1
|
Jiang SM, Li XJ, Wang ZL, Chen ZW, Liu ZL, Li Q, Chen XL. Role of autophagy in rejection after solid organ transplantation: A systematic review of the literature. World J Transplant 2025; 15:103163. [DOI: 10.5500/wjt.v15.i3.103163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/21/2025] [Accepted: 02/06/2025] [Indexed: 04/18/2025] Open
Abstract
Organ transplantation has long been recognized as an effective treatment for end-stage organ failure, metabolic diseases, and malignant tumors. However, graft rejection caused by major histocompatibility complex mismatch remains a significant challenge. While modern immunosuppressants have made significant strides in reducing the incidence and risk of rejection, they have not been able to eliminate it completely. The intricate mechanisms underlying transplant rejection have been the subject of intense investigation by transplant immunologists. Among these factors, autophagy has emerged as a key player. Autophagy is an evolutionarily conserved mechanism in eukaryotic cells that mediates autophagocytosis and cellular protection. This process is regulated by autophagy-related genes and their encoded protein families, which maintain the material and energetic balance within cells. Additionally, autophagy has been reported to play crucial roles in the development, maturation, differentiation, and responses of immune cells. In the complex immune environment following transplantation, the role and mechanisms of autophagy are gradually being revealed. In this review, we aim to explore the current understanding of the role of autophagy in solid organ rejection after transplantation. Furthermore, we delve into the therapeutic advancements achieved by targeting autophagy involved in the rejection process.
Collapse
Affiliation(s)
- Shu-Min Jiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| | - Xue-Jiao Li
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, China
| | - Zi-Lin Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| | - Zhi-Wei Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| | - Zhi-Long Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| | - Qiang Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| | - Xiao-Long Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| |
Collapse
|
2
|
Masson CD, Findlay-Greene F, Sousa FH, Henderson P, Fraser JA, Barlow PG, Stevens C. Characterisation of autophagy induction by the thiopurine drugs azathioprine, mercaptopurine and thioguanine in THP-1 macrophages. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4467-4478. [PMID: 39485532 PMCID: PMC11978722 DOI: 10.1007/s00210-024-03563-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024]
Abstract
Activating autophagy may be therapeutically beneficial, and we have previously shown that azathioprine (AZA), an immunomodulatory drug, induces autophagy. Here, we evaluated the induction of autophagy by the thiopurines AZA, mercaptopurine (6-MP) and thioguanine (6-TG) in THP-1 macrophages and investigated the mechanism of action in the context of this cellular process. The cytotoxicity of thiopurines was evaluated using an LDH assay. Induction of endogenous LC3 by thiopurines was evaluated using immunostaining. To confirm autophagy activation by thiopurines, a GFP-RFP-LC3 reporter plasmid was used to monitor the maturation of autophagosomes to autolysosomes. Induction of apoptosis by thiopurines was evaluated using Annexin V/PI staining, and ER stress was assessed via RT‒PCR analysis of XBP1 splicing. To gain insight into the mechanism of action of thiopurines, mTORC1 activity and eIF2α-S51 phosphorylation were evaluated by immunoblotting. Thiopurines were not cytotoxic to cells and induced strong time- and concentration-dependent autophagy. Thiopurines activate autophagy with complete progression through the pathway. Induction of autophagy by thiopurines occurred independently of apoptosis and ER stress. Immunoblotting revealed that AZA inhibited mTORC1 activity, and AZA and 6-TG increased eIF2α-S51 phosphorylation. In contrast, 6-MP had a minor effect on either signalling pathway. Thiopurines are strong inducers of autophagy, and autophagy induction should be considered among the mechanisms responsible for patient response to thiopurines.
Collapse
Affiliation(s)
- Connan D Masson
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, EH11 4BN, UK
| | - Fern Findlay-Greene
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, EH11 4BN, UK
| | - Filipa Henderson Sousa
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Paul Henderson
- Child Life and Health, University of Edinburgh, Edinburgh, EH16 4TJ, UK
- Department of Paediatric Gastroenterology and Nutrition, Royal Hospital for Children and Young People, Edinburgh, EH16 4TJ, UK
| | - Jennifer A Fraser
- Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK
| | - Peter G Barlow
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, EH11 4BN, UK
| | - Craig Stevens
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, EH11 4BN, UK.
