1
|
Sharif MI, Alotaibi AS, Alyamany R, Alahmari A, Alkhaldi H, Saad A, Alfayez M. The road not taken: Exploring non-transplant options in De Novo philadelphia positive acute myeloid leukemia. Leuk Res Rep 2025; 23:100507. [PMID: 40206282 PMCID: PMC11981798 DOI: 10.1016/j.lrr.2025.100507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/17/2025] [Indexed: 04/11/2025] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease with diverse molecular cytogenetic characteristics. Philadelphia-positive acute myeloid leukemia, a rare subtype of AML, is traditionally considered a high-risk, with the standard recommendation being an allogeneic hematopoietic cell transplant (HCT) in first remission. More recently, with better characterization and understanding of AML biology, novel therapies have been introduced. Drawing parallels from the advances seen in Philadelphia-positive acute lymphoblastic leukemia (ALL), the question arises whether potent tyrosine kinase inhibitors (TKI), such as ponatinib, in combination with AML-directed therapies, could be used in Philadelphia-positive AML, potentially eliminating the need for HCT in the first remission. In this report, we review the literature on Philadelphia-positive AML, study a case where HCT was omitted, and explore potential signals that could support successful HCT omission.
Collapse
Affiliation(s)
- Mohamed I Sharif
- Department of Hematology, Stem Cell Transplant and Cellular Therapy, Oncology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ahmad S. Alotaibi
- Department of Hematology, Stem Cell Transplant and Cellular Therapy, Oncology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ruah Alyamany
- Department of Hematology, Stem Cell Transplant and Cellular Therapy, Oncology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ali Alahmari
- Department of Hematology, Stem Cell Transplant and Cellular Therapy, Oncology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hanan Alkhaldi
- Department of Hematology, Stem Cell Transplant and Cellular Therapy, Oncology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ayman Saad
- Department of Hematology, Stem Cell Transplant and Cellular Therapy, Oncology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mansour Alfayez
- Department of Hematology, Stem Cell Transplant and Cellular Therapy, Oncology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Anabtawi N, Nicolet D, Alotaibi N, Buelow DR, Orwick S, Gregory T, Raj R, Coleman K, Kolitz JE, Powell BL, Blum WG, Baer MR, Byrd JC, Stock W, Uy GL, Mrózek K, Eisfeld AK, Cheng X, Baker SD, Blachly JS. Prognostic, biological, and structural implications of FLT3-JMD point mutations in acute myeloid leukemia: an analysis of Alliance studies. Leukemia 2025; 39:623-631. [PMID: 39806020 PMCID: PMC11879849 DOI: 10.1038/s41375-024-02498-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 11/22/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025]
Abstract
The FLT3 gene frequently undergoes mutations in acute myeloid leukemia (AML), with internal tandem duplications (ITD) and tyrosine kinase domain (TKD) point mutations (PMs) being most common. Recently, PMs and deletions in the FLT3 juxtamembrane domain (JMD) have been identified, but their biological and clinical significance remains poorly understood. We analyzed 1660 patients with de novo AML and found FLT3-JMD mutations, mostly PMs, in 2% of the patients. Patients with FLT3-JMD mutations had a higher relapse rate and shorter disease-free survival than those with FLT3-TKD, whereas their relapse rate, disease-free and overall survival were not significantly different from those of FLT3-ITD-positive patients. In vitro experiments showed that FLT3-JMD PMs transformed hematopoietic cells and responded well to type I and II FLT3 inhibitors. Molecular dynamics simulations were used to explore the conformational changes of JMD PMs relative to wild-type FLT3. These mutations exhibited constrained domain motions with wider gate openings, potentially enhancing drug binding. Altered residue interactions and structural changes shed light on their unique functional mechanisms, with increased allosteric pathways suggesting reduced interactions with other residues. We conclude that patients with FLT3-JMD PMs represent uncommon but important subset with distinct molecular and biological features, and may benefit from FLT3 inhibitors.
Collapse
Affiliation(s)
- Nadeen Anabtawi
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Deedra Nicolet
- The Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Alliance Statistics and Data Management Center, The Ohio State University, Columbus, OH, USA
| | - Najla Alotaibi
- The Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Daelynn R Buelow
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Shelley Orwick
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Thomas Gregory
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Ruchika Raj
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Kennedy Coleman
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Jonathan E Kolitz
- Monter Cancer Center, Zucker School of Medicine at Hofstra/Northwell, Lake Success, NY, USA
- Monter Cancer Center, North Shore University Hospital and Long Island Jewish Medical Center, Northwell Health, New Hyde Park, NY, USA
| | - Bayard L Powell
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston Salem, NC, USA
| | - William G Blum
- Department of Hematology and Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Maria R Baer
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - John C Byrd
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Wendy Stock
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Geoffrey L Uy
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Krzysztof Mrózek
- The Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Ann-Kathrin Eisfeld
- The Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Xiaolin Cheng
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Sharyn D Baker
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA.
| | - James S Blachly
- The Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
3
|
Drucker M, Lee D, Zhang X, Kain B, Bowman M, Nicolet D, Wang Z, Stone RM, Mrózek K, Carroll AJ, Starczynowski DT, Levine RL, Byrd JC, Eisfeld AK, Salomonis N, Grimes HL, Bowman RL, Miles LA. Genotype-immunophenotype relationships in NPM1-mutant AML clonal evolution uncovered by single cell multiomic analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.623033. [PMID: 39605444 PMCID: PMC11601460 DOI: 10.1101/2024.11.11.623033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Acute myeloid leukemia (AML) is a multi-clonal disease, existing as a milieu of clones with unique but related genotypes as initiating clones acquire subsequent mutations. However, bulk sequencing cannot fully capture AML clonal architecture or the clonal evolution that occurs as patients undergo therapy. To interrogate clonal evolution, we performed simultaneous single cell molecular profiling and immunophenotyping on 43 samples from 32 NPM1-mutant AML patients at different stages of disease. Here we show that diagnosis and relapsed AML samples display similar clonal architecture patterns, but signaling mutations can drive increased clonal diversity specifically at relapse. We uncovered unique genotype-immunophenotype relationships regardless of disease state, suggesting leukemic lineage trajectories can be hard-wired by the mutations present. Analysis of longitudinal samples from patients on therapy identified dynamic clonal, transcriptomic, and immunophenotypic changes. Our studies provide resolved understanding of leukemic clonal evolution and the relationships between genotype and cell state in leukemia biology.
Collapse
Affiliation(s)
- Morgan Drucker
- Division of Hematology/Oncology, Cancer & Blood Disease Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati OH USA
| | - Darren Lee
- University of Cincinnati College of Medicine, Cincinnati OH USA
| | - Xuan Zhang
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati OH USA
| | - Bailee Kain
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati OH USA
| | - Michael Bowman
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA USA
| | - Deedra Nicolet
- The Ohio State University Comprehensive Cancer Center, Columbus, OH USA
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus OH USA
| | - Zhe Wang
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati OH USA
| | | | - Krzysztof Mrózek
- The Ohio State University Comprehensive Cancer Center, Columbus, OH USA
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus OH USA
| | - Andrew J. Carroll
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL USA
| | - Daniel T. Starczynowski
- Division of Experimental Hematology & Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati OH USA
- Department of Pediatrics, University of Cincinnati, Cincinnati OH USA
- University of Cincinnati Cancer Center, Cincinnati OH USA
| | - Ross L. Levine
- Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John C. Byrd
- University of Cincinnati Cancer Center, Cincinnati OH USA
- Department of Internal Medicine, University of Cincinnati, Cincinnati OH USA
| | - Ann-Kathrin Eisfeld
- The Ohio State University Comprehensive Cancer Center, Columbus, OH USA
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus OH USA
- Division of Hematology Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH USA
| | - Nathan Salomonis
- Department of Pediatrics, University of Cincinnati, Cincinnati OH USA
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - H. Leighton Grimes
- Department of Pediatrics, University of Cincinnati, Cincinnati OH USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati OH USA
| | - Robert L. Bowman
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA USA
| | - Linde A. Miles
- Division of Experimental Hematology & Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati OH USA
- Department of Pediatrics, University of Cincinnati, Cincinnati OH USA
- University of Cincinnati Cancer Center, Cincinnati OH USA
| |
Collapse
|
4
|
Ozga M, Nicolet D, Mrózek K, Walker CJ, Blachly JS, Kohlschmidt J, Orwick S, Carroll AJ, Larson RA, Kolitz JE, Powell BL, Stone RM, Byrd JC, Eisfeld AK, Mims AS. White blood cell count levels are associated with inflammatory response and constitute independent outcome predictors in adult patients with acute myeloid leukemia aged <60 years. Am J Hematol 2024; 99:2236-2240. [PMID: 39283025 PMCID: PMC11469947 DOI: 10.1002/ajh.27465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/01/2024] [Accepted: 08/06/2024] [Indexed: 10/12/2024]
Affiliation(s)
- Michael Ozga
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Deedra Nicolet
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Alliance Statistics and Data Center, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Krzysztof Mrózek
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | | | - James S. Blachly
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Jessica Kohlschmidt
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Alliance Statistics and Data Center, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Shelley Orwick
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Andrew J. Carroll
- Department of Genetics, University of Alabama-Birmingham, Birmingham, AL, USA
| | | | - Jonathan E. Kolitz
- Monter Cancer Center, Hofstra Northwell School of Medicine, Lake Success, NY, USA
| | - Bayard L. Powell
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Richard M. Stone
- Department of Medical Oncology, Dana-Farber/Partners Cancer Care, Harvard University, Boston, MA, USA
| | - John C. Byrd
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Ann-Kathrin Eisfeld
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Alice S. Mims
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| |
Collapse
|
5
|
Hernández-Sánchez A, González T, Sobas M, Sträng E, Castellani G, Abáigar M, Valk PJM, Villaverde Ramiro Á, Benner A, Metzeler KH, Azibeiro R, Tettero JM, Martínez-López J, Pratcorona M, Martínez Elicegui J, Mills KI, Thiede C, Sanz G, Döhner K, Heuser M, Haferlach T, Turki AT, Reinhardt D, Schulze-Rath R, Barbus M, Hernández-Rivas JM, Huntly B, Ossenkoppele G, Döhner H, Bullinger L. Rearrangements involving 11q23.3/KMT2A in adult AML: mutational landscape and prognostic implications - a HARMONY study. Leukemia 2024; 38:1929-1937. [PMID: 38965370 PMCID: PMC11347382 DOI: 10.1038/s41375-024-02333-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/17/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
Balanced rearrangements involving the KMT2A gene (KMT2Ar) are recurrent genetic abnormalities in acute myeloid leukemia (AML), but there is lack of consensus regarding the prognostic impact of different fusion partners. Moreover, prognostic implications of gene mutations co-occurring with KMT2Ar are not established. From the HARMONY AML database 205 KMT2Ar adult patients were selected, 185 of whom had mutational information by a panel-based next-generation sequencing analysis. Overall survival (OS) was similar across the different translocations, including t(9;11)(p21.3;q23.3)/KMT2A::MLLT3 (p = 0.756). However, independent prognostic factors for OS in intensively treated patients were age >60 years (HR 2.1, p = 0.001), secondary AML (HR 2.2, p = 0.043), DNMT3A-mut (HR 2.1, p = 0.047) and KRAS-mut (HR 2.0, p = 0.005). In the subset of patients with de novo AML < 60 years, KRAS and TP53 were the prognostically most relevant mutated genes, as patients with a mutation of any of those two genes had a lower complete remission rate (50% vs 86%, p < 0.001) and inferior OS (median 7 vs 30 months, p < 0.001). Allogeneic hematopoietic stem cell transplantation in first complete remission was able to improve OS (p = 0.003). Our study highlights the importance of the mutational patterns in adult KMT2Ar AML and provides new insights into more accurate prognostic stratification of these patients.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/therapy
- Myeloid-Lymphoid Leukemia Protein/genetics
- Histone-Lysine N-Methyltransferase/genetics
- Middle Aged
- Prognosis
- Adult
- Female
- Male
- Mutation
- Chromosomes, Human, Pair 11/genetics
- Aged
- Young Adult
- Translocation, Genetic
- Gene Rearrangement
- Adolescent
- Aged, 80 and over
- Survival Rate
- High-Throughput Nucleotide Sequencing
Collapse
Affiliation(s)
- Alberto Hernández-Sánchez
- Hematology Department, University Hospital of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Cancer Research Center of Salamanca (IBMCC, USAL-CSIC), Salamanca, Spain
| | - Teresa González
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Cancer Research Center of Salamanca (IBMCC, USAL-CSIC), Salamanca, Spain
| | | | - Eric Sträng
- Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | - María Abáigar
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Cancer Research Center of Salamanca (IBMCC, USAL-CSIC), Salamanca, Spain
| | - Peter J M Valk
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ángela Villaverde Ramiro
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Cancer Research Center of Salamanca (IBMCC, USAL-CSIC), Salamanca, Spain
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Raúl Azibeiro
- Hematology Department, University Hospital of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Jesse M Tettero
- Department of Hematology, Amsterdam UMC Location VUMC, Amsterdam, The Netherlands
| | | | - Marta Pratcorona
- Department of Hematology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Javier Martínez Elicegui
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Cancer Research Center of Salamanca (IBMCC, USAL-CSIC), Salamanca, Spain
| | - Ken I Mills
- Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| | - Christian Thiede
- University of Technics Dresden Medical Department, Dresden, Germany
| | - Guillermo Sanz
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
- Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | | | - Amin T Turki
- Marienhospital University Hospital, Ruhr-University Bochum, Bochum, Germany
- Universitätsklinikum Essen, Essen, Germany
| | - Dirk Reinhardt
- Department of Pediatrics III, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | | | | | - Jesús María Hernández-Rivas
- Hematology Department, University Hospital of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Cancer Research Center of Salamanca (IBMCC, USAL-CSIC), Salamanca, Spain
- Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Brian Huntly
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Gert Ossenkoppele
- Department of Hematology, Amsterdam UMC Location VUMC, Amsterdam, The Netherlands
| | - Hartmut Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
6
|
Gondran C, Dumas PY, Bérard E, Bidet A, Delabesse E, Tavitian S, Leguay T, Huguet F, Borel C, Forcade E, Vergez F, Vial JP, Rieu JB, Lechevalier N, Luquet I, Canali A, Klein E, Sarry A, de Grande AC, Pigneux A, Récher C, Largeaud L, Bertoli S. Imatinib with intensive chemotherapy in AML with t(9;22)(q34.1;q11.2)/BCR::ABL1. A DATAML registry study. Blood Cancer J 2024; 14:91. [PMID: 38821940 PMCID: PMC11143277 DOI: 10.1038/s41408-024-01069-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 06/02/2024] Open
Abstract
Acute myeloid leukemia (AML) with t(9;22) (q34.1; q11.2)/BCR::ABL1, a distinct entity within the group of AML with defining genetic abnormalities, belong to the adverse-risk group of the 2022 ELN classification. However, there is little data on outcome since the era of tyrosine kinase inhibitors. Among 5819 AML cases included in the DATAML registry, 20 patients with de novo BCR::ABL1+AML (0.3%) were identified. Eighteen patients treated with standard induction chemotherapy were analyzed in this study. Imatinib was added to chemotherapy in 16 patients. The female-to-male ratio was 1.25 and median age was 54 years. The t(9;22) translocation was the sole chromosomal abnormality in 12 patients. Main gene mutations detected by NGS were ASXL1, RUNX1 and NPM1. Compared with patients with myeloid blast phase of chronic myeloid leukemia (CML-BP), de novo BCR::ABL1+AML had higher WBC, fewer additional chromosomal abnormalities, lower CD36 or CD7 expression and no ABL1 mutations. Seventeen patients (94.4%) achieved complete remission (CR) or CR with incomplete hematologic recovery. Twelve patients were allografted in first remission. With a median follow-up of 6.3 years, the median OS was not reached and 2-year OS was 77% (95% CI: 50-91). Four out of five patients who were not transplanted did not relapse. Comparison of BCR::ABL1+AML, CML-BP, 2017 ELN intermediate (n = 643) and adverse-risk patients (n = 863) showed that patients with BCR::ABL1+AML had a significant better outcome than intermediate and adverse-risk patients. BCR::ABL1+AML patients treated with imatinib and intensive chemotherapy should not be included in the adverse-risk group of current AML classifications.
