1
|
Suehara Y, Sakamoto K, Fujisawa M, Fukumoto K, Abe Y, Makishima K, Suma S, Sakamoto T, Hattori K, Sugio T, Kato K, Akashi K, Matsue K, Narita K, Takeuchi K, Carreras J, Nakamura N, Chiba K, Shiraishi Y, Miyano S, Ogawa S, Chiba S, Sakata-Yanagimoto M. Discrete genetic subtypes and tumor microenvironment signatures correlate with peripheral T-cell lymphoma outcomes. Leukemia 2025; 39:1184-1195. [PMID: 40164718 PMCID: PMC12055585 DOI: 10.1038/s41375-025-02563-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 02/12/2025] [Accepted: 03/07/2025] [Indexed: 04/02/2025]
Abstract
Peripheral T-cell lymphoma (PTCL) exhibits a diverse clinical spectrum, necessitating methods to categorize patients based on genomic abnormalities or tumor microenvironment (TME) profiles. We conducted an integrative multiomics study in 129 PTCL patients, performing whole-exome sequencing and identifying three genetic subtypes: C1, C2, and C3. C2 was characterized by loss of tumor suppressor genes and chromosomal instability, while C1 and C3 shared T follicular helper (TFH)-related genomic alterations, with C3 also showing a high incidence of IDH2 mutations and chromosome 5 gain. Compared to C1, survival was significantly worse in C2 (HR 2.52; 95% CI, 1.37-4.63) and C3 (HR 2.14; 95% CI, 1.17-3.89). We also estimated the proportions of immune cell fractions from the bulk RNA sequencing data using CIBERSORTx and classified TME signatures into the following hierarchical clusters: TME1 (characterized by increased B and TFH cells), TME2 (macrophages), and TME3 (activated mast cells). TME2 was associated with shorter survival (HR 3.4; 95% CI, 1.6-7.5) and was more frequent in C2 (64.3%) than in C1 (7.7%), whereas C1 had more TME3 signatures (80.8% vs. 28.6%). These findings highlight a significant relationship between genetic subtypes and TME signatures in PTCL, with important implications for clinical prognosis.
Collapse
Affiliation(s)
- Yasuhito Suehara
- Department of Hematology, University of Tsukuba Hospital, Tsukuba, Japan
- Department of Hematology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kana Sakamoto
- Pathology Project for Molecular Targets, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Manabu Fujisawa
- Department of Hematology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Centre for Lymphoid Cancer department, BC Cancer, Vancouver, BC, Canada
| | - Kota Fukumoto
- Department of Hematology, University of Tsukuba Hospital, Tsukuba, Japan
| | - Yoshiaki Abe
- Department of Hematology, University of Tsukuba Hospital, Tsukuba, Japan
- Department of Hematology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kenichi Makishima
- Department of Hematology, University of Tsukuba Hospital, Tsukuba, Japan
| | - Sakurako Suma
- Department of Hematology, University of Tsukuba Hospital, Tsukuba, Japan
| | - Tatsuhiro Sakamoto
- Department of Hematology, University of Tsukuba Hospital, Tsukuba, Japan
- Department of Hematology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Keiichiro Hattori
- Department of Hematology, University of Tsukuba Hospital, Tsukuba, Japan
- Department of Hematology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takeshi Sugio
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
- Department of Medicine, Division of Oncology, Stanford University, Stanford, CA, USA
| | - Koji Kato
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
| | - Kosei Matsue
- Division of Hematology/Oncology, Department of Internal Medicine, Kameda Medical Center, Kamogawa, Japan
| | - Kentaro Narita
- Pathology Project for Molecular Targets, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kengo Takeuchi
- Pathology Project for Molecular Targets, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Joaquim Carreras
- Department of Pathology, Tokai University School of Medicine, Isehara, Japan
| | - Naoya Nakamura
- Department of Pathology, Tokai University School of Medicine, Isehara, Japan
| | - Kenichi Chiba
- Department of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuichi Shiraishi
- Department of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Satoru Miyano
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Shigeru Chiba
- Department of Hematology, University of Tsukuba Hospital, Tsukuba, Japan
- Department of Hematology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Mamiko Sakata-Yanagimoto
- Department of Hematology, University of Tsukuba Hospital, Tsukuba, Japan.
- Department of Hematology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan.
- Division of Advanced Hemato-Oncology, Transborder Medical Research Center, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
2
|
Fiore D, Cappelli LV, Zhaoqi L, Kotlov N, Sorokina M, Phillip J, Zumbo P, Yoffe L, Ghione P, Wang A, Han X, Taylor A, Chiu W, Fragliasso V, Tabbo F, Zamponi N, Di Siervi N, Kayembe C, Medico G, Patel RP, Gaudiano M, Machiorlatti R, Astone G, Cacciapuoti MT, Zanetti G, Pignataro C, Eric RA, Patel S, Zammarchi F, Zanettini C, Queiroz L, Nikitina A, Kudryashova O, Karelin A, Nikitin D, Tychinin D, Postovalova E, Bagaev A, Svekolkin V, Belova E, Tikhonova K, Degryse S, Xu C, Novero D, Ponzoni M, Tiacci E, Falini B, Song J, Khodos I, De Stanchina E, Macari G, Cafforio L, Gardini S, Piva R, Medico E, Ng SY, Moskowitz A, Epstein Z, Intlekofer A, Ahmed D, Chan WC, Martin P, Ruan J, Bertoni F, Foà R, Brody JD, Weinstock DM, Osan J, Santambrogio L, Elemento O, Betel D, Tam W, Ruella M, Cerchietti L, Rabadan R, Horwitz S, Inghirami G. A patient-derived T cell lymphoma biorepository uncovers pathogenetic mechanisms and host-related therapeutic vulnerabilities. Cell Rep Med 2025; 6:102029. [PMID: 40147445 PMCID: PMC12047492 DOI: 10.1016/j.xcrm.2025.102029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 04/24/2024] [Accepted: 02/21/2025] [Indexed: 03/29/2025]
Abstract
Peripheral T cell lymphomas (PTCLs) comprise heterogeneous malignancies with limited therapeutic options. To uncover targetable vulnerabilities, we generate a collection of PTCL patient-derived tumor xenografts (PDXs) retaining histomorphology and molecular donor-tumor features over serial xenografting. PDX demonstrates remarkable heterogeneity, complex intratumor architecture, and stepwise trajectories mimicking primary evolutions. Combining functional transcriptional stratification and multiparametric imaging, we identify four distinct PTCL microenvironment subtypes with prognostic value. Mechanistically, we discover a subset of PTCLs expressing Epstein-Barr virus-specific T cell receptors and uncover the capacity of cancer-associated fibroblasts of counteracting treatments. PDXs' pre-clinical testing captures individual vulnerabilities, mirrors donor patients' clinical responses, and defines effective patient-tailored treatments. Ultimately, we assess the efficacy of CD5KO- and CD30- Chimeric Antigen Receptor T Cells (CD5KO-CART and CD30_CART, respectively), demonstrating their therapeutic potential and the synergistic role of immune checkpoint inhibitors for PTCL treatment. This repository represents a resource for discovering and validating intrinsic and extrinsic factors and improving the selection of drugs/combinations and immune-based therapies.
Collapse
Affiliation(s)
- Danilo Fiore
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA; Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; Institute for Experimental Endocrinology and Oncology, "G.Salvatore" IEOS, Consiglio Nazionale delle Ricerche (CNR), 80131 Naples, Italy
| | - Luca Vincenzo Cappelli
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA; Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Liu Zhaoqi
- Program for Mathematical Genomics, Department of Systems Biology, Department of Biomedical Informatics, Columbia University, New York, NY 10027 USA; China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | | | | | - Jude Phillip
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065 US; Chemical and Biomolecular Engineering, Oncology, Sidney Kimmel Comprehensive Cancer Center, Core Member, Institute for Nanobiotechnology (INBT), Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Paul Zumbo
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, US
| | - Liron Yoffe
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA; Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Paola Ghione
- Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anqi Wang
- Program for Mathematical Genomics, Department of Systems Biology, Department of Biomedical Informatics, Columbia University, New York, NY 10027 USA
| | - Xueshuai Han
- Program for Mathematical Genomics, Department of Systems Biology, Department of Biomedical Informatics, Columbia University, New York, NY 10027 USA; China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Abigail Taylor
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - William Chiu
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - Valentina Fragliasso
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA; Laboratory of translational research, Azienda USL - IRCCS di Reggio Emilia, 42122 Reggio Emila, Italy
| | - Fabrizio Tabbo
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA; SC Oncologia ASL CN2 Alba Bra Ospedale Michele e Pietro Ferrero, 12060 Verduno, (CN), Italy
| | - Nahuel Zamponi
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065 US
| | - Nicolás Di Siervi
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065 US
| | - Clarisse Kayembe
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - Giovanni Medico
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ruchi P Patel
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA 19104, USA; Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marcello Gaudiano
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - Rodolfo Machiorlatti
- Department of Pathology, Center for Experimental Research and Medical Studies, University of Torino, 10126 Torino, Italy
| | - Giuseppina Astone
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - Maria Teresa Cacciapuoti
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - Giorgia Zanetti
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - Claudia Pignataro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Ruiz Arvin Eric
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - Sanjay Patel
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Claudio Zanettini
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lucio Queiroz
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Chengqi Xu
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Domenico Novero
- Division of Pathological Anatomy, Quality and Safety of Diagnosis and Treatment, Città della Salute e della Scienza, 10126 Turin, Italy
| | - Maurilio Ponzoni
- Pathology Unit, San Raffaele Scientific Institute, Milan, Italy; Unit of Lymphoid Malignancies, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Enrico Tiacci
- Institute of Hematology, University of Perugia, Ospedale S. Maria della Misericordia, S. Andrea delle Fratte, 06156 Perugia Italy
| | - Brunangelo Falini
- Institute of Hematology, University of Perugia, Ospedale S. Maria della Misericordia, S. Andrea delle Fratte, 06156 Perugia Italy
| | - Joo Song
- Department of Pathology, City of Hope Medical Center, Duarte, CA 91010, US
| | - Inna Khodos
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, US
| | - Elisa De Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, US
| | | | | | | | - Roberto Piva
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; Medical Genetics Unit, Città della Salute e della Scienza University Hospital, 10126 Turin, Italy
| | - Enzo Medico
- Department of Oncology, University of Torino, Candiolo, TO, Italy; Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, TO, Italy
| | - Samuel Y Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; National Cancer Institute, Bethesda, MD 20892, USA
| | - Allison Moskowitz
- Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zachary Epstein
- Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrew Intlekofer
- Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dogan Ahmed
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Wing C Chan
- Department of Pathology, City of Hope Medical Center, Duarte, CA 91010, US
| | - Peter Martin
- Lymphoma Service, Weill Cornell Medical Center, New York, NY 10065, USA
| | - Jia Ruan
- Lymphoma Service, Weill Cornell Medical Center, New York, NY 10065, USA
| | - Francesco Bertoni
- Lymphoma Genomics, Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland; Oncology Institute of Southern Switzerland, EOC,6500 Bellinzona, Switzerland
| | - Robin Foà
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Joshua D Brody
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, US; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Jaspreet Osan
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Laura Santambrogio
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Oliver Elemento
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Doron Betel
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065 US; Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, US
| | - Wayne Tam
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA; Division of Hematopathology, Northwell Health, New York, NY 11740, USA
| | - Marco Ruella
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA 19104, USA; Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA; Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leandro Cerchietti
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065 US
| | - Raul Rabadan
- Program for Mathematical Genomics, Department of Systems Biology, Department of Biomedical Informatics, Columbia University, New York, NY 10027 USA
| | - Steven Horwitz
- Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Giorgio Inghirami
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
3
|
Xing Y, Huang J, Zhang Y, Wang Y, Qi S. Advancing the understanding and management of angioimmunoblastic T-cell lymphoma: insights into its pathogenesis, clinical features, and emerging therapeutic strategies. Front Oncol 2025; 15:1479179. [PMID: 40098700 PMCID: PMC11911338 DOI: 10.3389/fonc.2025.1479179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025] Open
Abstract
Angioimmunoblastic T-cell lymphoma (AITL) is a clinically aggressive non-Hodgkin lymphoma associated with many immune disorders. The incidence of AITL has gradually increased in Asia in recent years. Malignant AITL cells originate from T follicular helper cells, which have a unique morphology and complex biological characteristics. High-throughput sequencing studies have identified many gene mutations associated with its pathogenesis, including mutations in tet methylcytosine dioxygenase 2 (TET2), isocitrate dehydrogenase (NADP+) 2 (IDH2), DNA methyltransferase 3 alpha (DNMT3A), ras homolog family member A (RHOA), and T cell receptor-related genes. Currently, there is no standardized treatment for AITL, the first-line chemotherapy is ineffective, the recurrence rate is high, the overall prognosis of patients is poor, and the median survival time does not exceed three years. New drugs are urgently needed. However, with continuous in-depth study of the molecular genetic mechanism of AITL, some new drugs and therapies have been tested for patients with relapsed and refractory AITL, achieving some therapeutic effects. Increasing clinical studies are evaluating new potential targets for AITL based on specific molecular markers, gradually improving individualized treatment and ultimately improving the clinical prognosis of patients with AITL. This review first summarizes the progress of research on the etiology, clinical pathological characteristics, and molecular genetic mechanisms of AITL to enhance understanding of the disease. It then summarizes the progress of research on its treatment strategies to provide some references for clinically diagnosing and treating AITL.