| |
Collapse
|
3
|
Hong W, Ma H, Yang Z, Wang J, Peng B, Wang L, Du Y, Yang L, Zhang L, Li Z, Huang H, Zhu D, Yang B, He Q, Wang J, Weng Q. Optineurin restrains CCR7 degradation to guide type II collagen-stimulated dendritic cell migration in rheumatoid arthritis. Acta Pharm Sin B 2025; 15:1626-1642. [PMID: 40370566 PMCID: PMC12069250 DOI: 10.1016/j.apsb.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/28/2024] [Accepted: 12/19/2024] [Indexed: 05/16/2025] Open
Abstract
Dendritic cells (DCs) serve as the primary antigen-presenting cells in autoimmune diseases, like rheumatoid arthritis (RA), and exhibit distinct signaling profiles due to antigenic diversity. Type II collagen (CII) has been recognized as an RA-specific antigen; however, little is known about CII-stimulated DCs, limiting the development of RA-specific therapeutic interventions. In this study, we show that CII-stimulated DCs display a preferential gene expression profile associated with migration, offering a new perspective for targeting DC migration in RA treatment. Then, saikosaponin D (SSD) was identified as a compound capable of blocking CII-induced DC migration and effectively ameliorating arthritis. Optineurin (OPTN) is further revealed as a potential SSD target, with Optn deletion impairing CII-pulsed DC migration without affecting maturation. Function analyses uncover that OPTN prevents the proteasomal transport and ubiquitin-dependent degradation of C-C chemokine receptor 7 (CCR7), a pivotal chemokine receptor in DC migration. Optn-deficient DCs exhibit reduced CCR7 expression, leading to slower migration in CII-surrounded environment, thus alleviating arthritis progression. Our findings underscore the significance of antigen-specific DC activation in RA and suggest OPTN is a crucial regulator of CII-specific DC migration. OPTN emerges as a promising drug target for RA, potentially offering significant value for the therapeutic management of RA.
Collapse
Affiliation(s)
- Wenxiang Hong
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
| | - Hongbo Ma
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhaoxu Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiaying Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Bowen Peng
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Longling Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yiwen Du
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lijun Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou 310059, China
| | - Lijiang Zhang
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou 310059, China
| | - Zhibin Li
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310018, China
| | - Han Huang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Difeng Zhu
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Taizhou Institute of Zhejiang University, Taizhou 318000, China
| |
Collapse
|
4
|
Quiniou G, Andromaque L, Duclaux-Loras R, Dinet O, Cervantes O, Verdet M, Meunier C, Boschetti G, Viret C, Nancey S, Faure M, Rozières A. Impaired reprogramming of the autophagy flux in maturing dendritic cells from crohn disease patients with core autophagy gene-related polymorphisms. Autophagy 2024; 20:1837-1853. [PMID: 38615686 PMCID: PMC11262231 DOI: 10.1080/15548627.2024.2338574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/16/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024] Open
Abstract
Crohn disease (CD) is an inflammatory bowel disease whose pathogenesis involves inappropriate immune responses toward gut microbiota on genetically predisposed backgrounds. Notably, CD is associated with single-nucleotide polymorphisms affecting several genes involved in macroautophagy/autophagy, the catabolic process that ensures the degradation and recycling of cytosolic components and microorganisms. In a clinical translation perspective, monitoring the autophagic activity of CD patients will require some knowledge on the intrinsic functional status of autophagy. Here, we focused on monocyte-derived dendritic cells (DCs) to characterize the intrinsic quantitative features of the autophagy flux. Starting with DCs from healthy donors, we documented a reprogramming of the steady state flux during the transition from the immature to mature status: both the autophagosome pool size and the flux were diminished at the mature stage while the autophagosome turnover remained stable. At the cohort level, DCs from CD patients were comparable to control in term of autophagy flux reprogramming capacity. However, the homozygous presence of ATG16L1 rs2241880 A>G (T300A) and ULK1 rs12303764 (G/T) polymorphisms abolished the capacity of CD patient DCs to reprogram their autophagy flux during maturation. This effect was not seen in the case of CD patients heterozygous for these polymorphisms, revealing a gene dose dependency effect. In contrast, the NOD2 rs2066844 c.2104C>T (R702W) polymorphism did not alter the flux reprogramming capacity of DCs. The data, opening new clinical translation perspectives, indicate that polymorphisms affecting autophagy-related genes can differentially influence the capacity of DCs to reprogram their steady state autophagy flux when exposed to proinflammatory challenges.Abbreviation: BAFA1: bafilomycin A1, CD: Crohn disease; DC: dendritic cells; HD: healthy donor; iDCs: immature DCs; IL: interleukin; J: autophagosome flux; LPS: lipopolysaccharide; MHC: major histocompatibility complex; nA: autophagosome pool size; SNPs: single-nucleotide polymorphisms; PCA: principal component analysis; TLR: toll like receptor; τ: transition time; TNF: tumor necrosis factor.