Collapse
MESH Headings
- Humans
- Male
- Female
- Middle Aged
- Adult
- Imatinib Mesylate/therapeutic use
- Imatinib Mesylate/administration & dosage
- Aged
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/mortality
- Translocation, Genetic
- Registries
- Chromosomes, Human, Pair 22/genetics
- Fusion Proteins, bcr-abl/genetics
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Chromosomes, Human, Pair 9/genetics
- Young Adult
- Nucleophosmin
Collapse
Affiliation(s)
- Camille Gondran
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Pierre-Yves Dumas
- Service d'Hématologie Clinique et de Thérapie Cellulaire, Centre Hospitalier Universitaire de Bordeaux, F-33000, Bordeaux, France
- Université de Bordeaux, 33076, Bordeaux, France
- Institut National de la Santé et de la Recherche Médicale, U1035, 33000, Bordeaux, France
| | - Emilie Bérard
- Service d'Epidémiologie, Centre Hospitalier Universitaire de Toulouse, CERPOP, Inserm, Toulouse, France
- Université Toulouse III Paul Sabatier, Toulouse, France
| | - Audrey Bidet
- Laboratoire d'Hématologie Biologique, Centre Hospitalier Universitaire de Bordeaux, F-33000, Bordeaux, France
| | - Eric Delabesse
- Université Toulouse III Paul Sabatier, Toulouse, France
- Laboratoire d'Hématologie Biologique, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Suzanne Tavitian
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Thibaut Leguay
- Service d'Hématologie Clinique et de Thérapie Cellulaire, Centre Hospitalier Universitaire de Bordeaux, F-33000, Bordeaux, France
| | - Françoise Huguet
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Cécile Borel
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Edouard Forcade
- Service d'Hématologie Clinique et de Thérapie Cellulaire, Centre Hospitalier Universitaire de Bordeaux, F-33000, Bordeaux, France
- Université de Bordeaux, 33076, Bordeaux, France
| | - François Vergez
- Laboratoire d'Hématologie Biologique, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Jean-Philippe Vial
- Laboratoire d'Hématologie Biologique, Centre Hospitalier Universitaire de Bordeaux, F-33000, Bordeaux, France
| | - Jean Baptiste Rieu
- Laboratoire d'Hématologie Biologique, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Nicolas Lechevalier
- Laboratoire d'Hématologie Biologique, Centre Hospitalier Universitaire de Bordeaux, F-33000, Bordeaux, France
| | - Isabelle Luquet
- Laboratoire d'Hématologie Biologique, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Alban Canali
- Laboratoire d'Hématologie Biologique, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Emilie Klein
- Laboratoire d'Hématologie Biologique, Centre Hospitalier Universitaire de Bordeaux, F-33000, Bordeaux, France
| | - Audrey Sarry
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Anne-Charlotte de Grande
- Service d'Hématologie Clinique et de Thérapie Cellulaire, Centre Hospitalier Universitaire de Bordeaux, F-33000, Bordeaux, France
| | - Arnaud Pigneux
- Service d'Hématologie Clinique et de Thérapie Cellulaire, Centre Hospitalier Universitaire de Bordeaux, F-33000, Bordeaux, France
- Université de Bordeaux, 33076, Bordeaux, France
| | - Christian Récher
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France.
- Université Toulouse III Paul Sabatier, Toulouse, France.
| | - Laetitia Largeaud
- Université Toulouse III Paul Sabatier, Toulouse, France
- Laboratoire d'Hématologie Biologique, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Sarah Bertoli
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
- Université Toulouse III Paul Sabatier, Toulouse, France
| |
Collapse
|
7
|
Salaverria I, Siebert R, Mrózek K. Appraisal of current technologies for the study of genetic alterations in hematologic malignancies with a focus on chromosome analysis and structural variants. MED GENET-BERLIN 2024; 36:13-20. [PMID: 38835966 PMCID: PMC11006330 DOI: 10.1515/medgen-2024-2001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
During the last five decades, chromosome analysis identified recurring translocations and inversions in leukemias and lymphomas, which led to cloning of genes at the breakpoints that contribute to oncogenesis. Such molecular cytogenetic methods as fluorescence in situ hybridization (FISH), copy number (CN) arrays or optical genome mapping (OGM) have augmented standard chromosome analysis. The use of both cytogenetic and molecular methods, such as reverse transcription-polymerase chain reaction (RT-PCR) and next generation sequencing (NGS), including whole-genome sequencing (WGS), discloses alterations that not only delineate separate WHO disease entities but also constitute independent prognostic factors, whose use in the clinic improves management of patients with hematologic neoplasms.
Collapse
Affiliation(s)
- Itziar Salaverria
- Institut d'Investigacions Biomèdiques August Pi i Sunyer Barcelona Spain
| | - Reiner Siebert
- Ulm University Medical Center, Ulm University Institute of Human Genetics Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Krzysztof Mrózek
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research Columbus USA
| |
Collapse
|
8
|
Liu FS, Huang HL. Case report: One case of acute myeloid leukemia M3 with atypical morphology. Front Oncol 2024; 14:1341840. [PMID: 38567145 PMCID: PMC10985165 DOI: 10.3389/fonc.2024.1341840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Acute promyelocytic leukemia (APL) is a type of acute myeloid leukemia. About 2% of APL is characterized by atypical rearrangements. Here we reported one APL case with atypical manifestations and morphology. A 35-year-old woman patient, mainly due to fatigue, poor appetite for over 10 days and intermittent fever for 3 days. combined with the results of flow cytometry, fusion gene and chromosome, the patient was diagnosed as AML-M3 with atypical morphology. Double induction therapy with retinoic acid and arsenous acid was immediately administrated. Idarubicin was administrated on the 18th day. A re-examination was performed in the 5th week, both the blood routine test and myelogram showed normal results, and the fusion gene turned negative, indicating complete remission. When atypical morphology occurs, peripheral blood POX staining may be performed to check the abnormal cells. Flow cytometry, chromosome analysis, and fusion gene analysis are also required for further diagnosis.
Collapse
Affiliation(s)
| | - Hua-Liang Huang
- Department of Laboratory, Inner Mongolia Baogang Hospital, Baotou, China
| |
Collapse
|
9
|
Eisfeld AK. Disparities in acute myeloid leukemia treatments and outcomes. Curr Opin Hematol 2024; 31:58-63. [PMID: 38059809 DOI: 10.1097/moh.0000000000000797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
PURPOSE OF REVIEW This review aims to summarize different contributors to survival disparities in acute myeloid leukemia (AML) patients. The focus is set on African-American (hereafter referred to as Black) patients, with separate consideration of self-reported race and ancestry. It aims to also highlight the interconnectivity of the different features that impact on despair survival. RECENT FINDINGS The main themes in the literature covered in this article include the impact of social deprivation, clinical trial enrollment and biobanking, structural racism and ancestry-associated differences in genetic features on survival outcomes. SUMMARY An increasing number of studies have not only shown persistent survival disparities between Black and non-Hispanic White AML patients, but uncovered a multitude of contributors that have additive adverse effects on patient outcomes. In addition to potentially modifiable features, such as socioeconomic factors and trial enrollment odds that require urgent interventions, there is emerging data on differences in disease biology with respect to genetic ancestry, including frequencies of known AML-driver mutations and their associated prognostic impact.
Collapse
Affiliation(s)
- Ann-Kathrin Eisfeld
- The Ohio State University Comprehensive Cancer Center
- Division of Hematology, Department of Internal Medicine
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University, Comprehensive Cancer Center, Columbus, Ohio, USA
| |
Collapse
|
10
|
Eisfeld AK, Mardis ER. Acute Myeloid Leukemia Genomics: Impact on Care and Remaining Challenges. Clin Chem 2024; 70:4-12. [PMID: 38175584 DOI: 10.1093/clinchem/hvad171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/03/2023] [Indexed: 01/05/2024]
Affiliation(s)
- Ann-Kathrin Eisfeld
- Division of Hematology, The Ohio State University College of Medicine, Columbus, OH, United States
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Elaine R Mardis
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
| |
Collapse
|
11
|
Ozga M, Nicolet D, Mrózek K, Yilmaz AS, Kohlschmidt J, Larkin KT, Blachly JS, Oakes CC, Buss J, Walker CJ, Orwick S, Jurinovic V, Rothenberg-Thurley M, Dufour A, Schneider S, Sauerland MC, Görlich D, Krug U, Berdel WE, Woermann BJ, Hiddemann W, Braess J, Subklewe M, Spiekermann K, Carroll AJ, Blum WG, Powell BL, Kolitz JE, Moore JO, Mayer RJ, Larson RA, Uy GL, Stock W, Metzeler KH, Grimes HL, Byrd JC, Salomonis N, Herold T, Mims AS, Eisfeld AK. Sex-associated differences in frequencies and prognostic impact of recurrent genetic alterations in adult acute myeloid leukemia (Alliance, AMLCG). Leukemia 2024; 38:45-57. [PMID: 38017103 PMCID: PMC10776397 DOI: 10.1038/s41375-023-02068-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/25/2023] [Accepted: 10/09/2023] [Indexed: 11/30/2023]
Abstract
Clinical outcome of patients with acute myeloid leukemia (AML) is associated with demographic and genetic features. Although the associations of acquired genetic alterations with patients' sex have been recently analyzed, their impact on outcome of female and male patients has not yet been comprehensively assessed. We performed mutational profiling, cytogenetic and outcome analyses in 1726 adults with AML (749 female and 977 male) treated on frontline Alliance for Clinical Trials in Oncology protocols. A validation cohort comprised 465 women and 489 men treated on frontline protocols of the German AML Cooperative Group. Compared with men, women more often had normal karyotype, FLT3-ITD, DNMT3A, NPM1 and WT1 mutations and less often complex karyotype, ASXL1, SRSF2, U2AF1, RUNX1, or KIT mutations. More women were in the 2022 European LeukemiaNet intermediate-risk group and more men in adverse-risk group. We found sex differences in co-occurring mutation patterns and prognostic impact of select genetic alterations. The mutation-associated splicing events and gene-expression profiles also differed between sexes. In patients aged <60 years, SF3B1 mutations were male-specific adverse outcome prognosticators. We conclude that sex differences in AML-associated genetic alterations and mutation-specific differential splicing events highlight the importance of patients' sex in analyses of AML biology and prognostication.
Collapse
Affiliation(s)
- Michael Ozga
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Deedra Nicolet
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA
- Alliance Statistics and Data Management Center, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Krzysztof Mrózek
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA.
| | - Ayse S Yilmaz
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA
| | - Jessica Kohlschmidt
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA
- Alliance Statistics and Data Management Center, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Karilyn T Larkin
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA
| | - James S Blachly
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA
| | - Christopher C Oakes
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA
| | - Jill Buss
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA
| | - Christopher J Walker
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA
| | - Shelley Orwick
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Vindi Jurinovic
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Maja Rothenberg-Thurley
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Annika Dufour
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Stephanie Schneider
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- Institute of Human Genetics, University Hospital, LMU Munich, Munich, Germany
| | | | - Dennis Görlich
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | - Utz Krug
- Department of Medicine 3, Klinikum Leverkusen, Leverkusen, Germany
| | - Wolfgang E Berdel
- Department of Medicine, Hematology and Oncology, University of Münster, Münster, Germany
| | | | - Wolfgang Hiddemann
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Braess
- Department of Oncology and Hematology, Hospital Barmherzige Brüder, Regensburg, Germany
| | - Marion Subklewe
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Karsten Spiekermann
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Andrew J Carroll
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Bayard L Powell
- Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Jonathan E Kolitz
- Monter Cancer Center, Hofstra Northwell School of Medicine, Lake Success, NY, USA
| | - Joseph O Moore
- Duke Cancer Institute, Duke University Health System, Durham, NC, USA
| | - Robert J Mayer
- Department of Medical Oncology, Dana-Farber/Partners CancerCare, Boston, MA, USA
| | | | - Geoffrey L Uy
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Wendy Stock
- University of Chicago Medical Center, Chicago, IL, USA
| | - Klaus H Metzeler
- Department of Hematology, Cellular Therapy, and Hemostaseology, Leipzig University Hospital, Leipzig, Germany
| | - H Leighton Grimes
- Division of Immunobiology, Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - John C Byrd
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Nathan Salomonis
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, OH, USA
| | - Tobias Herold
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Alice S Mims
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA
| | - Ann-Kathrin Eisfeld
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA.
| |
Collapse
|
12
|
Boucher L, Sorel N, Desterke C, Chollet M, Rozalska L, Gallego Hernanz MP, Cayssials E, Raimbault A, Bennaceur-Griscelli A, Turhan AG, Chomel JC. Deciphering Potential Molecular Signatures to Differentiate Acute Myeloid Leukemia (AML) with BCR::ABL1 from Chronic Myeloid Leukemia (CML) in Blast Crisis. Int J Mol Sci 2023; 24:15441. [PMID: 37895120 PMCID: PMC10607477 DOI: 10.3390/ijms242015441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Acute myeloid leukemia (AML) with BCR::ABL1 has recently been recognized as a distinct subtype in international classifications. Distinguishing it from myeloid blast crisis chronic myeloid leukemia (BC-CML) without evidence of a chronic phase (CP), remains challenging. We aimed to better characterize this entity by integrating clonal architecture analysis, mutational landscape assessment, and gene expression profiling. We analyzed a large retrospective cohort study including CML and AML patients. Two AML patients harboring a BCR::ABL1 fusion were included in the study. We identified BCR::ABL1 fusion as a primary event in one patient and a secondary one in the other. AML-specific variants were identified in both. Real-time RT-PCR experiments demonstrated that CD25 mRNA is overexpressed in advanced-phase CML compared to AML. Unsupervised principal component analysis showed that AML harboring a BCR::ABL1 fusion was clustered within AML. An AML vs. myeloid BC-CML differential expression signature was highlighted, and while ID4 (inhibitor of DNA binding 4) mRNA appears undetectable in most myeloid BC-CML samples, low levels are detected in AML samples. Therefore, CD25 and ID4 mRNA expression might differentiate AML with BCR::ABL1 from BC-CML and assign it to the AML group. A method for identifying this new WHO entity is then proposed. Finally, the hypothesis of AML with BCR::ABL1 arising from driver mutations on a BCR::ABL1 background behaving as a clonal hematopoiesis mutation is discussed. Validation of our data in larger cohorts and basic research are needed to better understand the molecular and cellular aspects of AML with a BCR::ABL1 entity.
Collapse
MESH Headings
- Humans
- Blast Crisis/genetics
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Retrospective Studies
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/genetics
- RNA, Messenger
Collapse
Affiliation(s)
- Lara Boucher
- CHU de Poitiers, Service de Cancérologie Biologique, F86000 Poitiers, France; (L.B.); (N.S.); (A.R.)
| | - Nathalie Sorel
- CHU de Poitiers, Service de Cancérologie Biologique, F86000 Poitiers, France; (L.B.); (N.S.); (A.R.)
| | - Christophe Desterke
- Faculté de Médecine, Université Paris Saclay, F94270 Le Kremlin-Bicêtre, France; (C.D.); (A.B.-G.); (A.G.T.)
| | - Mélanie Chollet
- CHU de Poitiers, Service d’Hématologie Biologique, F86000 Poitiers, France; (M.C.); (L.R.)
| | - Laura Rozalska
- CHU de Poitiers, Service d’Hématologie Biologique, F86000 Poitiers, France; (M.C.); (L.R.)
| | - Maria Pilar Gallego Hernanz
- CHU de Poitiers, Service d’Oncologie Hématologique et Thérapie Cellulaire, F86000 Poitiers, France; (M.P.G.H.); (E.C.)
- INSERM, CIC-P 1402, F86000 Poitiers, France
| | - Emilie Cayssials
- CHU de Poitiers, Service d’Oncologie Hématologique et Thérapie Cellulaire, F86000 Poitiers, France; (M.P.G.H.); (E.C.)
- INSERM, CIC-P 1402, F86000 Poitiers, France
| | - Anna Raimbault
- CHU de Poitiers, Service de Cancérologie Biologique, F86000 Poitiers, France; (L.B.); (N.S.); (A.R.)
- CHU de Poitiers, Service d’Hématologie Biologique, F86000 Poitiers, France; (M.C.); (L.R.)
| | - Annelise Bennaceur-Griscelli
- Faculté de Médecine, Université Paris Saclay, F94270 Le Kremlin-Bicêtre, France; (C.D.); (A.B.-G.); (A.G.T.)
