J.D.); (Z.F.); (J.H.); (X.Y.); (R.Z.); (M.H.); (M.H.); (B.F.)
- Clinical Laboratory, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Science, Guangzhou 510080, China
| | - Wuyi Zeng
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 510182, China; (J.P.); (W.Z.); (J.J.); (Y.S.); (D.W.); (J.D.); (Z.F.); (J.H.); (X.Y.); (R.Z.); (M.H.); (M.H.); (B.F.)
| | - Jiangtao Jia
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 510182, China; (J.P.); (W.Z.); (J.J.); (Y.S.); (D.W.); (J.D.); (Z.F.); (J.H.); (X.Y.); (R.Z.); (M.H.); (M.H.); (B.F.)
| | - Yi Shi
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 510182, China; (J.P.); (W.Z.); (J.J.); (Y.S.); (D.W.); (J.D.); (Z.F.); (J.H.); (X.Y.); (R.Z.); (M.H.); (M.H.); (B.F.)
| | - Danni Wang
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 510182, China; (J.P.); (W.Z.); (J.J.); (Y.S.); (D.W.); (J.D.); (Z.F.); (J.H.); (X.Y.); (R.Z.); (M.H.); (M.H.); (B.F.)
| | - Jun Dong
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 510182, China; (J.P.); (W.Z.); (J.J.); (Y.S.); (D.W.); (J.D.); (Z.F.); (J.H.); (X.Y.); (R.Z.); (M.H.); (M.H.); (B.F.)
| | - Zixuan Fang
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 510182, China; (J.P.); (W.Z.); (J.J.); (Y.S.); (D.W.); (J.D.); (Z.F.); (J.H.); (X.Y.); (R.Z.); (M.H.); (M.H.); (B.F.)
| | - Jiashan He
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 510182, China; (J.P.); (W.Z.); (J.J.); (Y.S.); (D.W.); (J.D.); (Z.F.); (J.H.); (X.Y.); (R.Z.); (M.H.); (M.H.); (B.F.)
| | - Xinyu Yang
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 510182, China; (J.P.); (W.Z.); (J.J.); (Y.S.); (D.W.); (J.D.); (Z.F.); (J.H.); (X.Y.); (R.Z.); (M.H.); (M.H.); (B.F.)
| | - Rong Zhang
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 510182, China; (J.P.); (W.Z.); (J.J.); (Y.S.); (D.W.); (J.D.); (Z.F.); (J.H.); (X.Y.); (R.Z.); (M.H.); (M.H.); (B.F.)
| | - Menghua He
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 510182, China; (J.P.); (W.Z.); (J.J.); (Y.S.); (D.W.); (J.D.); (Z.F.); (J.H.); (X.Y.); (R.Z.); (M.H.); (M.H.); (B.F.)
| | - Maoping Huang
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 510182, China; (J.P.); (W.Z.); (J.J.); (Y.S.); (D.W.); (J.D.); (Z.F.); (J.H.); (X.Y.); (R.Z.); (M.H.); (M.H.); (B.F.)
| | - Bishi Fu
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 510182, China; (J.P.); (W.Z.); (J.J.); (Y.S.); (D.W.); (J.D.); (Z.F.); (J.H.); (X.Y.); (R.Z.); (M.H.); (M.H.); (B.F.)
- The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou 510260, China
| | - Bei Zhong
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 510182, China; (J.P.); (W.Z.); (J.J.); (Y.S.); (D.W.); (J.D.); (Z.F.); (J.H.); (X.Y.); (R.Z.); (M.H.); (M.H.); (B.F.)
- Correspondence: (B.Z.); (H.L.); Tel./Fax: +86-020-8320-5013 (H.L.)
| | - Hui Liu
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 510182, China; (J.P.); (W.Z.); (J.J.); (Y.S.); (D.W.); (J.D.); (Z.F.); (J.H.); (X.Y.); (R.Z.); (M.H.); (M.H.); (B.F.)
- The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou 510260, China
- Correspondence: (B.Z.); (H.L.); Tel./Fax: +86-020-8320-5013 (H.L.)
| |
Collapse
|
8
|
Klausen U, Grønne Dahlager Jørgensen N, Grauslund JH, Munir Ahmad S, Gang AO, Martinenaite E, Weis-Banke SE, Breinholt MF, Novotny GW, Kjeldsen JW, Orebo Holmström M, Pedersen LB, Poulsen CB, Hansen PB, Met Ö, Svane IM, Niemann CU, Pedersen LM, Andersen MH. An immunogenic first-in-human immune modulatory vaccine with PD-L1 and PD-L2 peptides is feasible and shows early signs of efficacy in follicular lymphoma. Oncoimmunology 2021; 10:1975889. [PMID: 38283034 PMCID: PMC10813564 DOI: 10.1080/2162402x.2021.1975889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022] Open
Abstract
Cells in the tumor microenvironment of Follicular lymphoma (FL) express checkpoint molecules such as programmed death ligands 1 and 2 (PD-L1 and PD-L2) and are suppressing anti-tumor immune activity. Stimulation of peripheral blood mononuclear cells (PBMC) with PD-L1 (IO103) or PD-L2 (IO120) peptides can activate specific T cells inducing anti-regulatory functions including cytotoxicity against PD-L1/PD-L2-expressing cells. In this study, we vaccinated eight FL patients with PD-L1 and PD-L2 peptides following treatment with standard chemotherapy. Patients experienced grade 1-2 injection site reaction (5/8) and mild flu-like symptoms (6/8). One patient experienced neutropenia and thrombocytopenia during pseudo-progression. Enzyme-linked immunospot detected vaccine-specific immune responses in PBMC from all patients, predominately toward PD-L1. The circulating immune composition was stable during treatment; however, we observed a reduction regulatory T cells, however, not significant. One patient achieved a complete remission during vaccination and two patients had pseudo-progression followed by long-term disease regression. Further examination of these early signs of clinical efficacy of the dual-epitope vaccine in a larger study is warranted.
Collapse
Affiliation(s)
- Uffe Klausen
- Dept. Of Hematology, Herlev Hospital, Herlev, Denmark
- Dept. Of Hematology, Rigshospitalet, Copenhagen, Denmark
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology Herlev Hospital, Herlev, Denmark
- Institute for Immunology and Microbiology, Copenhagen University, Copenhagen K, Denmark
| | - Nicolai Grønne Dahlager Jørgensen
- Dept. Of Hematology, Herlev Hospital, Herlev, Denmark
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology Herlev Hospital, Herlev, Denmark
| | - Jacob Handlos Grauslund
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology Herlev Hospital, Herlev, Denmark
- Institute for Immunology and Microbiology, Copenhagen University, Copenhagen K, Denmark
| | - Shamaila Munir Ahmad
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology Herlev Hospital, Herlev, Denmark
| | | | - Evelina Martinenaite
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology Herlev Hospital, Herlev, Denmark
| | - Stine Emilie Weis-Banke
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology Herlev Hospital, Herlev, Denmark
| | | | - Guy Wayne Novotny
- Dept. Of Hematology, Herlev Hospital, Herlev, Denmark
- Dept. Of Pathology, Herlev Hospital, Herlev, Denmark
| | - Julie Westerlin Kjeldsen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology Herlev Hospital, Herlev, Denmark
- Institute for Immunology and Microbiology, Copenhagen University, Copenhagen K, Denmark
| | - Morten Orebo Holmström
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology Herlev Hospital, Herlev, Denmark
- Institute for Immunology and Microbiology, Copenhagen University, Copenhagen K, Denmark
| | | | | | - Per Boye Hansen
- Dept. Of Hematology, Zealand University Hospital, Roskilde, Rosklide, Denmark
| | - Özcan Met
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology Herlev Hospital, Herlev, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology Herlev Hospital, Herlev, Denmark
- Institute for Immunology and Microbiology, Copenhagen University, Copenhagen K, Denmark
| | - Carsten Utoft Niemann
- Dept. Of Hematology, Rigshospitalet, Copenhagen, Denmark
- Institute for Immunology and Microbiology, Copenhagen University, Copenhagen K, Denmark
| | - Lars Møller Pedersen
- Dept. Of Hematology, Herlev Hospital, Herlev, Denmark
- Dept. Of Hematology, Rigshospitalet, Copenhagen, Denmark
- Dept. Of Hematology, Zealand University Hospital, Roskilde, Rosklide, Denmark
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology Herlev Hospital, Herlev, Denmark
- Institute for Immunology and Microbiology, Copenhagen University, Copenhagen K, Denmark
| |
Collapse
|
9
|
Jørgensen NG, Kaae J, Grauslund JH, Met Ö, Nielsen SL, Pedersen AW, Svane IM, Ehrnrooth E, Andersen MH, Zachariae C, Skov L. Vaccination against PD-L1 with IO103 a Novel Immune Modulatory Vaccine in Basal Cell Carcinoma: A Phase IIa Study. Cancers (Basel) 2021; 13:cancers13040911. [PMID: 33671555 PMCID: PMC7926323 DOI: 10.3390/cancers13040911] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 01/24/2023] Open
Abstract
Simple Summary Basal cell carcinoma is the most common skin cancer and new treatments for patients with widespread and numerous tumors are lacking. In a previous study treating patients with multiple myeloma with a peptide vaccine called IO103 against an immune checkpoint molecule called programmed death ligand 1, two cases of basal cell carcinoma regressed. The aim of the present study was to assess the effect of vaccination with IO103 in ten patients with basal cell carcinoma. Patients were vaccinated with Montanide as adjuvant up to nine times during six months. Regression in tumor size of at least 30% was seen in five of 18 tumors, two of which showed complete regression. Vaccinations resulted in immune responses against the vaccine in blood samples from nine of ten patients and in skin samples from five of nine patients. The findings suggest that the vaccine may be effective against some basal cell carcinomas. Abstract Antitumor activity of immune checkpoint blocking antibodies against programmed death 1 (PD-1) in basal cell carcinoma (BCC) has been described. IO103 is a peptide vaccine against the major PD-1 ligand PD-L1. A phase IIa study of vaccination with IO103 and Montanide adjuvant was conducted in patients with resectable BCC (NCT03714529). Vaccinations were given six times every 2 weeks (q2w), followed by three vaccines q4w in responders. Primary endpoints were clinical responses of target tumors, change in target tumor size and immune responses to the vaccine. Secondary endpoint was safety. One tumor per patient was designated target tumor and biopsied twice during the course of vaccination. Synchronous non-target BCCs were not biopsied during vaccinations. Ten patients were vaccinated (six patients received six vaccinations and four patients received nine vaccinations). A partial response (PR) was seen in two target tumors. Two complete responses (CR) and one PR were observed in eight non-target tumors in four patients. No tumors progressed. Related adverse events were grade 1 and reversible. Immune responses against IO103 were induced in blood samples from nine of ten and skin-infiltrating lymphocytes from five of the nine patients. The regressions seen in non-target tumors suggest that IO103 may be effective against a subtype of BCC.
