1
|
Salgado BAB, Waters EM, Moran JC, Kadioglu A, Horsburgh MJ. Selection of Staphylococcus aureus in a murine nasopharyngeal colonization model. Front Cell Infect Microbiol 2022; 12:874138. [PMID: 35992161 PMCID: PMC9386156 DOI: 10.3389/fcimb.2022.874138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus nasal colonization is a risk factor for infection. A large proportion of the population are identified as potential S. aureus carriers yet we only partially understand the repertoire of genetic factors that promote long-term nasal colonization. Here we present a murine model of nasopharyngeal colonization that requires a low S. aureus inoculum and is amenable to experimental evolution approaches. We used this model to experimentally evolve S. aureus using successive passages in the nasopharynx to identify those genetic loci under selection. After 3 cycles of colonization, mutations were identified in mannitol, sorbitol, arginine, nitrite and lactate metabolism genes promoting key pathways in nasal colonization. Stress responses were identified as being under selective pressure, with mutations in DNA repair genes including dnaJ and recF and key stress response genes clpL, rpoB and ahpF. Peptidoglycan synthesis pathway genes also revealed mutations indicating potential selection for alteration of the cell surface. The murine model used here is versatile to question colonization, persistence and evolution studies. We studied the human pathogen Staphylococcus aureus in our search to determine factors that contribute to its ability to live in the human nose and throat. The anterior nares and nasopharynx are considered primary habitats but we do not understand how the pathogen adapts as it moves from one person to the next. We first determined sustained survival of the pathogen over multiple days in the nasopharynx that might act as a good model for human persistence due to the low numbers of bacteria needed for it to establish. By using successive rounds of colonization of the nasopharynx across different mice we revealed that multiple genetic changes in the S. aureus occurred. These changes were found in genes associated with the cell surface and metabolism and might indicate adaptation to the niche. One gene showed an accumulation of multiple mutations supporting a key contribution in adaptation but the role of the protein it encodes is not yet known. The contribution of these genes and genetic changes are unclear but indicate an area for future research to better understand how this common human pathogen is so successful at human colonization and survival.
Collapse
|
2
|
Hill BM, Bisht K, Atkins GR, Gomez AA, Rumbaugh KP, Wakeman CA, Brown AMV. Lysis-Hi-C as a method to study polymicrobial communities and eDNA. Mol Ecol Resour 2021; 22:1029-1042. [PMID: 34669257 PMCID: PMC9215119 DOI: 10.1111/1755-0998.13535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 11/30/2022]
Abstract
Microbes interact in natural communities in a spatially structured manner, particularly in biofilms and polymicrobial infections. While next generation sequencing approaches provide powerful insights into diversity, metabolic capacity, and mutational profiles of these communities, they generally fail to recover in situ spatial proximity between distinct genotypes in the interactome. Hi‐C is a promising method that has assisted in analysing complex microbiomes, by creating chromatin cross‐links in cells, that aid in identifying adjacent DNA, to improve de novo assembly. This study explored a modified Hi‐C approach involving an initial lysis phase prior to DNA cross‐linking, to test whether adjacent cell chromatin can be cross‐linked, anticipating that this could provide a new avenue for study of spatial‐mutational dynamics in structured microbial communities. An artificial polymicrobial mixture of Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli was lysed for 1–18 h, then prepared for Hi‐C. A murine biofilm infection model was treated with sonication, mechanical lysis, or chemical lysis before Hi‐C. Bioinformatic analyses of resulting Hi‐C interspecies chromatin links showed that while microbial species differed from one another, generally lysis significantly increased links between species and increased the distance of Hi‐C links within species, while also increasing novel plasmid‐chromosome links. The success of this modified lysis‐Hi‐C protocol in creating extracellular DNA links is a promising first step toward a new lysis‐Hi‐C based method to recover genotypic microgeography in polymicrobial communities, with potential future applications in diseases with localized resistance, such as cystic fibrosis lung infections and chronic diabetic ulcers.