- INSERM U1310, F94807 Villejuif, France
- INGESTEM-ESTeam Paris Sud, F94800 Villejuif, France
- Service d’Onco-Hématologie, Hôpital Paul Brousse, AP-HP Université Paris Saclay, F94804 Villejuif, France
- Service d’Hématologie, Hôpital Bicêtre, AP-HP Université Paris Saclay, F94270 Le Kremlin-Bicêtre, France
| | - Ali G. Turhan
- Faculté de Médecine, Université Paris Saclay, F94270 Le Kremlin-Bicêtre, France; (C.D.); (A.B.-G.); (A.G.T.)
- INSERM U1310, F94807 Villejuif, France
- INGESTEM-ESTeam Paris Sud, F94800 Villejuif, France
- Service d’Onco-Hématologie, Hôpital Paul Brousse, AP-HP Université Paris Saclay, F94804 Villejuif, France
- Service d’Hématologie, Hôpital Bicêtre, AP-HP Université Paris Saclay, F94270 Le Kremlin-Bicêtre, France
| | - Jean-Claude Chomel
- CHU de Poitiers, Service de Cancérologie Biologique, F86000 Poitiers, France; (L.B.); (N.S.); (A.R.)
- INSERM U1310, F94807 Villejuif, France
| |
Collapse
|
13
|
Byrd JC, Gatz JL, Louis CL, Mims AS, Borate U, Yocum AO, Gana TJ, Burd A. Real-world genomic testing and treatment patterns of newly diagnosed adult acute myeloid leukemia patients within a comprehensive health system. Cancer Med 2023; 12:18368-18380. [PMID: 37635639 PMCID: PMC10524030 DOI: 10.1002/cam4.6442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/30/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND We evaluated the frequency of genomic testing and treatment patterns by age category in patients with newly diagnosed (ND) acute myeloid leukemia (AML) treated in both academic- and community-based health systems within a single Midwestern State. METHODS Retrospective analysis of data from the Indiana University Health System Enterprise Data Warehouse and two local cancer registries, of 629 patients aged ≥18 years with ND AML during 2011-2018. Primary outcome variables were, proportion of patients with genomic analysis and frequency of mutations. Chemotherapy was categorized as "standard induction" or "other chemotherapy"/targeted therapy, and hypomethylating agents. RESULTS Overall, 13% of ND AML patients between 2011 and 2018 had evidence of a genomic sequencing report with a demonstrated increase to 37% since 2016. Genomic testing was more likely performed in patients: aged ≤60 years than >60 years (45% vs. 30%; p = 0.03), treated in academic versus community hospitals (44% vs. 26%; p = 0.01), and in chemotherapy recipients than non-therapy recipients (46% vs. 19%; p < 0.001). Most common mutations were ASXL1, NPM1, and FLT3. Patients ≥75 years had highest proportion (46%) of multiple (≥3) mutations. Overall, 31.2% of patients with AML did not receive any therapy for their disease. This subgroup was older than chemotherapy recipients (mean age: 71.4 vs. 55.7 years, p < 0.001), and was highest (66.2%) in patients ≥75 years. CONCLUSIONS Our results highlight the unmet medical need to increase access to genomic testing to afford treatment options, particularly to older AML patients in the real-world setting, in this new era of targeted therapies.
Collapse
Affiliation(s)
- John C. Byrd
- University of Cincinnati College of MedicineCincinnatiOhioUSA
| | | | | | | | - Uma Borate
- The Ohio State UniversityColumbusOhioUSA
| | | | | | - Amy Burd
- The Leukemia and Lymphoma SocietyRye BrookNew YorkUSA
| |
Collapse
|
14
|
Bhatnagar B, Kohlschmidt J, Orwick SJ, Buelow DR, Fobare S, Oakes CC, Kolitz JE, Uy G, Stock W, Powell BL, Nicolet D, Hertlein EK, Mrózek K, Blachly JS, Eisfeld AK, Baker SD, Byrd JC. Framework of clonal mutations concurrent with WT1 mutations in adults with acute myeloid leukemia: Alliance for Clinical Trials in Oncology study. Blood Adv 2023; 7:4671-4675. [PMID: 37603350 PMCID: PMC10448419 DOI: 10.1182/bloodadvances.2023010482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023] Open
Affiliation(s)
- Bhavana Bhatnagar
- Department of Hematology and Medical Oncology, West Virginia University Cancer Institute, Wheeling Hospital, Wheeling, WV
| | - Jessica Kohlschmidt
- Alliance Statistics and Data Management Center, The Ohio State University, Columbus, OH
| | - Shelley J. Orwick
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH
| | - Daelynn R. Buelow
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH
| | - Sydney Fobare
- Department of Internal Medicine, Medical Student Training Program, College of Medicine, The Ohio State University, Columbus, OH
- Division of Hematology-Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Christopher C. Oakes
- Clara D. Bloomfield Center, The Ohio State Comprehensive Cancer Center, Columbus, OH
| | | | - Geoff Uy
- Division of Oncology, Department of Medicine, Washington University, St. Louis, MO
| | - Wendy Stock
- Division of Hematology-Oncology, Department of Internal Medicine, University of Chicago, Chicago, IL
| | - Bayard L. Powell
- Division of Hematology-Oncology, Department of Internal Medicine, Wake Forest University Health System, Winston-Salem, NC
| | - Deedra Nicolet
- Alliance Statistics and Data Management Center, The Ohio State University, Columbus, OH
| | - Erin K. Hertlein
- Division of Hematology-Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Krzysztof Mrózek
- Clara D. Bloomfield Center, The Ohio State Comprehensive Cancer Center, Columbus, OH
| | - James S. Blachly
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH
| | - Ann-Kathrin Eisfeld
- Clara D. Bloomfield Center, The Ohio State Comprehensive Cancer Center, Columbus, OH
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH
| | - Sharyn D. Baker
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH
| | - John C. Byrd
- Division of Hematology-Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
15
|
Rebechi M, Kohlschmidt J, Mrózek K, Nicolet D, Mims AS, Blachly JS, Orwick S, Larkin KT, Oakes CC, Hantel A, Carroll AJ, Blum WG, Powell BL, Uy GL, Stone RM, Larson RA, Byrd JC, Paskett ED, Plascak JJ, Eisfeld AK. Association of social deprivation with survival in younger adult patients with AML: an Alliance study. Blood Adv 2023; 7:4019-4023. [PMID: 37196637 PMCID: PMC10425796 DOI: 10.1182/bloodadvances.2022009325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/29/2022] [Indexed: 05/19/2023] Open
Affiliation(s)
- Melanie Rebechi
- Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Jessica Kohlschmidt
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Alliance Statistics and Data Management Center, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Krzysztof Mrózek
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Deedra Nicolet
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Alliance Statistics and Data Management Center, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Alice S. Mims
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - James S. Blachly
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Shelley Orwick
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Karilyn T. Larkin
- Department of Internal Medicine, The Ohio State University, Columbus, OH
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Christopher C. Oakes
- Department of Internal Medicine, The Ohio State University, Columbus, OH
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Andrew Hantel
- Department of Medical Oncology, Dana-Farber/Partners CancerCare, Boston, MA
| | - Andrew J. Carroll
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - William G. Blum
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Bayard L. Powell
- Department of Internal Medicine, Section on Hematology and Oncology, Comprehensive Cancer Center of Wake Forest Baptist Health, Winston-Salem, NC
| | - Geoffrey L. Uy
- Division of Oncology, Washington University School of Medicine, St. Louis, MO
| | - Richard M. Stone
- Department of Medical Oncology, Dana-Farber/Partners CancerCare, Boston, MA
| | | | - John C. Byrd
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH
| | - Electra D. Paskett
- Division of Cancer Prevention and Control, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Jesse J. Plascak
- Division of Cancer Prevention and Control, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Ann-Kathrin Eisfeld
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| |
Collapse
|
16
|
Mrózek K, Kohlschmidt J, Blachly JS, Nicolet D, Carroll AJ, Archer KJ, Mims AS, Larkin KT, Orwick S, Oakes CC, Kolitz JE, Powell BL, Blum WG, Marcucci G, Baer MR, Uy GL, Stock W, Byrd JC, Eisfeld AK. Outcome prediction by the 2022 European LeukemiaNet genetic-risk classification for adults with acute myeloid leukemia: an Alliance study. Leukemia 2023; 37:788-798. [PMID: 36823396 PMCID: PMC10079544 DOI: 10.1038/s41375-023-01846-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/25/2023]
Abstract
Recently, the European LeukemiaNet (ELN) revised its genetic-risk classification of acute myeloid leukemia (AML). We categorized 1637 adults with AML treated with cytarabine/anthracycline regimens according to the 2022 and 2017 ELN classifications. Compared with the 2017 ELN classification, 2022 favorable group decreased from 40% to 35% and adverse group increased from 37% to 41% of patients. The 2022 genetic-risk groups seemed to accurately reflect treatment outcomes in all patients and patients aged <60 years, but in patients aged ≥60 years, relapse rates, disease-free (DFS) and overall (OS) survival were not significantly different between intermediate and adverse groups. In younger African-American patients, DFS and OS did not differ between intermediate-risk and adverse-risk patients nor did DFS between favorable and intermediate groups. In Hispanic patients, DFS and OS did not differ between favorable and intermediate groups. Outcome prediction abilities of 2022 and 2017 ELN classifications were similar. Among favorable-risk patients, myelodysplasia-related mutations did not affect patients with CEBPAbZIP mutations or core-binding factor AML, but changed risk assignment of NPM1-mutated/FLT3-ITD-negative patients to intermediate. NPM1-mutated patients with adverse-risk cytogenetic abnormalities were closer prognostically to the intermediate than adverse group. Our analyses both confirm and challenge prognostic significance of some of the newly added markers.
Collapse
Grants
- UG1 CA233180 NCI NIH HHS
- U10 CA180821 NCI NIH HHS
- UG1 CA189850 NCI NIH HHS
- P30 CA033572 NCI NIH HHS
- UG1 CA233247 NCI NIH HHS
- R35 CA197734 NCI NIH HHS
- UG1 CA233339 NCI NIH HHS
- P50 CA140158 NCI NIH HHS
- UG1 CA233331 NCI NIH HHS
- U10 CA180882 NCI NIH HHS
- UG1 CA233338 NCI NIH HHS
- U24 CA196171 NCI NIH HHS
- P30 CA016058 NCI NIH HHS
- UG1 CA233327 NCI NIH HHS
- Leukemia and Lymphoma Society (Leukemia & Lymphoma Society)
- Aptevo, Daiichi Sankyo, Glycomemetics, Kartos Pharmaceuticals, Xencor and Genentech
- U.S. Department of Health & Human Services | NIH | NCI | Division of Cancer Epidemiology and Genetics, National Cancer Institute (National Cancer Institute Division of Cancer Epidemiology and Genetics)
- BLP is a consultant for Cornerstone Pharmaceuticals and reported research funding from Ambit Biosciences, Cornerstone, Genentech, Hoffman LaRoche, Jazz Pharmaceuticals, Novartis and Pfizer.
- WGB reported honoraria from Abbvie, Syndax, and AmerisourceBergen and research funding from Celyad Oncology, Nkarta, Xencor, Forma Therapeutics and Leukemia and Lymphoma Society.
- Agios Savvas Regional Cancer Hospital
- GLU is a consultant for AbbVie, Agios, Jazz, GlaxoSmithKline, Genentech, and Novartis; reported honoraria from Astellas and research funding from Macrogenics.
- JCB consults for Astellas, AstraZeneca, Novartis, Pharmacyclics, Syndax and Trillium; receives honoraria from Astellas, AstraZeneca, Novartis, Pharmacyclics, Syndax and Trillium; he is a Chairman of the Scientific Advisory Board of Vincerx Pharmaceuticals and a member of advisory committee of Newave; and is a current equity holder of Vincerx Pharmaceuticals.
- U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- American Cancer Society (American Cancer Society, Inc.)
- Leukemia Research Foundation (LRF)
- Pelotonia
Collapse
Affiliation(s)
- Krzysztof Mrózek
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
| | - Jessica Kohlschmidt
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Alliance Statistics and Data Management Center, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - James S Blachly
- The Ohio State University, Department of Internal Medicine, Columbus, OH, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Deedra Nicolet
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Alliance Statistics and Data Management Center, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Andrew J Carroll
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kellie J Archer
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Alice S Mims
- The Ohio State University, Department of Internal Medicine, Columbus, OH, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Karilyn T Larkin
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- The Ohio State University, Department of Internal Medicine, Columbus, OH, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Shelley Orwick
- The Ohio State University, Department of Internal Medicine, Columbus, OH, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Christopher C Oakes
- The Ohio State University, Department of Internal Medicine, Columbus, OH, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Jonathan E Kolitz
- Monter Cancer Center, Hofstra Northwell School of Medicine, Lake Success, NY, USA
| | - Bayard L Powell
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | | | - Guido Marcucci
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Maria R Baer
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Geoffrey L Uy
- Washington University School of Medicine, St. Louis, MO, USA
| | - Wendy Stock
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - John C Byrd
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Ann-Kathrin Eisfeld
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
- The Ohio State University, Department of Internal Medicine, Columbus, OH, USA.
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
17
|
Lasry A, Nadorp B, Fornerod M, Nicolet D, Wu H, Walker CJ, Sun Z, Witkowski MT, Tikhonova AN, Guillamot-Ruano M, Cayanan G, Yeaton A, Robbins G, Obeng EA, Tsirigos A, Stone RM, Byrd JC, Pounds S, Carroll WL, Gruber TA, Eisfeld AK, Aifantis I. An inflammatory state remodels the immune microenvironment and improves risk stratification in acute myeloid leukemia. NATURE CANCER 2023; 4:27-42. [PMID: 36581735 PMCID: PMC9986885 DOI: 10.1038/s43018-022-00480-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 11/04/2022] [Indexed: 12/31/2022]
Abstract
Acute myeloid leukemia (AML) is a hematopoietic malignancy with poor prognosis and limited treatment options. Here we provide a comprehensive census of the bone marrow immune microenvironment in adult and pediatric patients with AML. We characterize unique inflammation signatures in a subset of AML patients, associated with inferior outcomes. We identify atypical B cells, a dysfunctional B-cell subtype enriched in patients with high-inflammation AML, as well as an increase in CD8+GZMK+ and regulatory T cells, accompanied by a reduction in T-cell clonal expansion. We derive an inflammation-associated gene score (iScore) that associates with poor survival outcomes in patients with AML. Addition of the iScore refines current risk stratifications for patients with AML and may enable identification of patients in need of more aggressive treatment. This work provides a framework for classifying patients with AML based on their immune microenvironment and a rationale for consideration of the inflammatory state in clinical settings.
Collapse
Affiliation(s)
- Audrey Lasry
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Bettina Nadorp
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
- Applied Bioinformatics Laboratories, New York University School of Medicine, New York, NY, USA
| | - Maarten Fornerod
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Deedra Nicolet
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA
- Alliance Statistics and Data Center, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Huiyun Wu
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Christopher J Walker
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA
- Alliance Statistics and Data Center, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Zhengxi Sun
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Matthew T Witkowski
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Anastasia N Tikhonova
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Maria Guillamot-Ruano
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Geraldine Cayanan
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Anna Yeaton
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Gabriel Robbins
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Esther A Obeng
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Aristotelis Tsirigos
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
- Applied Bioinformatics Laboratories, New York University School of Medicine, New York, NY, USA
| | - Richard M Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - John C Byrd
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - William L Carroll
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Tanja A Gruber
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| | - Ann-Kathrin Eisfeld
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA.
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, USA.
| | - Iannis Aifantis
- Department of Pathology, New York University School of Medicine, New York, NY, USA.