Collapse
Affiliation(s)
- Nicolai Grønne Jørgensen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev and Gentofte Hospital, University of Copenhagen, 2730 Herlev, Denmark; (J.H.G.); (Ö.M.); (I.M.S.); (M.H.A.)
- Department of Hematology, Herlev and Gentofte Hospital, University of Copenhagen, 2730 Herlev, Denmark
- Correspondence:
| | - Jeanette Kaae
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark; (J.K.); (C.Z.); (L.S.)
| | - Jacob Handlos Grauslund
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev and Gentofte Hospital, University of Copenhagen, 2730 Herlev, Denmark; (J.H.G.); (Ö.M.); (I.M.S.); (M.H.A.)
| | - Özcan Met
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev and Gentofte Hospital, University of Copenhagen, 2730 Herlev, Denmark; (J.H.G.); (Ö.M.); (I.M.S.); (M.H.A.)
- Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Signe Ledou Nielsen
- Department of Pathology, Herlev and Gentofte Hospital, 2730 Herlev, Denmark;
| | | | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev and Gentofte Hospital, University of Copenhagen, 2730 Herlev, Denmark; (J.H.G.); (Ö.M.); (I.M.S.); (M.H.A.)
| | - Eva Ehrnrooth
- IO Biotech ApS, 2200 Copenhagen, Denmark; (A.W.P.); (E.E.)
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev and Gentofte Hospital, University of Copenhagen, 2730 Herlev, Denmark; (J.H.G.); (Ö.M.); (I.M.S.); (M.H.A.)
- Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
- IO Biotech ApS, 2200 Copenhagen, Denmark; (A.W.P.); (E.E.)
| | - Claus Zachariae
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark; (J.K.); (C.Z.); (L.S.)
| | - Lone Skov
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark; (J.K.); (C.Z.); (L.S.)
| |
Collapse
|
10
|
A phase 1/2 trial of an immune-modulatory vaccine against IDO/PD-L1 in combination with nivolumab in metastatic melanoma. Nat Med 2021; 27:2212-2223. [PMID: 34887574 PMCID: PMC8904254 DOI: 10.1038/s41591-021-01544-x] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 09/20/2021] [Indexed: 02/06/2023]
Abstract
Anti-programmed death (PD)-1 (aPD1) therapy is an effective treatment for metastatic melanoma (MM); however, over 50% of patients progress due to resistance. We tested a first-in-class immune-modulatory vaccine (IO102/IO103) against indoleamine 2,3-dioxygenase (IDO) and PD ligand 1 (PD-L1), targeting immunosuppressive cells and tumor cells expressing IDO and/or PD-L1 (IDO/PD-L1), combined with nivolumab. Thirty aPD1 therapy-naive patients with MM were treated in a phase 1/2 study ( https://clinicaltrials.gov/ , NCT03047928). The primary endpoint was feasibility and safety; the systemic toxicity profile was comparable to that of nivolumab monotherapy. Secondary endpoints were efficacy and immunogenicity; an objective response rate (ORR) of 80% (confidence interval (CI), 62.7-90.5%) was reached, with 43% (CI, 27.4-60.8%) complete responses. After a median follow-up of 22.9 months, the median progression-free survival (PFS) was 26 months (CI, 15.4-69 months). Median overall survival (OS) was not reached. Vaccine-specific responses assessed in vitro were detected in the blood of >93% of patients during vaccination. Vaccine-reactive T cells comprised CD4+ and CD8+ T cells with activity against IDO- and PD-L1-expressing cancer and immune cells. T cell influx of peripherally expanded T cells into tumor sites was observed in responding patients, and general enrichment of IDO- and PD-L1-specific clones after treatment was documented. These clinical efficacy and favorable safety data support further validation in a larger randomized trial to confirm the clinical potential of this immunomodulating approach.
Collapse
|
11
|
Jørgensen NG, Klausen U, Grauslund JH, Helleberg C, Aagaard TG, Do TH, Ahmad SM, Olsen LR, Klausen TW, Breinholt MF, Hansen M, Martinenaite E, Met Ö, Svane IM, Knudsen LM, Andersen MH. Peptide Vaccination Against PD-L1 With IO103 a Novel Immune Modulatory Vaccine in Multiple Myeloma: A Phase I First-in-Human Trial. Front Immunol 2020; 11:595035. [PMID: 33240282 PMCID: PMC7680803 DOI: 10.3389/fimmu.2020.595035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Background Immune checkpoint blockade with monoclonal antibodies targeting programmed death 1 (PD-1) and its ligand PD-L1 has played a major role in the rise of cancer immune therapy. We have identified naturally occurring self-reactive T cells specific to PD-L1 in both healthy donors and cancer patients. Stimulation with a PD-L1 peptide (IO103), activates these cells to exhibit inflammatory and anti-regulatory functions that include cytotoxicity against PD-L1-expressing target cells. This prompted the initiation of the present first-in-human study of vaccination with IO103, registered at clinicaltrials.org (NCT03042793). Methods Ten patients with multiple myeloma who were up to 6 months after high dose chemotherapy with autologous stem cell support, were enrolled. Subcutaneous vaccinations with IO103 with the adjuvant Montanide ISA 51 was given up to fifteen times during 1 year. Safety was assessed by the common toxicity criteria for adverse events (CTCAE). Immunogenicity of the vaccine was evaluated using IFNγ enzyme linked immunospot and intracellular cytokine staining on blood and skin infiltrating lymphocytes from sites of delayed-type hypersensitivity. The clinical course was described. Results All adverse reactions to the PD-L1 vaccine were below CTCAE grade 3, and most were grade 1-2 injection site reactions. The total rate of adverse events was as expected for the population. All patients exhibited peptide specific immune responses in peripheral blood mononuclear cells and in skin-infiltrating lymphocytes after a delayed-type hypersensitivity test. The clinical course was as expected for the population. Three of 10 patients had improvements of responses which coincided with the vaccinations. Conclusion Vaccination against PD-L1 was associated with low toxicity and high immunogenicity. This study has prompted the initiation of later phase trials to assess the vaccines efficacy. Clinical Trial Registration clinicaltrials.org, identifier NCT03042793.