Collapse
Affiliation(s)
- Yurou Xing
- Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junmeng Huang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Zhang
- Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongsheng Wang
- Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shaochong Qi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| |
Collapse
|
4
|
Matsumoto NP, Xu ML. Angioimmunoblastic T-cell lymphoma: Current Diagnostic Insights and Advances. Hum Pathol 2025; 156:105696. [PMID: 39571692 DOI: 10.1016/j.humpath.2024.105696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
Angioimmunoblastic T-cell lymphoma (AITL), or nodal T-follicular helper cell lymphoma, angioimmunoblastic type, is a rare and aggressive type of T-cell lymphoma characterized by a spectrum of clinical and histopathological features that can present diagnostic challenges. Derived from T-follicular helper cells, the genesis of AITL is thought to be a multistep process involving mutations in epigenetic regulatory genes such as TET2 and DNMT3A, followed by driver mutations in RHOAG17V and IDH2R172 which promote clonal expansion as well as a characteristic inflammatory milieu. This review aims to provide a comprehensive overview of AITL, including its clinical presentation, epidemiology, pathogenesis, histomorphology and treatment options. Despite advancements in the understanding of AITL biology and the development of novel treatment strategies, the prognosis for patients with AITL remains poor.
Collapse
Affiliation(s)
- Nana P Matsumoto
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, 3477 Euler Way, Pittsburgh, PA, 15213, USA.
| | - Mina L Xu
- Department of Pathology and Laboratory Medicine, Yale-New Haven Hospital, New Haven, CT, 310 Cedar Street, Ste BML 116C, New Haven, CT, 06510, USA.
| |
Collapse
|
5
|
Lee YB, Park Y, Hamza A, Min JK, Dogsom O, Kim SC, Park JB. Function of a complex of p-Y42 RhoA GTPase and pyruvate kinase M2 in EGF signaling pathway in glioma cells. J Neurochem 2025; 169:e16210. [PMID: 39183510 DOI: 10.1111/jnc.16210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/22/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024]
Abstract
Epidermal growth factor (EGF) is known to be a critical stimulant for inducing the proliferation of glioma cancer cells. In our study, we observed that GST-RhoA binds to pyruvate kinase M2 (PKM2) in vitro. While EGF reduced the levels of RhoA protein, it significantly increased p-Y42 RhoA, as well as PKM1 and PKM2 in LN18 glioma cell line. We determined that RhoA undergoes degradation through ubiquitination involving SCF1 and Smurf1. Interestingly, we observed that p-Y42 RhoA binds to PKM2, while the dephosphomimetic form, RhoA Y42F, did not. Additionally, our observation revealed that PKM2 stabilized both RhoA and p-Y42 RhoA. Importantly, RhoA, p-Y42 RhoA, and PKM2, but not RhoA-GTP, were localized in the nucleus upon EGF stimulation. Knockdown of RhoA with siRNA resulted in the reduced levels of phosphoglycerate kinase1 (PGK1) and microtubule affinity-regulating kinase 4 (MARK). Furthermore, we found that the promoter of PGK1 was associated with β-catenin and YAP. Notably, p-Y42 RhoA and PKM2 co-immunoprecipitated with β-catenin and YAP. Based on these findings, we proposed a novel mechanism by which p-Y42 RhoA and PKM2, in conjunction with β-catenin and YAP, regulate PGK1 expression, contributing to the progression of glioma upon EGF.
Collapse
Affiliation(s)
- Yoon-Beom Lee
- Department of Biochemistry, Hallym University, Chuncheon, Kangwon-do, Republic of Korea
- Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Kangwon-do, Republic of Korea
| | - Yohan Park
- Department of Biochemistry, Hallym University, Chuncheon, Kangwon-do, Republic of Korea
| | - Amir Hamza
- Department of Biochemistry, Hallym University, Chuncheon, Kangwon-do, Republic of Korea
- Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Kangwon-do, Republic of Korea
| | - Jung Ki Min
- Department of Biochemistry, Hallym University, Chuncheon, Kangwon-do, Republic of Korea
| | - Oyungerel Dogsom
- Department of Biochemistry, Hallym University, Chuncheon, Kangwon-do, Republic of Korea
- Department of Biology, School of bio-Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Sung-Chan Kim
- Department of Biochemistry, Hallym University, Chuncheon, Kangwon-do, Republic of Korea
| | - Jae-Bong Park
- Department of Biochemistry, Hallym University, Chuncheon, Kangwon-do, Republic of Korea
- Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Kangwon-do, Republic of Korea
- ELMED Co. Hallym University, Chuncheon, Kangwon-do, Republic of Korea
| |
Collapse
|
6
|
Pichler AS, Amador C, Fujimoto A, Takeuchi K, de Jong D, Iqbal J, Staber PB. Advances in peripheral T cell lymphomas: pathogenesis, genetic landscapes and emerging therapeutic targets. Histopathology 2025; 86:119-133. [PMID: 39679758 DOI: 10.1111/his.15376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Peripheral T cell lymphomas (PTCLs) are a biologically diverse and aggressive group of non-Hodgkin lymphomas that originate from mature T cells, often presenting with complex clinical and morphological features. This review explores the challenges in diagnosing and classifying PTCLs, focusing on the intricate biology of the more common nodal entities. Advances in molecular diagnostics, such as mutational and gene expression profiling, have improved our understanding. However, the rarity and morphological variability of PTCLs continue to complicate the definition of biologically and clinically meaningful entities, as well as the application of current diagnoses in daily practice; these advancements have not yet translated into improved clinical outcomes. Standard therapies fail in most cases and lead to poor prognoses, highlighting the urgent need for improved therapeutic strategies. Precise characterisation of PTCL advances refined classification and supports the development of more targeted and effective treatments. Recent approaches have focused on biology-based risk stratification, either within specific entities or in an entity-agnostic manner. This development aims for improved treatment selection or even personalised treatment based on genetic, epigenetic and functional profiles.
Collapse
Affiliation(s)
- Alexander S Pichler
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Catalina Amador
- Department of Pathology and Laboratory Medicine, University of Miami, Miami, Florida, USA
| | - Ayumi Fujimoto
- Division of Pathology, Cancer Institute, Japanese Foundation of Cancer Research, Tokyo, Japan
| | - Kengo Takeuchi
- Division of Pathology, Cancer Institute, Japanese Foundation of Cancer Research, Tokyo, Japan
| | - Daphne de Jong
- Department of Pathology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Javeed Iqbal
- University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Philipp B Staber
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
de Castro Sampaio SS, Ramalho MCC, de Souza CS, de Almeida Rodrigues B, de Mendonça GRS, Lazarini M. RHO subfamily of small GTPases in the development and function of hematopoietic cells. J Cell Physiol 2025; 240:e31469. [PMID: 39434451 DOI: 10.1002/jcp.31469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/16/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024]
Abstract
RHOA, RHOB, and RHOC comprise a subfamily of RHO GTPase proteins famed for controlling cytoskeletal dynamics. RHO proteins operate downstream of multiple signals emerging from the microenvironment, leading to diverse cell responses, such as proliferation, adhesion, and migration. Therefore, RHO signaling has been centrally placed in the regulation of blood cells. Despite their high homology, unique roles of RHOA, RHOB, and RHOC have been described in hematopoietic cells. In this article, we overview the contribution of RHO proteins in the development and function of each blood cell lineage. Additionally, we highlight the aberrations of the RHO signaling pathways found in hematological malignancies, providing clues for the identification of new therapeutic targets.
Collapse
Affiliation(s)
| | | | - Caroline Santos de Souza
- Department of Clinical and Experimental Oncology, Federal University of São Paulo, São Paulo, Brazil
| | | | | | - Mariana Lazarini
- Department of Clinical and Experimental Oncology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Sainz TP, Sahu V, Gomez JA, Dcunha NJ, Basi AV, Kettlun C, Sarami I, Burks JK, Sampath D, Vega F. Role of the Crosstalk B:Neoplastic T Follicular Helper Cells in the Pathobiology of Nodal T Follicular Helper Cell Lymphomas. J Transl Med 2024; 104:102147. [PMID: 39389311 DOI: 10.1016/j.labinv.2024.102147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/06/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024] Open
Abstract
Angioimmunoblastic T-cell lymphoma (AITL), the most common form of peripheral T-cell lymphoma, originates from follicular helper T (Tfh) cells and is notably resistant to current treatments. The disease progression and maintenance, at least in early stages, are driven by a complex interplay between neoplastic Tfh and clusters of B-cells within the tumor microenvironment, mirroring the functional crosstalk observed inside germinal centers. This interaction is further complicated by recurrent mutations, such as TET2 and DNMT3A, which are present in both Tfh cells and B-cells. These findings suggest that the symbiotic relationship between these 2 cell types could represent a therapeutic vulnerability. This review examines the key components and signaling mechanisms involved in the synapses between B-cells and Tfh cells, emphasizing their significant role in the pathobiology of AITL and potential as therapeutic targets.
Collapse
Affiliation(s)
- Tania P Sainz
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Vishal Sahu
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Javier A Gomez
- Department of Leukemia, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Nicholas J Dcunha
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Akshay V Basi
- Department of Leukemia, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Claudia Kettlun
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Iman Sarami
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Jared K Burks
- Department of Leukemia, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Deepa Sampath
- Hematopoietic Biology and Malignancy, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Francisco Vega
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, Texas.
| |
Collapse
|
9
|
Iqbal J, Inghirami G, Chan WC. New insights into the biology of T-cell lymphomas. Blood 2024; 144:1873-1886. [PMID: 39213420 PMCID: PMC11551850 DOI: 10.1182/blood.2023021787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
ABSTRACT Peripheral T-cell lymphomas (PTCLs) encompass a heterogeneous group of postthymic T-cell lymphomas with >30 distinct subtypes associated with varied clinicopathological features. Unfortunately, the overall survival of the major PTCL subtypes is dismal and has not improved for decades; thus, there is an urgent unmet clinical need to improve diagnosis, therapies, and clinical outcomes. The diagnosis is often challenging, requiring a combinatorial evaluation of clinical, morphologic, and immunophenotypic features. PTCL pathobiology is difficult to investigate due to enormous intertumor and intratumor heterogeneity, limited tissue availability, and the paucity of authentic T-cell lymphoma cell lines or genetically faithful animal models. The application of transcriptomic profiling and genomic sequencing has markedly accelerated the discovery of new biomarkers, molecular signatures, and genetic lesions, and some of the discoveries have been included in the revised World Health Organization or International Consensus Classification. Genome-wide investigations have revealed the mutational landscape and transcriptomic profiles of PTCL entities, defined the cell of origin as a major determinant of T-cell lymphoma biology, and allowed for the refinement of biologically and clinically meaningful entities for precision therapy. In this review, we prioritize the discussion on common nodal PTCL subtypes together with 2 virus-associated T-cell and natural killer cell lymphomas. We succinctly review normal T-cell development, differentiation, and T-cell receptor signaling as they relate to PTCL pathogenesis and biology. This review will facilitate a better biological understanding of the different PTCL entities and their stratification for additional studies and target-directed clinical trials.
Collapse
Affiliation(s)
- Javeed Iqbal
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Wing C. Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA
| |
Collapse
|
10
|
Hu L, Zhang X, Zang S. Mutations in Ras homolog family member A in patients with peripheral T-cell lymphoma and implications for personalized medicine. Cancer Biol Med 2024; 21:j.issn.2095-3941.2024.0132. [PMID: 39119774 PMCID: PMC11414223 DOI: 10.20892/j.issn.2095-3941.2024.0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/20/2024] [Indexed: 08/10/2024] Open
Abstract
Genome sequencing has revealed frequent mutations in Ras homolog family member A (RHOA) among various cancers with unique aberrant profiles and pathogenic effects, especially in peripheral T-cell lymphoma (PTCL). The discrete positional distribution and types of RHOA amino acid substitutions vary according to the tumor type, thereby leading to different functional and biological properties, which provide new insight into the molecular pathogenesis and potential targeted therapies for various tumors. However, the similarities and discrepancies in characteristics of RHOA mutations among various histologic subtypes of PTCL have not been fully elucidated. Herein we highlight the inconsistencies and complexities of the type and location of RHOA mutations and demonstrate the contribution of RHOA variants to the pathogenesis of PTCL by combining epigenetic abnormalities and activating multiple downstream pathways. The promising potential of targeting RHOA as a therapeutic modality is also outlined. This review provides new insight in the field of personalized medicine to improve the clinical outcomes for patients.