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
18
|
Zhou Q, Zhao D, Eladl E, Capo-Chichi JM, Kim DDH, Chang H. Molecular genetic characterization of Philadelphia chromosome-positive acute myeloid leukemia. Leuk Res 2023; 124:107002. [PMID: 36563650 DOI: 10.1016/j.leukres.2022.107002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Philadelphia chromosome-positive acute myeloid leukemia (Ph+ AML) is a provisional disease entity in the 2016 WHO classification, while its genetic profile of Ph+ AML remains poorly defined. In addition, the differentiating features of Ph+ AML and chronic myeloid leukemia in myeloid blast crisis (CML-MBC) remain controversial. METHODS We conducted a retrospective study of 15 Ph+ AML patients to compare their clinical and laboratory profiles with 27 CML-MBC patients. RESULTS Compared to CML-MBC, Ph+ AML patients presented with significantly higher peripheral WBC count and bone marrow blast percentage. The immunophenotypic profiles were largely similar between Ph+ AML and CML-MBC, except for CD4 expression, which was significantly enriched in CML-MBC. Ph+ AML patients less frequently harboured co-occurring additional cytogenetic abnormalities (ACA) compared to CML-MBC, and trisomy 19 (23%) and IDH1/2 (46%) were the most common ACA and mutated genes in Ph+ AML, respectively. Overall survival (OS) did not significantly differ between Ph+ AML and CML-MBC. Ph+ AML without CML-like features appeared to have a better outcome compared to Ph+ AML with CML-like features; ACA in Ph+ AML may confer an even worse prognosis. CONCLUSIONS Our results indicate that patients with Ph+ AML share similar genetic profiles and clinical outcomes with those with CML-MBC, thus should be classified as a high-risk entity.
Collapse
Affiliation(s)
- Qianghua Zhou
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Haematology, University Health Network, Toronto, Ontario, Canada
| | - Davidson Zhao
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Entsar Eladl
- Department of Laboratory Haematology, University Health Network, Toronto, Ontario, Canada; Pathology Department, Mansoura University, Egypt
| | - Jose-Mario Capo-Chichi
- Clinical Laboratory Genetics, Genome Diagnostics Laboratory Medicine Program, University of Toronto, Toronto, Ontario, Canada
| | - Dennis Dong Hwan Kim
- Department of Medical Oncology and Haematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Hong Chang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Haematology, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
19
|
Larkin KT, Nicolet D, Kelly BJ, Mrózek K, LaHaye S, Miller KE, Wijeratne S, Wheeler G, Kohlschmidt J, Blachly JS, Mims AS, Walker CJ, Oakes CC, Orwick S, Boateng I, Buss J, Heyrosa A, Desai H, Carroll AJ, Blum W, Powell BL, Kolitz JE, Moore JO, Mayer RJ, Larson RA, Stone RM, Paskett ED, Byrd JC, Mardis ER, Eisfeld AK. High early death rates, treatment resistance, and short survival of Black adolescents and young adults with AML. Blood Adv 2022; 6:5570-5581. [PMID: 35788257 PMCID: PMC9577622 DOI: 10.1182/bloodadvances.2022007544] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/20/2022] [Indexed: 11/20/2022] Open
Abstract
Survival of patients with acute myeloid leukemia (AML) is inversely associated with age, but the impact of race on outcomes of adolescent and young adult (AYA; range, 18-39 years) patients is unknown. We compared survival of 89 non-Hispanic Black and 566 non-Hispanic White AYA patients with AML treated on frontline Cancer and Leukemia Group B/Alliance for Clinical Trials in Oncology protocols. Samples of 327 patients (50 Black and 277 White) were analyzed via targeted sequencing. Integrated genomic profiling was performed on select longitudinal samples. Black patients had worse outcomes, especially those aged 18 to 29 years, who had a higher early death rate (16% vs 3%; P=.002), lower complete remission rate (66% vs 83%; P=.01), and decreased overall survival (OS; 5-year rates: 22% vs 51%; P<.001) compared with White patients. Survival disparities persisted across cytogenetic groups: Black patients aged 18 to 29 years with non-core-binding factor (CBF)-AML had worse OS than White patients (5-year rates: 12% vs 44%; P<.001), including patients with cytogenetically normal AML (13% vs 50%; P<.003). Genetic features differed, including lower frequencies of normal karyotypes and NPM1 and biallelic CEBPA mutations, and higher frequencies of CBF rearrangements and ASXL1, BCOR, and KRAS mutations in Black patients. Integrated genomic analysis identified both known and novel somatic variants, and relative clonal stability at relapse. Reduced response rates to induction chemotherapy and leukemic clone persistence suggest a need for different treatment intensities and/or modalities in Black AYA patients with AML. Higher early death rates suggest a delay in diagnosis and treatment, calling for systematic changes to patient care.
Collapse
Affiliation(s)
- Karilyn T. Larkin
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Deedra Nicolet
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Alliance Statistics and Data Center, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Benjamin J. Kelly
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH
| | - Krzysztof Mrózek
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Stephanie LaHaye
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH
| | - Katherine E. Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH
| | - Saranga Wijeratne
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH
| | - Gregory Wheeler
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH
| | - Jessica Kohlschmidt
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Alliance Statistics and Data Center, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - James S. Blachly
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Alice S. Mims
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Christopher J. Walker
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Christopher C. Oakes
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Shelley Orwick
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Isaiah Boateng
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Jill Buss
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Adrienne Heyrosa
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Helee Desai
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Andrew J. Carroll
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - William Blum
- Emory University School of Medicine, Atlanta, GA
| | - Bayard L. Powell
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC
| | - Jonathan E. Kolitz
- Monter Cancer Center, Hofstra Northwell School of Medicine, Lake Success, NY
| | - Joseph O. Moore
- Duke Cancer Institute, Duke University Medical Center, Durham, NC
| | - Robert J. Mayer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | | | - Richard M. Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Electra D. Paskett
- Division of Cancer Prevention and Control, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
- The Center for Cancer Health Equity, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - John C. Byrd
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH
| | - Elaine R. Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH
| | - Ann-Kathrin Eisfeld
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| |
Collapse
|
20
|
Saadi MI, Tahmasebijaroubi F, Noshadi E, Rahimikian R, Karimi Z, Owjfard M, Niknam A, Abdolyousefi EN, Salek S, Tabrizi R, Jamali E. Dysregulated Expression of MiR-19b, MiR-25, MiR-17, WT1, and CEBPA in Patients with Acute Myeloid Leukemia and Association with Graft versus Host Disease after Hematopoietic Stem Cell Transplantation. South Asian J Cancer 2022; 11:346-352. [PMID: 36756106 PMCID: PMC9902101 DOI: 10.1055/s-0042-1742593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Elham JamaliObjectives Acute myeloid leukemia (AML) is a blood malignancy characterized by the proliferation of aberrant cells in the bone marrow and blood that interfere with normal blood cells. We have investigated whether changes in the level of micro-ribonucleic acid (miR)-19b, miR-17, and miR-25, Wilms' tumor (WT1), and CCAAT enhancer-binding protein α (CEBPA) genes expression affect disease prognosis and clinical outcome in AML patients. Materials and Methods The expression level of miR-19-b, miR-17, and miR-25, as well as WT1 and CEBPA genes in a group of patients and controls as well as different risk groups (high, intermediate, and favorite risk), M3 versus non-M3, and graft-versus-host disease (GvHD) versus non-GvHD patients were assessed using a quantitative SYBR Green real-time polymerase chain reaction method. Results When compared with the baseline level at the period of diagnosis before chemotherapy, the expression of miR-19b and miR-17 in AML patients increased significantly after chemotherapy. The level of miR-19b and miR-25 expression in AML patients with M3 and non-M3 French-American-British subgroups differ significantly. MiR-19b and miR-25 expression was elevated in GvHD patients, while miR-19b and miR-25 expression was somewhat decreased in GvHD patients compared with non-GvHD patients, albeit the difference was not statistically significant. Also, patients with different cytogenetic aberrations had similar levels of miR-19-b and miR-25 expression. Conclusion MiR-19b, miR-17, and miR-25 are aberrantly expressed in AML patients' peripheral blood leukocytes, which may play a role in the development of acute GvHD following hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
| | | | - Esmat Noshadi
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Raha Rahimikian
- Department of Biochemistry, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Zahed Karimi
- Hematology and Oncology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran,Shiraz University of Applied Science and Technology (UAST), Shiraz, Iran,Address for correspondence Elham Jamali, MSc Hematology Research Center and Department of Bone Marrow Transplantation, Shiraz University of Medical SciencesShirazIran
| | - Ahmad Niknam
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Sanaz Salek
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Tabrizi
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran,Non Communicable Diseases Research Center (NCDC), Fasa University of Medical Sciences, Fasa, Iran
| | - Elham Jamali
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran,Address for correspondence Elham Jamali, MSc Hematology Research Center and Department of Bone Marrow Transplantation, Shiraz University of Medical SciencesShirazIran
| |
Collapse
|
21
|
Yang J, Chen B. Therapy‑related acute myeloid leukemia: A case series. Oncol Lett 2022; 23:171. [PMID: 35497938 PMCID: PMC9019864 DOI: 10.3892/ol.2022.13291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/31/2022] [Indexed: 11/25/2022] Open
Abstract
Patients with primary cancer receiving chemotherapy and/or radiotherapy may develop therapy-related acute leukemia (t-AL). Therapy-related acute myeloid leukemia (t-AML) accounts for the majority of these cases and is frequently associated with a variety of cytogenetic and molecular abnormalities. The aim of the present study was to explore the clinical characteristics, treatments and prognosis of patients with t-AML. A total of 272 cases of AML treated at our institution between 2016 and 2020 were reviewed, among which nine cases of t-AML were identified for analysis. All patients had received alkylating or topoisomerase II inhibitor chemotherapy drugs for primary cancer treatment and three patients had received radiotherapy. A total of nine patients had been administered recombinant human granulocyte colony-stimulating factor (G-CSF). The median latency period for the nine patients with t-AML was 25 months (range, 10–240 months). The molecular cytogenetic abnormalities included t(15:17)(q22:q21), inv(16)(p13q22), del(5)(q22), CBFB/MYH11(+), FLT3(+), NARS(+), IDH(+), TET2(+), and TP53(+). Out of nine patients with t-AML, eight received chemotherapy, two of whom underwent HSCT. The median survival time of the nine patients with t-AML was 10 months and the 2-year-survival rate was 44.4%. Greater clarity around the diagnosis and treatment is required to improve the outcomes of patients with t-AML.
Collapse
Affiliation(s)
- Jie Yang
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
22
|
European LeukemiaNet 2017 risk stratification for acute myeloid leukemia: validation in a risk-adapted protocol. Blood Adv 2021; 6:1193-1206. [PMID: 34911079 PMCID: PMC8864653 DOI: 10.1182/bloodadvances.2021005585] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/08/2021] [Indexed: 11/20/2022] Open
Abstract
The ELN 2017 classification has been validated in a risk-adapted intensive protocol, supporting its utility to predict outcome. Within the ELN 2017 adverse group, there is a subset of patients (inv(3) and TP53 abnormalities) with a particularly poor prognosis.
The 2017 European LeukemiaNet (ELN 2017) guidelines for the diagnosis and management of acute myeloid leukemia (AML) have become fundamental guidelines to assess the prognosis and postremission therapy of patients. However, they have been retrospectively validated in few studies with patients included in different treatment protocols. We analyzed 861 patients included in the Cooperativo Para el Estudio y Tratamiento de las Leucemias Agudas y Mielodisplasias-12 risk-adapted protocol, which indicates cytarabine-based consolidation for patients allocated to the ELN 2017 favorable-risk group, whereas it recommends allogeneic stem cell transplantation (alloSCT) as a postremission strategy for the ELN 2017 intermediate- and adverse-risk groups. We retrospectively classified patients according to the ELN 2017, with 327 (48%), 109 (16%), and 245 (36%) patients allocated to the favorable-, intermediate-, and adverse-risk group, respectively. The 2- and 5-year overall survival (OS) rates were 77% and 70% for favorable-risk patients, 52% and 46% for intermediate-risk patients, and 33% and 23% for adverse-risk patients, respectively. Furthermore, we identified a subgroup of patients within the adverse group (inv(3)/t(3;3), complex karyotype, and/or TP53 mutation/17p abnormality) with a particularly poor outcome, with a 2-year OS of 15%. Our study validates the ELN 2017 risk stratification in a large cohort of patients treated with an ELN-2017 risk-adapted protocol based on alloSCT after remission for nonfavorable ELN subgroups and identifies a genetic subset with a very poor outcome that warrants investigation of novel strategies.
Collapse
|
23
|
Benard BA, Leak LB, Azizi A, Thomas D, Gentles AJ, Majeti R. Clonal architecture predicts clinical outcomes and drug sensitivity in acute myeloid leukemia. Nat Commun 2021; 12:7244. [PMID: 34903734 PMCID: PMC8669028 DOI: 10.1038/s41467-021-27472-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/17/2021] [Indexed: 12/17/2022] Open
Abstract
The impact of clonal heterogeneity on disease behavior or drug response in acute myeloid leukemia remains poorly understood. Using a cohort of 2,829 patients, we identify features of clonality associated with clinical features and drug sensitivities. High variant allele frequency for 7 mutations (including NRAS and TET2) associate with dismal prognosis; elevated GATA2 variant allele frequency correlates with better outcomes. Clinical features such as white blood cell count and blast percentage correlate with the subclonal abundance of mutations such as TP53 and IDH1. Furthermore, patients with cohesin mutations occurring before NPM1, or transcription factor mutations occurring before splicing factor mutations, show shorter survival. Surprisingly, a branched pattern of clonal evolution is associated with superior clinical outcomes. Finally, several mutations (including NRAS and IDH1) predict drug sensitivity based on their subclonal abundance. Together, these results demonstrate the importance of assessing clonal heterogeneity with implications for prognosis and actionable biomarkers for therapy.
Collapse
Affiliation(s)
- Brooks A Benard
- Department of Medicine, Division of Hematology, Cancer Institute, Stanford University, Stanford, CA, USA
- Cancer Biology Program, Stanford University, Stanford, CA, USA
| | - Logan B Leak
- Cancer Biology Program, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Armon Azizi
- Department of Medicine, Division of Hematology, Cancer Institute, Stanford University, Stanford, CA, USA
| | - Daniel Thomas
- Department of Medicine, Division of Hematology, Cancer Institute, Stanford University, Stanford, CA, USA
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Andrew J Gentles
- Department of Medicine (Biomedical Informatics/Quantitative Sciences unit), Stanford University, Stanford, CA, USA
| | - Ravindra Majeti
- Department of Medicine, Division of Hematology, Cancer Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
24
|
Racial and ethnic survival disparities in patients with haematological malignancies in the USA: time to stop ignoring the numbers. THE LANCET HAEMATOLOGY 2021; 8:e947-e954. [DOI: 10.1016/s2352-3026(21)00303-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/05/2021] [Accepted: 09/21/2021] [Indexed: 12/17/2022]
|
25
|
Molecular associations, clinical, and prognostic implications of PTPN11 mutations in acute myeloid leukemia (Alliance). Blood Adv 2021; 6:1371-1380. [PMID: 34847232 PMCID: PMC8905707 DOI: 10.1182/bloodadvances.2021006242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/10/2021] [Indexed: 12/04/2022] Open
Abstract
Patients with N-terminal SH2 domain PTPN11 mutations had an early death (<30 days) more often than those with phosphatase domain mutations. PTPN11 mutations are associated with inferior outcomes in AML patients with wild-type NPM1.
Prognostic factors associated with chemotherapy outcomes in patients with acute myeloid leukemia (AML) are extensively reported, and one gene whose mutation is recognized as conferring resistance to several newer targeted therapies is protein tyrosine phosphatase non-receptor type 11 (PTPN11). The broader clinical implications of PTPN11 mutations in AML are still not well understood. The objective of this study was to determine which cytogenetic abnormalities and gene mutations co-occur with PTPN11 mutations and how PTPN11 mutations affect outcomes of patients treated with intensive chemotherapy. We studied 1725 patients newly diagnosed with AML (excluding acute promyelocytic leukemia) enrolled onto the Cancer and Leukemia Group B/Alliance for Clinical Trials in Oncology trials. In 140 PTPN11-mutated patient samples, PTPN11 most commonly co-occurred with mutations in NPM1, DNMT3A, and TET2. PTPN11 mutations were relatively common in patients with an inv(3)(q21q26)/t(3;3)(q21;q26) and a normal karyotype but were very rare in patients with typical complex karyotype and core-binding factor AML. Mutations in the N-terminal SH2 domain of PTPN11 were associated with a higher early death rate than those in the phosphatase domain. PTPN11 mutations did not affect outcomes of NPM1-mutated patients, but these patients were less likely to have co-occurring kinase mutations (ie, FLT3-ITD), suggesting activation of overlapping signaling pathways. However, in AML patients with wild-type NPM1, PTPN11 mutations were associated with adverse patient outcomes, providing a rationale to study the biology and treatment approaches in this molecular group. This trial was registered at www.clinicaltrials.gov as #NCT00048958 (CALGB 8461), #NCT00899223 (CALGB 9665), and #NCT00900224 (CALGB 20202).