Collapse
Affiliation(s)
- Gaëlle Quiniou
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Leslie Andromaque
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Rémi Duclaux-Loras
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
- Department of Pediatric Hepatology, Gastroenterology and Nutrition, Femme-Mère-Enfant Hospital, Hospices Civils de Lyon, Bron, France
| | - Océane Dinet
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Ornella Cervantes
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Mallorie Verdet
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Camille Meunier
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
- Department of Gastroenterology, Lyon-Sud university hospital, Lyon, France
| | - Gilles Boschetti
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
- Department of Gastroenterology, Lyon-Sud university hospital, Lyon, France
| | - Christophe Viret
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Stéphane Nancey
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
- Department of Gastroenterology, Lyon-Sud university hospital, Lyon, France
| | - Mathias Faure
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM, France
| | - Aurore Rozières
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| |
Collapse
|
5
|
Badae NM, Abdelmonsif DA, Aly RG, Omar AM, Shoela MS, Omar EM. Effect of spermidine on long non-coding RNAs MALAT1 in a rotenone induced-rat model of Parkinson's disease. Fundam Clin Pharmacol 2024; 38:718-729. [PMID: 38279557 DOI: 10.1111/fcp.12986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND Spermidine is a natural biologically active substance that has widespread influences on the body. OBJECTIVE This study aims to enhance our understanding of the potential effect of spermidine on long non-coding RNA MALAT1 and explore the underlying mechanism in the rotenone-induced rat model of Parkinson's disease. METHODS Rats were sacrificed after locomotor behavioral testing. Striatal tissues were used to assess the expression of MALAT1, oxidative stress markers, and autophagy markers. RESULTS Our study found that treatment with spermidine for 2 weeks during the induction of the model significantly improved behavioral assessment, dopamine levels, and attenuated the histopathological changes that occurred in PD in comparison to the non-treated group. CONCLUSION Our preliminary study supports the protective effect of spermidine on the activation of autophagy and its antioxidant properties. Part of the antioxidant activity is due to the inhibition of MALAT1. However, MALAT1 does not correlate with the spermidine-induced autophagy pathway.
Collapse
Affiliation(s)
- Noha Mohamed Badae
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Doaa A Abdelmonsif
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Rania Gaber Aly
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Amira M Omar
- Department of Histology & Cell Biology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mai S Shoela
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Eman M Omar
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
6
|
Lv X, Tang W, Qin J, Wang W, Dong J, Wei Y. The crosslinks between ferroptosis and autophagy in asthma. Front Immunol 2023; 14:1140791. [PMID: 37063888 PMCID: PMC10090423 DOI: 10.3389/fimmu.2023.1140791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Autophagy is an evolutionarily conserved cellular process capable of degrading various biological molecules and organelles via the lysosomal pathway. Ferroptosis is a type of oxidative stress-dependent regulated cell death associated with the iron accumulation and lipid peroxidation. The crosslinks between ferroptosis and autophagy have been focused on since the dependence of ferroptosis on autophagy was discovered. Although the research and theories on the relationship between autophagy and ferroptosis remain scattered and fragmented, the crosslinks between these two forms of regulated cell death are closely related to the treatment of various diseases. Thereof, asthma as a chronic inflammatory disease has a tight connection with the occurrence of ferroptosis and autophagy since the crosslinked signal pathways may be the crucial regulators or exactly regulated by cells and secretion in the immune system. In addition, non-immune cells associated with asthma are also closely related to autophagy and ferroptosis. Further studies of cross-linking asthma inflammation with crosslinked signaling pathways may provide us with several key molecules that regulate asthma through specific regulators. The crosslinks between autophagy and ferroptosis provide us with a new perspective to interpret and understand the manifestations of asthma, potential drug discovery targets, and new therapeutic options to effectively intervene in the imbalance caused by abnormal inflammation in asthma. Herein, we introduce the main molecular mechanisms of ferroptosis, autophagy, and asthma, describe the role of crosslinks between ferroptosis and autophagy in asthma based on their common regulatory cells or molecules, and discuss potential drug discovery targets and therapeutic applications in the context of immunomodulatory and symptom alleviation.