Collapse
Affiliation(s)
- Bravada M Hill
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Karishma Bisht
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Georgia Rae Atkins
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Amy A Gomez
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Kendra P Rumbaugh
- Department of Surgery, School of Medicine, Texas Tech Health Sciences Center, Lubbock, Texas, USA
| | - Catherine A Wakeman
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Amanda M V Brown
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
3
|
Rumpf C, Lange J, Schwartbeck B, Kahl BC. Staphylococcus aureus and Cystic Fibrosis-A Close Relationship. What Can We Learn from Sequencing Studies? Pathogens 2021; 10:1177. [PMID: 34578208 PMCID: PMC8466686 DOI: 10.3390/pathogens10091177] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 01/13/2023] Open
Abstract
Staphylococcus aureus is next to Pseudomonas aeruginosa the most isolated pathogen from the airways of cystic fibrosis (CF) patients, who are often infected by a dominant S. aureus clone for extended periods. To be able to persist, the pathogen has to adapt to the hostile niche of the airways to counteract host defence, antibiotic therapy and the competition with coinfecting pathogens. S. aureus is equipped with many virulence factors including adhesins, toxins that are localized on the chromosome, on plasmids or are phage-related. S. aureus is especially versatile and adaptation and evolution of the pathogen occurs by the acquisition of new genes by horizontal gene transfer (HGT), changes in nucleotides (single nucleotide variations, SNVs) that can cause a selective advantage for the bacteria and become fixed in subpopulations. Methicillin-resistant S. aureus are a special threat to CF patients due to the more severe lung disease occurring in infected patients. Today, with decreasing costs for sequencing, more and more studies using S. aureus isolates cultured from CF patients are being published, which use whole genome sequencing (WGS), multilocus sequence typing (MLST) or spa-sequence typing (spa-typing) to follow the population dynamics of S. aureus, elucidate the underlying mechanisms of phenotypic variants, newly acquired resistance or adaptation to the host response in this particular niche. In the first part of this review, an introduction to the genetic make-up and the pathogenesis of S. aureus with respect to CF is provided. The second part presents an overview of recent studies and their findings using genotypic methods such as single or multilocus sequencing and whole genome sequencing, which identify factors contributing to the adaptation of S. aureus and its evolution in the airways of individuals with CF.
Collapse
Affiliation(s)
| | | | | | - Barbara C. Kahl
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (C.R.); (J.L.); (B.S.)
| |
Collapse
|
4
|
Tan X, Coureuil M, Ramond E, Euphrasie D, Dupuis M, Tros F, Meyer J, Nemazanyy I, Chhuon C, Guerrera IC, Ferroni A, Sermet-Gaudelus I, Nassif X, Charbit A, Jamet A. Chronic Staphylococcus aureus Lung Infection Correlates With Proteogenomic and Metabolic Adaptations Leading to an Increased Intracellular Persistence. Clin Infect Dis 2020; 69:1937-1945. [PMID: 30753350 DOI: 10.1093/cid/ciz106] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 01/31/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Chronic lung infection in cystic fibrosis (CF) patients by Staphylococcus aureus is a well-established epidemiological fact. Indeed, S. aureus is the most commonly identified pathogen in the lungs of CF patients. Improving our understanding of the mechanisms associated with the persistence of S. aureus is therefore an important issue. METHODS We selected pairs of sequential S. aureus isolates from 3 patients with CF and from 1 patient with non-CF chronic lung disease. We used a combination of genomic, proteomic, and metabolomic approaches with functional assays for in-depth characterization of S. aureus long-term persistence. RESULTS In this study, we show that late S. aureus isolates from CF patients have an increased ability for intracellular survival in CF bronchial epithelial-F508del cells compared to ancestral early isolates. Importantly, the increased ability to persist intracellularly was confirmed for S. aureus isolates within the own-patient F508del epithelial cells. An increased ability to form biofilm was also demonstrated. Furthermore, we identified the underlying genetic modifications that induce altered protein expression profiles and notable metabolic changes. These modifications affect several metabolic pathways and virulence regulators that could constitute therapeutic targets. CONCLUSIONS Our results strongly suggest that the intracellular environment might constitute an important niche of persistence and relapse necessitating adapted antibiotic treatments.