Collapse
|
26
|
Wen XM, Xu ZJ, Jin Y, Xia PH, Ma JC, Qian W, Lin J, Qian J. Association Analyses of TP53 Mutation With Prognosis, Tumor Mutational Burden, and Immunological Features in Acute Myeloid Leukemia. Front Immunol 2021; 12:717527. [PMID: 34745095 PMCID: PMC8566372 DOI: 10.3389/fimmu.2021.717527] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/27/2021] [Indexed: 12/28/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease related to a broad spectrum of molecular alterations. The successes of immunotherapies treating solid tumors and a deeper understanding of the immune systems of patients with hematologic malignancies have promoted the development of immunotherapies for the treatment of AML. And high tumor mutational burden (TMB) is an emerging predictive biomarker for response to immunotherapy. However, the association of gene mutation in AML with TMB and immunological features still has not been clearly elucidated. In our study, based on The Cancer Genome Atlas (TCGA) and BeatAML cohorts, 20 frequently mutated genes were found to be covered by both datasets in AML. And TP53 mutation was associated with a poor prognosis, and its mutation displayed exclusiveness with other common mutated genes in both datasets. Moreover, TP53 mutation correlated with TMB and the immune microenvironment. Gene Set Enrichment Analysis (GSEA) showed that TP53 mutation upregulated signaling pathways involved in the immune system. In summary, TP53 mutation is frequently mutated in AML, and its mutation is associated with dismal outcome, TMB, and immunological features, which may serve as a biomarker to predict immune response in AML.
Collapse
Affiliation(s)
- Xiang-Mei Wen
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,Zhenjiang Clinical Research Center of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Zi-Jun Xu
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,Zhenjiang Clinical Research Center of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Ye Jin
- Zhenjiang Clinical Research Center of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Pei-Hui Xia
- Zhenjiang Clinical Research Center of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Ji-Chun Ma
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,Zhenjiang Clinical Research Center of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Wei Qian
- Department of Otolaryngology-Head and Neck Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Jiang Lin
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,Zhenjiang Clinical Research Center of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Jun Qian
- Zhenjiang Clinical Research Center of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
27
|
Mims AS. Updates in the Management of Newly Diagnosed Acute Myeloid Leukemia. J Natl Compr Canc Netw 2021. [DOI: 10.6004/jnccn.2021.5101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
For patients with newly diagnosed acute myeloid leukemia (AML) who are candidates for intensive induction regimens, all therapies include anthracycline- and cytarabine-based backbones. Core-binding factor AML is typically treated with gemtuzumab ozogamicin and 7 + 3 chemotherapy. Patients with FLT3-mutated (ITD or TKD) disease should have midostaurin + 7 + 3 and consolidation, and those with secondary or therapy-related AML should be considered for CPX-351. For patients ineligible for intensive induction regimens, venetoclax has changed the game and should be used in combination with hypomethylating agents or cytarabine. Glasdegib is also approved in combination with low-dose cytarabine. Patients with IDH1/2-mutated disease can be treated with ivosidenib and enasidenib, respectively. Although enasidenib has yet to secure its spot in the up-front setting, data support its use in newly diagnosed AML. An ongoing question in the field concerns how to treat patients with TP53-mutated AML, because most patients do not respond well to currently available therapies and continue to have poor overall outcomes.
Collapse
|
28
|
Targeted Therapies for the Evolving Molecular Landscape of Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13184646. [PMID: 34572873 PMCID: PMC8471378 DOI: 10.3390/cancers13184646] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/13/2021] [Indexed: 01/09/2023] Open
Abstract
Despite considerable growth in our understanding of the heterogeneous biology and pathogenesis of acute myeloid leukemia (AML) in recent decades, for nearly forty years, little progress was gained in the realm of novel therapeutics. Since 2017, however, nine agents have been FDA-approved for patients with AML in both the upfront and relapsed/refractory (R/R) settings. Most of these compounds function as inhibitors of key cell cycle enzymatic pathways or mediators of leukemic proliferation and survival. They have been approved both as single agents and in combination with conventional or reduced-intensity conventional chemotherapeutics. In this article, we review the molecular landscape of de novo vs. R/R AML and highlight the potential translational impact of defined molecular disease subsets. We also highlight several recent agents that have entered the therapeutic armamentarium and where they fit in the AML treatment landscape, with a focus on FLT3 inhibitors, IDH1 and IDH2 inhibitors, and venetoclax. Finally, we close with a survey of two promising novel agents under investigation that are poised to enter the mainstream clinical arena in the near future.
Collapse
|
29
|
Li X, Xu F, Zhang Z, Guo J, He Q, Song LX, Wu D, Zhou LY, Su JY, Xiao C, Chang CK, Wu LY. Dynamics of epigenetic regulator gene BCOR mutation and response predictive value for hypomethylating agents in patients with myelodysplastic syndrome. Clin Epigenetics 2021; 13:169. [PMID: 34461985 PMCID: PMC8404357 DOI: 10.1186/s13148-021-01157-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/23/2021] [Indexed: 12/02/2022] Open
Abstract
Background BCOR (BCL6 corepressor) is an epigenetic regulator gene involved in the specification of cell differentiation and body structure development. Recurrent somatic BCOR mutations have been identified in myelodysplastic syndrome (MDS). However, the clinical impact of BCOR mutations on MDS prognosis is controversial and the response of hypomethylating agents in MDS with BCOR mutations (BCORMUT) remains unknown. Results Among 676 MDS patients, 43 patients (6.4%) harbored BCOR mutations. A higher frequency of BCOR mutations (8.7%) was investigated in patients with normal chromosome, compared to 4.2% in patients with abnormal karyotype (p = 0.040). Compared to the BCORWT patients, the BCORMUT patients showed a higher ratio of refractory anemia with excess blasts subset (p = 0.008). The most common comutations with BCOR genes were ASXL1 (p = 0.002), DNMT3A (p = 0.114) and TET2 (p = 0.148). When the hierarchy of somatic mutations was analyzed, BCOR mutations were below the known initial mutations (ASXL1 or TET2) but were above U2AF1 mutations. Transformation-free survival was significantly shorter in BCORMUT patients than that in BCORWT patients (16 vs. 35 months; p = 0.035). RNA-sequencing was performed in bone marrow mononuclear cells from BCORMUT and BCORWT patients and revealed 2030 upregulated and 772 downregulated genes. Importantly, HOXA6, HOXB7, and HOXB9 were significantly over-expressed in BCORMUT patients, compared to BCORWT patients. Eight of 14 BCORMUT patients (57.1%) achieved complete remission (CR) with decitabine treatment, which was much higher than that in BCORWT patients (28.7%, p = 0.036). Paired sequencing results (before and after decitabine) showed three of 6 CR patients lost the mutated BCOR. The median survival of CR patients with a BCORMUT was 40 months, which was significantly longer than that in patients with BCORWT (20 months, p = 0.036). Notably, prolonged survival was observed in three BCORMUT CR patients even without any subsequent therapies. Conclusions BCOR mutations occur more frequently in CN MDS patients, predicting higher risk of leukemia transformation. BCORMUT patients showed a better response to decitabine and achieved longer post-CR survival. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01157-8.
Collapse
Affiliation(s)
- Xiao Li
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Feng Xu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Zheng Zhang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Juan Guo
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Qi He
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Lu-Xi Song
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Dong Wu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Li-Yu Zhou
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Ji-Ying Su
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Chao Xiao
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Chun-Kang Chang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Ling-Yun Wu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
30
|
Jann JC, Tothova Z. Cohesin mutations in myeloid malignancies. Blood 2021; 138:649-661. [PMID: 34157074 PMCID: PMC8394903 DOI: 10.1182/blood.2019004259] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/24/2021] [Indexed: 12/25/2022] Open
Abstract
Cohesin is a multisubunit protein complex that forms a ring-like structure around DNA. It is essential for sister chromatid cohesion, chromatin organization, transcriptional regulation, and DNA damage repair and plays a major role in dynamically shaping the genome architecture and maintaining DNA integrity. The core complex subunits STAG2, RAD21, SMC1, and SMC3, as well as its modulators PDS5A/B, WAPL, and NIPBL, have been found to be recurrently mutated in hematologic and solid malignancies. These mutations are found across the full spectrum of myeloid neoplasia, including pediatric Down syndrome-associated acute megakaryoblastic leukemia, myelodysplastic syndromes, chronic myelomonocytic leukemia, and de novo and secondary acute myeloid leukemias. The mechanisms by which cohesin mutations act as drivers of clonal expansion and disease progression are still poorly understood. Recent studies have described the impact of cohesin alterations on self-renewal and differentiation of hematopoietic stem and progenitor cells, which are associated with changes in chromatin and epigenetic state directing lineage commitment, as well as genomic integrity. Herein, we review the role of the cohesin complex in healthy and malignant hematopoiesis. We discuss clinical implications of cohesin mutations in myeloid malignancies and discuss opportunities for therapeutic targeting.
Collapse
Affiliation(s)
- Johann-Christoph Jann
- Department of Hematology and Oncology, University of Heidelberg, Mannheim, Germany; and
| | - Zuzana Tothova
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
31
|
Phase 3 randomized trial of chemotherapy with or without oblimersen in older AML patients: CALGB 10201 (Alliance). Blood Adv 2021; 5:2775-2787. [PMID: 34251414 DOI: 10.1182/bloodadvances.2021004233] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/08/2021] [Indexed: 11/20/2022] Open
Abstract
Overexpression of B-cell leukemia/lymphoma 2 (BCL2) renders acute myeloid leukemia (AML) cells resistant to chemotherapy and has been associated with unfavorable outcomes. Oblimersen (G3139) is a phosphorothioate 18-mer antisense oligonucleotide directed against the first 6 BCL2 codons. In a phase 1 study of AML patients treated with G3139, cytarabine, and daunorubicin induction with cytarabine consolidation, no antisense-related toxicity was reported, and BCL2 downregulation occurred in patients achieving complete remission. In this phase 3 trial, untreated older AML patients were randomized to cytarabine (100 mg/m2 per day on days 4-10) and daunorubicin (60 mg/m2 per day on days 4-6) followed by cytarabine consolidation (2000 mg/m2 per day on days 4-8) with (arm A) or without (arm B) G3139 (7 mg/m2 per day on days 1-10 [induction] or days 1-8 [consolidation]). A total of 506 patients were enrolled. No differences in toxicity were observed between arms. Estimated overall survival (OS) at 1 year was 43% for arm A and 40% for arm B (1-sided log rank P = .13), with no differences in disease-free (DFS; P = .26) or event-free survival (P = .80). Subgroup analyses showed patients age <70 years in arm A had improved OS by 1 month vs those in arm B (P = .04), and patients with secondary AML in arm A had better DFS vs those in arm B (P = .04). We conclude that addition of G3139 to chemotherapy failed to improve outcomes of older AML patients. However, more effective means of inhibiting BCL2 are showing promising results in combination with chemotherapy in AML. This trial was registered at www.clinicaltrials.gov as #NCT00085124.
Collapse
|
32
|
Papaioannou D, Ozer HG, Nicolet D, Urs AP, Herold T, Mrózek K, Batcha AM, Metzeler KH, Yilmaz AS, Volinia S, Bill M, Kohlschmidt J, Pietrzak M, Walker CJ, Carroll AJ, Braess J, Powell BL, Eisfeld AK, Uy GL, Wang ES, Kolitz JE, Stone RM, Hiddemann W, Byrd JC, Bloomfield CD, Garzon R. Clinical and molecular relevance of genetic variants in the non-coding transcriptome of patients with cytogenetically normal acute myeloid leukemia. Haematologica 2021; 107. [PMID: 34261293 PMCID: PMC9052895 DOI: 10.3324/haematol.2020.266643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Expression levels of long non-coding RNA (lncRNA) have been shown to associate with clinical outcome of patients with cytogenetically normal acute myeloid leukemia (CN-AML). However, the frequency and clinical significance of genetic variants in the nucleotide sequences of lncRNA in AML patients is unknown. Herein, we analyzed total RNA sequencing data of 377 younger adults (aged <60 years) with CN-AML, who were comprehensively characterized with regard to clinical outcome. We used available genomic databases and stringent filters to annotate genetic variants unequivocally located in the non-coding transcriptome of AML patients. We detected 981 variants, which are recurrently present in lncRNA that are expressed in leukemic blasts. Among these variants, we identified a cytosine-to-thymidine variant in the lncRNA RP5-1074L1.4 and a cytosine-to-thymidine variant in the lncRNA SNHG15, which independently associated with longer survival of CN-AML patients. The presence of the SNHG15 cytosine-to-thymidine variant was also found to associate with better outcome in an independent dataset of CN-AML patients, despite differences in treatment protocols and RNA sequencing techniques. In order to gain biological insights, we cloned and overexpressed both wild-type and variant versions of the SNHG15 lncRNA. In keeping with its negative prognostic impact, overexpression of the wild-type SNHG15 associated with higher proliferation rate of leukemic blasts when compared with the cytosine-to-thymidine variant. We conclude that recurrent genetic variants of lncRNA that are expressed in the leukemic blasts of CN-AML patients have prognostic and potential biological significance.
Collapse
Affiliation(s)
- Dimitrios Papaioannou
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, NY, USA,*DP and HGO contributed equally as co-first authors
| | - Hatice G. Ozer
- The Ohio State University, Department of Biomedical Informatics, Columbus, OH, USA,*DP and HGO contributed equally as co-first authors
| | - Deedra Nicolet
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA,The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA,Alliance Statistics and Data Center, The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA
| | - Amog P. Urs
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA
| | | | - Krzysztof Mrózek
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA,The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA
| | - Aarif M.N. Batcha
- Institute for Medical Information Processing, Biometry and Epidemiology, LMU Munich, Munich, Germany,Medical Data Integration Center (MeDIC), University Hospital, LMU Munich, Germany
| | - Klaus H. Metzeler
- Department of Hematology, Cell Therapy & Hemostaseology, University Hospital Leipzig, Leipzig, Germany
| | - Ayse S. Yilmaz
- The Ohio State University, Department of Biomedical Informatics, Columbus, OH, USA
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Marius Bill
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA
| | - Jessica Kohlschmidt
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA,The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA,Alliance Statistics and Data Center, The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA
| | - Maciej Pietrzak
- The Ohio State University, Department of Biomedical Informatics, Columbus, OH, USA
| | - Christopher J. Walker
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA,The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA
| | - Andrew J. Carroll
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jan Braess
- Department of Oncology and Hematology, Hospital Barmherzige Brüder, Regensburg, Germany
| | - Bayard L. Powell
- The Comprehensive Cancer Center of Wake Forest University, Winston-Salem, NC, USA
| | - Ann-Kathrin Eisfeld
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA,The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA
| | - Geoffrey L. Uy
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Eunice S. Wang
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jonathan E. Kolitz
- Monter Cancer Center, Hofstra Northwell School of Medicine, Lake Success, NY, USA
| | - Richard M. Stone
- Dana-Farber Cancer Institute, Harvard University, Boston, MA, USA
| | | | - John C. Byrd
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA,The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA
| | - Clara D. Bloomfield
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA,CDB and RG contributed equally as co-senior authors
| | - Ramiro Garzon
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA,CDB and RG contributed equally as co-senior authors
| |
Collapse
|
33
|
Liu P, Liu JP, Sun SJ, Gao Y, Ai Y, Chen X, Sun Y, Zhou M, Liu Y, Xiong Y, Yuan HX. CBFB-MYH11 Fusion Sequesters RUNX1 in Cytoplasm to Prevent DNMT3A Recruitment to Target Genes in AML. Front Cell Dev Biol 2021; 9:675424. [PMID: 34336831 PMCID: PMC8321512 DOI: 10.3389/fcell.2021.675424] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
A growing number of human diseases have been found to be associated with aberrant DNA methylation, including cancer. Mutations targeting genes encoding DNA methyltransferase (DNMT), TET family of DNA demethylases, and isocitrate dehydrogenase (IDH1, IDH2) that produce TET inhibitory metabolite, 2-hyoxyglutarate (2-HG), are found in more than half of acute myeloid leukemia (AML). To gain new insights into the regulation of DNA de/methylation and consequence of its alteration in cancer development, we searched for genes which are mutated in a manner that is linked with gene mutations involved in DNA de/methylation in multiple cancer types. We found that recurrent CBFB-MYH11 fusions, which result in the expression of fusion protein comprising core-binding factor β (CBFB) and myosin heavy chain 11 (MYH11) and are found in 6∼8% of AML patients, occur mutually exclusively with DNMT3A mutations. Tumors bearing CBFB-MYH11 fusion show DNA hypomethylation patterns similar to those with loss-of-function mutation of DNMT3A. Expression of CBFB-MYH11 fusion or inhibition of DNMT3A similarly impairs the methylation and expression of target genes of Runt related transcription factor 1 (RUNX1), a functional partner of CBFB. We demonstrate that RUNX1 directly interacts with DNMT3A and that CBFB-MYH11 fusion protein sequesters RUNX1 in the cytoplasm, thereby preventing RUNX1 from interacting with and recruiting DNMT3A to its target genes. Our results identify a novel regulation of DNA methylation and provide a molecular basis how CBFB-MYH11 fusion contributes to leukemogenesis.