Collapse
Affiliation(s)
- Lina Hu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xuanye Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shengbing Zang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
11
|
Harland L, Borgmann V, Otto F, Overkamp M, Bonzheim I, Fend F, Quintanilla-Martinez L, Nann D. Clonal Hematopoiesis and Bone Marrow Infiltration in Patients With Follicular Helper T-Cell Lymphoma of Angioimmunoblastic Type. Mod Pathol 2024; 37:100519. [PMID: 38777036 DOI: 10.1016/j.modpat.2024.100519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Follicular helper T-cell (TFH) lymphoma harbors recurrent mutations of RHOAG17V, IDH2R172, TET2, and DNMT3A. TET2 and DNMT3A mutations are the most frequently affected genes in clonal hematopoiesis (CH). The aim of our study was to investigate the frequency of CH in bone marrow biopsies (BMB) of TFH/angioimmunoblastic T-cell lymphoma (TFH-AITL) patients and its association with myeloid neoplasms. A total of 29 BMB from 22 patients with a diagnosis of TFH-AITL were analyzed by next-generation sequencing (NGS) with a custom panel. Morphologically, 5 BMB revealed that TFH-AITL infiltrates of >5% of bone marrow (BM) cellularity confirmed in 4 cases by NGS-based T-cell clonality. IDH2R172 was demonstrated only in 1 (3%) of 29, and RHOAG17V in 2 (7%) of 29 samples. TET2 and DNMT3A were identified in 24 (83%) of 29 and 17 (59%) of 29 BMB, respectively. In the parallel lymph node the frequencies of mutations were 27% (IDH2R172), 64% (RHOAG17V), 86% (TET2), and 50% (DNMT3A). TET2 and/or DNMT3A mutations identical in lymph node and BMB were present in 18 (82%) of 22 patients, regardless of BM infiltration. In 3 cases the CH mutations were detected 13, 41, and 145 months before TFH-AITL diagnosis. Cases with TET2/DNMT3A mutations and BM variant allele frequencies >40% (7/18, 39%) showed lower blood counts. However, only low platelet count was statistically significant (P = .024). Myeloid neoplasms and/or myelodysplastic syndrome-related mutations were identified in 4 cases (4/22; 18%); all with high TET2 variant allele frequencies (>40%; P = .0114). In conclusion, CH is present in 82% of TFH-AITL and can be demonstrated up to 145 months before TFH-AITL diagnosis. NGS T-cell clonality analysis is an excellent tool to confirm TFH-AITL BM infiltration. Concurrent myeloid neoplasms were identified in 18% of the cases and were associated with TET2 mutations with high allelic burden (>40%). We demonstrated that myeloid neoplasms might occur simultaneously or precede the diagnosis of TFH lymphoma.
Collapse
Affiliation(s)
- Lennart Harland
- Institute of Pathology and Neuropathology, University Hospital Tuebingen and Comprehensive Cancer Center, Tuebingen, Germany; Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Vanessa Borgmann
- Institute of Pathology and Neuropathology, University Hospital Tuebingen and Comprehensive Cancer Center, Tuebingen, Germany
| | - Franziska Otto
- Institute of Pathology and Neuropathology, University Hospital Tuebingen and Comprehensive Cancer Center, Tuebingen, Germany
| | - Mathis Overkamp
- Institute of Pathology and Neuropathology, University Hospital Tuebingen and Comprehensive Cancer Center, Tuebingen, Germany
| | - Irina Bonzheim
- Institute of Pathology and Neuropathology, University Hospital Tuebingen and Comprehensive Cancer Center, Tuebingen, Germany
| | - Falko Fend
- Institute of Pathology and Neuropathology, University Hospital Tuebingen and Comprehensive Cancer Center, Tuebingen, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, University Hospital Tuebingen and Comprehensive Cancer Center, Tuebingen, Germany.
| | - Dominik Nann
- Institute of Pathology and Neuropathology, University Hospital Tuebingen and Comprehensive Cancer Center, Tuebingen, Germany
| |
Collapse
|
12
|
Chang EWY, Tan YH, Chan JY. Novel clinical risk stratification and treatment strategies in relapsed/refractory peripheral T-cell lymphoma. J Hematol Oncol 2024; 17:38. [PMID: 38824603 PMCID: PMC11144347 DOI: 10.1186/s13045-024-01560-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024] Open
Abstract
Peripheral T cell lymphoma (PTCL) represents a group of heterogeneous hematological malignancies, which are notoriously challenging to treat and outcomes are typically poor. Over the past two decades, clinical prognostic indices for patient risk stratification have evolved, while several targeted agents are now available to complement combination chemotherapy in the frontline setting or as a salvage strategy. With further understanding of the molecular pathobiology of PTCL, several innovative approaches incorporating immunomodulatory agents, epigenetic therapies, oncogenic kinase inhibitors and immunotherapeutics have come to the forefront. In this review, we provide a comprehensive overview of the progress in developing clinical prognostic indices for PTCL and describe the broad therapeutic landscape, emphasizing novel targetable pathways that have entered early phase clinical studies.
Collapse
Affiliation(s)
- Esther Wei Yin Chang
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore.
- Duke-NUS Medical School, Singapore, Singapore.
| | - Ya Hwee Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Jason Yongsheng Chan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore.
- Duke-NUS Medical School, Singapore, Singapore.
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore, Singapore.
| |
Collapse
|
13
|
Huang YH, Qiu YR, Zhang QL, Cai MC, Yu H, Zhang JM, Jiang L, Ji MM, Xu PP, Wang L, Cheng S, Zhao WL. Genomic and transcriptomic profiling of peripheral T cell lymphoma reveals distinct molecular and microenvironment subtypes. Cell Rep Med 2024; 5:101416. [PMID: 38350451 PMCID: PMC10897627 DOI: 10.1016/j.xcrm.2024.101416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 01/25/2023] [Accepted: 01/17/2024] [Indexed: 02/15/2024]
Abstract
Peripheral T cell lymphoma (PTCL) is a heterogeneous group of non-Hodgkin's lymphomas varying in clinical, phenotypic, and genetic features. The molecular pathogenesis and the role of the tumor microenvironment in PTCL are poorly understood, with limited biomarkers available for genetic subtyping and targeted therapies. Through an integrated genomic and transcriptomic study of 221 PTCL patients, we delineate the genetic landscape of PTCL, enabling molecular and microenvironment classification. According to the mutational status of RHOA, TET2, histone-modifying, and immune-related genes, PTCL is divided into 4 molecular subtypes with discrete patterns of gene expression, biological aberrations, and vulnerabilities to targeted agents. We also perform an unsupervised clustering on the microenvironment transcriptional signatures and categorize PTCL into 4 lymphoma microenvironment subtypes based on characteristic activation of oncogenic pathways and composition of immune communities. Our findings highlight the potential clinical rationale of future precision medicine strategies that target both molecular and microenvironment alterations in PTCL.
Collapse
Affiliation(s)
- Yao-Hui Huang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Ran Qiu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qun-Ling Zhang
- Department of Lymphoma, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ming-Ci Cai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Yu
- Department of Research and Development, Shanghai Yuanqi Biomedical Technology Co., Ltd., No. 699, North Huifeng Road, Fengxian District, Shanghai, China
| | - Jian-Ming Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meng-Meng Ji
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng-Peng Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China
| | - Shu Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Li Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China.
| |
Collapse
|
14
|
Suma S, Suehara Y, Fujisawa M, Abe Y, Hattori K, Makishima K, Sakamoto T, Sawa A, Bando H, Kaji D, Sugio T, Kato K, Akashi K, Matsue K, Carreras J, Nakamura N, Suzuki A, Suzuki Y, Ito K, Shiiba H, Chiba S, Sakata-Yanagimoto M. Tumor heterogeneity and immune-evasive T follicular cell lymphoma phenotypes at single-cell resolution. Leukemia 2024; 38:340-350. [PMID: 38012392 PMCID: PMC10844096 DOI: 10.1038/s41375-023-02093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
T follicular helper (TFH) cell lymphomas (TFHLs) are characterized by TFH-like properties and accompanied by substantial immune-cell infiltration into tumor tissues. Nevertheless, the comprehensive understanding of tumor-cell heterogeneity and immune profiles of TFHL remains elusive. To address this, we conducted single-cell transcriptomic analysis on 9 lymph node (LN) and 16 peripheral blood (PB) samples from TFHL patients. Tumor cells were divided into 5 distinct subclusters, with significant heterogeneity observed in the expression levels of TFH markers. Copy number variation (CNV) and trajectory analyses indicated that the accumulation of CNVs, together with gene mutations, may drive the clonal evolution of tumor cells towards TFH-like and cell proliferation phenotypes. Additionally, we identified a novel tumor-cell-specific marker, PLS3. Notably, we found a significant increase in exhausted CD8+ T cells with oligoclonal expansion in TFHL LNs and PB, along with distinctive immune evasion characteristics exhibited by infiltrating regulatory T, myeloid, B, and natural killer cells. Finally, in-silico and spatial cell-cell interaction analyses revealed complex networking between tumor and immune cells, driving the formation of an immunosuppressive microenvironment. These findings highlight the remarkable tumor-cell heterogeneity and immunoevasion in TFHL beyond previous expectations, suggesting potential roles in treatment resistance.
Collapse
Affiliation(s)
- Sakurako Suma
- Department of Hematology, University of Tsukuba Hospital, Tsukuba, Japan
| | - Yasuhito Suehara
- Department of Hematology, University of Tsukuba Hospital, Tsukuba, Japan
| | - Manabu Fujisawa
- Department of Hematology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC, Canada
| | - Yoshiaki Abe
- Department of Hematology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Keiichiro Hattori
- Department of Hematology, University of Tsukuba Hospital, Tsukuba, Japan
- Department of Hematology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kenichi Makishima
- Department of Hematology, University of Tsukuba Hospital, Tsukuba, Japan
| | - Tatsuhiro Sakamoto
- Department of Hematology, University of Tsukuba Hospital, Tsukuba, Japan
- Department of Hematology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Aya Sawa
- Department of Breast-Thyroid-Endocrine Surgery, University of Tsukuba Hospital, Tsukuba, Japan
| | - Hiroko Bando
- Department of Breast-Thyroid-Endocrine Surgery, University of Tsukuba Hospital, Tsukuba, Japan
| | - Daisuke Kaji
- Department of Hematology, Toranomon Hospital, Tokyo, Japan
| | - Takeshi Sugio
- Department of Medicine, Division of Oncology, Stanford University, Stanford, CA, USA
| | - Koji Kato
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
| | - Kosei Matsue
- Division of Hematology/Oncology, Department of Internal Medicine, Kameda Medical Center, Kamogawa, Japan
| | - Joaquim Carreras
- Department of Pathology, Tokai University School of Medicine, Isehara, Japan
| | - Naoya Nakamura
- Department of Pathology, Tokai University School of Medicine, Isehara, Japan
| | - Ayako Suzuki
- Department of Computational Biology and Medical Sciences, the University of Tokyo, Kashiwa, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, the University of Tokyo, Kashiwa, Japan
| | - Ken Ito
- Oncology Business Unit, Eisai Co., Ltd., Tsukuba, Japan
| | - Hiroyuki Shiiba
- Oncology Department, Medical Head Quarters, Eisai Co., Ltd., Tokyo, Japan
| | - Shigeru Chiba
- Department of Hematology, University of Tsukuba Hospital, Tsukuba, Japan
- Department of Hematology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Mamiko Sakata-Yanagimoto
- Department of Hematology, University of Tsukuba Hospital, Tsukuba, Japan.
- Department of Hematology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan.
- Division of Advanced Hemato-Oncology, Transborder Medical Research Center, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
15
|
Zhang Q, Yin L, Lai Q, Zhao Y, Peng H. Advances in the pathogenesis and therapeutic strategies of angioimmunoblastic T-cell lymphoma. Clin Exp Med 2023; 23:4219-4235. [PMID: 37759042 DOI: 10.1007/s10238-023-01197-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Angioimmunoblastic T-cell lymphoma (AITL) is an aggressive subtype of peripheral T-cell lymphomas with its cell origin determined to be follicular helper T-cells. AITL is characterized by a prominent tumor microenvironment involving dysregulation of immune cells, signaling pathways, and extracellular matrix. Significant progress has been made in the molecular pathophysiology of AITL, including genetic mutations, immune metabolism, hematopoietic-derived microenvironment, and non-hematopoietic microenvironment cells. Early diagnosis, detection of severe complications, and timely effective treatment are crucial for managing AITL. Treatment typically involves various combination chemotherapies, but the prognosis is often poor, and relapsed and refractory AITL remains challenging, necessitating improved treatment strategies. Therefore, this article provides an overview of the pathogenesis and latest advances in the treatment of AITL, with a focus on potential therapeutic targets, novel treatment strategies, and emerging immunotherapeutic approaches.
Collapse
Affiliation(s)
- Qingyang Zhang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Le Yin
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Qinqiao Lai
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yan Zhao
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Changsha, 410011, Hunan, China.