Collapse
Affiliation(s)
- Nicolai Grønne Jørgensen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark.,Department of Hematology, Copenhagen University Hospital, Herlev, Denmark
| | - Uffe Klausen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark.,Department of Hematology, Copenhagen University Hospital, Herlev, Denmark
| | - Jacob Handlos Grauslund
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Carsten Helleberg
- Department of Hematology, Copenhagen University Hospital, Herlev, Denmark
| | | | - Trung Hieu Do
- Department of Hematology, Copenhagen University Hospital, Herlev, Denmark
| | - Shamaila Munir Ahmad
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Lars Rønn Olsen
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | | | - Morten Hansen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Evelina Martinenaite
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Özcan Met
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark.,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | | | - Mads Hald Andersen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark.,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Sun J, Zheng Y, Mamun M, Li X, Chen X, Gao Y. Research progress of PD-1/PD-L1 immunotherapy in gastrointestinal tumors. Biomed Pharmacother 2020; 129:110504. [PMID: 32768978 DOI: 10.1016/j.biopha.2020.110504] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/24/2022] Open
Abstract
Gastrointestinal tumor (GIT) is a common malignant tumor of the digestive system, which seriously threatens people's health and life. With the deepening of the study on the mechanism of tumor immune escape, programmed death receptor ligand 1 (PD-L1) has been proved to interact with the tumor microenvironment to mediate tumor immune escape. PD-L1 inhibitor is a hot spot in tumor immunotherapy in recent years, which can restore the activity of T cells, enhance the body's ability of immune response, and ultimately enable the immune system to effectively identify and kill gastric cancer cells, then achieve long-term tumor remission in patients with GITs. At present, variety of PD-L1 inhibitors such as pembrolizumab, nivolumab and avelumab have been approved for the market, and they have achieved good results in clinical studies on the GIT. This paper reviews the progress of PD-1/PD-L1 immunotherapy in GITs which include gastric cancer, colon cancer and rectal cancer.
Collapse
Affiliation(s)
- Jiangang Sun
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yichao Zheng
- Zhengzhou University School of Pharmaceutical Science, Zhengzhou, Henan 450001, China
| | - Maa Mamun
- Zhengzhou University School of Pharmaceutical Science, Zhengzhou, Henan 450001, China
| | - Xiaojing Li
- Zhengzhou University School of Pharmaceutical Science, Zhengzhou, Henan 450001, China
| | - Xiaoping Chen
- Department of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yongshun Gao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| |
Collapse
|
13
|
A Novel Anti-PD-L1 Vaccine for Cancer Immunotherapy and Immunoprevention. Cancers (Basel) 2019; 11:cancers11121909. [PMID: 31805690 PMCID: PMC6966557 DOI: 10.3390/cancers11121909] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/22/2019] [Indexed: 12/22/2022] Open
Abstract
Dendritic cells (DCs) are potent antigen-presenting cells that play a critical role in activating cellular and humoral immune responses. DC-based tumor vaccines targeting tumor-associated antigens (TAAs) have been extensively tested and demonstrated to be safe and potent in inducing anti-TAA immune responses in cancer patients. Sipuleucel-T (Provenge), a cancer vaccine of autologous DCs loaded with TAA, was approved by the United States Food and Drug Administration (FDA) for the treatment of castration-resistant prostate cancer. Sipuleucel-T prolongs patient survival, but has little or no effect on clinical disease progression or biomarker kinetics. Due to the overall limited clinical efficacy of tumor vaccines, there is a need to enhance their potency. PD-L1 is a key immune checkpoint molecule and is frequently overexpressed on tumor cells to evade antitumor immune destruction. Repeated administrations of PD-L1 or PD-1 antibodies have induced sustained tumor regression in a fraction of cancer patients. In this study, we tested whether vaccinations with DCs, loaded with a PD-L1 immunogen (PDL1-Vax), are able to induce anti-PD-L1 immune responses. We found that DCs loaded with PDL1-Vax induced anti-PD-L1 antibody and T cell responses in immunized mice and that PD-L1-specific CTLs had cytolytic activities against PD-L1+ tumor cells. We demonstrated that vaccination with PDL1-Vax DCs potently inhibited the growth of PD-L1+ tumor cells. In summary, this study demonstrates for the first time the principle and feasibility of DC vaccination (PDL1-Vax) to actively induce anti-PD-L1 antibody and T cell responses capable of inhibiting PD-L1+ tumor growth. This novel anti-PD-L1 vaccination strategy could be used for cancer treatment and prevention.
Collapse
|
14
|
Martinenaite E, Ahmad SM, Bendtsen SK, Jørgensen MA, Weis-Banke SE, Svane IM, Andersen MH. Arginase-1-based vaccination against the tumor microenvironment: the identification of an optimal T-cell epitope. Cancer Immunol Immunother 2019; 68:1901-1907. [PMID: 31690955 DOI: 10.1007/s00262-019-02425-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/24/2019] [Indexed: 02/06/2023]
Abstract
L-arginine depletion by regulatory cells and cancer cells expressing arginase-1 (Arg-1) is a vital contributor to the immunosuppressive tumor microenvironment in patients with cancer. We have recently described the existence of pro-inflammatory effector T cells that recognize Arg-1. Hence, Arg-1-specific self-reactive T cells are a naturally occurring part of the memory T-cell repertoire of the human immune system. Here, we further characterize a highly immunogenic epitope from Arg-1. We describe frequent T-cell-based immune responses against this epitope in patients with cancer, as well as in healthy donors. Furthermore, we show that Arg-1-specific T cells expand in response to the TH2 cytokine interleukin (IL)-4 without any specific stimulation. Arg-1-specific memory TH1 cells that respond to increased IL-4 concentration may, therefore, drive the immune response back into the TH1 pathway. Arg-1-specific T cells thus appear to have an important function in immune regulation. Because Arg-1 plays an important role in the immunosuppressive microenvironment in most cancers, an immune modulatory vaccination approach can readily be employed to tilt the balance away from immune suppression in these settings.
Collapse
Affiliation(s)
- Evelina Martinenaite
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital Herlev, Borgmester Ib Juuls Vej 25C, 2730, Herlev, Denmark
- IO Biotech ApS, 2200, Copenhagen, Denmark
| | - Shamaila Munir Ahmad
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital Herlev, Borgmester Ib Juuls Vej 25C, 2730, Herlev, Denmark
| | - Simone Kloch Bendtsen
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital Herlev, Borgmester Ib Juuls Vej 25C, 2730, Herlev, Denmark
| | - Mia Aaboe Jørgensen
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital Herlev, Borgmester Ib Juuls Vej 25C, 2730, Herlev, Denmark
| | - Stine Emilie Weis-Banke
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital Herlev, Borgmester Ib Juuls Vej 25C, 2730, Herlev, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital Herlev, Borgmester Ib Juuls Vej 25C, 2730, Herlev, Denmark
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital Herlev, Borgmester Ib Juuls Vej 25C, 2730, Herlev, Denmark.
- IO Biotech ApS, 2200, Copenhagen, Denmark.
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
15
|
Ødum N. Anti-regulatory T cells are natural regulatory effector T cells. Cell Stress 2019; 3:310-311. [PMID: 31680691 PMCID: PMC6789433 DOI: 10.15698/cst2019.10.199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 09/20/2019] [Indexed: 01/13/2023] Open
Affiliation(s)
- Niels Ødum
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| |
Collapse
|
16
|
Munir S, Lundsager MT, Jørgensen MA, Hansen M, Petersen TH, Bonefeld CM, Friese C, Met Ö, Straten PT, Andersen MH. Inflammation induced PD-L1-specific T cells. Cell Stress 2019; 3:319-327. [PMID: 31656949 PMCID: PMC6789434 DOI: 10.15698/cst2019.10.201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
PD-L1-specific T cells are a natural part of the T-cell repertoire in humans. Hence, we have previously described spontaneous CD8+ and CD4+ T-cell reactivity against PD-L1 in the peripheral blood of patients with various cancers as well as in healthy donors. It is well described that the expression of the PD-L1 protein is introduced in cells by pro-inflammatory cytokines, e.g. IFN-γ. In the current study, we were able to directly link inflammation with PD-L1-specific T cells by showing that inflammatory mediators such as IFN-γ generate measurable numbers of PD-L1-specific T cells in human PBMCs as well as in in vivo models. These PD-L1-specific T cells can vigorously modulate the cell compartments of the local environment. PD-L1-specific T cells may be important for immune homeostasis by sustaining the ongoing inflammatory response by the suppression of regulatory cell function both directly and indirectly.