Collapse
Affiliation(s)
- Peng Liu
- The Fifth People's Hospital of Shanghai and the Molecular and Cell Biology Research Lab of the Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jin-Pin Liu
- The Fifth People's Hospital of Shanghai and the Molecular and Cell Biology Research Lab of the Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Si-Jia Sun
- The Fifth People's Hospital of Shanghai and the Molecular and Cell Biology Research Lab of the Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yun Gao
- The Fifth People's Hospital of Shanghai and the Molecular and Cell Biology Research Lab of the Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yingjie Ai
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Xiufei Chen
- The Fifth People's Hospital of Shanghai and the Molecular and Cell Biology Research Lab of the Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yiping Sun
- The Fifth People's Hospital of Shanghai and the Molecular and Cell Biology Research Lab of the Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Mengyu Zhou
- Ministry of Education (MOE) Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yun Liu
- Ministry of Education (MOE) Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yue Xiong
- Cullgen Inc., San Diego, CA, United States
| | - Hai-Xin Yuan
- The Fifth People's Hospital of Shanghai and the Molecular and Cell Biology Research Lab of the Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Bill M, Mrózek K, Giacopelli B, Kohlschmidt J, Nicolet D, Papaioannou D, Eisfeld AK, Kolitz JE, Powell BL, Carroll AJ, Stone RM, Garzon R, Byrd JC, Bloomfield CD, Oakes CC. Precision oncology in AML: validation of the prognostic value of the knowledge bank approach and suggestions for improvement. J Hematol Oncol 2021; 14:107. [PMID: 34229733 PMCID: PMC8261916 DOI: 10.1186/s13045-021-01118-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/25/2021] [Indexed: 12/18/2022] Open
Abstract
Recently, a novel knowledge bank (KB) approach to predict outcomes of individual patients with acute myeloid leukemia (AML) was developed using unbiased machine learning. To validate its prognostic value, we analyzed 1612 adults with de novo AML treated on Cancer and Leukemia Group B front-line trials who had pretreatment clinical, cytogenetics, and mutation data on 81 leukemia/cancer-associated genes available. We used receiver operating characteristic (ROC) curves and the area under the curve (AUC) to evaluate the predictive values of the KB algorithm and other risk classifications. The KB algorithm predicted 3-year overall survival (OS) probability in the entire patient cohort (AUCKB = 0.799), and both younger (< 60 years) (AUCKB = 0.747) and older patients (AUCKB = 0.770). The KB algorithm predicted non-remission death (AUCKB = 0.860) well but was less accurate in predicting relapse death (AUCKB = 0.695) and death in first complete remission (AUCKB = 0.603). The KB algorithm’s 3-year OS predictive value was higher than that of the 2017 European LeukemiaNet (ELN) classification (AUC2017ELN = 0.707, p < 0.001) and 2010 ELN classification (AUC2010ELN = 0.721, p < 0.001) but did not differ significantly from that of the 17-gene stemness score (AUC17-gene = 0.732, p = 0.10). Analysis of additional cytogenetic and molecular markers not included in the KB algorithm revealed that taking into account atypical complex karyotype, infrequent recurrent balanced chromosome rearrangements and mutational status of the SAMHD1, AXL and NOTCH1 genes may improve the KB algorithm. We conclude that the KB algorithm has a high predictive value that is higher than those of the 2017 and 2010 ELN classifications. Inclusion of additional genetic features might refine the KB algorithm.
Collapse
Affiliation(s)
- Marius Bill
- The Ohio State University Comprehensive Cancer Center, 460 West 12th Avenue, Columbus, OH, 43210-1228, USA.
| | - Krzysztof Mrózek
- The Ohio State University Comprehensive Cancer Center, 460 West 12th Avenue, Columbus, OH, 43210-1228, USA. .,The Ohio State Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University, Columbus, OH, USA. .,The Ohio State University Comprehensive Cancer Center, 444 Tzagournis Medical Research Facility, 420 West 12th Avenue, Columbus, OH, 43210-1228, USA.
| | - Brian Giacopelli
- The Ohio State University Comprehensive Cancer Center, 460 West 12th Avenue, Columbus, OH, 43210-1228, USA
| | - Jessica Kohlschmidt
- The Ohio State University Comprehensive Cancer Center, 460 West 12th Avenue, Columbus, OH, 43210-1228, USA.,The Ohio State Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University, Columbus, OH, USA.,Alliance Statistics and Data Center, The Ohio State University Comprehensive, Cancer Center, Columbus, OH, USA
| | - Deedra Nicolet
- The Ohio State University Comprehensive Cancer Center, 460 West 12th Avenue, Columbus, OH, 43210-1228, USA.,The Ohio State Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University, Columbus, OH, USA.,Alliance Statistics and Data Center, The Ohio State University Comprehensive, Cancer Center, Columbus, OH, USA
| | - Dimitrios Papaioannou
- The Ohio State University Comprehensive Cancer Center, 460 West 12th Avenue, Columbus, OH, 43210-1228, USA.,Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, 400 West 12th Avenue, Wiseman Hall, Suite 455, Columbus, OH, 43210-1228, USA
| | - Ann-Kathrin Eisfeld
- The Ohio State University Comprehensive Cancer Center, 460 West 12th Avenue, Columbus, OH, 43210-1228, USA.,The Ohio State Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University, Columbus, OH, USA.,Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, 400 West 12th Avenue, Wiseman Hall, Suite 455, Columbus, OH, 43210-1228, USA
| | - Jonathan E Kolitz
- Zucker School of Medicine At Hofstra/Northwell, Northwell Health Cancer Institute, Lake Success, NY, USA
| | - Bayard L Powell
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | | | - Richard M Stone
- Department of Medical Oncology, Dana-Farber/Partners CancerCare, Boston, MA, USA
| | - Ramiro Garzon
- The Ohio State University Comprehensive Cancer Center, 460 West 12th Avenue, Columbus, OH, 43210-1228, USA.,Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, 400 West 12th Avenue, Wiseman Hall, Suite 455, Columbus, OH, 43210-1228, USA
| | - John C Byrd
- The Ohio State University Comprehensive Cancer Center, 460 West 12th Avenue, Columbus, OH, 43210-1228, USA.,The Ohio State Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University, Columbus, OH, USA.,Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, 400 West 12th Avenue, Wiseman Hall, Suite 455, Columbus, OH, 43210-1228, USA
| | - Clara D Bloomfield
- The Ohio State University Comprehensive Cancer Center, 460 West 12th Avenue, Columbus, OH, 43210-1228, USA.,Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, 400 West 12th Avenue, Wiseman Hall, Suite 455, Columbus, OH, 43210-1228, USA
| | - Christopher C Oakes
- The Ohio State University Comprehensive Cancer Center, 460 West 12th Avenue, Columbus, OH, 43210-1228, USA. .,Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, 400 West 12th Avenue, Wiseman Hall, Suite 455, Columbus, OH, 43210-1228, USA.
| |
Collapse
|
35
|
Mims AS, Kohlschmidt J, Borate U, Blachly JS, Orwick S, Eisfeld AK, Papaioannou D, Nicolet D, Mrόzek K, Stein E, Bhatnagar B, Stone RM, Kolitz JE, Wang ES, Powell BL, Burd A, Levine RL, Druker BJ, Bloomfield CD, Byrd JC. A precision medicine classification for treatment of acute myeloid leukemia in older patients. J Hematol Oncol 2021; 14:96. [PMID: 34162404 PMCID: PMC8220739 DOI: 10.1186/s13045-021-01110-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/04/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Older patients (≥ 60 years) with acute myeloid leukemia (AML) often have multiple, sequentially acquired, somatic mutations that drive leukemogenesis and are associated with poor outcome. Beat AML is a Leukemia and Lymphoma Society-sponsored, multicenter umbrella study that algorithmically segregates AML patients based upon cytogenetic and dominant molecular abnormalities (variant allele frequencies (VAF) ≥ 0.2) into different cohorts to select for targeted therapies. During the conception of the Beat AML design, a historical dataset was needed to help in the design of the genomic algorithm for patient assignment and serve as the basis for the statistical design of individual genomic treatment substudies for the Beat AML study. METHODS We classified 563 newly diagnosed older AML patients treated with standard intensive chemotherapy on trials conducted by Cancer and Leukemia Group B based on the same genomic algorithm and assessed clinical outcomes. RESULTS Our classification identified core-binding factor and NPM1-mutated/FLT3-ITD-negative groups as having the best outcomes, with 30-day early death (ED) rates of 0 and 20%, respectively, and median overall survival (OS) of > 1 year and 3-year OS rates of ≥ 20%. All other genomic groups had ED rates of 17-42%, median OS ≤ 1 year and 3-year OS rates of ≤ 15%. CONCLUSIONS By classifying patients through this genomic algorithm, outcomes were poor and not unexpected from a non-algorithmic, non-dominant VAF approach. The exception is 30-day ED rate typically is not available for intensive induction for individual genomic groups and therefore difficult to compare outcomes with targeted therapeutics. This Alliance data supported the use of this algorithm for patient assignment at the initiation of the Beat AML study. This outcome data was also used for statistical design for Beat AML substudies for individual genomic groups to determine goals for improvement from intensive induction and hopefully lead to more rapid approval of new therapies. Trial registration ClinicalTrials.gov Identifiers: NCT00048958 (CALGB 8461), NCT00900224 (CALGB 20202), NCT00003190 (CALGB 9720), NCT00085124 (CALGB 10201), NCT00742625 (CALGB 10502), NCT01420926 (CALGB 11002), NCT00039377 (CALGB 10801), and NCT01253070 (CALGB 11001).
Collapse
Affiliation(s)
- Alice S Mims
- The Ohio State University Comprehensive Cancer Center, 320 West 10th Avenue, Starling Loving Hall B302, Columbus, OH, 43210, USA.
| | - Jessica Kohlschmidt
- The Ohio State University Comprehensive Cancer Center, 320 West 10th Avenue, Starling Loving Hall B302, Columbus, OH, 43210, USA
- Alliance Statistics and Data Center, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA
| | - Uma Borate
- The Ohio State University Comprehensive Cancer Center, 320 West 10th Avenue, Starling Loving Hall B302, Columbus, OH, 43210, USA
| | - James S Blachly
- The Ohio State University Comprehensive Cancer Center, 320 West 10th Avenue, Starling Loving Hall B302, Columbus, OH, 43210, USA
| | - Shelley Orwick
- The Ohio State University Comprehensive Cancer Center, 320 West 10th Avenue, Starling Loving Hall B302, Columbus, OH, 43210, USA
| | - Ann-Kathrin Eisfeld
- The Ohio State University Comprehensive Cancer Center, 320 West 10th Avenue, Starling Loving Hall B302, Columbus, OH, 43210, USA
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA
| | - Dimitrios Papaioannou
- The Ohio State University Comprehensive Cancer Center, 320 West 10th Avenue, Starling Loving Hall B302, Columbus, OH, 43210, USA
| | - Deedra Nicolet
- The Ohio State University Comprehensive Cancer Center, 320 West 10th Avenue, Starling Loving Hall B302, Columbus, OH, 43210, USA
- Alliance Statistics and Data Center, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA
| | - Krzysztof Mrόzek
- The Ohio State University Comprehensive Cancer Center, 320 West 10th Avenue, Starling Loving Hall B302, Columbus, OH, 43210, USA
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA
| | - Eytan Stein
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bhavana Bhatnagar
- The Ohio State University Comprehensive Cancer Center, 320 West 10th Avenue, Starling Loving Hall B302, Columbus, OH, 43210, USA
| | | | - Jonathan E Kolitz
- Monter Cancer Center, Hofstra Northwell School of Medicine, Lake Success, NY, USA
| | - Eunice S Wang
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Bayard L Powell
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Amy Burd
- The Leukemia and Lymphoma Society, White Plains, NY, USA
| | - Ross L Levine
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Clara D Bloomfield
- The Ohio State University Comprehensive Cancer Center, 320 West 10th Avenue, Starling Loving Hall B302, Columbus, OH, 43210, USA
| | - John C Byrd
- The Ohio State University Comprehensive Cancer Center, 320 West 10th Avenue, Starling Loving Hall B302, Columbus, OH, 43210, USA.
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA.
- The Ohio State University Comprehensive Cancer Center, 455 CCC Wiseman Hall, 400 West 12th Avenue, Columbus, OH, 43210-1228, USA.
| |
Collapse
|
36
|
Risueno RM, Cuesta-Casanovas L, Carbo JM, Cornet-Masana JM. New Therapeutic Approaches for Acute Myeloid Leukaemia. EUROPEAN MEDICAL JOURNAL 2021. [DOI: 10.33590/emj/20-00228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Acute myeloid leukaemia (AML) is a genetically heterogeneous haematopoietic neoplasm characterised by the accumulation of transformed immature blood progenitors in bone marrow. Since 1973, the backbone treatment has relied on the combination of cytarabine and an anthracycline, followed by allogeneic haematopoietic transplant if eligible. Therefore, the treatment decisions have largely revolved around chemotherapy drug intensity. Despite advances in our understanding of the underlying biology over the past decades, AML remains a therapeutic challenge as the overall survival is poor and treatment options are limited for relapsed/refractory AML or for unfit patients. After four decades without substantial changes, eight new noncytostatic drugs have been granted approval: vyxeos, enasidenib, gilteritinib, glasdegib, gemtuzumab ozogamicin, ivosidenib, midostaurin, and venetoclax. Despite promising preliminary results, some indications are based on early efficacy data, obtained in single-arm nonrandomised trials, highlighting the necessity for further validation in extended clinical trials. Interestingly, several druggable targets have been identified recently, associated with specific target-directed drugs. Based on the preclinical data available, great impact on clinical outcomes for patients with AML is expected, potentially increasing the therapeutic landscape for this disease.
Collapse
Affiliation(s)
- Ruth M Risueno
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
| | - Laia Cuesta-Casanovas
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain; Faculty of Biosciences, Autonomous University of Barcelona, Barcelona, Spain
| | - Jose M Carbo
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
| | | |
Collapse
|
37
|
Gene expression signature predicts relapse in adult patients with cytogenetically normal acute myeloid leukemia. Blood Adv 2021; 5:1474-1482. [PMID: 33683341 DOI: 10.1182/bloodadvances.2020003727] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/30/2020] [Indexed: 12/19/2022] Open
Abstract
Although ∼80% of adult patients with cytogenetically normal acute myeloid leukemia (CN-AML) achieve a complete remission (CR), more than half of them relapse. Better identification of patients who are likely to relapse can help to inform clinical decisions. We performed RNA sequencing on pretreatment samples from 268 adults with de novo CN-AML who were younger than 60 years of age and achieved a CR after induction treatment with standard "7+3" chemotherapy. After filtering for genes whose expressions were associated with gene mutations known to impact outcome (ie, CEBPA, NPM1, and FLT3-internal tandem duplication [FLT3-ITD]), we identified a 10-gene signature that was strongly predictive of patient relapse (area under the receiver operating characteristics curve [AUC], 0.81). The signature consisted of 7 coding genes (GAS6, PSD3, PLCB4, DEXI, JMY, NRP1, C10orf55) and 3 long noncoding RNAs. In multivariable analysis, the 10-gene signature was strongly associated with relapse (P < .001), after adjustment for the FLT3-ITD, CEBPA, and NPM1 mutational status. Validation of the expression signature in an independent patient set from The Cancer Genome Atlas showed the signature's strong predictive value, with AUC = 0.78. Implementation of the 10-gene signature into clinical prognostic stratification could be useful for identifying patients who are likely to relapse.