Collapse
Affiliation(s)
- Xin Tan
- Université Paris Descartes, INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Mathieu Coureuil
- Université Paris Descartes, INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Elodie Ramond
- Université Paris Descartes, INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Daniel Euphrasie
- Université Paris Descartes, INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Marion Dupuis
- Université Paris Descartes, INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Fabiola Tros
- Université Paris Descartes, INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Julie Meyer
- Université Paris Descartes, INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Ivan Nemazanyy
- Plateforme d'étude du métabolisme, Structure Fédérative de Recherche INSERM US24/CNRS UMS3633, Paris, France
| | - Cerina Chhuon
- Plateforme Protéome Institut Necker-Enfants Malades, PPN, Structure Fédérative de Recherche SFR Necker, University Paris Descartes, Paris, France
| | - Ida Chiara Guerrera
- Proteomics platform 3P5-Necker, Université Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Agnes Ferroni
- Laboratoire de Microbiologie de l'hopital Necker, University Paris Descartes, Paris, France
| | - Isabelle Sermet-Gaudelus
- Université Paris Descartes, INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Canalopathies épithéliales: la mucoviscidose et autres maladies, Paris, France
| | - Xavier Nassif
- Université Paris Descartes, INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Alain Charbit
- Université Paris Descartes, INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Anne Jamet
- Université Paris Descartes, INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| |
Collapse
|
5
|
Singh SB, McLearn-Montz AJ, Milavetz F, Gates LK, Fox C, Murry LT, Sabus A, Porterfield HS, Fischer AJ. Pathogen acquisition in patients with cystic fibrosis receiving ivacaftor or lumacaftor/ivacaftor. Pediatr Pulmonol 2019; 54:1200-1208. [PMID: 31012285 PMCID: PMC6641998 DOI: 10.1002/ppul.24341] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/14/2019] [Accepted: 04/05/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND The cystic fibrosis transmembrane conductance regulator (CFTR) modulators ivacaftor and lumacaftor/ivacaftor improve the status of existing infections in patients with cystic fibrosis (CF). It is unknown how well these drugs protect patients against incident infections. We hypothesized that CFTR modulator treatment would decrease new infections with Pseudomonas aeruginosa or Staphylococcus aureus. METHODS We retrospectively studied a single-center cohort of patients with CF during two time periods (2008-2011, Era 1) and (2012-2015, Era 2) based on the January 2012 approval of ivacaftor. Using Kaplan-Meier analysis, we compared the time to any new infection with P. aeruginosa, methicillin-resistant S. aureus (MRSA), or methicillin-sensitive S. aureus (MSSA) that was absent during a 2-year baseline. We stratified the analysis based on whether patients received ivacaftor or lumacaftor/ivacaftor during Era 2. We used the log-rank test and considered P < 0.05 statistically significant. RESULTS For patients receiving ivacaftor or lumacaftor/ivacaftor in Era 2, there was a statistically significant delay in the time to new bacterial acquisition in Era 2 vs. Era 1 ( P = 0.008). For patients who did not receive CFTR modulators, there was a trend toward slower acquisition of new bacterial infections in Era 2 compared to Era 1, but this was not statistically significant ( P = 0.10). CONCLUSIONS Patients receiving ivacaftor or lumacaftor/ivacaftor for CF had significantly delayed acquisition of P. aeruginosa and S. aureus after these drugs were released. This method for analyzing incident infections may be useful for future studies of CFTR modulators and bacterial acquisition in CF registry cohorts.