Collapse
Affiliation(s)
- Shamaila Munir
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital, Herlev, Denmark
| | - Mia Thorup Lundsager
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital, Herlev, Denmark
| | - Mia Aabroe Jørgensen
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital, Herlev, Denmark
| | - Morten Hansen
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital, Herlev, Denmark
| | - Trine Hilkjær Petersen
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Menne Bonefeld
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Christina Friese
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital, Herlev, Denmark
| | - Özcan Met
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital, Herlev, Denmark.,The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Per Thor Straten
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital, Herlev, Denmark.,The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital, Herlev, Denmark.,The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,IO Biotech ApS, DK-2200 Copenhagen, Denmark
| |
Collapse
|
17
|
Klausen U, Holmberg S, Holmström MO, Jørgensen NGD, Grauslund JH, Svane IM, Andersen MH. Novel Strategies for Peptide-Based Vaccines in Hematological Malignancies. Front Immunol 2018; 9:2264. [PMID: 30327655 PMCID: PMC6174926 DOI: 10.3389/fimmu.2018.02264] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/11/2018] [Indexed: 12/12/2022] Open
Abstract
Peptides vaccination is an interesting approach to activate T-cells toward desired antigens in hematological malignancies. In addition to classical tumor associated antigens, such as cancer testis antigens, new potential targets for peptide vaccination comprise neo-antigens including JAK2 and CALR mutations, and antigens from immune regulatory proteins in the tumor microenvironment such as programmed death 1 ligands (PD-L1 and PD-L2). Immunosuppressive defenses of tumors are an important challenge to overcome and the T cell suppressive ligands PD-L1 and PD-L2 are often present in tumor microenvironments. Thus, PD-L1 and PD-L2 are interesting targets for peptide vaccines in diseases where the tumor microenvironment is known to play an essential role such as multiple myeloma and follicular lymphoma. In myelodysplastic syndromes the drug azacitidine re-exposes tumor associated antigens, why vaccination with related peptides would be an interesting addition. In myeloproliferative neoplasms the JAK2 and CALR mutations has proven to be immunogenic neo-antigens and thus possible targets for peptide vaccination. In this mini review we summarize the basis for these novel approaches, which has led to the initiation of clinical trials with various peptide vaccines in myelodysplastic syndromes, myeloproliferative neoplasms, multiple myeloma, and follicular lymphoma.
Collapse
Affiliation(s)
- Uffe Klausen
- Center for Cancer Immune Therapy, Herlev Hospital, Department of Hematology and Oncology, Herlev, Denmark
| | - Staffan Holmberg
- Department of Hematology, Herlev Hospital, Herlev, Denmark
- Division of Immunology - T cells & Cancer, DTU Nanotech, Technical University of Denmark, Lyngby, Denmark
| | - Morten Orebo Holmström
- Center for Cancer Immune Therapy, Herlev Hospital, Department of Hematology and Oncology, Herlev, Denmark
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | | | - Jacob Handlos Grauslund
- Center for Cancer Immune Therapy, Herlev Hospital, Department of Hematology and Oncology, Herlev, Denmark
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Inge Marie Svane
- Center for Cancer Immune Therapy, Herlev Hospital, Department of Hematology and Oncology, Herlev, Denmark
- Institute for Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mads Hald Andersen
- Center for Cancer Immune Therapy, Herlev Hospital, Department of Hematology and Oncology, Herlev, Denmark
- Institute for Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Holmström MO, Hasselbalch HC. Cancer immune therapy for myeloid malignancies: present and future. Semin Immunopathol 2018; 41:97-109. [PMID: 29987478 DOI: 10.1007/s00281-018-0693-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 06/12/2018] [Indexed: 02/07/2023]
Abstract
The myelodysplastic syndromes, the chronic myeloproliferative neoplasms, and the acute myeloid leukemia are malignancies of the myeloid hematopoietic stem cells of the bone marrow. The diseases are characterized by a dysregulation of the immune system as both the cytokine milieu, immune phenotype, immune regulation, and expression of genes related to immune cell functions are deregulated. Several treatment strategies try to circumvent this deregulation, and several clinical and preclinical trials have shown promising results, albeit not in the same scale as chimeric antigen receptor T cells have had in the treatment of refractory lymphoid malignancies. The use of immune checkpoint blocking antibodies especially in combination with hypomethylating agents has had some success-a success that will likely be enhanced by therapeutic cancer vaccination with tumor-specific antigens. In the chronic myeloproliferative neoplasms, the recent identification of immune responses against the Januskinase-2 and calreticulin exon 9 driver mutations could also be used in the vaccination setting to enhance the anti-tumor immune response. This immune response could probably be enhanced by the concurrent use of immune checkpoint inhibitors or by vaccination with epitopes from immune regulatory proteins such as arginase-1 and programmed death ligand-1. Herein, we provide an overview of current cancer immune therapeutic treatment strategies as well as potential future cancer immune therapeutic treatment options for the myeloid malignancies.
Collapse
Affiliation(s)
- Morten Orebo Holmström
- Department of Hematology, Zealand University Hospital, Sygehusvej 10, 4000, Roskilde, Denmark. .,Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, Herlev, Denmark.
| | - Hans Carl Hasselbalch
- Department of Hematology, Zealand University Hospital, Sygehusvej 10, 4000, Roskilde, Denmark
| |
Collapse
|
19
|
Andersen MH. The T-win® technology: immune-modulating vaccines. Semin Immunopathol 2018; 41:87-95. [PMID: 29968045 DOI: 10.1007/s00281-018-0695-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 06/14/2018] [Indexed: 12/25/2022]
Abstract
The T-win® technology is an innovative investigational approach designed to activate the body's endogenous anti-regulatory T cells (anti-Tregs) to target regulatory as well as malignant cells. Anti-Tregs are naturally occurring T cells that can directly react against regulatory immune cells because they recognize proteins that these targets express, including indoleamine 2,3-dioxygenase (IDO), tryptophan 2,6-dioxygenase, arginase, and programmed death ligand 1 (PD-L1). The T-win® technology is characterized by therapeutic vaccination with long peptide epitopes derived from these antigens and therefore offers a novel way to target genetically stable cells with regular human leukocyte antigen expression in the tumor microenvironment. The T-win® technology thus also represents a novel way to attract pro-inflammatory cells to the tumor microenvironment where they can directly affect immune inhibitory pathways, potentially altering tolerance to tumor antigens. The modification of an immune regulatory environment into a pro-inflammatory milieu potentiates effective anti-tumor T cell responses. Many regulatory immune cells may be reverted into effector cells given the right stimulus. Because T-win® technology is based on the immune-modulatory function of the vaccines, the vaccines activate both CD4 and CD8 anti-Tregs. Of importance, in clinical trials, vaccinations against IDO or PD-L1 to potentiate anti-Tregs have so far proved to be safe, with minimal toxicity.
Collapse
Affiliation(s)
- Mads Hald Andersen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, DK-2730, Herlev, Denmark. .,Department of Immunology and Microbiology, University of Copenhagen, DK-2200, Copenhagen, Denmark. .,IO Biotech ApS, DK-2200, Copenhagen, Denmark.
| |
Collapse
|
20
|
Correlates of immune and clinical activity of novel cancer vaccines. Semin Immunol 2018; 39:119-136. [PMID: 29709421 DOI: 10.1016/j.smim.2018.04.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 12/30/2022]
Abstract
Cancer vaccines are solely meant to amplify the pool of type 1 cytokine oriented CD4+ and CD8+ T cells that recognize tumor antigen and ultimately foster control and destruction of a growing tumor. They are not designed to deal with all aspects of immune ignorance, exclusion, suppression and escape that are generally in place in patients with cancer and may prevent the T cells to enter the tumor or to exert their effector function. This simple fact prompted for a reappraisal of the many recent trials in which therapeutic cancer vaccines have been examined as monotherapy. In this review, I focus on trials examining therapeutic cancer vaccines at different stages of existing disease. The analysis of vaccine-induced immune responses and clinical activity of therapeutic cancer vaccines revealed four levels of evidence for vaccine efficacy. The lowest levels, reflect the many trials in which the strength of the tumor-reactive T cell response of vaccinated patients is associated with better clinical outcome or change in tumor marker. The highest levels indicate occasional regressions of tumors and metastases after vaccination or reflect a stronger clinical impact of vaccine in a randomized trial. A whole series of trials in which vaccine-induced tumor immunity correlates with the clinical impact of cancer vaccines in premalignant diseases, settings of low tumor burden or tumor regressions in patients with cancer, form an attest to the fact that cancer vaccines work. While the current number of true clinical responders in each cancer trial is too low for firm conclusions on immune correlates of clinical reactivity in cancer, extrapolation of the results from vaccinated patients with pre-cancers suggest a requirement of broad type 1 T cell reactivity.