Collapse
Affiliation(s)
- Xiaodi Lv
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Weifeng Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingjing Qin
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Wenqian Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
- *Correspondence: Ying Wei, ; Jingcheng Dong,
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
- *Correspondence: Ying Wei, ; Jingcheng Dong,
| |
Collapse
|
7
|
Hasan KMM, Haque MA. Autophagy and Its Lineage-Specific Roles in the Hematopoietic System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:8257217. [PMID: 37180758 PMCID: PMC10171987 DOI: 10.1155/2023/8257217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 02/26/2023] [Accepted: 03/17/2023] [Indexed: 05/16/2023]
Abstract
Autophagy is a dynamic process that regulates the selective and nonselective degradation of cytoplasmic components, such as damaged organelles and protein aggregates inside lysosomes to maintain tissue homeostasis. Different types of autophagy including macroautophagy, microautophagy, and chaperon-mediated autophagy (CMA) have been implicated in a variety of pathological conditions, such as cancer, aging, neurodegeneration, and developmental disorders. Furthermore, the molecular mechanism and biological functions of autophagy have been extensively studied in vertebrate hematopoiesis and human blood malignancies. In recent years, the hematopoietic lineage-specific roles of different autophagy-related (ATG) genes have gained more attention. The evolution of gene-editing technology and the easy access nature of hematopoietic stem cells (HSCs), hematopoietic progenitors, and precursor cells have facilitated the autophagy research to better understand how ATG genes function in the hematopoietic system. Taking advantage of the gene-editing platform, this review has summarized the roles of different ATGs at the hematopoietic cell level, their dysregulation, and pathological consequences throughout hematopoiesis.
Collapse
Affiliation(s)
- Kazi Md Mahmudul Hasan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia 7003, Bangladesh
- Department of Neurology, David Geffen School of Medicine, The University of California, 710 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Md Anwarul Haque
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia 7003, Bangladesh
| |
Collapse
|
8
|
Li Y, Law HKW. Deciphering the role of autophagy in the immunopathogenesis of inflammatory bowel disease. Front Pharmacol 2022; 13:1070184. [DOI: 10.3389/fphar.2022.1070184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a typical immune-mediated chronic inflammatory disorder. Following the industrialization and changes in lifestyle, the incidence of IBD in the world is rising, which makes health concerns and heavy burdens all over the world. However, the pathogenesis of IBD remains unclear, and the current understanding of the pathogenesis involves dysregulation of mucosal immunity, gut microbiome dysbiosis, and gut barrier defect based on genetic susceptibility and environmental triggers. In recent years, autophagy has emerged as a key mechanism in IBD development and progression because Genome-Wide Association Study revealed the complex interactions of autophagy in IBD, especially immunopathogenesis. Besides, autophagy markers are also suggested to be potential biomarkers and target treatment in IBD. This review summarizes the autophagy-related genes regulating immune response in IBD. Furthermore, we explore the evolving evidence that autophagy interacts with intestinal epithelial and immune cells to contribute to the inflammatory changes in IBD. Finally, we discuss how novel discovery could further advance our understanding of the role of autophagy and inform novel therapeutic strategies in IBD.
Collapse
|
9
|
Le Naour J, Sztupinszki Z, Carbonnier V, Casiraghi O, Marty V, Galluzzi L, Szallasi Z, Kroemer G, Vacchelli E. A loss-of-function polymorphism in ATG16L1 compromises therapeutic outcome in head and neck carcinoma patients. Oncoimmunology 2022; 11:2059878. [PMID: 35481288 PMCID: PMC9037530 DOI: 10.1080/2162402x.2022.2059878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The anticancer immune response is shaped by immunogenic cell stress and death pathways. Thus, cancer cells can release danger-associated molecular patterns that act on pattern recognition receptors expressed by dendritic cells and their precursors to elicit an antitumor immune response. Here, we investigated the impact of single nucleotide polymorphisms (SNPs) in genes affecting this cancer-immunity dialogue in the context of head and neck squamous cell carcinoma (HNSCC). We observed that homozygosity for a loss-of-function SNP (rs2241880, leading to the substitution of a threonine residue in position 300 by an alanine) affecting autophagy related 16 like 1 (ATG16L1) is coupled to poor progression-free survival in platinum-treated HNSCC patients. This result was obtained on a cohort of patients enrolled at the Gustave Roussy Cancer Campus and was validated on an independent cohort of The Cancer Genome Atlas (TCGA). Homozygosity in rs2241880 is well known to predispose to Crohn’s disease, and epidemiological associations between Crohn’s disease and HNSCC have been reported at the levels of cancer incidence and prognosis. We speculate that rs2241880 might be partially responsible for this association.