Collapse
Affiliation(s)
- Sachinkumar B Singh
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Amanda J McLearn-Montz
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Francesca Milavetz
- Department of Pharmacy Practice and Science, University of Iowa College of Pharmacy, Iowa City, Iowa
| | - Levi K Gates
- Department of Pharmacy Practice and Science, University of Iowa College of Pharmacy, Iowa City, Iowa
| | - Christopher Fox
- Department of Pharmacy Practice and Science, University of Iowa College of Pharmacy, Iowa City, Iowa
| | - Logan T Murry
- Department of Pharmacy Practice and Science, University of Iowa College of Pharmacy, Iowa City, Iowa
| | - Ashley Sabus
- Department of Pharmacy Practice and Science, University of Iowa College of Pharmacy, Iowa City, Iowa
| | - Harry S Porterfield
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Anthony J Fischer
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
6
|
Emergence and Within-Host Genetic Evolution of Methicillin-Resistant Staphylococcus aureus Resistant to Linezolid in a Cystic Fibrosis Patient. Antimicrob Agents Chemother 2018; 62:AAC.00720-18. [PMID: 30275089 DOI: 10.1128/aac.00720-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 09/22/2018] [Indexed: 12/26/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infection has increased in recent years among cystic fibrosis (CF) patients. Linezolid (LZD) is one of the antistaphylococcal antibiotics widely used in this context. Although LZD resistance is rare, it has been described as often associated with long-term treatments. Thirteen MRSA strains isolated over 5 years from one CF patient were studied for LZD resistance emergence and subjected to whole-genome sequencing (WGS). Resistance emerged after three 15-day LZD therapeutic regimens over 4 months. It was associated with the mutation of G to T at position 2576 (G2576T) in all 5 rrl copies, along with a very high MIC (>256 mg/liter) and a strong increase in the generation time. Resistant strains isolated during the ensuing LZD therapeutic regimens and until 13 months after LZD stopped harbored only 3 or 4 mutated rrl copies, associated with lower MICs (8 to 32 mg/liter) and low to moderate generation time increases. Despite these differences, whole-genome sequencing allowed us to determine that all isolates, including the susceptible one isolated before LZD treatment, belonged to the same lineage. In conclusion, LZD resistance can emerge rapidly in CF patients and persist without linezolid selective pressure in colonizing MRSA strains belonging to the same lineage.
Collapse
|
7
|
Antagonistic Pleiotropy in the Bifunctional Surface Protein FadL (OmpP1) during Adaptation of Haemophilus influenzae to Chronic Lung Infection Associated with Chronic Obstructive Pulmonary Disease. mBio 2018; 9:mBio.01176-18. [PMID: 30254117 PMCID: PMC6156194 DOI: 10.1128/mbio.01176-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tracking bacterial evolution during chronic infection provides insights into how host selection pressures shape bacterial genomes. The human-restricted opportunistic pathogen nontypeable Haemophilus influenzae (NTHi) infects the lower airways of patients suffering chronic obstructive pulmonary disease (COPD) and contributes to disease progression. To identify bacterial genetic variation associated with bacterial adaptation to the COPD lung, we sequenced the genomes of 92 isolates collected from the sputum of 13 COPD patients over 1 to 9 years. Individuals were colonized by distinct clonal types (CTs) over time, but the same CT was often reisolated at a later time or found in different patients. Although genomes from the same CT were nearly identical, intra-CT variation due to mutation and recombination occurred. Recurrent mutations in several genes were likely involved in COPD lung adaptation. Notably, nearly a third of CTs were polymorphic for null alleles of ompP1 (also called fadL), which encodes a bifunctional membrane protein that both binds the human carcinoembryonic antigen-related cell adhesion molecule 1 (hCEACAM1) receptor and imports long-chain fatty acids (LCFAs). Our computational studies provide plausible three-dimensional models for FadL's interaction with hCEACAM1 and LCFA binding. We show that recurrent fadL mutations are likely a case of antagonistic pleiotropy, since loss of FadL reduces NTHi's ability to infect epithelia but also increases its resistance to bactericidal LCFAs enriched within the COPD lung. Supporting this interpretation, truncated fadL alleles are common in publicly available NTHi genomes isolated from the lower airway tract but rare in others. These results shed light on molecular mechanisms of bacterial pathoadaptation and guide future research toward developing novel COPD therapeutics.IMPORTANCE Nontypeable Haemophilus influenzae is an important pathogen in patients with chronic obstructive pulmonary disease (COPD). To elucidate the bacterial pathways undergoing in vivo evolutionary adaptation, we compared bacterial genomes collected over time from 13 COPD patients and identified recurrent genetic changes arising in independent bacterial lineages colonizing different patients. Besides finding changes in phase-variable genes, we found recurrent loss-of-function mutations in the ompP1 (fadL) gene. We show that loss of OmpP1/FadL function reduces this bacterium's ability to infect cells via the hCEACAM1 epithelial receptor but also increases its resistance to bactericidal fatty acids enriched within the COPD lung, suggesting a case of antagonistic pleiotropy that restricts ΔfadL strains' niche. These results show how H. influenzae adapts to host-generated inflammatory mediators in the COPD airways.