Collapse
|
21
|
Holmström MO, Riley CH, Skov V, Svane IM, Hasselbalch HC, Andersen MH. Spontaneous T-cell responses against the immune check point programmed-death-ligand 1 (PD-L1) in patients with chronic myeloproliferative neoplasms correlate with disease stage and clinical response. Oncoimmunology 2018; 7:e1433521. [PMID: 29872567 DOI: 10.1080/2162402x.2018.1433521] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/21/2018] [Accepted: 01/22/2018] [Indexed: 12/26/2022] Open
Abstract
The Chronic Myeloproliferative Neoplasms (MPN) are cancers characterized by hyperinflammation and immune deregulation. Concurrently, the expression of the immune check point programmed death ligand 1 (PD-L1) is induced by inflammation. In this study we report on the occurrence of spontaneous T cell responses against a PD-L1 derived epitope in patients with MPN. We show that 71% of patients display a significant immune response against PD-L1, and patients with advanced MPN have significantly fewer and weaker PD-L1 specific immune responses compared to patients with non-advanced MPN. The PD-L1 specific T cell responses are CD4+ T cell responses, and by gene expression analysis we show that expression of PD-L1 is enhanced in patients with MPN. This could imply that the tumor specific immune response in MPN could be enhanced by vaccination with PD-L1 derived epitopes by boosting the anti-regulatory immune response hereby allowing tumor specific T cell to exert anti-tumor immunity.
Collapse
Affiliation(s)
- Morten Orebo Holmström
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark.,Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark
| | | | - Vibe Skov
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Inge Marie Svane
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark.,Department of Oncology, Copenhagen University, Herlev, Denmark
| | | | - Mads Hald Andersen
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark.,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Andersen MH. The Balance Players of the Adaptive Immune System. Cancer Res 2018; 78:1379-1382. [DOI: 10.1158/0008-5472.can-17-3607] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/12/2017] [Accepted: 01/02/2018] [Indexed: 11/16/2022]
|
23
|
Martinenaite E, Mortensen REJ, Hansen M, Orebo Holmström M, Munir Ahmad S, Grønne Dahlager Jørgensen N, Met Ö, Donia M, Svane IM, Andersen MH. Frequent adaptive immune responses against arginase-1. Oncoimmunology 2017; 7:e1404215. [PMID: 29399404 DOI: 10.1080/2162402x.2017.1404215] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/25/2017] [Accepted: 11/07/2017] [Indexed: 01/09/2023] Open
Abstract
The enzyme arginase-1 reduces the availability of arginine to tumor-infiltrating immune cells, thus reducing T-cell functionality in the tumor milieu. Arginase-1 is expressed by some cancer cells and by immune inhibitory cells, such as myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs), and its expression is associated with poor prognosis. In the present study, we divided the arginase-1 protein sequence into overlapping 20-amino-acid-long peptides, generating a library of 31 peptides covering the whole arginase-1 sequence. Reactivity towards this peptide library was examined in PBMCs from cancer patients and healthy individuals. IFNγ ELISPOT revealed frequent immune responses against multiple arginase-1-derived peptides. We further identified a hot-spot region within the arginase-1 protein sequence containing multiple epitopes recognized by T cells. Next, we examined in vitro-expanded tumor-infiltrating lymphocytes (TILs) isolated from melanoma patients, and detected arginase-1-specific T cells that reacted against epitopes from the hot-spot region. Arginase-1-specific CD4+T cells could be isolated and expanded from peripheral T cell pool of a patient with melanoma, and further demonstrated the specificity and reactivity of these T cells. Overall, we showed that arginase-1-specific T cells were capable of recognizing arginase-1-expressing cells. The activation of arginase-1-specific T cells by vaccination is an attractive approach to target arginase-1-expressing malignant cells and inhibitory immune cells. In the clinical setting, the induction of arginase-1-specific immune responses could induce or increase Th1 inflammation at the sites of tumors that are otherwise excluded due to infiltration with MDSCs and TAMs.
Collapse
Affiliation(s)
- Evelina Martinenaite
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark
| | | | - Morten Hansen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark
| | - Morten Orebo Holmström
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark.,Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Shamaila Munir Ahmad
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark
| | | | - Özcan Met
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark.,Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark.,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Marco Donia
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark.,Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Inge Marie Svane
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark.,Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Mads Hald Andersen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark.,Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| |
Collapse
|
24
|
Ahmad SM, Martinenaite E, Holmström M, Jørgensen MA, Met Ö, Nastasi C, Klausen U, Donia M, Pedersen LM, Munksgaard L, Ødum N, Woetmann A, Svane IM, Andersen MH. The inhibitory checkpoint, PD-L2, is a target for effector T cells: Novel possibilities for immune therapy. Oncoimmunology 2017; 7:e1390641. [PMID: 29308318 DOI: 10.1080/2162402x.2017.1390641] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/05/2017] [Accepted: 10/05/2017] [Indexed: 10/18/2022] Open
Abstract
Cell surface molecules of the B7/CD28 family play an important role in T-cell activation and tolerance. The relevance of the PD-1/PD-L1 pathway in cancer has been extensively studied whereas PD-L2 has received less attention. However, recently the expression of PD-L2 was described to be independently associated with clinical response in anti-PD1-treated cancer patients. Here, we investigated whether PD-L2 might represent a natural target that induces specific T cells. We identified spontaneous specific T-cell reactivity against two epitopes located in the signal peptide of PD-L2 from samples from patients with cancer as well as healthy individuals ex vivo. We characterized both CD8+ and CD4+ PD-L2-specific T cells. Interestingly, the epitope in PD-L2 that elicited the strongest response was equivalent to a potent HLA-A2-restricted epitope in PD-L1. Importantly, PD-L1-specific and PD-L2-specific T cells did not cross-react; therefore, they represent different T-cell antigens. Moreover, PD-L2-specific T cells reacted to autologous target cells depending on PD-L2 expression. These results suggested that activating PD-L2 specific T cells (e.g., by vaccination) might be an attractive strategy for anti-cancer immunotherapy. Accordingly, PD-L2 specific T cells can directly support anti-cancer immunity by killing of target cells, as well as, indirectly, by releasing pro-inflammatory cytokines at the microenvironment in response to PD-L2-expressing immune supressive cells.
Collapse
Affiliation(s)
- Shamaila Munir Ahmad
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, DK-2730 Herlev, Denmark
| | - Evelina Martinenaite
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, DK-2730 Herlev, Denmark
| | - Morten Holmström
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, DK-2730 Herlev, Denmark.,Department of Hematology, Zealand University Hospital, DK-4000 Roskilde, Denmark
| | - Mia Aaboe Jørgensen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, DK-2730 Herlev, Denmark
| | - Özcan Met
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, DK-2730 Herlev, Denmark.,Department of Oncology, Copenhagen University Hospital, Herlev, DK-2730 Herlev, Denmark.,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Claudia Nastasi
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Uffe Klausen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, DK-2730 Herlev, Denmark
| | - Marco Donia
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, DK-2730 Herlev, Denmark.,Department of Oncology, Copenhagen University Hospital, Herlev, DK-2730 Herlev, Denmark
| | - Lars Møller Pedersen
- Department of hematology, Copenhagen University Hospital, Herlev, DK-2730 Herlev, Denmark
| | - Lars Munksgaard
- Department of Hematology, Zealand University Hospital, DK-4000 Roskilde, Denmark
| | - Niels Ødum
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Woetmann
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Inge Marie Svane
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, DK-2730 Herlev, Denmark.,Department of Oncology, Copenhagen University Hospital, Herlev, DK-2730 Herlev, Denmark
| | - Mads Hald Andersen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, DK-2730 Herlev, Denmark.,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Generating Peripheral Blood Derived Lymphocytes Reacting Against Autologous Primary AML Blasts. J Immunother 2016; 39:71-80. [PMID: 26849076 DOI: 10.1097/cji.0000000000000107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Expanding on our prior studies with cord blood T cells, we hypothesized that primary acute myeloid leukemia (AML)-reactive autologous T cells could be generated ex vivo under immunomodulatory conditions. We purified AML and T cells from 8 newly diagnosed high-risk patients. After 2 weeks expansion, T cells were stimulated with interferon-γ-treated autologous AML weekly × 3, interleukin-15, and agonistic anti-CD28 antibody. Cytotoxic T cells and ELISpot assays tested functionality; reverse transcriptase quantitative polymerase chain reaction tested AML and T-cell gene expression profiles. On the basis of combined positive ELIspot and cytotoxic T cells assays, T cells reactive against AML were generated in 5 of 8 patients. Treg proportion declined after cocultures in reactive T-cell samples. AML-reactive T cells displayed an activated gene expression profile. "Resistant" AML blasts displayed genes associated with immunosuppressive myeloid-derived suppressor cells. We discuss our approach to creating primary AML-reactive autologous T cell and limitations that require further work. Our study provides a platform for future research targeting on generating autologous leukemia-reactive T cells.