Collapse
Affiliation(s)
- Julie Le Naour
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Université Paris Sud, Paris Saclay, Faculty of Medicine Kremlin Bicêtre, France
| | - Zsofia Sztupinszki
- Computational Health Informatics Program (CHIP), Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Vincent Carbonnier
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Université Paris Sud, Paris Saclay, Faculty of Medicine Kremlin Bicêtre, France
| | - Odile Casiraghi
- Department of Head and Neck Surgical and Medical Oncology, Gustave Roussy Cancer Campus, Paris-Saclay University, Villejuif, France
| | - Virginie Marty
- Experimental and Translational Pathology Platform (PETRA), AMMICa Inserm US23/UMS CNRS3655, Gustave Roussy Cancer Campus, Villejuif, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Zoltan Szallasi
- Computational Health Informatics Program (CHIP), Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Institut du Cancer Paris CARPEMAP-HP, Hôpital Européen Georges Pompidou, Pôle de Biologie, Paris, France
- Department of Cancer Medicine, Gustave Roussy Cancer Campus, Villejuif, France
| | - Erika Vacchelli
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
10
|
Autophagy in Tumor Immunity and Viral-Based Immunotherapeutic Approaches in Cancer. Cells 2021; 10:cells10102672. [PMID: 34685652 PMCID: PMC8534833 DOI: 10.3390/cells10102672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 01/09/2023] Open
Abstract
Autophagy is a fundamental catabolic process essential for the maintenance of cellular and tissue homeostasis, as well as directly contributing to the control of invading pathogens. Unsurprisingly, this process becomes critical in supporting cellular dysregulation that occurs in cancer, particularly the tumor microenvironments and their immune cell infiltration, ultimately playing a role in responses to cancer therapies. Therefore, understanding "cancer autophagy" could help turn this cellular waste-management service into a powerful ally for specific therapeutics. For instance, numerous regulatory mechanisms of the autophagic machinery can contribute to the anti-tumor properties of oncolytic viruses (OVs), which comprise a diverse class of replication-competent viruses with potential as cancer immunotherapeutics. In that context, autophagy can either: promote OV anti-tumor effects by enhancing infectivity and replication, mediating oncolysis, and inducing autophagic and immunogenic cell death; or reduce OV cytotoxicity by providing survival cues to tumor cells. These properties make the catabolic process of autophagy an attractive target for therapeutic combinations looking to enhance the efficacy of OVs. In this article, we review the complicated role of autophagy in cancer initiation and development, its effect on modulating OVs and immunity, and we discuss recent progress and opportunities/challenges in targeting autophagy to enhance oncolytic viral immunotherapy.
Collapse
|
11
|
Prins MMC, van Roest M, Vermeulen JLM, Tjabringa GS, van de Graaf SFJ, Koelink PJ, Wildenberg ME. Applicability of different cell line-derived dendritic cell-like cells in autophagy research. J Immunol Methods 2021; 497:113106. [PMID: 34324891 DOI: 10.1016/j.jim.2021.113106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Immortalized cell lines have been long used as substitute for ex vivo murine and human material, but exhibit features that are not found in healthy tissue. True human dendritic cells (DC) cannot be cultured or passaged as opposed to immortalized cell lines. Research in the fields of immunogenic responses and immunotolerance in DCs has increased over the last decade. Autophagy has gained interest in these fields as well, and has been researched extensively in many other cell types as well. Here we have studied the applicability of cell line-derived dendritic cell-like cells of six myeloid cell lines aimed at research focussed on autophagy. METHODS Six myeloid leukaemia cell lines were differentiated towards cell line-derived dendritic cell-like cells (cd-DC) using GM-CSF, IL-4, Ionomycine and PMA: HL60, KG1, MM6, MV-4-11, THP1 and U937. Autophagy was modulated using Rapamycin, Bafilomycin A1 and 3MA. Cell lines were genotyped for autophagy-related SNPs using RFLP. Marker expression was determined with FACS analysis and cytokine profiles were determined using Human Cytometric Bead Assay. Antigen uptake was assessed using Fluoresbrite microspheres. RESULTS AND DISCUSSION All researched cell lines harboured SNPs in the autophagy pathways. MM6 and THP1 derived cd-DCs resembled monocyte-derived DCs (moDC) most closely in marker expression, cytokine profiles and autophagy response. The HL60 and U937 cell lines proved least suitable for autophagy-related dendritic cell research. CONCLUSION The genetic background of cell lines should be taken into account upon studying (the effects of) autophagy in any cell line. Although none of the studied cell lines recapitulate the full spectrum of DC characteristics, MM6 and THP1 derived cd-DCs are most suitable for autophagy-related research in dendritic cells.