Collapse
|
8
|
Wang C, Cui Y, Qu X. Identification of proteins regulated by acid adaptation related two component system HPK1/RR1 in Lactobacillus delbrueckii subsp. bulgaricus. Arch Microbiol 2018; 200:1381-1393. [PMID: 30022229 DOI: 10.1007/s00203-018-1552-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/02/2018] [Accepted: 07/13/2018] [Indexed: 11/25/2022]
Abstract
Lactobacillus delbrueckii subsp. bulgaricus is currently one of the most valuable lactic acid bacteria (LAB) and widely used in global dairy industry. The acid tolerance and adaptation ability of LAB is the key point of their survival and proliferation during fermentation process and in gastrointestinal tract of human body. Two component system (TCS) is one of the most important mechanisms to allow bacteria to sense and respond to changes of environmental conditions. TCS typically consists of a histidine protein kinase (HPK) and a corresponding response regulator (RR). Our previous study indicated a TCS (JN675228/JN675229) was involved in acid adaptation in L. bulgaricus. To reveal the role of JN675228 (HPK1)/JN675229 (RR1) in acid adaptation, the target genes of JN675228 (HPK1)/JN675229 (RR1) were identified by means of a proteomic approach complemented with transcription data in the present study. The results indicated that HPK1/RR1 regulated the acid adaptation ability of bacteria by means of many pathways, including the proton pump related protein, classical stress shock proteins, carbohydrate metabolism, nucleotide biosynthesis, DNA repair, transcription and translation, peptide transport and degradation, and cell wall biosynthesis, etc. To our knowledge, this is the first report with the effect of acid adaptation-related TCS HPK1/RR1 on its target genes. This study will offer experimental basis for clarifying the acid adaptation regulation mechanism of L. bulgaricus, and provide a theoretical basis for this bacterium in industry application.
Collapse
Affiliation(s)
- Chao Wang
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Yanhua Cui
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, People's Republic of China.