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, 410011, Hunan, China.
| |
Collapse
|
16
|
Oishi N, Ahmed R, Feldman AL. Updates in the Classification of T-cell Lymphomas and Lymphoproliferative Disorders. Curr Hematol Malig Rep 2023; 18:252-263. [PMID: 37870698 PMCID: PMC10834031 DOI: 10.1007/s11899-023-00712-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 10/24/2023]
Abstract
PURPOSE OF REVIEW Mature T/NK-cell neoplasms comprise a heterogeneous group of diseases with diverse clinical, histopathologic, immunophenotypic, and molecular features. A clinically relevant, comprehensive, and reproducible classification system for T/NK-cell neoplasms is essential for optimal management, risk stratification, and advancing understanding of these diseases. Two classification systems for lymphoid neoplasms were recently introduced: the 5th edition of World Health Organization classification (WHO-HAEM5) and the 2022 International Consensus Classification (ICC). In this review, we summarize the basic framework and updates in the classification of mature T/NK-cell neoplasms. RECENT FINDINGS WHO-HAEM5 and ICC share basic concepts in classification of T/NK-cell neoplasms, emphasizing integration of clinical presentation, pathology, immunophenotype, and genetics. Major updates in both classifications include unifying nodal T-follicular helper-cell lymphomas into a single entity and establishing EBV-positive nodal T/NK-cell lymphoma as a distinct entity. However, some differences exist in taxonomy, terminology, and disease definitions. The recent classifications of mature T/NK-cell neoplasms are largely similar and provide new insights into taxonomy based on integrated clinicopathologic features.
Collapse
Affiliation(s)
- Naoki Oishi
- Department of Pathology, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Reham Ahmed
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Andrew L Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
17
|
Zhang Y, Cheng K, Choi J. TCR Pathway Mutations in Mature T Cell Lymphomas. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1450-1458. [PMID: 37931208 PMCID: PMC10715708 DOI: 10.4049/jimmunol.2200682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 06/06/2023] [Indexed: 11/08/2023]
Abstract
Mature T cell lymphomas are heterogeneous neoplasms that are aggressive and resistant to treatment. Many of these cancers retain immunological properties of their cell of origin. They express cytokines, cytotoxic enzymes, and cell surface ligands normally induced by TCR signaling in untransformed T cells. Until recently, their molecular mechanisms were unclear. Recently, high-dimensional studies have transformed our understanding of their cellular and genetic characteristics. Somatic mutations in the TCR signaling pathway drive lymphomagenesis by disrupting autoinhibitory domains, increasing affinity to ligands, and/or inducing TCR-independent signaling. Collectively, most of these mutations augment signaling pathways downstream of the TCR. Emerging data suggest that these mutations not only drive proliferation but also determine lymphoma immunophenotypes. For example, RHOA mutations are sufficient to induce disease-relevant CD4+ T follicular helper cell phenotypes. In this review, we describe how mutations in the TCR signaling pathway elucidate lymphoma pathophysiology but also provide insights into broader T cell biology.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kathleen Cheng
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jaehyuk Choi
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
18
|
Tigu AB, Bancos A. The Role of Epigenetic Modifier Mutations in Peripheral T-Cell Lymphomas. Curr Issues Mol Biol 2023; 45:8974-8988. [PMID: 37998740 PMCID: PMC10670124 DOI: 10.3390/cimb45110563] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Peripheral T-cell lymphomas (PTCLs) are a group of diseases with a low incidence, high degree of heterogeneity, and a dismal prognosis in most cases. Because of the low incidence of these diseases, there have been few therapeutic novelties developed over time. Nevertheless, this fact is changing presently as epigenetic modifiers have been shown to be recurrently mutated in some types of PTCLs, especially in the cases of PTCLs not otherwise specified (PTCL-NOS), T follicular helper (TFH), and angioimmunoblastic T-cell lymphoma (AITL). These have brought about more insight into PTCL biology, especially in the case of PTCLs arising from TFH lymphocytes. From a biological perspective, it has been observed that ten-eleven translocators (TET2) mutated T lymphocytes tend to polarize to TFH, while Tregs lose their inhibitory properties. IDH2 R172 was shown to have inhibitory effects on TET2, mimicking the effects of TET2 mutations, as well as having effects on histone methylation. DNA methyltransferase 3A (DNMT3A) loss-of-function, although it was shown to have opposite effects to TET2 from an inflammatory perspective, was also shown to increase the number of T lymphocyte progenitors. Aside from bringing about more knowledge of PTCL biology, these mutations were shown to increase the sensitivity of PTCLs to certain epigenetic therapies, like hypomethylating agents (HMAs) and histone deacetylase inhibitors (HDACis). Thus, to answer the question from the title of this review: We found the Achilles heel, but only for one of the Achilles.
Collapse
Affiliation(s)
- Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania;
- Academy of Romanian Scientists, Ilfov 3, 050044 Bucharest, Romania
| | - Anamaria Bancos
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania;
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
19
|
Tomacinschii V, Mosquera Orgueira A, Santos CA, Robu M, Buruiana S, Fraga Rodriguez MF. The implication of next-generation sequencing in the diagnosis and clinical management of non-Hodgkin lymphomas. Front Oncol 2023; 13:1275327. [PMID: 38023160 PMCID: PMC10663367 DOI: 10.3389/fonc.2023.1275327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Next generation sequencing (NGS) is a technology that broadens the horizon of knowledge of several somatic pathologies, especially in oncological and oncohematological pathology. In the case of NHL, the understanding of the mechanisms of tumorigenesis, tumor proliferation and the identification of genetic markers specific to different lymphoma subtypes led to more accurate classification and diagnosis. Similarly, the data obtained through NGS allowed the identification of recurrent somatic mutations that can serve as therapeutic targets that can be inhibited and thus reducing the rate of resistant cases. The article's purpose is to offer a comprehensive overview of the best ways of integrating of next-generation sequencing technologies for diagnosis, prognosis, classification, and selection of optimal therapy from the perspective of tailor-made medicine.
Collapse
Affiliation(s)
- Victor Tomacinschii
- Department of Hematology, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
- Department of Hematology, Public Medical Sanitary Institution (PMSI) Institute of Oncology, Chisinau, Moldova
| | - Adrian Mosquera Orgueira
- University Hospital of Santiago de Compostela, Servizo Galego de Saude (SERGAS), Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Carlos Aliste Santos
- University Hospital of Santiago de Compostela, Servizo Galego de Saude (SERGAS), Santiago de Compostela, Spain
| | - Maria Robu
- Department of Hematology, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Sanda Buruiana
- Department of Hematology, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Maximo Francisco Fraga Rodriguez
- University Hospital of Santiago de Compostela, Servizo Galego de Saude (SERGAS), Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Forensic Sciences, Pathology, Ginecology and Obstetrics and Pediatrics, Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
20
|
Carty SA, Murga-Zamalloa CA, Wilcox RA. SOHO State of the Art Updates and Next Questions | New Pathways and New Targets in PTCL: Staying on Target. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2023; 23:561-574. [PMID: 37142534 PMCID: PMC10565700 DOI: 10.1016/j.clml.2023.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/05/2023] [Accepted: 04/16/2023] [Indexed: 05/06/2023]
Abstract
While the peripheral T-cell lymphomas (PTCL) remain a therapeutic challenge, and increasingly account for a disproportionate number of lymphoma-related deaths, improved understanding of disease pathogenesis and classification, and the development of novel therapeutic agents over the past decade, all provide reasons for a more optimistic outlook in the next. Despite their genetic and molecular heterogeneity, many PTCL are dependent upon signaling input provided by antigen, costimulatory, and cytokine receptors. While gain-of-function alterations effecting these pathways are recurrently observed in many PTCL, more often than not, signaling remains ligand-and tumor microenvironment (TME)-dependent. Consequently, the TME and its constituents are increasingly recognized as "on target". Utilizing a "3 signal" model, we will review new-and old-therapeutic targets that are relevant for the more common nodal PTCL subtypes.
Collapse
Affiliation(s)
- Shannon A Carty
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | | | - Ryan A Wilcox
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI.
| |
Collapse
|
21
|
Drieux F, Lemonnier F, Gaulard P. How molecular advances may improve the diagnosis and management of PTCL patients. Front Oncol 2023; 13:1202964. [PMID: 37427095 PMCID: PMC10328093 DOI: 10.3389/fonc.2023.1202964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/22/2023] [Indexed: 07/11/2023] Open
Abstract
Peripheral T-cell lymphomas (PTCL) comprised more than 30 rare heterogeneous entities, representing 10 to 15% of adult non-Hodgkin lymphomas. Although their diagnosis is still mainly based on clinical, pathological, and phenotypic features, molecular studies have allowed for a better understanding of the oncogenic mechanisms involved and the refinement of many PTCL entities in the recently updated classifications. The prognosis remains poor for most entities (5-year overall survival < 30%), with current conventional therapies based on anthracyclin-based polychemotherapy regimen, despite many years of clinical trials. The recent use of new targeted therapies appears to be promising for relapsed/refractory patients, such as demethylating agents in T-follicular helper (TFH) PTCL. However further studies are needed to evaluate the proper combination of these drugs in the setting of front-line therapy. In this review, we will summarize the oncogenic events for the main PTCL entities and report the molecular targets that have led to the development of new therapies. We will also discuss the development of innovative high throughput technologies that aid the routine workflow for the histopathological diagnosis and management of PTCL patients.
Collapse
Affiliation(s)
- Fanny Drieux
- Service d’Anatomie et de Cytologie Pathologiques, INSERM U1245, Centre Henri Becquerel, Rouen, France
| | - François Lemonnier
- Unité hémopathies Lymphoïdes, Hôpitaux Universitaires Henri Mondor, Assistance Publique des Hôpitaux de Paris, Créteil, France
- Institut Mondor de Recherche Biomédicale, INSERM U955, Université Paris Est Créteil, Créteil, France
| | - Philippe Gaulard
- Institut Mondor de Recherche Biomédicale, INSERM U955, Université Paris Est Créteil, Créteil, France
- Département de Pathologie, Hôpitaux Universitaires Henri Mondor, Assistance Publique des Hôpitaux de Paris, Créteil, France
| |
Collapse
|
22
|
Cervantes-Villagrana RD, García-Jiménez I, Vázquez-Prado J. Guanine nucleotide exchange factors for Rho GTPases (RhoGEFs) as oncogenic effectors and strategic therapeutic targets in metastatic cancer. Cell Signal 2023; 109:110749. [PMID: 37290677 DOI: 10.1016/j.cellsig.2023.110749] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/11/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Metastatic cancer cells dynamically adjust their shape to adhere, invade, migrate, and expand to generate secondary tumors. Inherent to these processes is the constant assembly and disassembly of cytoskeletal supramolecular structures. The subcellular places where cytoskeletal polymers are built and reorganized are defined by the activation of Rho GTPases. These molecular switches directly respond to signaling cascades integrated by Rho guanine nucleotide exchange factors (RhoGEFs), which are sophisticated multidomain proteins that control morphological behavior of cancer and stromal cells in response to cell-cell interactions, tumor-secreted factors and actions of oncogenic proteins within the tumor microenvironment. Stromal cells, including fibroblasts, immune and endothelial cells, and even projections of neuronal cells, adjust their shapes and move into growing tumoral masses, building tumor-induced structures that eventually serve as metastatic routes. Here we review the role of RhoGEFs in metastatic cancer. They are highly diverse proteins with common catalytic modules that select among a variety of homologous Rho GTPases enabling them to load GTP, acquiring an active conformation that stimulates effectors controlling actin cytoskeleton remodeling. Therefore, due to their strategic position in oncogenic signaling cascades, and their structural diversity flanking common catalytic modules, RhoGEFs possess unique characteristics that make them conceptual targets of antimetastatic precision therapies. Preclinical proof of concept, demonstrating the antimetastatic effect of inhibiting either expression or activity of βPix (ARHGEF7), P-Rex1, Vav1, ARHGEF17, and Dock1, among others, is emerging.
Collapse
|
23
|
Zain J, Kallam A. Challenges in nodal peripheral T-cell lymphomas: from biological advances to clinical applicability. Front Oncol 2023; 13:1150715. [PMID: 37188189 PMCID: PMC10175673 DOI: 10.3389/fonc.2023.1150715] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/06/2023] [Indexed: 05/17/2023] Open
Abstract
T cell lymphomas are a heterogenous group with varying biological and clinical features that tend to have poor outcomes with a few exceptions. They account for 10-15% of all non-Hodgkin lymphomas (NHL), and 20% of aggressive NHL. There has been little change in the overall prognosis of T cell lymphomas over the last 2 decades. Most subtypes carry an inferior prognosis when compared to the B cell lymphomas, with a 5-year OS of 30%. Gene expression profiling and other molecular techniques has enabled a deeper understanding of these differences in the various subtypes as reflected in the latest 5th WHO and ICC classification of T cell lymphomas. It is becoming increasingly clear that therapeutic approaches that target specific cellular pathways are needed to improve the clinical outcomes of T cell lymphomas. This review will focus on nodal T cell lymphomas and describe novel treatments and their applicability to the various subtypes.