Collapse
Affiliation(s)
- Marileen M C Prins
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| | - Manon van Roest
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| | - Jacqueline L M Vermeulen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| | - G Sandra Tjabringa
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| | - Stan F J van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| | - Pim J Koelink
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| | - Manon E Wildenberg
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
12
|
Verstockt B, Boets L, Sabino J, Vermeire S, Ferrante M. Thiopurine monotherapy has a limited place in treatment of patients with mild-to-moderate Crohn's disease. Gut 2021; 70:1416-1418. [PMID: 32928916 DOI: 10.1136/gutjnl-2020-322646] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Bram Verstockt
- Dpt Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium.,Dpt Chronic Diseases, Metabolism and Ageing, Translational Research in Gastrointestinal Disorders (TARGID), IBD, KU Leuven, Leuven, Belgium
| | - Liesbeth Boets
- Dpt Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - João Sabino
- Dpt Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium.,Dpt Chronic Diseases, Metabolism and Ageing, Translational Research in Gastrointestinal Disorders (TARGID), IBD, KU Leuven, Leuven, Belgium
| | - Séverine Vermeire
- Dpt Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium.,Dpt Chronic Diseases, Metabolism and Ageing, Translational Research in Gastrointestinal Disorders (TARGID), IBD, KU Leuven, Leuven, Belgium
| | - Marc Ferrante
- Dpt Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium .,Dpt Chronic Diseases, Metabolism and Ageing, Translational Research in Gastrointestinal Disorders (TARGID), IBD, KU Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Zhang F, Liu Y, You Q, Yang E, Liu B, Wang H, Xu S, Nawaz W, Chen D, Wu Z. NSC23766 and Ehop016 Suppress Herpes Simplex Virus-1 Replication by Inhibiting Rac1 Activity. Biol Pharm Bull 2021; 44:1263-1271. [PMID: 34162786 DOI: 10.1248/bpb.b21-00054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Herpes simplex virus-1 (HSV-1) infection of the eyes leads to herpes simplex virus keratitis (HSK), the main cause of infectious blindness in the world. As the current therapeutics for HSV-1 infection are rather limited and prolonged use of acyclovir (ACV)/ganciclovir (GCV) and in immunocompromised patients lead to the rise of drug resistant mutants, it underlines the urgent need for new antiviral agents with distinct mechanisms. Our study attempted to establish ras-related C3 botulinum toxin substrate 1 (Rac1) as a new therapeutic target for HSV-1 infection by using Rac1-specific inhibitors to evaluate the in vitro inhibition of virus growth. Our results showed that increased Rac1 activity facilitated HSV-1 replication and inhibition of Rac1 activity by NSC23766 and Ehop016 significantly reduced HSV-1 replication. Thus, we identified NSC23766 and Ehop016 as possessing potent anti-HSV-1 activities by suppressing the Rac1 activity, suggesting that Rac1 is a potential target for treating HSV-1-related diseases.
Collapse
Affiliation(s)
- Fang Zhang
- Center for Public Health Research, Medical School of Nanjing University.,Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University
| | - Ye Liu
- Center for Public Health Research, Medical School of Nanjing University.,Department of Ophthalmology, JinLing Hospital, Medical School of Nanjing University
| | - Qiao You
- Center for Public Health Research, Medical School of Nanjing University
| | - Enhui Yang
- Nanjing Children's Hospital, Nanjing Medical University
| | - Bingxin Liu
- Center for Public Health Research, Medical School of Nanjing University
| | - Huanru Wang
- Center for Public Health Research, Medical School of Nanjing University
| | - Shijie Xu
- Center for Public Health Research, Medical School of Nanjing University
| | - Waqas Nawaz
- Center for Public Health Research, Medical School of Nanjing University.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University
| | - Deyan Chen
- Center for Public Health Research, Medical School of Nanjing University
| | - Zhiwei Wu
- Center for Public Health Research, Medical School of Nanjing University.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University.,School of Life Sciences, Ningxia University
| |
Collapse
|
14
|
Prins MMC, Giugliano FP, van Roest M, van de Graaf SFJ, Koelink PJ, Wildenberg ME. Thiopurines correct the effects of autophagy impairment on intestinal healing - a potential role for ARHGAP18/RhoA. Dis Model Mech 2021; 14:258489. [PMID: 33973626 PMCID: PMC8084572 DOI: 10.1242/dmm.047233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 03/04/2021] [Indexed: 12/15/2022] Open
Abstract