Collapse
|
38
|
Grieselhuber NR, Mims AS. Novel Targeted Therapeutics in Acute Myeloid Leukemia: an Embarrassment of Riches. Curr Hematol Malig Rep 2021; 16:192-206. [PMID: 33738705 DOI: 10.1007/s11899-021-00621-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW Acute myeloid leukemia (AML) is an aggressive malignancy of the bone marrow that has a poor prognosis with traditional cytotoxic chemotherapy, especially in elderly patients. In recent years, small molecule inhibitors targeting AML-associated IDH1, IDH2, and FLT3 mutations have been FDA approved. However, the majority of AML cases do not have a targetable mutation. A variety of novel agents targeting both previously untargetable mutations and general pathways in AML are currently being investigated. Herein, we review selected new targeted therapies currently in early-phase clinical investigation in AML. RECENT FINDINGS The DOT1L inhibitor pinometostat in KMT2A-rearranged AML, the menin inhibitors KO-539 and SYNDX-5613 in KMT2Ar and NPM1-mutated AML, and the mutant TP53 inhibitor APR-246 are examples of novel agents targeting specific mutations in AML. In addition, BET inhibitors, polo-like kinase inhibitors, and MDM2 inhibitors are promising new drug classes for AML which do not depend on the presence of a particular mutation. AML remains in incurable disease for many patients but advances in genomics, epigenetics, and drug discovery have led to the development of many potential novel therapeutic agents, many of which are being investigated in ongoing clinical trials. Additional studies will be necessary to determine how best to incorporate these novel agents into routine clinical treatment of AML.
Collapse
Affiliation(s)
- Nicole R Grieselhuber
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Alice S Mims
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
39
|
Giacopelli B, Wang M, Cleary A, Wu YZ, Schultz AR, Schmutz M, Blachly JS, Eisfeld AK, Mundy-Bosse B, Vosberg S, Greif PA, Claus R, Bullinger L, Garzon R, Coombes KR, Bloomfield CD, Druker BJ, Tyner JW, Byrd JC, Oakes CC. DNA methylation epitypes highlight underlying developmental and disease pathways in acute myeloid leukemia. Genome Res 2021; 31:747-761. [PMID: 33707228 PMCID: PMC8092005 DOI: 10.1101/gr.269233.120] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 03/09/2021] [Indexed: 02/06/2023]
Abstract
Acute myeloid leukemia (AML) is a molecularly complex disease characterized by heterogeneous tumor genetic profiles and involving numerous pathogenic mechanisms and pathways. Integration of molecular data types across multiple patient cohorts may advance current genetic approaches for improved subclassification and understanding of the biology of the disease. Here, we analyzed genome-wide DNA methylation in 649 AML patients using Illumina arrays and identified a configuration of 13 subtypes (termed “epitypes”) using unbiased clustering. Integration of genetic data revealed that most epitypes were associated with a certain recurrent mutation (or combination) in a majority of patients, yet other epitypes were largely independent. Epitypes showed developmental blockage at discrete stages of myeloid differentiation, revealing epitypes that retain arrested hematopoietic stem-cell-like phenotypes. Detailed analyses of DNA methylation patterns identified unique patterns of aberrant hyper- and hypomethylation among epitypes, with variable involvement of transcription factors influencing promoter, enhancer, and repressed regions. Patients in epitypes with stem-cell-like methylation features showed inferior overall survival along with up-regulated stem cell gene expression signatures. We further identified a DNA methylation signature involving STAT motifs associated with FLT3-ITD mutations. Finally, DNA methylation signatures were stable at relapse for the large majority of patients, and rare epitype switching accompanied loss of the dominant epitype mutations and reversion to stem-cell-like methylation patterns. These results show that DNA methylation-based classification integrates important molecular features of AML to reveal the diverse pathogenic and biological aspects of the disease.
Collapse
Affiliation(s)
- Brian Giacopelli
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Min Wang
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Ada Cleary
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Yue-Zhong Wu
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Anna Reister Schultz
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Maximilian Schmutz
- Hematology and Oncology, Medical Faculty, University of Augsburg, 86159 Augsburg, Germany
| | - James S Blachly
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA.,Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Ann-Kathrin Eisfeld
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Bethany Mundy-Bosse
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Sebastian Vosberg
- Department of Medicine III, University Hospital, LMU Munich, 80539 Munich, Germany.,Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Munich, Germany
| | - Philipp A Greif
- Department of Medicine III, University Hospital, LMU Munich, 80539 Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, 69120 Heidelberg, Germany.,German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Rainer Claus
- Department of Medicine II, Stem Cell Transplantation Unit, Klinikum Augsburg, Ludwig-Maximilians University Munich, 86156 Munich, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology and Tumorimmunology, Charité-Universitätsmedizin, 13353 Berlin, Germany
| | - Ramiro Garzon
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Kevin R Coombes
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Clara D Bloomfield
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Brian J Druker
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Jeffrey W Tyner
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - John C Byrd
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Christopher C Oakes
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA.,Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
40
|
Bhatnagar B, Kohlschmidt J, Mrózek K, Zhao Q, Fisher JL, Nicolet D, Walker CJ, Mims AS, Oakes C, Giacopelli B, Orwick S, Boateng I, Blachly JS, Maharry SE, Carroll AJ, Powell BL, Kolitz JE, Stone RM, Byrd JC, Paskett ED, de la Chapelle A, Garzon R, Eisfeld AK. Poor Survival and Differential Impact of Genetic Features of Black Patients with Acute Myeloid Leukemia. Cancer Discov 2021; 11:626-637. [PMID: 33277314 PMCID: PMC7933110 DOI: 10.1158/2159-8290.cd-20-1579] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/19/2020] [Accepted: 11/25/2020] [Indexed: 11/16/2022]
Abstract
Clinical outcome of patients with acute myeloid leukemia (AML) is associated with cytogenetic and molecular factors and patient demographics (e.g., age and race). We compared survival of 25,523 non-Hispanic Black and White adults with AML using Surveillance Epidemiology and End Results (SEER) Program data and performed mutational profiling of 1,339 patients with AML treated on frontline Alliance for Clinical Trials in Oncology (Alliance) protocols. Black patients had shorter survival than White patients, both in SEER and in the setting of Alliance clinical trials. The disparity was especially pronounced in Black patients <60 years, after adjustment for socioeconomic (SEER) and molecular (Alliance) factors. Black race was an independent prognosticator of poor survival. Gene mutation profiles showed fewer NPM1 and more IDH2 mutations in younger Black patients. Overall survival of younger Black patients was adversely affected by IDH2 mutations and FLT3-ITD, but, in contrast to White patients, was not improved by NPM1 mutations. SIGNIFICANCE: We show that young Black patients have not benefited as much as White patients from recent progress in AML treatment in the United States. Our data suggest that both socioeconomic factors and differences in disease biology contribute to the survival disparity and need to be urgently addressed.See related commentary by Vyas, p. 540.This article is highlighted in the In This Issue feature, p. 521.
Collapse
MESH Headings
- Adolescent
- Adult
- Black or African American/genetics
- Aged
- Aged, 80 and over
- Biomarkers, Tumor
- Disease Management
- Disease Susceptibility
- Female
- Genetic Background
- Humans
- Leukemia, Myeloid, Acute/epidemiology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/therapy
- Male
- Middle Aged
- Mutation
- Outcome Assessment, Health Care
- Prognosis
- Public Health Surveillance
- Registries
- Risk Factors
- SEER Program
- United States/epidemiology
- Young Adult
Collapse
Affiliation(s)
- Bhavana Bhatnagar
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Jessica Kohlschmidt
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, Ohio
- Alliance Statistics and Data Center, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Krzysztof Mrózek
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, Ohio
| | - Qiuhong Zhao
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - James L Fisher
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Deedra Nicolet
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, Ohio
- Alliance Statistics and Data Center, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Christopher J Walker
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, Ohio
| | - Alice S Mims
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Christopher Oakes
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Brian Giacopelli
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Shelley Orwick
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Isaiah Boateng
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - James S Blachly
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Sophia E Maharry
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Andrew J Carroll
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Bayard L Powell
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina
| | - Jonathan E Kolitz
- Monter Cancer Center, Hofstra Northwell School of Medicine, Lake Success, New York
| | - Richard M Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - John C Byrd
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, Ohio
| | - Electra D Paskett
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
- Division of Cancer Prevention and Control, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio
| | | | - Ramiro Garzon
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Ann-Kathrin Eisfeld
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, Ohio
| |
Collapse
|
41
|
Tothova Z, Valton AL, Gorelov RA, Vallurupalli M, Krill-Burger JM, Holmes A, Landers CC, Haydu JE, Malolepsza E, Hartigan C, Donahue M, Popova KD, Koochaki S, Venev SV, Rivera J, Chen E, Lage K, Schenone M, D’Andrea AD, Carr SA, Morgan EA, Dekker J, Ebert BL. Cohesin mutations alter DNA damage repair and chromatin structure and create therapeutic vulnerabilities in MDS/AML. JCI Insight 2021; 6:142149. [PMID: 33351783 PMCID: PMC7934867 DOI: 10.1172/jci.insight.142149] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/16/2020] [Indexed: 12/26/2022] Open
Abstract
The cohesin complex plays an essential role in chromosome maintenance and transcriptional regulation. Recurrent somatic mutations in the cohesin complex are frequent genetic drivers in cancer, including myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). Here, using genetic dependency screens of stromal antigen 2-mutant (STAG2-mutant) AML, we identified DNA damage repair and replication as genetic dependencies in cohesin-mutant cells. We demonstrated increased levels of DNA damage and sensitivity of cohesin-mutant cells to poly(ADP-ribose) polymerase (PARP) inhibition. We developed a mouse model of MDS in which Stag2 mutations arose as clonal secondary lesions in the background of clonal hematopoiesis driven by tet methylcytosine dioxygenase 2 (Tet2) mutations and demonstrated selective depletion of cohesin-mutant cells with PARP inhibition in vivo. Finally, we demonstrated a shift from STAG2- to STAG1-containing cohesin complexes in cohesin-mutant cells, which was associated with longer DNA loop extrusion, more intermixing of chromatin compartments, and increased interaction with PARP and replication protein A complex. Our findings inform the biology and therapeutic opportunities for cohesin-mutant malignancies.
Collapse
MESH Headings
- Animals
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Line, Tumor
- Chromatin/genetics
- Chromatin/metabolism
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- DNA Damage
- DNA Repair/genetics
- Disease Models, Animal
- Female
- Humans
- K562 Cells
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Mutant Strains
- Mice, SCID
- Mice, Transgenic
- Mutation
- Myelodysplastic Syndromes/drug therapy
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/metabolism
- Nuclear Proteins/genetics
- Phthalazines/pharmacology
- Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
- U937 Cells
- Xenograft Model Antitumor Assays
- Cohesins
Collapse
Affiliation(s)
- Zuzana Tothova
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Cancer Program, Broad Institute, Cambridge, Massachusetts, USA
| | - Anne-Laure Valton
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Mounica Vallurupalli
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Cancer Program, Broad Institute, Cambridge, Massachusetts, USA
| | | | - Amie Holmes
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | - J. Erika Haydu
- Cancer Program, Broad Institute, Cambridge, Massachusetts, USA
| | | | | | - Melanie Donahue
- Cancer Program, Broad Institute, Cambridge, Massachusetts, USA
| | | | - Sebastian Koochaki
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Sergey V. Venev
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jeanne Rivera
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Edwin Chen
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Kasper Lage
- Cancer Program, Broad Institute, Cambridge, Massachusetts, USA
| | - Monica Schenone
- Cancer Program, Broad Institute, Cambridge, Massachusetts, USA
| | - Alan D. D’Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Steven A. Carr
- Cancer Program, Broad Institute, Cambridge, Massachusetts, USA
| | - Elizabeth A. Morgan
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Job Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Benjamin L. Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Cancer Program, Broad Institute, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
42
|
Orsmark-Pietras C, Landberg N, Lorenz F, Uggla B, Höglund M, Lehmann S, Derolf Å, Deneberg S, Antunovic P, Cammenga J, Möllgård L, Wennström L, Lilljebjörn H, Rissler M, Fioretos T, Lazarevic VL. Clinical and genomic characterization of patients diagnosed with the provisional entity acute myeloid leukemia with BCR-ABL1, a Swedish population-based study. Genes Chromosomes Cancer 2021; 60:426-433. [PMID: 33433047 DOI: 10.1002/gcc.22936] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 11/09/2022] Open
Abstract
Acute myeloid leukemia (AML) with t(9;22)(q34;q11), also known as AML with BCR-ABL1, is a rare, provisional entity in the WHO 2016 classification and is considered a high-risk disease according to the European LeukemiaNet 2017 risk stratification. We here present a retrospective, population-based study of this disease entity from the Swedish Acute Leukemia Registry. By strict clinical inclusion criteria we aimed to identify genetic markers further distinguishing AML with t(9;22) as a separate entity. Twenty-five patients were identified and next-generation sequencing using a 54-gene panel was performed in 21 cases. Interestingly, no mutations were found in NPM1, FLT3, or DNMT3A, three frequently mutated genes in AML. Instead, RUNX1 was the most commonly mutated gene, with aberrations present in 38% of the cases compared to around 10% in de novo AML. Additional mutations were identified in genes involved in RNA splicing (SRSF2, SF3B1) and chromatin regulation (ASXL1, STAG2, BCOR, BCORL1). Less frequently, mutations were found in IDH2, NRAS, TET2, and TP53. The mutational landscape exhibited a similar pattern as recently described in patients with chronic myeloid leukemia (CML) in myeloid blast crisis (BC). Despite the concomitant presence of BCR-ABL1 and RUNX1 mutations in our cohort, both features of high-risk AML, the RUNX1-mutated cases showed a superior overall survival compared to RUNX1 wildtype cases. Our results suggest that the molecular characteristics of AML with t(9;22)/BCR-ABL1 and CML in myeloid BC are similar and do not support a distinction of the two disease entities based on their underlying molecular alterations.
Collapse
Affiliation(s)
| | - Niklas Landberg
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Fryderyk Lorenz
- Department of Oncology and Hematology, Umeå University Hospital, Umeå, Sweden
| | - Bertil Uggla
- Department of Medicine, Section of Hematology, Örebro University Hospital, Örebro, Sweden
| | - Martin Höglund
- Department of Hematology, Uppsala University Hospital, Uppsala, Sweden
| | - Sören Lehmann
- Department of Hematology, Uppsala University Hospital, Uppsala, Sweden
| | - Åsa Derolf
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Stefan Deneberg
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Petar Antunovic
- Department of Hematology, Linköping University Hospital, Linköping, Sweden
| | - Jörg Cammenga
- Department of Hematology, Linköping University Hospital, Linköping, Sweden
| | - Lars Möllgård
- Department of Hematology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lovisa Wennström
- Department of Hematology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Henrik Lilljebjörn
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Marianne Rissler
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Thoas Fioretos
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Vladimir Lj Lazarevic
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
43
|
Precision medicine treatment in acute myeloid leukemia using prospective genomic profiling: feasibility and preliminary efficacy of the Beat AML Master Trial. Nat Med 2020; 26:1852-1858. [PMID: 33106665 DOI: 10.1038/s41591-020-1089-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/28/2020] [Indexed: 12/13/2022]
Abstract
Acute myeloid leukemia (AML) is the most common diagnosed leukemia. In older adults, AML confers an adverse outcome1,2. AML originates from a dominant mutation, then acquires collaborative transformative mutations leading to myeloid transformation and clinical/biological heterogeneity. Currently, AML treatment is initiated rapidly, precluding the ability to consider the mutational profile of a patient's leukemia for treatment decisions. Untreated patients with AML ≥ 60 years were prospectively enrolled on the ongoing Beat AML trial (ClinicalTrials.gov NCT03013998 ), which aims to provide cytogenetic and mutational data within 7 days (d) from sample receipt and before treatment selection, followed by treatment assignment to a sub-study based on the dominant clone. A total of 487 patients with suspected AML were enrolled; 395 were eligible. Median age was 72 years (range 60-92 years; 38% ≥75 years); 374 patients (94.7%) had genetic and cytogenetic analysis completed within 7 d and were centrally assigned to a Beat AML sub-study; 224 (56.7%) were enrolled on a Beat AML sub-study. The remaining 171 patients elected standard of care (SOC) (103), investigational therapy (28) or palliative care (40); 9 died before treatment assignment. Demographic, laboratory and molecular characteristics were not significantly different between patients on the Beat AML sub-studies and those receiving SOC (induction with cytarabine + daunorubicin (7 + 3 or equivalent) or hypomethylation agent). Thirty-day mortality was less frequent and overall survival was significantly longer for patients enrolled on the Beat AML sub-studies versus those who elected SOC. A precision medicine therapy strategy in AML is feasible within 7 d, allowing patients and physicians to rapidly incorporate genomic data into treatment decisions without increasing early death or adversely impacting overall survival.