Collapse
Affiliation(s)
- Jasmine Zain
- Department of Hematology/Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA, United States
| | | |
Collapse
|
24
|
Du J, Jin S, Zhang M, Fu X, Yang J, Zhang L, Chen Z, Huang Z, Li W, Hou J, Wang T. Precise diagnosis and targeted therapy of nodal T-follicular helper cell lymphoma (T-FHCL). Front Oncol 2023; 13:1163190. [PMID: 37188182 PMCID: PMC10175683 DOI: 10.3389/fonc.2023.1163190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Nodal T-follicular helper cell lymphoma (T-FHCL) derived from T-follicular helper (Tfh) cell falls into a heterogeneous category of peripheral T-cell lymphoma (PTCL). Due to the limited number of therapeutic regimens and limited first-line efficacy, T-FHCL has a poor prognosis, and there is an urgent need for effective targeted therapies. With advancements in sequencing technologies, especially single-cell sequencing and next-generation sequencing, more specific genetic aberrations characteristic of T-FHCL can be discovered, allowing for precise molecular diagnosis and specific research on novel agents. Many biomarker-targeting agents, used either alone or in combination, have been tested, and they have generally enhanced the therapeutic outcomes of T-FHCL. Histone deacetylase inhibitors achieve significant clinical benefits in the treatment of T-FHCL, especially in combination therapy. Chimeric antigen receptor T-cell (CAR-T-cell) immunotherapies, hematopoietic stem cell transplantation, and other potential agents merit further study.
Collapse
Affiliation(s)
- Jun Du
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shikai Jin
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minghui Zhang
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuehang Fu
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jingwen Yang
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liwen Zhang
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenwei Chen
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zoufang Huang
- Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Weisong Li
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jian Hou
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Wang
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
25
|
Shalom B, Salaymeh Y, Risling M, Katzav S. Unraveling the Oncogenic Potential of VAV1 in Human Cancer: Lessons from Mouse Models. Cells 2023; 12:cells12091276. [PMID: 37174676 PMCID: PMC10177506 DOI: 10.3390/cells12091276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
VAV1 is a hematopoietic signal transducer that possesses a GDP/GTP nucleotide exchange factor (GEF) that is tightly regulated by tyrosine phosphorylation, along with adapter protein domains, such as SH2 and SH3. Research on VAV1 has advanced over the years since its discovery as an in vitro activated oncogene in an NIH3T3 screen for oncogenes. Although the oncogenic form of VAV1 first identified in the screen has not been detected in human clinical tumors, its wild-type and mutant forms have been implicated in mammalian malignancies of various tissue origins, as well as those of the hematopoietic system. This review article addresses the activity of human VAV1 as an overexpressed or mutated gene and also describes the differences in the distribution of VAV1 mutations in the hematopoietic system and in other tissues. The knowledge accumulated thus far from GEMMs expressing VAV1 is described, with the conclusion that GEMMs of both wild-type VAV1 and mutant VAV1 do not form tumors, yet these will be generated when additional molecular insults, such as loss of p53 or KRAS mutation, occur.
Collapse
Affiliation(s)
- Batel Shalom
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | - Yaser Salaymeh
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | - Matan Risling
- Department of Military Medicine and "Tzameret", Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
- Medical Corps, Israel Defense Forces, Tel-Hashomer 02149, Israel
| | - Shulamit Katzav
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| |
Collapse
|
26
|
Lage LADPC, Culler HF, Reichert CO, da Siqueira SAC, Pereira J. Angioimmunoblastic T-cell lymphoma and correlated neoplasms with T-cell follicular helper phenotype: from molecular mechanisms to therapeutic advances. Front Oncol 2023; 13:1177590. [PMID: 37182145 PMCID: PMC10169672 DOI: 10.3389/fonc.2023.1177590] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
Angioimmunoblastic T-cell lymphoma (AITL) is the second most frequent subtype of mature T-cell lymphoma (MTCL) in the Western world. It derives from the monoclonal proliferation of T-follicular helper (TFH) cells and is characterized by an exacerbated inflammatory response and immune dysregulation, with predisposition to autoimmunity phenomena and recurrent infections. Its genesis is based on a multistep integrative model, where age-related and initiator mutations involve epigenetic regulatory genes, such as TET-2 and DNMT3A. Subsequently, driver-mutations, such as RhoA G17V and IDH-2 R172K/S promote the expansion of clonal TFH-cells ("second-hit"), that finally begin to secrete cytokines and chemokines, such as IL-6, IL-21, CXCL-13 and VEGF, modulating a network of complex relationships between TFH-cells and a defective tumor microenvironment (TME), characterized by expansion of follicular dendritic cells (FDC), vessels and EBV-positive immunoblasts. This unique pathogenesis leads to peculiar clinical manifestations, generating the so-called "immunodysplastic syndrome", typical of AITL. Its differential diagnosis is broad, involving viral infections, collagenosis and adverse drug reactions, which led many authors to use the term "many-faced lymphoma" when referring to AITL. Although great advances in its biological knowledge have been obtained in the last two decades, its treatment is still an unmet medical need, with highly reserved clinical outcomes. Outside the setting of clinical trials, AITL patients are still treated with multidrug therapy based on anthracyclines (CHOP-like), followed by up-front consolidation with autologous stem cell transplantation (ASCT). In this setting, the estimated 5-year overall survival (OS) is around 30-40%. New drugs, such as hypomethylating agents (HMAs) and histone deacetylase inhibitors (HDAi), have been used for relapsed/refractory (R/R) disease with promising results. Such agents have their use based on a biological rationale, have significant potential to improve the outcomes of patients with AITL and may represent a paradigm shift in the therapeutic approach to this lymphoma in the near future.
Collapse
Affiliation(s)
- Luís Alberto de Pádua Covas Lage
- Department of Hematology, Hemotherapy & Cell Therapy, University of São Paulo (USP), São Paulo, SP, Brazil
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), University of São Paulo (USP), São Paulo, SP, Brazil
| | - Hebert Fabricio Culler
- Department of Hematology, Hemotherapy & Cell Therapy, University of São Paulo (USP), São Paulo, SP, Brazil
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), University of São Paulo (USP), São Paulo, SP, Brazil
| | - Cadiele Oliana Reichert
- Department of Hematology, Hemotherapy & Cell Therapy, University of São Paulo (USP), São Paulo, SP, Brazil
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), University of São Paulo (USP), São Paulo, SP, Brazil
| | | | - Juliana Pereira
- Department of Hematology, Hemotherapy & Cell Therapy, University of São Paulo (USP), São Paulo, SP, Brazil
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), University of São Paulo (USP), São Paulo, SP, Brazil
- Department of Hematology and Oncology, Hospital Alemão Oswaldo Cruz (HAOC), São Paulo, SP, Brazil
| |
Collapse
|
27
|
Oishi N, Feldman AL. Current Concepts in Nodal Peripheral T-Cell Lymphomas. Surg Pathol Clin 2023; 16:267-285. [PMID: 37149360 DOI: 10.1016/j.path.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
This review summarizes the current understanding of mature T-cell neoplasms predominantly involving lymph nodes, including ALK-positive and ALK-negative anaplastic large cell lymphomas, nodal T-follicular helper cell lymphoma, Epstein-Barr virus-positive nodal T/NK-cell lymphoma, and peripheral T-cell lymphoma (PTCL), not otherwise specified. These PTCLs are clinically, pathologically, and genetically heterogeneous, and the diagnosis is made by a combination of clinical information, morphology, immunophenotype, viral positivity, and genetic abnormalities. This review summarizes the pathologic features of common nodal PTCLs, highlighting updates in the fifth edition of the World Health Organization classification and the 2022 International Consensus Classification.
Collapse
|
28
|
Morrish E, Wartewig T, Kratzert A, Rosenbaum M, Steiger K, Ruland J. The fusion oncogene VAV1-MYO1F triggers aberrant T-cell receptor signaling in vivo and drives peripheral T-cell lymphoma in mice. Eur J Immunol 2023; 53:e2250147. [PMID: 36541400 DOI: 10.1002/eji.202250147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
VAV1-MYO1F is a recently identified gain-of-function fusion protein of the proto-oncogene Vav guanine nucleotide exchange factor 1 (VAV1) that is recurrently detected in T-cell non-Hodgkin's lymphoma (T-NHL) patients. However, the pathophysiological functions of VAV1-MYO1F in lymphomagenesis are insufficiently defined. Therefore, we generated transgenic mouse models to conditionally express VAV1-MYO1F in T-cells in vivo. We demonstrate that VAV1-MYO1F triggers cell autonomous activation of T-cell signaling with an activation of the ERK, JNK, and AKT pathways. VAV1-MYO1F expression induces a T-cell activation phenotype with high surface expression of CD25, ICOS, CD44, PD-1, and decreased CD62L as well as aberrant T-cell differentiation, proliferation, and neoplastic transformation. Consequently, the VAV1-MYO1F expressing T-cells induce a malignant T lymphoproliferative disease with 100% penetrance in vivo that mimics key aspects of human peripheral T-cell lymphoma. These results demonstrate that the human T-cell oncogene VAV1-MYO1F is sufficient to trigger oncogenic T-cell signaling and neoplastic transformation, and moreover, it provides a new clinically relevant mouse model to explore the pathogenesis of and treatment concepts for human T-cell lymphoma.
Collapse
Affiliation(s)
- Emma Morrish
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
| | - Tim Wartewig
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
- Center of Molecular and Cellular Oncology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Andreas Kratzert
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
| | - Marc Rosenbaum
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
| | - Katja Steiger
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
- Comparative Experimental Pathology, Institute of Pathology, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Jürgen Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| |
Collapse
|
29
|
Marques-Piubelli ML, Amador C, Vega F. Pathologic and molecular insights in nodal T-follicular helper cell lymphomas. Front Oncol 2023; 13:1105651. [PMID: 36793612 PMCID: PMC9923156 DOI: 10.3389/fonc.2023.1105651] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/13/2023] [Indexed: 01/31/2023] Open
Abstract
T-follicular helper (TFH) cells are one of the T-cell subsets with a critical role in the regulation of germinal center (GC) reactions. TFH cells contribute to the positive selection of GC B-cells and promote plasma cell differentiation and antibody production. TFH cells express a unique phenotype characterized by PD-1hi, ICOShi, CD40Lhi, CD95hi, CTLAhi, CCR7lo, and CXCR5hi . Three main subtypes of nodal TFH lymphomas have been described: 1) angioimmunoblastic-type, 2) follicular-type, and 3) not otherwise specified (NOS). The diagnosis of these neoplasms can be challenging, and it is rendered based on a combination of clinical, laboratory, histopathologic, immunophenotypic, and molecular findings. The markers most frequently used to identify a TFH immunophenotype in paraffin-embedded tissue sections include PD-1, CXCL13, CXCR5, ICOS, BCL6, and CD10. These neoplasms feature a characteristic and similar, but not identical, mutational landscape with mutations in epigenetic modifiers (TET2, DNMT3A, IDH2), RHOA, and T-cell receptor signaling genes. Here, we briefly review the biology of TFH cells and present a summary of the current pathologic, molecular, and genetic features of nodal lymphomas. We want to highlight the importance of performing a consistent panel of TFH immunostains and mutational studies in TCLs to identify TFH lymphomas.
Collapse
Affiliation(s)
- Mario L Marques-Piubelli
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Catalina Amador
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, University of Miami, Miami, FL, United States
| | - Francisco Vega
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
30
|
Tsuboi Y, Iimura Y, Matsumura F, Nanmoku T, Suma S, Matsuoka R, Nakagawa T, Nakagawa D, Suehara Y, Hattori K, Sato K, Maruyama Y, Sakamoto T, Yokoyama Y, Kato T, Kurita N, Nishikii H, Obara N, Ieda M, Chiba S, Sakata-Yanagimoto M. Cardiac Tamponade as a Recurrence of Angioimmunoblastic T-Cell Lymphoma with the Detection of a p.Gly17Val RHOA Mutation in the Pericardial Effusion. Intern Med 2023; 62:595-600. [PMID: 35732446 PMCID: PMC10017241 DOI: 10.2169/internalmedicine.9248-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Angioimmunoblastic T-cell lymphoma (AITL) is an intractable type of T-cell lymphoma. We and others have identified that the p.Gly17Val RHOA mutation is specifically identified in AITL. We herein report a patient whose condition deteriorated, resulting from massive pericardial effusion one month after undergoing autologous transplantation for AITL. He was diagnosed with cardiac tamponade caused by AITL recurrence in the presence of the p.Gly17Val RHOA mutation as well as T-lineage cells with an aberrant immune-phenotype in the pericardial effusion. This case suggests that a precision medicine approach by detecting the presence of a p.Gly17Val RHOA mutation is useful for the management of AITL.