Collapse
|
26
|
Abstract
Our initial understanding of immune-regulatory cells was based on the discovery of suppressor cells that assure peripheral T-cell tolerance and promote immune homeostasis. Research has particularly focused on the importance of regulatory T cells (Tregs) for immune modulation, e.g. directing host responses to tumours or inhibiting autoimmunity development. However, recent studies report the discovery of self-reactive pro-inflammatory T cells-termed anti-regulatory T cells (anti-Tregs)-that target immune-suppressive cells. Thus, regulatory cells can now be defined as both cells that suppress immune reactions as well as effector cells that counteract the effects of suppressor cells and support immune reactions. Self-reactive anti-Tregs have been described that specifically recognize human leukocyte antigen-restricted epitopes derived from proteins that are normally expressed by regulatory immune cells, including indoleamine 2,3-dioxygenase (IDO), tryptophan 2,6-dioxygenase (TDO), programmed death-ligand 1 (PD-L1), and forkhead box P3 (Foxp3). These proteins are highly expressed in professional antigen-presenting cells under various physiological conditions, such as inflammation and stress. Therefore, self-reactive T cells that recognize such targets may be activated due to the strong activation signal given by their cognate targets. The current review describes the existing knowledge regarding these self-reactive anti-Tregs, providing examples of antigen-specific anti-Tregs and discussing their possible roles in immune homeostasis and their potential future clinical applications.
Collapse
Affiliation(s)
- Mads Hald Andersen
- Department of Hematology, Center for Cancer Immune Therapy (CCIT), Copenhagen University Hospital, Herlev, 2730, Herlev, Denmark. .,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
27
|
Khanna S, Thomas A, Abate-Daga D, Zhang J, Morrow B, Steinberg SM, Orlandi A, Ferroni P, Schlom J, Guadagni F, Hassan R. Malignant Mesothelioma Effusions Are Infiltrated by CD3 + T Cells Highly Expressing PD-L1 and the PD-L1 + Tumor Cells within These Effusions Are Susceptible to ADCC by the Anti-PD-L1 Antibody Avelumab. J Thorac Oncol 2016; 11:1993-2005. [PMID: 27544053 DOI: 10.1016/j.jtho.2016.07.033] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 07/12/2016] [Accepted: 07/22/2016] [Indexed: 12/29/2022]
Abstract
INTRODUCTION The functional aspects of programmed death 1 (PD-1) and PD ligand 1 (PD-L1) immune checkpoints in malignant mesothelioma have not been studied. METHODS Tumor samples from 65 patients with mesothelioma were evaluated for PD-L1 expression by immunohistochemistry, and its prognostic significance was examined. Malignant effusions from patients with pleural and peritoneal mesothelioma were evaluated for PD-1-positive and PD-L1-positive infiltrating lymphocytes and their role in inducing PD-L1 expression in tumor cells. Antibody-dependent cellular cytotoxicity (ADCC) of avelumab, a fully humanized immunoglobulin G1 anti PD-L1 antibody against primary mesothelioma cell lines, was evaluated in presence of autologous and allogeneic natural killer cells. RESULTS Of 65 pleural and peritoneal mesothelioma tumors examined, 41 (63%) were PD-L1-positive, which was associated with slightly inferior overall survival compared to patients with PD-L1-negative tumors (median 23.0 versus 33.3 months, p = 0.35). The frequency of PD-L1 expression was similar in patients with pleural and peritoneal mesothelioma, with 62% and 64% of samples testing positive, respectively. In nine mesothelioma effusion samples evaluated, the fraction of cells expressing PD-L1 ranged from 12% to 83%. In seven patients with paired malignant effusion and peripheral blood mononuclear cell (PBMC) samples, PD-L1 expression was significantly higher on CD3-positive T cells present in malignant effusions as compared with PBMCs (p = 0.016). In addition, the numbers of CD14-positive PD-1-positive cells were increased in malignant effusions compared with PBMCs (p = 0.031). The lymphocytes present in malignant effusions recognized autologous tumor cells and induced interferon-γ-mediated PD-L1 expression on the tumor cell surface. Of the three primary mesothelioma cell lines tested, two were susceptible to avelumab-mediated ADCC in the presence of autologous natural killer cells. CONCLUSIONS Most pleural as well as peritoneal mesotheliomas express PD-L1. Malignant effusions in this disease are characterized by the presence of tumor cells and CD3-positive T cells that highly express PD-L1. In addition, mesothelioma tumor cells are susceptible to ADCC by the anti-PD-L1 antibody avelumab.
Collapse
Affiliation(s)
- Swati Khanna
- Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Anish Thomas
- Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Daniel Abate-Daga
- Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jingli Zhang
- Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Betsy Morrow
- Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Seth M Steinberg
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Augusto Orlandi
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University of Rome, Italy
| | - Patrizia Ferroni
- San Raffaele Roma Open University and BioBIM (Interinstitutional Multidisciplinary BioBank), SR Research Center, IRCCS San Raffaele Pisana, Rome, Italy
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Fiorella Guadagni
- San Raffaele Roma Open University and BioBIM (Interinstitutional Multidisciplinary BioBank), SR Research Center, IRCCS San Raffaele Pisana, Rome, Italy
| | - Raffit Hassan
- Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
28
|
Borch TH, Engell-Noerregaard L, Zeeberg Iversen T, Ellebaek E, Met Ö, Hansen M, Andersen MH, Thor Straten P, Svane IM. mRNA-transfected dendritic cell vaccine in combination with metronomic cyclophosphamide as treatment for patients with advanced malignant melanoma. Oncoimmunology 2016; 5:e1207842. [PMID: 27757300 DOI: 10.1080/2162402x.2016.1207842] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/13/2016] [Accepted: 06/25/2016] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION Vaccination with dendritic cells (DCs) has generally not fulfilled its promise in cancer immunotherapy due to ineffective translation of immune responses into clinical responses. A proposed reason for this is intrinsic immune regulatory mechanisms, such as regulatory T cells (Tregs). A metronomic regimen of cyclophosphamide (mCy) has been shown to selectively deplete Tregs. To test this in a clinical setting, we conducted a phase I trial to evaluate the feasibility and safety of vaccination with DCs transfected with mRNA in combination with mCy in patients with metastatic malignant melanoma (MM). In addition, clinical and immunological effect of the treatment was evaluated. EXPERIMENTAL DESIGN Twenty-two patients were enrolled and treated with six cycles of cyclophosphamide 50 mg orally bi-daily for a week every second week (day 1-7). During the six cycles patients received at least 5 × 106 autologous DCs administered by intradermal (i.d.) injection in the week without chemotherapy. Patients were evaluated 12 and 27 weeks and every 3rd mo thereafter with CT scans according to RECIST 1.0. Blood samples for immune monitoring were collected at baseline, at the time of 4th and 6th vaccines. Immune monitoring consisted of IFNγ ELISpot assay, proliferation assay, and flow cytometry for enumeration of immune cell subsets. RESULTS Toxicity was manageable. Eighteen patients were evaluable after six cycles. Of these, nine patients had progressive disease as best response and nine patients achieved stable disease. In three patients minor tumor regression was observed. By IFNγ ELISpot and proliferation assay immune responses were seen in 6/17 and 4/17 patients, respectively; however, no correlation with clinical response was found. The percentage of Tregs was unchanged during treatment. CONCLUSION Treatment with autologous DCs transfected with mRNA in combination with mCy was feasible and safe. Importantly, mCy did not alter the percentage of Tregs in our patient cohort. There was an indication of clinical benefit; however, more knowledge is needed in order for DCs to be exploited as a therapeutic option.