| | - Xiaojun Qu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010, People's Republic of China
| |
Collapse
|
9
|
García-Fernández E, Koch G, Wagner RM, Fekete A, Stengel ST, Schneider J, Mielich-Süss B, Geibel S, Markert SM, Stigloher C, Lopez D. Membrane Microdomain Disassembly Inhibits MRSA Antibiotic Resistance. Cell 2017; 171:1354-1367.e20. [PMID: 29103614 PMCID: PMC5720476 DOI: 10.1016/j.cell.2017.10.012] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/18/2017] [Accepted: 10/06/2017] [Indexed: 12/21/2022]
Abstract
A number of bacterial cell processes are confined functional membrane microdomains (FMMs), structurally and functionally similar to lipid rafts of eukaryotic cells. How bacteria organize these intricate platforms and what their biological significance is remain important questions. Using the pathogen methicillin-resistant Staphylococcus aureus (MRSA), we show here that membrane-carotenoid interaction with the scaffold protein flotillin leads to FMM formation, which can be visualized using super-resolution array tomography. These membrane platforms accumulate multimeric protein complexes, for which flotillin facilitates efficient oligomerization. One of these proteins is PBP2a, responsible for penicillin resistance in MRSA. Flotillin mutants are defective in PBP2a oligomerization. Perturbation of FMM assembly using available drugs interferes with PBP2a oligomerization and disables MRSA penicillin resistance in vitro and in vivo, resulting in MRSA infections that are susceptible to penicillin treatment. Our study demonstrates that bacteria possess sophisticated cell organization programs and defines alternative therapies to fight multidrug-resistant pathogens using conventional antibiotics. Staphyloxanthin and flotillin preferentially interact and accumulate in FMMs FMMs facilitate efficient oligomerization of multimeric protein complexes PBP2a, which confers β-lactam resistance on S. aureus, is harbored within FMMs FMM disruption disables PBP2a oligomerization and thus, S. aureus antibiotic resistance
Collapse
Affiliation(s)
- Esther García-Fernández
- National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), 28049 Madrid, Spain
| | - Gudrun Koch
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, 97080 Würzburg, Germany; Institute for Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany
| | - Rabea M Wagner
- National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), 28049 Madrid, Spain; Research Centre for Infectious Diseases (ZINF), University of Würzburg, 97080 Würzburg, Germany; Institute for Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany
| | - Agnes Fekete
- Julius-von-Sachs-Institute Biocenter, Pharmaceutical Biology, University of Würzburg, 97082 Würzburg, Germany
| | - Stephanie T Stengel
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, 97080 Würzburg, Germany; Institute for Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany
| | - Johannes Schneider
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, 97080 Würzburg, Germany; Institute for Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany
| | - Benjamin Mielich-Süss
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, 97080 Würzburg, Germany; Institute for Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany
| | - Sebastian Geibel
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, 97080 Würzburg, Germany; Institute for Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany
| | - Sebastian M Markert
- Division of Electron Microscopy, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Christian Stigloher
- Division of Electron Microscopy, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Daniel Lopez
- National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), 28049 Madrid, Spain; Research Centre for Infectious Diseases (ZINF), University of Würzburg, 97080 Würzburg, Germany; Institute for Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany; National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
10
|
Tuning of the Lethal Response to Multiple Stressors with a Single-Site Mutation during Clinical Infection by Staphylococcus aureus. mBio 2017; 8:mBio.01476-17. [PMID: 29066545 PMCID: PMC5654930 DOI: 10.1128/mbio.01476-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The agr system of Staphylococcus aureus promotes invasion of host tissues, and as expected, agents that block agr quorum sensing have anti-infective properties. Paradoxically, agr-defective mutants are frequently recovered from patients, especially those persistently infected with S. aureus We found that an agr deficiency increased survival of cultured bacteria during severe stress, such as treatment with gentamicin, ciprofloxacin, heat, or low pH. With daptomycin, deletion of agr decreased survival. Therefore, agr activity can be either detrimental or protective, depending on the type of lethal stress. Deletion of agr had no effect on the ability of the antimicrobials to block bacterial growth, indicating that agr effects are limited to lethal action. Thus, the effect of an agr deletion is on bacterial tolerance, not resistance. For gentamicin and daptomycin, activity can be altered by agr-regulated secreted factors. For ciprofloxacin, a detrimental function was downregulation of glutathione peroxidase (bsaA), an enzyme responsible for defense against oxidative stress. Deficiencies in agr and bsaA were epistatic for survival, consistent with agr having a destructive role mediated by reactive oxygen species. Enhanced susceptibility to lethal stress by wild-type agr, particularly antimicrobial stress, helps explain why inactivating mutations in S. aureus agr commonly occur in hospitalized patients during infection. Moreover, the agr quorum-sensing system of S. aureus provides a clinically relevant example in which a single-step change in the response to severe stress alters the evolutionary path of a pathogen during infection.IMPORTANCE When phenotypes produced in response to an environmental stress are inadequate to buffer against that stress, changes that do buffer may become genetically encoded by natural selection. A clinically relevant example is seen with S. aureus mutants that are deficient in the key virulence regulator agr Paradoxically, defects in agr are selected during serious hospital infection and have been associated with worse outcome. The current work helps resolve this paradox: agr mutants are often less readily killed by lethal stressors without affecting MIC, a phenomenon known as tolerance. Our results indicate that tolerance, which would not be detected as resistance, can be selected in clinical settings. The data also support the ideas that (i) S. aureus broadly hedges against environmental change and stress through genome plasticity, (ii) reactive oxygen can be involved in the self-destructive response in bacteria, and (iii) therapeutic targeting of agr and virulence can be counterproductive.