The ATG16L1 T300A single-nucleotide polymorphism (SNP) is associated with Crohn's disease and causes an autophagy impairment. We have previously shown that this SNP is involved in the migration and hyperactivation of Rac1 in dendritic cells. Mucosal healing, currently the main target for inflammatory bowel disease treatment, depends on restoration of the epithelial barrier and requires appropriate migration of epithelial cells towards and over mucosal lesions. Therefore, we here further investigated the impact of autophagy on epithelial migration. ATG16L1 knockdown was established in the HT29 human colonic epithelial cell line using lentiviral transduction. Migratory capacity was evaluated using scratch assays and RhoAGTP was measured using G-LISA. Immunofluorescent ARHGAP18 and sequestome 1 (SQSTM1; also known as p62) staining was performed on HT29 cells and primary colonic tissue of Crohn's disease patients. We observed that ATG16L1 knockdown cells exhibited decreased autophagy and decreased migration capacity. Furthermore, activity of RhoA was decreased. These characteristics were phenocopied using ATG5 knockdown and pharmacological inhibition of autophagy. The migration defect was dependent on accumulation of SQSTM1 and was alleviated upon SQSTM1 knockdown. Strikingly, thiopurines also mitigated the effects of impaired autophagy. RhoA dysregulation appeared mediated through accumulation of the upstream regulator ARHGAP18, which was observed in cell lines, human foetal organoids and primary colonic tissue. Our results indicate that the ATG16L1 T300A Crohn's disease-associated SNP causes a decrease in migration capacity in epithelial cells, mediated by an increase in SQSTM1 and ARHGAP18 protein and subsequent reduced RhoA activation.
Collapse
Affiliation(s)
- Marileen M C Prins
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers (UMC), location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.,Department of Gastroenterology and Hepatology, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Francesca P Giugliano
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers (UMC), location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.,Department of Gastroenterology and Hepatology, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Manon van Roest
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers (UMC), location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Stan F J van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers (UMC), location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Pim J Koelink
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers (UMC), location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.,Department of Gastroenterology and Hepatology, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Manon E Wildenberg
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers (UMC), location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.,Department of Gastroenterology and Hepatology, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
15
|
Identification of feature autophagy-related genes in patients with acute myocardial infarction based on bioinformatics analyses. Biosci Rep 2021; 40:225582. [PMID: 32597946 PMCID: PMC7350888 DOI: 10.1042/bsr20200790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/18/2020] [Accepted: 06/29/2020] [Indexed: 01/15/2023] Open
Abstract
Objective: To identify feature autophagy-related genes (ARGs) in patients with acute myocardial infarction (AMI) and further investigate their value in the diagnosis of AMI. Methods: Gene microarray expression data of AMI peripheral blood samples were downloaded from the GSE66360 dataset. The data were randomly classified into a discovery cohort (21 AMI patients and 22 healthy controls) and a validation cohort (28 AMI patients and 28 healthy controls). Differentially expressed ARGs between patients with AMI and healthy controls in the discovery cohort were identified using a statistical software package. Feature ARGs were screened based on support vector machine-recursive feature elimination (SVM-RFE), and an SVM classifier was constructed. Receiver operating characteristic (ROC) analysis was used to investigate the predictive value of the classifier, which was further verified in an independent external cohort. Results: A total of seven genes were identified based on SVM-RFE. The SVM classifier had an excellent discrimination ability in both the discovery cohort (area under the curve [AUC] = 0.968) and the validation cohort (AUC = 0.992), which was further confirmed in the GSE48060 dataset (AUC = 0.963). Furthermore, the SVM classifier showed outstanding discrimination between AMI patients with and without recurrent events in the independent external cohort (AUC = 0.992). The identified genes are mainly involved in the cellular response to autophagy, macroautophagy, apoptosis, and the FoxO signaling pathway. Conclusion: Our study identified feature ARGs and indicated their potential roles in AMI diagnosis to improve our understanding of the molecular mechanism underlying the occurrence of AMI.