Collapse
Affiliation(s)
- Troels Holz Borch
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark; Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Lotte Engell-Noerregaard
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark; Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Trine Zeeberg Iversen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark; Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Eva Ellebaek
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark; Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Özcan Met
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark; Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Morten Hansen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital , Herlev, Denmark
| | - Mads Hald Andersen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital , Herlev, Denmark
| | - Per Thor Straten
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital , Herlev, Denmark
| | - Inge Marie Svane
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark; Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| |
Collapse
|
29
|
Ahmad SM, Borch TH, Hansen M, Andersen MH. PD-L1-specific T cells. Cancer Immunol Immunother 2016; 65:797-804. [PMID: 26724936 PMCID: PMC11028888 DOI: 10.1007/s00262-015-1783-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/13/2015] [Indexed: 12/21/2022]
Abstract
Recently, there has been an increased focus on the immune checkpoint protein PD-1 and its ligand PD-L1 due to the discovery that blocking the PD-1/PD-L1 pathway with monoclonal antibodies elicits striking clinical results in many different malignancies. We have described naturally occurring PD-L1-specific T cells that recognize both PD-L1-expressing immune cells and malignant cells. Thus, PD-L1-specific T cells have the ability to modulate adaptive immune reactions by reacting to regulatory cells. Thus, utilization of PD-L1-derived T cell epitopes may represent an attractive vaccination strategy for targeting the tumor microenvironment and for boosting the clinical effects of additional anticancer immunotherapy. This review summarizes present information about PD-L1 as a T cell antigen, depicts the initial findings about the function of PD-L1-specific T cells in the adjustment of immune responses, and discusses future opportunities.
Collapse
Affiliation(s)
- Shamaila Munir Ahmad
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Herlev Ringvej 75, 2730, Herlev, Denmark
| | - Troels Holz Borch
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Herlev Ringvej 75, 2730, Herlev, Denmark
| | - Morten Hansen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Herlev Ringvej 75, 2730, Herlev, Denmark
| | - Mads Hald Andersen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Herlev Ringvej 75, 2730, Herlev, Denmark.
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
30
|
Munir Ahmad S, Martinenaite E, Hansen M, Junker N, Borch TH, Met Ö, Donia M, Svane IM, Andersen MH. PD-L1 peptide co-stimulation increases immunogenicity of a dendritic cell-based cancer vaccine. Oncoimmunology 2016; 5:e1202391. [PMID: 27622072 DOI: 10.1080/2162402x.2016.1202391] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/12/2016] [Accepted: 06/12/2016] [Indexed: 12/31/2022] Open
Abstract
We recently described naturally occurring PD-L1-specific T cells that recognize PD-L1-expressing immune cells as well as malignant cells. In the present study, we investigated whether the immunogenicity of a dendritic cell (DC)-based vaccine could be influenced by co-stimulation with a known PD-L1-derived epitope. We incubated a PD-L1-derived peptide epitope (19 amino acids long) or a control peptide (an irrelevant HIV epitope) with peripheral blood mononuclear cells from patients with malignant melanoma who had received a DC-based vaccine. We observed a significantly higher number of T cells that reacted to the vaccine in cultures that had been co-stimulated with the PD-L1 peptide epitope compared to cultures incubated with control peptide. Next, we characterized a novel PD-L1-derived epitope (23 amino acids long) and found that co-stimulation with both PD-L1 epitopes boosted the immune response elicited by the DC vaccine even further. Consequently, we observed a significant increase in the number of vaccine-reacting T cells in vitro. In conclusion, activation of PD-L1-specific T cells may directly modulate immunogenicity of DC vaccines. Addition of PD-L1 epitopes may thus be an easily applicable and attractive option to augment the effectiveness of cancer vaccines and other immunotherapeutic agents.
Collapse
Affiliation(s)
- Shamaila Munir Ahmad
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital , Herlev, Denmark
| | - Evelina Martinenaite
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital , Herlev, Denmark
| | - Morten Hansen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital , Herlev, Denmark
| | - Niels Junker
- Department of Oncology, Copenhagen University Hospital , Herlev, Denmark
| | - Troels Holz Borch
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark; Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Özcan Met
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark; Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Marco Donia
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark; Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Inge Marie Svane
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark; Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Mads Hald Andersen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark; Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
31
|
Borch TH, Donia M, Andersen MH, Svane IM. Reorienting the immune system in the treatment of cancer by using anti-PD-1 and anti-PD-L1 antibodies. Drug Discov Today 2015; 20:1127-34. [DOI: 10.1016/j.drudis.2015.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 06/17/2015] [Accepted: 07/09/2015] [Indexed: 02/05/2023]
|
32
|
Potential roles of self-reactive T cells in autoimmunity: lessons from cancer immunology. Immunol Res 2015; 60:156-64. [PMID: 25381479 DOI: 10.1007/s12026-014-8559-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The immune system is a complex arrangement of cells and molecules that preserve the integrity of the organism by eliminating all elements judged to be dangerous. Several regulatory mechanisms function to terminate immune responses to antigens, return the immune system to a basal state after the antigen has been cleared, and maintain unresponsiveness, or tolerance, to self-antigens. In recent years, reports have described T cell responses to several proteins involved in regulating the immune system, particularly under malignant conditions. The present review highlights specific T cells that recognize proteins involved in three, well-defined immunosuppressive mechanisms: (1) inhibitory T cell pathways (i.e., PD-L1), (2) regulatory T cells (i.e., Foxp3(+)), and (3) metabolic enzymes, like indoleamine-2,3-dioxygenase. Cytotoxic T cells can eliminate regulatory cells, thereby suppressing and/or delaying local immune suppression; conversely, regulatory CD4(+) and non-cytotoxic CD8(+) T cells enhance target-mediated immune suppression. The apparent lack of tolerance against endogenous proteins expressed by regulatory cells is intriguing, because it suggests that self-reactive T cells play a general role of fine-tuning the immune system. Thus, T cell responses may be generally used to maintain the homeostasis of the immune system. Further exploration is warranted to investigate the potential role of auto-reactive T cells under different physiological and/or pathological conditions.
Collapse
|
33
|
Andersen MH. Immune Regulation by Self-Recognition: Novel Possibilities for Anticancer Immunotherapy. J Natl Cancer Inst 2015; 107:djv154. [PMID: 26063792 DOI: 10.1093/jnci/djv154] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 05/11/2015] [Indexed: 02/06/2023] Open
Abstract
Circulating T cells that specifically target normal self-proteins expressed by regulatory immune cells were first described in patients with cancer, but can also be detected in healthy individuals. The adaptive immune system is distinguished for its ability to differentiate between self-antigens and foreign antigens. Thus, it was remarkable to discover T cells that apparently lacked tolerance to important self-proteins, eg, IDO, PD-L1, and FoxP3, expressed in regulatory immune cells. The ability of self-reactive T cells to react to and eliminate regulatory immune cells can influence general immune reactions. This suggests that they may be involved in immune homeostasis. It is here proposed that these T cells should be termed antiregulatory T cells (anti-Tregs). The role of anti-Tregs in immune-regulatory networks may be diverse. For example, pro-inflammatory self-reactive T cells that react to regulatory immune cells may enhance local inflammation and inhibit local immune suppression. Further exploration is warranted to investigate their potential role under different malignant conditions and the therapeutic possibilities they possess. Utilizing anti-Tregs for anticancer immunotherapy implies the direct targeting of cancer cells in addition to regulatory immune cells. Anti-Tregs provide the immune system with yet another level of immune regulation and contradict the notion that immune cells involved in the adjustment of immune responses only act as suppressor cells.
Collapse
Affiliation(s)
- Mads Hald Andersen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark.
| |
Collapse
|
34
|
La X, Zhang F, Li Y, Li J, Guo Y, Zhao H, Pang N, Ma X, Wen H, Fan H, Ding J. Upregulation of PD-1 on CD4⁺CD25⁺ T cells is associated with immunosuppression in liver of mice infected with Echinococcus multilocularis. Int Immunopharmacol 2015; 26:357-66. [PMID: 25907244 DOI: 10.1016/j.intimp.2015.04.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 03/25/2015] [Accepted: 04/07/2015] [Indexed: 12/18/2022]
Abstract
Alveolar echinococcosis is a zoonotic disease caused by Echinococcus multilocularis (E. multilocularis) infection. The relationship between PD-1/PD-L1 pathway and Tregs at different stages of E. multilocularis infection has rarely been reported. This study aims to investigate the role of PD-1/PD-L1 in immunosuppression of Tregs in E. multilocularis infection. Hematoxylin-eosin staining, flow cytometry, immunohistochemistry, quantitative RT-PCR analysis, cytometric bead array and MTT assay were used to analyze liver pathological changes, percentages of PD-1(+) Tregs and PD-L1(+) dendritic cells (DCs), expression levels of PD-1, PD-L1 and Foxp3, levels of interleukin-10 (IL-10) and transforming growth factor beta (TGF-β) and proliferation of lymphocytes. During middle-late stage (day 30 to day 330) the percentages of PD-1(+) Tregs and PD-L1(+) DCs together with levels of Foxp3, IL-10 and TGF-β increased significantly and maintained at high level. The expression of PD-1 and PD-L1 was increased with the enlarging erosion of E. multilocularis, and was mainly distributed in hepatic sinus, fibrous wall of alveolar hydatid and germinal layer around foci of infection. PD-1/PD-L1 promoted the secretion of IL-10 and TGF-β. Our results indicate that engagement of the PD-1 and PD-L1 correlates with inhibition of T-cell effector function, cytokine secretion and proliferation. High expression of PD-1/PD-L1 may play an important role in stimulating CD4(+)CD25(+) T cells, and maintaining peripheral tolerance and immune evasion during chronic infection of E. multilocularis.