Collapse
|
44
|
Mutational landscape and clinical outcome of patients with de novo acute myeloid leukemia and rearrangements involving 11q23/ KMT2A. Proc Natl Acad Sci U S A 2020; 117:26340-26346. [PMID: 33020282 DOI: 10.1073/pnas.2014732117] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Balanced rearrangements involving the KMT2A gene, located at 11q23, are among the most frequent chromosome aberrations in acute myeloid leukemia (AML). Because of numerous fusion partners, the mutational landscape and prognostic impact of specific 11q23/KMT2A rearrangements are not fully understood. We analyzed clinical features of 172 adults with AML and recurrent 11q23/KMT2A rearrangements, 141 of whom had outcome data available. We compared outcomes of these patients with outcomes of 1,097 patients without an 11q23/KMT2A rearrangement categorized according to the 2017 European LeukemiaNet (ELN) classification. Using targeted next-generation sequencing, we investigated the mutational status of 81 leukemia/cancer-associated genes in 96 patients with 11q23/KMT2A rearrangements with material for molecular studies available. Patients with 11q23/KMT2A rearrangements had a low number of additional gene mutations (median, 1; range 0 to 6), which involved the RAS pathway (KRAS, NRAS, and PTPN11) in 32% of patients. KRAS mutations occurred more often in patients with t(6;11)(q27;q23)/KMT2A-AFDN compared with patients with the other 11q23/KMT2A subsets. Specific gene mutations were too infrequent in patients with specific 11q23/KMT2A rearrangements to assess their associations with outcomes. We demonstrate that younger (age <60 y) patients with t(9;11)(p22;q23)/KMT2A-MLLT3 had better outcomes than patients with other 11q23/KMT2A rearrangements and those without 11q23/KMT2A rearrangements classified in the 2017 ELN intermediate-risk group. Conversely, outcomes of older patients (age ≥60 y) with t(9;11)(p22;q23) were poor and comparable to those of the ELN adverse-risk group patients. Our study shows that patients with an 11q23/KMT2A rearrangement have distinct mutational patterns and outcomes depending on the fusion partner.
Collapse
|
45
|
AML risk stratification models utilizing ELN-2017 guidelines and additional prognostic factors: a SWOG report. Biomark Res 2020; 8:29. [PMID: 32817791 PMCID: PMC7425159 DOI: 10.1186/s40364-020-00208-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/27/2020] [Indexed: 01/01/2023] Open
Abstract
Background The recently updated European LeukemiaNet risk stratification guidelines combine cytogenetic abnormalities and genetic mutations to provide the means to triage patients with acute myeloid leukemia for optimal therapies. Despite the identification of many prognostic factors, relatively few have made their way into clinical practice. Methods In order to assess and improve the performance of the European LeukemiaNet guidelines, we developed novel prognostic models using the biomarkers from the guidelines, age, performance status and select transcript biomarkers. The models were developed separately for mononuclear cells and viable leukemic blasts from previously untreated acute myeloid leukemia patients (discovery cohort, N = 185) who received intensive chemotherapy. Models were validated in an independent set of similarly treated patients (validation cohort, N = 166). Results Models using European LeukemiaNet guidelines were significantly associated with clinical outcomes and, therefore, utilized as a baseline for comparisons. Models incorporating age and expression of select transcripts with biomarkers from European LeukemiaNet guidelines demonstrated higher area under the curve and C-statistics but did not show a substantial improvement in performance in the validation cohort. Subset analyses demonstrated that models using only the European LeukemiaNet guidelines were a better fit for younger patients (age < 55) than for older patients. Models integrating age and European LeukemiaNet guidelines visually showed more separation between risk groups in older patients. Models excluding results for ASXL1, CEBPA, RUNX1 and TP53, demonstrated that these mutations provide a limited overall contribution to risk stratification across the entire population, given the low frequency of mutations and confounding risk factors. Conclusions While European LeukemiaNet guidelines remain a critical tool for triaging patients with acute myeloid leukemia, the findings illustrate the need for additional prognostic factors, including age, to improve risk stratification.
Collapse
|
46
|
Comparison of clinical and molecular characteristics of patients with acute myeloid leukemia and either TP73 or TP53 mutations. Leukemia 2020; 35:1188-1192. [PMID: 32759975 DOI: 10.1038/s41375-020-1007-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/19/2020] [Accepted: 07/28/2020] [Indexed: 11/08/2022]
|
47
|
Pollyea DA, George TI, Abedi M, Bejar R, Cogle CR, Foucar K, Garcia‐Manero G, Grinblatt DL, Komrokji RS, Maciejewski JP, Revicki DA, Roboz GJ, Savona MR, Scott BL, Sekeres MA, Thompson MA, Kurtin SE, Louis CU, Nifenecker M, Flick ED, Swern AS, Kiselev P, Steensma DP, Erba HP. Diagnostic and molecular testing patterns in patients with newly diagnosed acute myeloid leukemia in the Connect ® MDS/AML Disease Registry. EJHAEM 2020; 1:58-68. [PMID: 35847712 PMCID: PMC9176048 DOI: 10.1002/jha2.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/01/2020] [Indexed: 12/19/2022]
Abstract
Diagnostic and molecular genetic testing are key in advancing the treatment of acute myeloid leukemia (AML), yet little is known about testing patterns outside of clinical trials, especially in older patients. We analyzed diagnostic and molecular testing patterns over time in 565 patients aged ≥ 55 years with newly diagnosed AML enrolled in the Connect® MDS/AML Disease Registry (NCT01688011) in the United States. Diagnostic data were recorded at enrolment and compared with published guidelines. The percentage of bone marrow blasts was reported for 82.1% of patients, and cellularity was the most commonly reported bone marrow morphological feature. Flow cytometry, karyotyping, molecular testing, and fluorescence in situ hybridization were performed in 98.8%, 95.4%, 75.9%, and 75.7% of patients, respectively. Molecular testing was done more frequently at academic than community/government sites (84.3% vs 70.2%; P < .001). Enrolment to the Registry after 2016 was significantly associated with molecular testing at academic sites (odds ratio [OR] 2.59; P = .023) and at community/government sites (OR 4.85; P < .001) in logistic regression analyses. Better understanding of practice patterns may identify unmet needs and inform institutional protocols regarding the diagnosis of patients with AML.
Collapse
Affiliation(s)
- Daniel A. Pollyea
- Department of MedicineDivision of HematologyUniversity of ColoradoAuroraColoradoUSA
| | - Tracy I. George
- University of Utah and ARUP LaboratoriesSalt Lake CityUtahUSA
| | - Mehrdad Abedi
- University of CaliforniaDavisSacramentoCaliforniaUSA
| | - Rafael Bejar
- Moores Cancer CenterUniversity of California San Diego HealthLa JollaCaliforniaUSA
| | | | - Kathryn Foucar
- University of New Mexico Health Sciences CenterAlbuquerqueNew MexicoUSA
| | | | | | | | | | | | - Gail J. Roboz
- Weill Cornell College of MedicineNew YorkNew YorkUSA
| | - Michael R. Savona
- Vanderbilt‐Ingram Cancer CenterVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Bart L. Scott
- Fred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | | | - Michael A. Thompson
- Advocate Aurora HealthAdvocate Aurora Research InstituteMilwaukeeWisconsinUSA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Eisfeld AK, Kohlschmidt J, Mims A, Nicolet D, Walker CJ, Blachly JS, Carroll AJ, Papaioannou D, Kolitz JE, Powell BE, Stone RM, de la Chapelle A, Byrd JC, Mrózek K, Bloomfield CD. Additional gene mutations may refine the 2017 European LeukemiaNet classification in adult patients with de novo acute myeloid leukemia aged <60 years. Leukemia 2020; 34:3215-3227. [PMID: 32461631 DOI: 10.1038/s41375-020-0872-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/14/2022]
Abstract
The European LeukemiaNet (ELN) recommendations for diagnosis and management of acute myeloid leukemia (AML) have become an important tool to assess patients' prognosis and guide treatment. We tested the prognostic impact of the 2017 ELN classification in a large cohort of 863 AML patients aged <60 years similarly treated on Cancer and Leukemia Group B/Alliance for Clinical Trials in Oncology studies. Based on multivariable models within each ELN genetic-risk group, we identified additional gene mutations that may refine the 2017 ELN risk classification. BCOR- or SETBP1-mutated favorable-risk patients with non-core-binding factor AML and IDH-mutated adverse-risk patients had intermediate-risk outcomes. Outcomes of NPM1/WT1 co-mutated patients and those of ZRSR2-mutated patients resembled outcome of adverse-risk patients. Moreover, FLT3-ITDhigh allelic ratio conferred adverse rather than intermediate-risk irrespective of the NPM1 mutation status, and DNMT3A mutations associated with very poor survival. Application of these refinements reclassified 9% of current favorable-risk patients and 53% of current intermediate-risk patients to the adverse-risk group, with similar poor survival as current adverse-risk patients. Furthermore, 4% of current favorable-risk patients and 9% of adverse-risk patients were reclassified to the intermediate-risk group.
Collapse
Affiliation(s)
- Ann-Kathrin Eisfeld
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
| | - Jessica Kohlschmidt
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.,Alliance Statistics and Data Center, The Ohio State University, Columbus, OH, USA
| | - Alice Mims
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Deedra Nicolet
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.,Alliance Statistics and Data Center, The Ohio State University, Columbus, OH, USA
| | | | - James S Blachly
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | | | - Dimitrios Papaioannou
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Jonathan E Kolitz
- Monter Cancer Center, Zucker School of Medicine at Hofstra/Northwell, Lake Success, NY, USA
| | - Bayard E Powell
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | | | | | - John C Byrd
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Krzysztof Mrózek
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
| | - Clara D Bloomfield
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| |
Collapse
|
49
|
Long L, Assaraf YG, Lei ZN, Peng H, Yang L, Chen ZS, Ren S. Genetic biomarkers of drug resistance: A compass of prognosis and targeted therapy in acute myeloid leukemia. Drug Resist Updat 2020; 52:100703. [PMID: 32599434 DOI: 10.1016/j.drup.2020.100703] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukemia (AML) is a highly aggressive hematological malignancy with complex heterogenous genetic and biological nature. Thus, prognostic prediction and targeted therapies might contribute to better chemotherapeutic response. However, the emergence of multidrug resistance (MDR) markedly impedes chemotherapeutic efficacy and dictates poor prognosis. Therefore, prior evaluation of chemoresistance is of great importance in therapeutic decision making and prognosis. In recent years, preclinical studies on chemoresistance have unveiled a compendium of underlying molecular basis, which facilitated the development of targetable small molecules. Furthermore, routing genomic sequencing has identified various genomic aberrations driving cellular response during the course of therapeutic treatment through adaptive mechanisms of drug resistance, some of which serve as prognostic biomarkers in risk stratification. However, the underlying mechanisms of MDR have challenged the certainty of the prognostic significance of some mutations. This review aims to provide a comprehensive understanding of the role of MDR in therapeutic decision making and prognostic prediction in AML. We present an updated genetic landscape of the predominant mechanisms of drug resistance with novel targeted therapies and potential prognostic biomarkers from preclinical and clinical chemoresistance studies in AML. We particularly highlight the unfolded protein response (UPR) that has emerged as a critical regulatory pathway in chemoresistance of AML with promising therapeutic horizon. Futhermore, we outline the most prevalent mutations associated with mechanisms of chemoresistance and delineate the future directions to improve the current prognostic tools. The molecular analysis of chemoresistance integrated with genetic profiling will facilitate decision making towards personalized prognostic prediction and enhanced therapeutic efficacy.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Disease-Free Survival
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Multiple/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Molecular Targeted Therapy/methods
- Mutation
- Neoplasm Recurrence, Local/epidemiology
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/prevention & control
- Precision Medicine/methods
- Prognosis
- Unfolded Protein Response/genetics
Collapse
Affiliation(s)
- Luyao Long
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China; Graduate School, Chinese Academy of Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zi-Ning Lei
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA; School of Public Health, Guangzhou Medical University, Guangzhou, P.R. China
| | - Hongwei Peng
- Department of Pharmacy, First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Lin Yang
- Department of Hematology, the Second Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Simei Ren
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China; Graduate School, Chinese Academy of Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China.
| |
Collapse
|
50
|
Papaioannou D, Volinia S, Nicolet D, Świerniak M, Petri A, Mrózek K, Bill M, Pepe F, Walker CJ, Walker AE, Carroll AJ, Kohlschmidt J, Eisfeld AK, Powell BL, Uy GL, Kolitz JE, Wang ES, Kauppinen S, Dorrance A, Stone RM, Byrd JC, Bloomfield CD, Garzon R. Clinical and functional significance of circular RNAs in cytogenetically normal AML. Blood Adv 2020; 4:239-251. [PMID: 31945158 PMCID: PMC6988408 DOI: 10.1182/bloodadvances.2019000568] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/14/2019] [Indexed: 01/08/2023] Open
Abstract
Circular RNAs (circRNAs) are noncoding RNA molecules that display a perturbed arrangement of exons, called backsplicing. To examine the prognostic and biologic significance of circRNA expression in cytogenetically normal acute myeloid leukemia (CN-AML), we conducted whole-transcriptome profiling in 365 younger adults (age 18-60 years) with CN-AML. We applied a novel pipeline, called Massive Scan for circRNA, to identify and quantify circRNA expression. We validated the high sensitivity and specificity of our pipeline by performing RNase R treatment and RNA sequencing in samples of AML patients and cell lines. Unsupervised clustering analyses identified 3 distinct circRNA expression-based clusters with different frequencies of clinical and molecular features. After dividing our cohort into training and validation data sets, we identified 4 circRNAs (circCFLAR, circKLHL8, circSMC1A, and circFCHO2) that were prognostic in both data sets; high expression of each prognostic circRNA was associated with longer disease-free, overall, and event-free survival. In multivariable analyses, high circKLHL8 and high circFCHO2 expression were independently associated with better clinical outcome of CN-AML patients, after adjusting for other covariates. To examine the biologic relevance of circRNA expression, we performed knockdown screening experiments in a subset of prognostic and gene mutation-related candidate circRNAs. We identified circFBXW7, but not its linear messenger RNA, as a regulator of the proliferative capacity of AML blasts. In summary, our findings underscore the molecular associations, prognostic significance, and functional relevance of circRNA expression in CN-AML.
Collapse
Affiliation(s)
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Deedra Nicolet
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Alliance Statistics and Data Center, The Ohio State University, Columbus, OH
| | - Michał Świerniak
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Andreas Petri
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Krzysztof Mrózek
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Marius Bill
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Felice Pepe
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | | | - Allison E Walker
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Andrew J Carroll
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Jessica Kohlschmidt
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Alliance Statistics and Data Center, The Ohio State University, Columbus, OH
| | | | - Bayard L Powell
- The Comprehensive Cancer Center of Wake Forest University, Winston-Salem, NC
| | - Geoffrey L Uy
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
| | - Jonathan E Kolitz
- Monter Cancer Center, Hofstra Northwell School of Medicine, Lake Success, NY
| | - Eunice S Wang
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY; and
| | - Sakari Kauppinen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | | | - Richard M Stone
- Dana-Farber Cancer Institute, Harvard University, Boston, MA
| | - John C Byrd
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | | | - Ramiro Garzon
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
| |
Collapse
|