Collapse
Affiliation(s)
- Yuri Tsuboi
- Department of Hematology, University of Tsukuba Hospital, Japan
| | - Yumoe Iimura
- Department of Hematology, University of Tsukuba Hospital, Japan
| | | | - Toru Nanmoku
- Department of Clinical Laboratory, University of Tsukuba Hospital, Japan
| | - Sakurako Suma
- Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Japan
| | - Ryota Matsuoka
- Department of Pathology, Faculty of Medicine, University of Tsukuba, Japan
| | - Tomoki Nakagawa
- Department of Pathology, Faculty of Medicine, University of Tsukuba, Japan
| | - Daishi Nakagawa
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Japan
| | | | | | - Kimi Sato
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Japan
| | - Yumiko Maruyama
- Department of Hematology, University of Tsukuba Hospital, Japan
| | - Tatsuhiro Sakamoto
- Department of Hematology, University of Tsukuba Hospital, Japan
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Japan
| | - Yasuhisa Yokoyama
- Department of Hematology, University of Tsukuba Hospital, Japan
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Japan
| | - Takayasu Kato
- Department of Hematology, University of Tsukuba Hospital, Japan
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Japan
| | - Naoki Kurita
- Department of Hematology, University of Tsukuba Hospital, Japan
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Japan
| | - Hidekazu Nishikii
- Department of Hematology, University of Tsukuba Hospital, Japan
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Japan
| | - Naoshi Obara
- Department of Hematology, University of Tsukuba Hospital, Japan
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Japan
| | - Masaki Ieda
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Japan
| | - Shigeru Chiba
- Department of Hematology, University of Tsukuba Hospital, Japan
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Japan
| | - Mamiko Sakata-Yanagimoto
- Department of Hematology, University of Tsukuba Hospital, Japan
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Japan
- Division of Advanced Hemato-Oncology, Transborder Medical Research Center, University of Tsukuba, Japan
| |
Collapse
|
31
|
Santos JC, Profitós-Pelejà N, Sánchez-Vinces S, Roué G. RHOA Therapeutic Targeting in Hematological Cancers. Cells 2023; 12:cells12030433. [PMID: 36766776 PMCID: PMC9914237 DOI: 10.3390/cells12030433] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Primarily identified as an important regulator of cytoskeletal dynamics, the small GTPase Ras homolog gene family member A (RHOA) has been implicated in the transduction of signals regulating a broad range of cellular functions such as cell survival, migration, adhesion and proliferation. Deregulated activity of RHOA has been linked to the growth, progression and metastasis of various cancer types. Recent cancer genome-wide sequencing studies have unveiled both RHOA gain and loss-of-function mutations in primary leukemia/lymphoma, suggesting that this GTPase may exert tumor-promoting or tumor-suppressive functions depending on the cellular context. Based on these observations, RHOA signaling represents an attractive therapeutic target for the development of selective anticancer strategies. In this review, we will summarize the molecular mechanisms underlying RHOA GTPase functions in immune regulation and in the development of hematological neoplasms and will discuss the current strategies aimed at modulating RHOA functions in these diseases.
Collapse
Affiliation(s)
- Juliana Carvalho Santos
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Núria Profitós-Pelejà
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Salvador Sánchez-Vinces
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University Medical School, Braganca Paulista 01246-100, São Paulo, Brazil
| | - Gaël Roué
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
- Correspondence: ; Tel.: +34-935572835
| |
Collapse
|
32
|
Yap DRY, Lim JQ, Huang D, Ong CK, Chan JY. Emerging predictive biomarkers for novel therapeutics in peripheral T-cell and natural killer/T-cell lymphoma. Front Immunol 2023; 14:1068662. [PMID: 36776886 PMCID: PMC9909478 DOI: 10.3389/fimmu.2023.1068662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Peripheral T-cell lymphoma (PTCL) and natural killer/T-cell lymphoma (NKTCL) are rare subtypes of non-Hodgkin's lymphoma that are typically associated with poor treatment outcomes. Contemporary first-line treatment strategies generally involve the use of combination chemoimmunotherapy, radiation and/or stem cell transplant. Salvage options incorporate a number of novel agents including epigenetic therapies (e.g. HDAC inhibitors, DNMT inhibitors) as well as immune checkpoint inhibitors. However, validated biomarkers to select patients for individualized precision therapy are presently lacking, resulting in high treatment failure rates, unnecessary exposure to drug toxicities, and missed treatment opportunities. Recent advances in research on the tumor and microenvironmental factors of PTCL and NKTCL, including alterations in specific molecular features and immune signatures, have improved our understanding of these diseases, though several issues continue to impede progress in clinical translation. In this Review, we summarize the progress and development of the current predictive biomarker landscape, highlight potential knowledge gaps, and discuss the implications on novel therapeutics development in PTCL and NKTCL.
Collapse
Affiliation(s)
- Daniel Ren Yi Yap
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Jing Quan Lim
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Dachuan Huang
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Choon Kiat Ong
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Jason Yongsheng Chan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| |
Collapse
|
33
|
Lewis NE, Sardana R, Dogan A. Mature T-cell and NK-cell lymphomas: updates on molecular genetic features. Int J Hematol 2023; 117:475-491. [PMID: 36637656 DOI: 10.1007/s12185-023-03537-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/15/2022] [Accepted: 01/06/2023] [Indexed: 01/14/2023]
Abstract
Mature T-cell and NK-cell lymphomas are a heterogeneous group of rare and typically aggressive neoplasms. Diagnosis and subclassification have historically relied primarily on the integration of clinical, histologic, and immunophenotypic features, which often overlap. The widespread application of a variety of genomic techniques in recent years has provided extensive insight into the pathobiology of these diseases, allowing for more precise diagnostic classification, improved prognostication, and development of novel therapies. In this review, we summarize the genomic features of the most common types of mature T-cell and NK-cell lymphomas with a particular focus on the contribution of genomics to biologic insight, classification, risk stratification, and select therapies in the context of the recently published International Consensus and updated World Health Organization classification systems.
Collapse
Affiliation(s)
- Natasha E Lewis
- Hematopathology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Rohan Sardana
- Hematopathology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Ahmet Dogan
- Hematopathology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| |
Collapse
|
34
|
Nakamura S, Kitazawa M, Miyagawa Y, Koyama M, Miyazaki S, Hondo N, Muranaka F, Tokumaru S, Yamamoto Y, Ehara T, Matsumura T, Takeoka M, Soejima Y. RhoA G17E/Vav1 Signaling Induces Cancer Invasion via Matrix Metalloproteinase-9 in Gastric Cancer. Technol Cancer Res Treat 2023; 22:15330338221146024. [PMID: 36617975 PMCID: PMC9834417 DOI: 10.1177/15330338221146024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND RAS homolog family member A (RhoA), a member of the Rho family of small GTPases, and Vav1, a guanine nucleotide exchange factor for Rho family GTPases, have been reported to activate pathways related to the actin cytoskeleton and regulation of cell shape, attachment, and motility. The interaction between these molecules in lymphoma is involved in malignant signaling, but its function in epithelial malignancy is unknown. Here, we investigated the malignant signal of mutant RhoA in gastric cancer and demonstrated the potential of RhoA G17E/Vav1 as a therapeutic target for diffuse gastric cancer. METHODS The RhoA mutants R5W, G17E, and Y42C were retrovirally transduced into the gastric cancer cell line MKN74. The stably transduced cells were used for morphology, proliferation, and migration/invasion assays in vitro. MKN74 cells stably transduced with ectopic wild-type RhoA and mutant RhoA (G17E) were used in a peritoneal xenograft assay. RESULTS The RhoA mutations G17E and Y42C induced morphological changes in MKN74. G17E induced Vav1 expression at the mRNA and protein levels and promoted the migration and invasion of MKN74. An RNA interference assay of Vav1 revealed that RhoA G17E enhanced cancer cell invasion via Vav1. Furthermore, immunoprecipitation revealed that Vav1 and RhoA G17E specifically bind and function together through matrix metalloproteinase -9. In a peritoneal xenograft model of nude mice, RhoA G17E promoted peritoneal dissemination, whereas Vav1 knockdown suppressed it. CONCLUSION Overall, our findings indicate that RhoA G17E is associated with Vav1 and promoted cancer invasion via matrix metalloproteinase -9 in gastric cancer cells. Thus, RhoA G17E/Vav1 signaling in diffuse gastric cancer may be a useful therapeutic target.
Collapse
Affiliation(s)
- Satoshi Nakamura
- Department of Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Masato Kitazawa
- Department of Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan,Masato Kitazawa, MD, PhD, Department of Surgery, School of Medicine, Shinshu University, Asahi 3-1-1 Matsumoto, Nagano 390-8621, Japan.
| | - Yusuke Miyagawa
- Department of Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Makoto Koyama
- Department of Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Satoru Miyazaki
- Department of Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Nao Hondo
- Department of Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Futoshi Muranaka
- Department of Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Shigeo Tokumaru
- Department of Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Yuta Yamamoto
- Department of Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Takehito Ehara
- Department of Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Tomio Matsumura
- Department of Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Michiko Takeoka
- Department of Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Yuji Soejima
- Department of Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| |
Collapse
|
35
|
A current overview of RhoA, RhoB, and RhoC functions in vascular biology and pathology. Biochem Pharmacol 2022; 206:115321. [DOI: 10.1016/j.bcp.2022.115321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/24/2022]
|
36
|
Hu L, Zhang X, Li H, Lin S, Zang S. Targeting TET2 as a Therapeutic Approach for Angioimmunoblastic T Cell Lymphoma. Cancers (Basel) 2022; 14:cancers14225699. [PMID: 36428791 PMCID: PMC9688210 DOI: 10.3390/cancers14225699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/22/2022] Open
Abstract
Angioimmunoblastic T-cell lymphoma (AITL), a type of malignant lymphoma with unique genomic aberrations, significant clinicopathological features, and poor prognosis, is characterized by immune system dysregulation. Recent sequencing studies have identified recurrent mutations and interactions in tet methylcytosine dioxygenase 2 (TET2), ras homology family member A (RHOA), DNA methyltransferase 3 alpha (DNMT3A), and mitochondrial isocitrate dehydrogenase II (IDH2). Notably, since B-cell lymphomas are frequently observed along with AITL, this review first summarizes its controversial mechanisms based on traditional and recent views. Epigenetic regulation represented by TET2 plays an increasingly important role in understanding the multi-step and multi-lineage tumorigenesis of AITL, providing new research directions and treatment strategies for patients with AITL. Here, we review the latest advances in our understanding of AITL and highlight relevant issues that have yet to be addressed in clinical practice.
Collapse
Affiliation(s)
- Lina Hu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xuanye Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huifeng Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Suxia Lin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shengbing Zang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Correspondence: ; Tel.: +86-13559131526
| |
Collapse
|
37
|
Fujisawa M, Nguyen TB, Abe Y, Suehara Y, Fukumoto K, Suma S, Makishima K, Kaneko C, Nguyen YT, Usuki K, Narita K, Matsue K, Nakamura N, Ishikawa S, Miura F, Ito T, Suzuki A, Suzuki Y, Mizuno S, Takahashi S, Chiba S, Sakata-Yanagimoto M. Clonal germinal center B cells function as a niche for T-cell lymphoma. Blood 2022; 140:1937-1950. [PMID: 35921527 PMCID: PMC10653021 DOI: 10.1182/blood.2022015451] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 07/13/2022] [Indexed: 11/20/2022] Open
Abstract
Angioimmunoblastic T-cell lymphoma (AITL) is proposed to be initiated by age-related clonal hematopoiesis (ACH) with TET2 mutations, whereas the G17V RHOA mutation in immature cells with TET2 mutations promotes the development of T follicular helper (TFH)-like tumor cells. Here, we investigated the mechanism by which TET2-mutant immune cells enable AITL development using mouse models and human samples. Among the 2 mouse models, mice lacking Tet2 in all the blood cells (Mx-Cre × Tet2flox/flox × G17V RHOA transgenic mice) spontaneously developed AITL for approximately up to a year, while mice lacking Tet2 only in the T cells (Cd4-Cre × Tet2flox/flox × G17V RHOA transgenic mice) did not. Therefore, Tet2-deficient immune cells function as a niche for AITL development. Single-cell RNA-sequencing (scRNA-seq) of >50 000 cells from mouse and human AITL samples revealed significant expansion of aberrant B cells, exhibiting properties of activating light zone (LZ)-like and proliferative dark zone (DZ)-like germinal center B (GCB) cells. The GCB cells in AITL clonally evolved with recurrent mutations in genes related to core histones. In silico network analysis using scRNA-seq data identified Cd40-Cd40lg as a possible mediator of GCB and tumor cell cluster interactions. Treatment of AITL model mice with anti-Cd40lg inhibitory antibody prolonged survival. The genes expressed in aberrantly expanded GCB cells in murine tumors were also broadly expressed in the B-lineage cells of TET2-mutant human AITL. Therefore, ACH-derived GCB cells could undergo independent clonal evolution and support the tumorigenesis in AITL via the CD40-CD40LG axis.