Collapse
Affiliation(s)
- Xiaolin La
- Xinjiang Laboratory of Hydatid Fundamental Medicine, First Affiliated Hospital of Xinjiang Medical University, 393 Xinyi Road, 830011,Urumqi, Xinjiang, China
| | - Fengbo Zhang
- Xinjiang Laboratory of Hydatid Fundamental Medicine, First Affiliated Hospital of Xinjiang Medical University, 393 Xinyi Road, 830011,Urumqi, Xinjiang, China
| | - Yanhua Li
- Xinjiang Laboratory of Hydatid Fundamental Medicine, First Affiliated Hospital of Xinjiang Medical University, 393 Xinyi Road, 830011,Urumqi, Xinjiang, China
| | - Jun Li
- Xinjiang Laboratory of Hydatid Fundamental Medicine, First Affiliated Hospital of Xinjiang Medical University, 393 Xinyi Road, 830011,Urumqi, Xinjiang, China
| | - Yuyuan Guo
- Xinjiang Laboratory of Hydatid Fundamental Medicine, First Affiliated Hospital of Xinjiang Medical University, 393 Xinyi Road, 830011,Urumqi, Xinjiang, China
| | - Hui Zhao
- Xinjiang Laboratory of Hydatid Fundamental Medicine, First Affiliated Hospital of Xinjiang Medical University, 393 Xinyi Road, 830011,Urumqi, Xinjiang, China
| | - Nannan Pang
- Xinjiang Laboratory of Hydatid Fundamental Medicine, First Affiliated Hospital of Xinjiang Medical University, 393 Xinyi Road, 830011,Urumqi, Xinjiang, China
| | - Xiumin Ma
- Xinjiang Laboratory of Hydatid Fundamental Medicine, First Affiliated Hospital of Xinjiang Medical University, 393 Xinyi Road, 830011,Urumqi, Xinjiang, China
| | - Hao Wen
- Xinjiang Laboratory of Hydatid Fundamental Medicine, First Affiliated Hospital of Xinjiang Medical University, 393 Xinyi Road, 830011,Urumqi, Xinjiang, China
| | - Haining Fan
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, 251 Xining Road, 810000, Xi-ning, Qinghai, China.
| | - Jianbing Ding
- Xinjiang Laboratory of Hydatid Fundamental Medicine, First Affiliated Hospital of Xinjiang Medical University, 393 Xinyi Road, 830011,Urumqi, Xinjiang, China; Department of Immunology, School of Preclinical Medicine of Xinjiang Medical University 393 Xinyi Road, 830011, Urumqi, Xinjiang, China.
| |
Collapse
|
35
|
Andersen MH, Svane IM. Indoleamine 2,3-dioxygenase vaccination. Oncoimmunology 2015; 4:e983770. [PMID: 25949864 DOI: 10.4161/2162402x.2014.983770] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 10/31/2014] [Indexed: 11/19/2022] Open
Abstract
Indoleamine 2,3-dioxygenase (IDO) is an immunoregulatory enzyme. Remarkably, we discovered IDO-specific T cells that can influence adaptive immune reactions in patients with cancer. Further, a recent phase I clinical trial demonstrated long-lasting disease stabilization without toxicity in patients with non-small-cell lung cancer (NSCLC) who were vaccinated with an IDO-derived HLA-A2-restricted epitope.
Collapse
Affiliation(s)
- Mads Hald Andersen
- Department of Hematology; Center for Cancer Immune Therapy (CCIT); Copenhagen University Hospital ; Herlev, Denmark
| | - Inge Marie Svane
- Department of Hematology; Center for Cancer Immune Therapy (CCIT); Copenhagen University Hospital ; Herlev, Denmark ; Department of Oncology; Copenhagen University Hospital ; Herlev, Denmark
| |
Collapse
|
36
|
Mechanisms of tumor-induced T cell immune suppression and therapeutics to counter those effects. Arch Pharm Res 2015; 38:1415-33. [PMID: 25634101 DOI: 10.1007/s12272-015-0566-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/18/2015] [Indexed: 02/07/2023]
Abstract
The theory of tumor immune surveillance states that the host immune system has means to recognize transformed cells and kills them to prevent growth and spreading of those cells. Nevertheless, cancer cells often survive and outgrow to form a tumor mass and metastasize to other tissues or organs. During the stage of immune evasion of tumor, various changes takes place both in the tumor cells and the tumor microenvironment to divert the anti-tumor immune responses by T cells and natural killer cells. Advances in the basic science in tumor immunology have led to development of many creative strategies to overcome the immune suppression imposed during tumor progression, a few of which have been approved for the treatment of cancer patients in the clinic. In the first part of this review, mechanisms of tumor-induced T cell immune suppression resulting in immune evasion of tumors will be discussed. In the second part, emerging methods to harness the immune responses against tumors will be introduced.
Collapse
|
37
|
Ahmad SM, Svane IM, Andersen MH. The stimulation of PD-L1-specific cytotoxic T lymphocytes can both directly and indirectly enhance antileukemic immunity. Blood Cancer J 2014; 4:e230. [PMID: 25036801 PMCID: PMC4219446 DOI: 10.1038/bcj.2014.50] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- S M Ahmad
- Center for Cancer Immune Therapy (CCIT), Department of Hematology and Oncology, Copenhagen University Hospital, Herlev, Herlev, Denmark
| | - I M Svane
- Center for Cancer Immune Therapy (CCIT), Department of Hematology and Oncology, Copenhagen University Hospital, Herlev, Herlev, Denmark
| | - M H Andersen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology and Oncology, Copenhagen University Hospital, Herlev, Herlev, Denmark
| |
Collapse
|
38
|
Andersen MH. The targeting of immunosuppressive mechanisms in hematological malignancies. Leukemia 2014; 28:1784-92. [PMID: 24691076 DOI: 10.1038/leu.2014.108] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 02/20/2014] [Accepted: 03/13/2014] [Indexed: 12/20/2022]
Abstract
The adaptive immune system has the capacity to recognize and kill leukemic cells. However, immune tolerance mechanisms that normally protect healthy tissues from autoimmune effects prevent the development of effective antitumor immunity. Tumors use several different immunosuppressive mechanisms to evade otherwise effective T-cell responses. A growing number of immune evasion mechanisms have been characterized mainly in solid tumors. In hematological malignancies, less is known about how different immune escape mechanisms influence tumor immune evasion and the extent of their impact on ongoing immune responses. The present review highlights the potential role of three well-defined immunosuppressive mechanisms in hematological malignancies: (i) inhibitory T-cell pathways (especially programmed death ligand 1/programmed death 1 (PD-L1/PD-1)), (ii) regulatory immune cells, and (iii) metabolic enzymes such as indoeamine-2,3-dioxygenase (IDO). The possible therapeutic targeting of these pathways is also discussed. Exciting new strategies that might affect future antileukemia immunotherapy include monoclonal antibodies that block inhibitory T-cell pathways (PD-1/PD-L1) and the prevention of tryptophan depletion by IDO inhibitors. Furthermore, the clinical effect of several chemotherapeutic drugs may arise from the targeting of immunosuppressive cells. Evidence for a new feedback mechanism to suppress the function of regulatory immune cells was recently provided by the identification and characterization of spontaneous cytotoxic T lymphocyte (CTL) responses against regulatory immune cells. Such specific CTLs may be immensely useful in anticancer immunotherapy (for example, by anticancer vaccination). The targeting of one or more immunosuppressive pathways may be especially interesting in combination with antileukemic immunotherapy in cases in which immunosuppressive mechanisms antagonize the desired effects of the therapy.
Collapse
Affiliation(s)
- M H Andersen
- Department of Hematology, Center for Cancer Immune Therapy (CCIT), Copenhagen University Hospital, Herlev, Denmark
| |
Collapse
|