Collapse
|
11
|
Cohan FM. Transmission in the Origins of Bacterial Diversity, From Ecotypes to Phyla. Microbiol Spectr 2017; 5:10.1128/microbiolspec.mtbp-0014-2016. [PMID: 29027519 PMCID: PMC11687548 DOI: 10.1128/microbiolspec.mtbp-0014-2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Indexed: 12/21/2022] Open
Abstract
Any two lineages, no matter how distant they are now, began their divergence as one population splitting into two lineages that could coexist indefinitely. The rate of origin of higher-level taxa is therefore the product of the rate of speciation times the probability that two new species coexist long enough to reach a particular level of divergence. Here I have explored these two parameters of disparification in bacteria. Owing to low recombination rates, sexual isolation is not a necessary milestone of bacterial speciation. Rather, irreversible and indefinite divergence begins with ecological diversification, that is, transmission of a bacterial lineage to a new ecological niche, possibly to a new microhabitat but at least to new resources. Several algorithms use sequence data from a taxon of focus to identify phylogenetic groups likely to bear the dynamic properties of species. Identifying these newly divergent lineages allows us to characterize the genetic bases of speciation, as well as the ecological dimensions upon which new species diverge. Speciation appears to be least frequent when a given lineage has few new resources it can adopt, as exemplified by photoautotrophs, C1 heterotrophs, and obligately intracellular pathogens; speciation is likely most rapid for generalist heterotrophs. The genetic basis of ecological divergence may determine whether ecological divergence is irreversible and whether lineages will diverge indefinitely into the future. Long-term coexistence is most likely when newly divergent lineages utilize at least some resources not shared with the other and when the resources themselves will coexist into the remote future.
Collapse
|
12
|
Emergence of cfr-Mediated Linezolid Resistance in a Methicillin-Resistant Staphylococcus aureus Epidemic Clone Isolated from Patients with Cystic Fibrosis. Antimicrob Agents Chemother 2015; 60:1878-82. [PMID: 26666940 DOI: 10.1128/aac.02067-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/05/2015] [Indexed: 11/20/2022] Open
Abstract
Resistance to linezolid (LZD) in methicillin-resistant Staphylococcus aureus (MRSA) isolates from patients with cystic fibrosis (CF) is due mainly to ribosomal mutations. We report on four CF patients with LZD-resistant MRSA bronchopulmonary infections by strains carrying the cfr gene. Strains from one patient also harbored the G2576U mutation (23S rRNA) and the G139R substitution (L3 protein). All strains belonged to the epidemic clone ST125 MRSA IVc. Our results support the monitoring of LZD resistance emergence in CF and non-CF MRSA isolates.
Collapse
|
13
|
López-Hernández I, Delgado Valverde M, Batista Díaz N, Pascual A. First report of linezolid dependence in methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect 2015; 21:650.e1-4. [DOI: 10.1016/j.cmi.2015.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/01/2015] [Accepted: 03/09/2015] [Indexed: 10/23/2022]
|
14
|
Kriegeskorte A, Block D, Kahl BC. Response to "In vivo attenuation and genetic evolution of a ST247-SCCmecI MRSA clone after 13 years of pathogenic bronchopulmonary colonization in a patient with cystic fibrosis: implications of the innate immune response". Mucosal Immunol 2015; 8:696. [PMID: 25690722 DOI: 10.1038/mi.2015.9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- A Kriegeskorte
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - D Block
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - B C Kahl
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| |
Collapse
|