Collapse
Affiliation(s)
- Manabu Fujisawa
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tran B. Nguyen
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yoshiaki Abe
- Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yasuhito Suehara
- Department of Hematology, University of Tsukuba Hospital, University of Tsukuba, Tsukuba, Japan
| | - Kota Fukumoto
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Hematology, University of Tsukuba Hospital, University of Tsukuba, Tsukuba, Japan
| | - Sakurako Suma
- Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kenichi Makishima
- Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Chihiro Kaneko
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yen T.M. Nguyen
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kensuke Usuki
- Department of Hematology, NTT Medical Center Tokyo, Tokyo, Japan
| | - Kentaro Narita
- Division of Hematology/Oncology, Department of Internal Medicine, Kameda Medical Center, Kamogawa, Japan
| | - Kosei Matsue
- Division of Hematology/Oncology, Department of Internal Medicine, Kameda Medical Center, Kamogawa, Japan
| | - Naoya Nakamura
- Department of Pathology, Tokai University School of Medicine, Isehara, Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Ayako Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Japan
| | - Shigeru Chiba
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Hematology, University of Tsukuba Hospital, University of Tsukuba, Tsukuba, Japan
| | - Mamiko Sakata-Yanagimoto
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Hematology, University of Tsukuba Hospital, University of Tsukuba, Tsukuba, Japan
- Division of Advanced Hemato-Oncology, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
38
|
Zhang F, Li W, Cui Q, Chen Y, Liu Y. Angioimmunoblastic T-cell lymphoma with extensive follicular dendritic cell and fibroblastic reticular cell network proliferation mimicking follicular dendritic cell sarcoma: A case report with pathologic, immunophenotypic, and molecular findings. Front Oncol 2022; 12:983585. [DOI: 10.3389/fonc.2022.983585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Angioimmunoblastic T-cell lymphoma (AITL) is a common type of nodal peripheral T-cell lymphoma, which always presents with extensive follicular dendritic cell (FDC) meshwork. Here, we report a case of AITL combined with extensive spindle cell meshwork. Spindle cells occupied were positive for the FDC markers CD21, CD23, and CD35. Furthermore, some cells were positive for desmin and smooth muscle actin (SMA), suggesting the differentiation of fibroblastic reticular cell (FRC). Interestingly, the proliferation of spindle cells was so extensive that was easily misdiagnosed as FDC sarcoma (FDCS). Next-generation sequencing showed that the common mutations reported in AITL, including RHOA, TET2, and IDH2, were also detected in this case, while the genes that are recurrently mutated in FDCS were not detected. Regrettably, the patient died 19 months later. Overall, we highlight the unusual morphologic features in an AITL patient with extensive FDC and FRC network that may be misdiagnosed as FDCS, and careful morphological observation and immunochemical and molecular examinations are crucial for an accurate diagnosis.
Collapse
|
39
|
Role of TET dioxygenases in the regulation of both normal and pathological hematopoiesis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:294. [PMID: 36203205 PMCID: PMC9540719 DOI: 10.1186/s13046-022-02496-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/19/2022] [Indexed: 11/06/2022]
Abstract
The family of ten-eleven translocation dioxygenases (TETs) consists of TET1, TET2, and TET3. Although all TETs are expressed in hematopoietic tissues, only TET2 is commonly found to be mutated in age-related clonal hematopoiesis and hematopoietic malignancies. TET2 mutation causes abnormal epigenetic landscape changes and results in multiple stages of lineage commitment/differentiation defects as well as genetic instability in hematopoietic stem/progenitor cells (HSPCs). TET2 mutations are founder mutations (first hits) in approximately 40–50% of cases of TET2-mutant (TET2MT) hematopoietic malignancies and are later hits in the remaining cases. In both situations, TET2MT collaborates with co-occurring mutations to promote malignant transformation. In TET2MT tumor cells, TET1 and TET3 partially compensate for TET2 activity and contribute to the pathogenesis of TET2MT hematopoietic malignancies. Here we summarize the most recent research on TETs in regulating of both normal and pathogenic hematopoiesis. We review the concomitant mutations and aberrant signals in TET2MT malignancies. We also discuss the molecular mechanisms by which concomitant mutations and aberrant signals determine lineage commitment in HSPCs and the identity of hematopoietic malignancies. Finally, we discuss potential strategies to treat TET2MT hematopoietic malignancies, including reverting the methylation state of TET2 target genes and targeting the concomitant mutations and aberrant signals.
Collapse
|
40
|
Pathological and Molecular Features of Nodal Peripheral T-Cell Lymphomas. Diagnostics (Basel) 2022; 12:diagnostics12082001. [PMID: 36010351 PMCID: PMC9407466 DOI: 10.3390/diagnostics12082001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Peripheral T-cell lymphomas (PTCLs) are uncommon neoplasms derived from mature T cells or NK cells. PTCLs comprise numerous disease entities, with over 30 distinct entities listed in the latest WHO classification. They predominantly affect adults and elderly people and usually exhibit an aggressive clinical course with poor prognosis. According to their presentation, PTCLs can be divided into nodal, extranodal or cutaneous, and leukemic types. The most frequent primary sites of PTCLs are lymph nodes, with over half of cases showing nodal presentation. Nodal PTCLs include ALK-positive and ALK-negative anaplastic large cell lymphoma; nodal T-cell lymphoma with T follicular helper cell origin; and PTCL, not otherwise specified. Adult T-cell leukemia/lymphoma also frequently affects lymph nodes. Recent pathological and molecular findings in nodal PTCLs have profoundly advanced the identification of tumor signatures and the refinement of the classification. Therefore, the therapies and pathological diagnosis of nodal PTCLs are continually evolving. This paper aims to provide a summary and update of the pathological and molecular features of nodal PTCLs, which will be helpful for diagnostic practice.
Collapse
|
41
|
Mutations Affecting Genes in the Proximal T-Cell Receptor Signaling Pathway in Peripheral T-Cell Lymphoma. Cancers (Basel) 2022; 14:cancers14153716. [PMID: 35954378 PMCID: PMC9367541 DOI: 10.3390/cancers14153716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary The advent of next-generation sequencing (NGS) has allowed rapid advances in genomic studies on the pathogenesis and biology of peripheral T-cell lymphoma (PTCL). Recurrent mutations and fusions in genes related to the proximal TCR signaling pathway have been identified and show an important pathogenic role in PTCL. In this review, we summarize the genomic alterations in TCR signaling identified in different subgroups of PTCL patients and the functional impact of these alterations on TCR signaling and downstream pathways. We also discuss novel agents that could target TCR-related mutations and may hold promise for improving the treatment of PTCL. Abstract Peripheral T-cell lymphoma (PTCL) comprises a heterogeneous group of mature T-cell malignancies. Recurrent activating mutations and fusions in genes related to the proximal TCR signaling pathway have been identified in preclinical and clinical studies. This review summarizes the genetic alterations affecting proximal TCR signaling identified from different subgroups of PTCL and the functional impact on TCR signaling and downstream pathways. These genetic abnormalities include mostly missense mutations, occasional indels, and gene fusions involving CD28, CARD11, the GTPase RHOA, the guanine nucleotide exchange factor VAV1, and kinases including FYN, ITK, PLCG1, PKCB, and PI3K subunits. Most of these aberrations are activating mutations that can potentially be targeted by inhibitors, some of which are being tested in clinical trials that are briefly outlined in this review. Finally, we focus on the molecular pathology of recently identified subgroups of PTCL-NOS and highlight the unique genetic profiles associated with PTCL-GATA3.
Collapse
|
42
|
Jain S, Mallick S, Ramteke P, Gogia A. Neoplasms of follicular helper T-cells: an insight into the pathobiology. AMERICAN JOURNAL OF BLOOD RESEARCH 2022; 12:64-81. [PMID: 35873103 PMCID: PMC9301021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
T-follicular helper cells (TFH) are a unique subset of T-cells with varied transcriptional profiles and functions. In the last 2016 WHO classification, lymphomas arising from TFH were included as a broad category and emphasis was given to separating them from other peripheral T cell lymphomas. The neoplasms derived from these mainly comprise angioimmunoblastic T-cell lymphoma, peripheral T-cell lymphoma with T-follicular helper cell phenotype, follicular T-cell lymphoma, and cutaneous CD4+ small-medium sized lymphoproliferative disorders. The TFH lymphomas comprise both indolent and aggressive forms. Additional immunohistochemistry to identify TFH cells like CD10, BCL6, ICOS, PD1, CXCL13 and mutations like RHOA, IDH2 is required for diagnosis and prognostication. The understanding of these has evolved over the years, and currently we review the updates and pathobiology of the above.
Collapse
Affiliation(s)
- Surabhi Jain
- Department of Pathology, Dr. B. R. A. Institute Rotary Cancer Hospital (Dr. B.R.A.I.R.C.H.), All India Institute of Medical Sciences (AIIMS)New Delhi, India
| | - Saumyaranjan Mallick
- Department of Pathology, Dr. B. R. A. Institute Rotary Cancer Hospital (Dr. B.R.A.I.R.C.H.), All India Institute of Medical Sciences (AIIMS)New Delhi, India
| | - Prashant Ramteke
- Department of Pathology, Dr. B. R. A. Institute Rotary Cancer Hospital (Dr. B.R.A.I.R.C.H.), All India Institute of Medical Sciences (AIIMS)New Delhi, India
| | - Ajay Gogia
- Department of Medical Oncology, Dr. B. R. A. Institute Rotary Cancer Hospital (Dr. B.R.A.I.R.C.H.), All India Institute of Medical Sciences (AIIMS)New Delhi, India
| |
Collapse
|
43
|
Krug A, Tari G, Saidane A, Gaulard P, Ricci JE, Lemonnier F, Verhoeyen E. Novel T Follicular Helper-like T-Cell Lymphoma Therapies: From Preclinical Evaluation to Clinical Reality. Cancers (Basel) 2022; 14:cancers14102392. [PMID: 35625998 PMCID: PMC9139536 DOI: 10.3390/cancers14102392] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/02/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary This work reviews the multiple efforts that have been and are being invested by researchers as well as clinicians to improve the treatment of a specific T-cell lymphoma called follicular helper peripheral T-cell lymphoma. Still, though treatments for B-cell lymphomas have improved, this particular T-cell lymphoma has little to no new therapeutic options that show marked improvements in the survival of the patients compared to treatment with chemotherapy. We report here the evaluation of targeted new therapies for this T-cell lymphoma in new preclinical models for this cancer or in clinical trials with the objective to offer better (combination) treatment options. Abstract The classification of peripheral T-cell lymphomas (PTCL) is constantly changing and contains multiple subtypes. Here, we focus on Tfh-like PTCL, to which angioimmunoblastic T-cell lymphoma (AITL) belongs, according to the last WHO classification. The first-line treatment of these malignancies still relies on chemotherapy but gives very unsatisfying results for these patients. Enormous progress in the last decade in terms of understanding the implicated genetic mutations leading to signaling and epigenetic pathway deregulation in Tfh PTCL allowed the research community to propose new therapeutic approaches. These findings point towards new biomarkers and new therapies, including hypomethylating agents, such as azacytidine, and inhibitors of the TCR-hyperactivating molecules in Tfh PTCL. Additionally, metabolic interference, inhibitors of the NF-κB and PI3K-mTOR pathways and possibly novel immunotherapies, such as antibodies and chimeric antigen receptors (CAR) directed against Tfh malignant T-cell surface markers, are discussed in this review among other new treatment options.
Collapse
Affiliation(s)
- Adrien Krug
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (A.K.); (A.S.); (J.-E.R.)
| | - Gamze Tari
- Univ Paris Est Créteil, INSERM, IMRB, 94010 Créteil, France;
| | - Aymen Saidane
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (A.K.); (A.S.); (J.-E.R.)
| | - Philippe Gaulard
- Département de Pathologie, AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, 94010 Créteil, France;
| | - Jean-Ehrland Ricci
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (A.K.); (A.S.); (J.-E.R.)
| | - François Lemonnier
- Service Unité Hémopathies Lymphoides, AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, 94010 Créteil, France;
| | - Els Verhoeyen
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (A.K.); (A.S.); (J.-E.R.)
- CIRI, Université de Lyon, INSERM U1111, ENS de Lyon, Université Lyon1, CNRS, UMR 5308, 69007 Lyon, France
- Correspondence: or ; Tel.: +33-4-72728731
| |
Collapse
|
44
|
Schaefer A, Der CJ. RHOA takes the RHOad less traveled to cancer. Trends Cancer 2022; 8:655-669. [PMID: 35568648 DOI: 10.1016/j.trecan.2022.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022]
Abstract
RAS and RHO GTPases function as signaling nodes that regulate diverse cellular processes. Whereas RAS mutations were identified in human cancers nearly four decades ago, only recently have mutations in two RHO GTPases, RAC1 and RHOA, been identified in cancer. RAS mutations are found in a diverse spectrum of human cancer types. By contrast, RAC1 and RHOA mutations are associated with distinct and restricted cancer types. Despite a conservation of RAS and RAC1 residues that comprise mutational hotspots, RHOA mutations comprise highly divergent hotspots. Whereas RAS and RAC1 act as oncogenes, RHOA may act as both an oncogene and a tumor suppressor. Thus, while RAS and RHO each take different mutational paths, they arrive at the same biological destination as cancer drivers.
Collapse
Affiliation(s)
- Antje Schaefer
- University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Department of Pharmacology, Chapel Hill, NC 27599, USA
| | - Channing J Der
- University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Department of Pharmacology, Chapel Hill, NC 27599, USA.
| |
Collapse
|
45
|
Cortes JR, Filip I, Albero R, Patiño-Galindo JA, Quinn SA, Lin WHW, Laurent AP, Shih BB, Brown JA, Cooke AJ, Mackey A, Einson J, Zairis S, Rivas-Delgado A, Laginestra MA, Pileri S, Campo E, Bhagat G, Ferrando AA, Rabadan R, Palomero T. Oncogenic Vav1-Myo1f induces therapeutically targetable macrophage-rich tumor microenvironment in peripheral T cell lymphoma. Cell Rep 2022; 39:110695. [PMID: 35443168 PMCID: PMC9059228 DOI: 10.1016/j.celrep.2022.110695] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/26/2022] [Accepted: 03/25/2022] [Indexed: 11/03/2022] Open
Abstract
Peripheral T cell lymphoma not otherwise specified (PTCL-NOS) comprises heterogeneous lymphoid malignancies characterized by pleomorphic lymphocytes and variable inflammatory cell-rich tumor microenvironment. Genetic drivers in PTCL-NOS include genomic alterations affecting the VAV1 oncogene; however, their specific role and mechanisms in PTCL-NOS remain incompletely understood. Here we show that expression of Vav1-Myo1f, a recurrent PTCL-associated VAV1 fusion, induces oncogenic transformation of CD4+ T cells. Notably, mouse Vav1-Myo1f lymphomas show T helper type 2 features analogous to high-risk GATA3+ human PTCL. Single-cell transcriptome analysis reveals that Vav1-Myo1f alters T cell differentiation and leads to accumulation of tumor-associated macrophages (TAMs) in the tumor microenvironment, a feature linked with aggressiveness in human PTCL. Importantly, therapeutic targeting of TAMs induces strong anti-lymphoma effects, highlighting the lymphoma cells' dependency on the microenvironment. These results demonstrate an oncogenic role for Vav1-Myo1f in the pathogenesis of PTCL, involving deregulation in T cell polarization, and identify the lymphoma-associated macrophage-tumor microenvironment as a therapeutic target in PTCL.
Collapse
Affiliation(s)
- Jose R Cortes
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Ioan Filip
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Robert Albero
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | | | - S Aidan Quinn
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Wen-Hsuan W Lin
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Anouchka P Laurent
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Bobby B Shih
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Jessie A Brown
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Anisha J Cooke
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Adam Mackey
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Jonah Einson
- Department of Biomedical Informatics, Columbia University, New York, NY 10032, USA
| | - Sakellarios Zairis
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | | | | | - Stefano Pileri
- Division of Hematopathology, European Institute of Oncology IRCCS, Milan 20141, Italy
| | - Elias Campo
- Hematopathology Unit, Department of Pathology, Hospital Clínic-IDIBAPS, Barcelona 08036, Spain
| | - Govind Bhagat
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Adolfo A Ferrando
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA; Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Raul Rabadan
- Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University, New York, NY 10032, USA
| | - Teresa Palomero
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
46
|
Tumor Immune Microenvironment in Lymphoma: Focus on Epigenetics. Cancers (Basel) 2022; 14:cancers14061469. [PMID: 35326620 PMCID: PMC8946119 DOI: 10.3390/cancers14061469] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/23/2022] [Accepted: 03/11/2022] [Indexed: 02/06/2023] Open
Abstract
Lymphoma is a neoplasm arising from B or T lymphocytes or natural killer cells characterized by clonal lymphoproliferation. This tumor comprises a diverse and heterogeneous group of malignancies with distinct clinical, histopathological, and molecular characteristics. Despite advances in lymphoma treatment, clinical outcomes of patients with relapsed or refractory disease remain poor. Thus, a deeper understanding of molecular pathogenesis and tumor progression of lymphoma is required. Epigenetic alterations contribute to cancer initiation, progression, and drug resistance. In fact, over the past decade, dysregulation of epigenetic mechanisms has been identified in lymphomas, and the knowledge of the epigenetic aberrations has led to the emergence of the promising epigenetic therapy field in lymphoma tumors. However, epigenetic aberrations in lymphoma not only have been found in tumor cells, but also in cells from the tumor microenvironment, such as immune cells. Whereas the epigenetic dysregulation in lymphoma cells is being intensively investigated, there are limited studies regarding the epigenetic mechanisms that affect the functions of immune cells from the tumor microenvironment in lymphoma. Therefore, this review tries to provide a general overview of epigenetic alterations that affect both lymphoma cells and infiltrating immune cells within the tumor, as well as the epigenetic cross-talk between them.
Collapse
|
47
|
Hathuc V, Kreisel F. Genetic Landscape of Peripheral T-Cell Lymphoma. Life (Basel) 2022; 12:life12030410. [PMID: 35330161 PMCID: PMC8954173 DOI: 10.3390/life12030410] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/06/2022] [Indexed: 11/16/2022] Open
Abstract
Peripheral T-Cell lymphoma (PTCL) comprises a heterogenous group of uncommon lymphomas derived from mature, post-thymic or “peripheral” T- and natural killer cells. The World Health Organization (WHO) emphasizes a multiparameter approach in the diagnosis and subclassification of these neoplasms, integrating clinical, morphologic, immunophenotypic, and genetic features into the final diagnosis. Clinical presentation is particularly important due to histologic, immunophenotypic and genetic variations within established subtypes, and no convenient immunophenotypic marker of monoclonality exists. In recent years, widespread use of gene expression profiling and next-generation sequencing (NGS) techniques have contributed to an improved understanding of the pathobiology in PTCLs, and these have been incorporated into the 2016 revised WHO classification of mature T- and NK-cell neoplasms which now encompasses nearly 30 distinct entities. This review discusses the genetic landscape of PTCL and its role in subclassification, prognosis, and potential targeted therapy. In addition to discussing T-Cell lymphoma subtypes with relatively well-defined or relevant genetic aberrancies, special attention is given to genetic advances in T-Cell lymphomas of T follicular helper cell (TFH) origin, highlighting genetic overlaps between angioimmunoblastic T-Cell lymphoma (AITL), follicular T-Cell lymphoma, and nodal peripheral T-Cell lymphoma with a TFH phenotype. Furthermore, genetic drivers will be discussed for ALK-negative anaplastic large cell lymphomas and their role in differentiating these from CD30+ peripheral T-Cell lymphoma, not otherwise specified (NOS) and primary cutaneous anaplastic large cell lymphoma. Lastly, a closer look is given to genetic pathways in peripheral T-Cell lymphoma, NOS, which may guide in teasing out more specific entities in a group of T-Cell lymphomas that represents the most common subcategory and is sometimes referred to as a “wastebasket” category.
Collapse
|
48
|
Dobson R, Du PY, Rásó-Barnett L, Yao WQ, Chen Z, Casa C, Ei-Daly H, Farkas L, Soilleux E, Wright P, Grant JW, Rodriguez-Justo M, Follows GA, Rashed H, Fabre M, Baxter EJ, Vassiliou G, Wotherspoon A, Attygalle AD, Liu H, Du MQ. Early detection of T-cell lymphoma with T follicular helper phenotype by RHOA mutation analysis. Haematologica 2022; 107:489-499. [PMID: 33567811 PMCID: PMC8804563 DOI: 10.3324/haematol.2020.265991] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/22/2021] [Indexed: 02/05/2023] Open
Abstract
Angioimmunoblastic T-cell lymphoma (AITL) and peripheral T-cell lymphoma with T follicular helper phenotype (PTCL-TFH) are a group of complex clinicopathological entities that originate from T follicular helper cells and share a similar mutation profile. Their diagnosis is often a challenge, particularly at an early stage, because of a lack of specific histological and immunophenotypic features, paucity of neoplastic T cells and prominent polymorphous infiltrate. We investigated whether the lymphoma-associated RHOA Gly17Val (c.50G>T) mutation, occurring in 60% of cases, is present in the early "reactive" lesions, and whether mutation analysis could help to advance the early diagnosis of lymphoma. The RHOA mutation was detected by quantitative polymerase chain reaction with a locked nucleic acid probe specific to the mutation, and a further peptide nucleic acid clamp oligonucleotide to suppress the amplification of the wild-type allele. The quantitative polymerase chain reaction assay was highly sensitive and specific, detecting RHOA Gly17Val at an allele frequency of 0.03%, but not other changes in Gly17, nor in 61 controls. Among the 37 cases of AITL and PTCL-TFH investigated, RHOA Gly17Val was detected in 62.2% (23/37) of which 19 had multiple biopsies including preceding biopsies in ten and follow-up biopsies in 11 cases. RHOA Gly17Val was present in each of these preceding or follow-up biopsies including 18 specimens that showed no evidence of lymphoma by combined histological, immunophenotypic and clonality analyses. The mutation was seen in biopsies 0-26.5 months (mean 7.87 months) prior to the lymphoma diagnosis. Our results show that RHOA Gly17Val mutation analysis is valuable in the early detection of AITL and PTCL-TFH.
Collapse
MESH Headings
- Early Diagnosis
- Humans
- Immunoblastic Lymphadenopathy/diagnosis
- Lymphoma, T-Cell/diagnosis
- Lymphoma, T-Cell/genetics
- Lymphoma, T-Cell/pathology
- Lymphoma, T-Cell, Peripheral/diagnosis
- Lymphoma, T-Cell, Peripheral/genetics
- Lymphoma, T-Cell, Peripheral/pathology
- Mutation
- Phenotype
- T-Lymphocytes, Helper-Inducer/pathology
- rhoA GTP-Binding Protein/genetics
Collapse
Affiliation(s)
- Rachel Dobson
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge
| | - Peter Y Du
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge
| | - Lívia Rásó-Barnett
- The Haematopathology and Oncology Diagnostic Service, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge
| | - Wen-Qing Yao
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge
| | - Zi Chen
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge
| | - Calogero Casa
- The Haematopathology and Oncology Diagnostic Service, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge
| | - Hesham Ei-Daly
- The Haematopathology and Oncology Diagnostic Service, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge
| | - Lorant Farkas
- The Haematopathology and Oncology Diagnostic Service, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Department of Pathology, Akershus University Hospital, Lorenskog
| | - Elizabeth Soilleux
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK; Department of Histopathology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge
| | - Penny Wright
- Department of Histopathology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge
| | - John W Grant
- Department of Histopathology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge
| | | | - George A Follows
- Department of Haematology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge
| | - Hala Rashed
- Department of Cellular Pathology, University Hospitals of Leicester, East Midlands Pathology Services, Leicester
| | - Margarete Fabre
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Department of Haematology, University of Cambridge, Cambridge
| | - E Joanna Baxter
- Department of Haematology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge
| | - George Vassiliou
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Department of Haematology, University of Cambridge, Cambridge
| | | | | | - Hongxiang Liu
- The Haematopathology and Oncology Diagnostic Service, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge
| | - Ming-Qing Du
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK; Department of Histopathology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge.
| |
Collapse
|
49
|
Yu DD, Zhang J. Update on recurrent mutations in angioimmunoblastic T-cell lymphoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2021; 14:1108-1118. [PMID: 35027991 PMCID: PMC8748014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/26/2021] [Indexed: 06/14/2023]
Abstract
Angioimmunoblastic T-cell lymphoma (AITL) is a subtype of peripheral T cell lymphoma (PTCL), defined by genetic alterations that induce abnormal immune activity and inflammatory disorders. Through recent discoveries using genomic studies, the identification of various recurrent mutations has provided greater insight and changed our understanding of the molecular genetics of the disease. By acknowledging these recurrent mutations and their affected pathways, the diagnosis, prognosis, treatment, and survival of AITL can be improved. In this review, we summarize the known recurrent mutations present in the molecular pathogenesis of AITL by emphasizing the effects of mutations on signaling pathways and genes, as well as the multistep process of AITL development.
Collapse
Affiliation(s)
| | - Jianzhong Zhang
- Department of Pathology, Strategic Support Force Medical CenterBeijing, China
| |
Collapse
|
50
|
Ichii M, Oritani K, Toda J, Hosen N, Matsuda T, Kanakura Y. Signal-transducing adaptor protein-1 and protein-2 in hematopoiesis and diseases. Exp Hematol 2021; 105:10-17. [PMID: 34780812 DOI: 10.1016/j.exphem.2021.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 11/04/2022]
Abstract
Inflammatory and immune signals are involved in stressed hematopoiesis under myeloablation, infection, chronic inflammation, and aging. These signals also affect malignant pathogenesis, and the dysregulated immune environment which causes the resistance to treatment. On activation, various types of protein tyrosine kinases in the cytoplasm mediate the cascade, leading to the transcription of target genes in the nucleus. Adaptor molecules are commonly defined as proteins that lack enzymatic activity, DNA-binding or receptor functions and possess protein-protein or protein-lipid interaction domains. By binding to specific domains of signaling molecules, adaptor proteins adjust the signaling responses after the ligation of receptors of soluble factors, including cytokines, chemokines, and growth factors, as well as pattern recognition receptors such as toll-like receptors. The signal-transducing adaptor protein (STAP) family regulates various intracellular signaling pathways. These proteins have a pleckstrin homology domain in the N-terminal region and an SRC-homology 2-like domain in the central region, representing typical binding structures as adapter proteins. Following the elucidation of the effects of STAPs on terminally differentiated immune cells, such as macrophages, T cells, mast cells, and basophils, recent findings have indicated the critical roles of STAP-2 in B-cell progenitor cells in marrow under hematopoietic stress and STAP-1 and -2 in BCR-ABL-transduced leukemogenesis. In this review, we focus on the role of STAPs in the bone marrow.
Collapse
Affiliation(s)
- Michiko Ichii
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan.
| | - Kenji Oritani
- Department of Hematology, Graduate School of Medical Science, International University of Health and Welfare, Narita, Japan
| | - Jun Toda
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Naoki Hosen
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan; Laboratory of Cellular Immunotherapy, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
| | - Tadashi Matsuda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yuzuru Kanakura
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan; Sumitomo Hospital, Osaka, Japan
| |
Collapse
|