Collapse
|
16
|
Privitera G, Pugliese D, Onali S, Petito V, Scaldaferri F, Gasbarrini A, Danese S, Armuzzi A. Combination therapy in inflammatory bowel disease - from traditional immunosuppressors towards the new paradigm of dual targeted therapy. Autoimmun Rev 2021; 20:102832. [PMID: 33866066 DOI: 10.1016/j.autrev.2021.102832] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Combining immunosuppressors has been proposed as a strategy to enhance treatment efficacy in Inflammatory Bowel Disease (IBD). AIM To summarize current evidence on combinations of targeted therapies with traditional immunosuppressors or with other targeted therapies. METHODS A literature search on PubMed and Medline databases was performed to identify relevant articles. RESULTS Current evidence supports that the combination of infliximab and thiopurines is more effective than monotherapy with both agents in inducing remission in Crohn's Disease and Ulcerative colitis. Data on other combinations of other biologics and traditional immunosuppressors is lacking or show conflicting results. Vedolizumab seems a potentially effective maintenance regimen after calcineurin inhibitors-based rescue therapy in acute severe ulcerative colitis, as an alternative to thiopurines. Dual Targeted Therapy, which is the combination of 2 targeted therapies, might be a reasonable choice in patients with concomitant IBD and extraintestinal manifestations, or in patients with medical-refractory IBD who lack valid alternatives. Combinations with thiopurines are associated with an increased risk of infections and lymphoma. Data on other combinations is scarcer, but no specific safety issue has emerged so far. CONCLUSIONS Combination therapies seem to be effective in selected patients, with an overall acceptable safety profile.
Collapse
Affiliation(s)
- Giuseppe Privitera
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Daniela Pugliese
- CEMAD - IBD UNIT - Unità Operativa Complessa di Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy.
| | - Sara Onali
- Gastroenterology Unit, University Hospital of Cagliari, Department of Science and Public Health, University of Cagliari, Italy
| | - Valentina Petito
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Franco Scaldaferri
- CEMAD - IBD UNIT - Unità Operativa Complessa di Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy.
| | - Antonio Gasbarrini
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy; CEMAD - IBD UNIT - Unità Operativa Complessa di Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy.
| | - Silvio Danese
- IBD Center, Department of Gastroenterology, Humanitas Clinical and Research Center, Istituto di Ricovero e Cura a Carattere Scientifico, Rozzano, Milan 20089, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.
| | - Alessandro Armuzzi
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy; CEMAD - IBD UNIT - Unità Operativa Complessa di Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy.
| |
Collapse
|
17
|
Gunata M, Parlakpinar H. A review of myocardial ischaemia/reperfusion injury: Pathophysiology, experimental models, biomarkers, genetics and pharmacological treatment. Cell Biochem Funct 2020; 39:190-217. [PMID: 32892450 DOI: 10.1002/cbf.3587] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/03/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022]
Abstract
Cardiovascular diseases are known to be the most fatal diseases worldwide. Ischaemia/reperfusion (I/R) injury is at the centre of the pathology of the most common cardiovascular diseases. According to the World Health Organization estimates, ischaemic heart disease is the leading global cause of death, causing more than 9 million deaths in 2016. After cardiovascular events, thrombolysis, percutaneous transluminal coronary angioplasty or coronary bypass surgery are applied as treatment. However, after restoring coronary blood flow, myocardial I/R injury may occur. It is known that this damage occurs due to many pathophysiological mechanisms, especially increasing reactive oxygen types. Besides causing cardiomyocyte death through multiple mechanisms, it may be an important reason for affecting other cell types such as platelets, fibroblasts, endothelial and smooth muscle cells and immune cells. Also, polymorphonuclear leukocytes are associated with myocardial I/R damage during reperfusion. This damage may be insufficient in patients with co-morbidity, as it is demonstrated that it can be prevented by various endogenous antioxidant systems. In this context, the resulting data suggest that optimal cardioprotection may require a combination of additional or synergistic multi-target treatments. In this review, we discussed the pathophysiology, experimental models, biomarkers, treatment and its relationship with genetics in myocardial I/R injury. SIGNIFICANCE OF THE STUDY: This review summarized current information on myocardial ischaemia/reperfusion injury (pathophysiology, experimental models, biomarkers, genetics and pharmacological therapy) for researchers and reveals guiding data for researchers, especially in the field of cardiovascular system and pharmacology.
Collapse
Affiliation(s)
- Mehmet Gunata
- Department of Medical Pharmacology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Hakan Parlakpinar
- Department of Medical Pharmacology, Faculty of Medicine, Inonu University, Malatya, Turkey
| |
Collapse
|
18
|
Abstract
Biological therapies, especially blocking tumor necrosis factor-α (TNFα) agents have radically changed the therapeutic approach and disease course of pediatric inflammatory bowel disease (IBD). In particular, drugs such as infliximab (IFX) and adalimumab (ADA) have been demonstrated to be effective in inducing and maintaining corticosteroid-free remission in both adult and pediatric patients with Crohns Disease (CD) and Ulcerative colitis (UC). Biosimilar biological (BioS) therapy is increasingly being used in pediatric age even though most knowledge on the safety and efficacy of these agents is based on IFX in adult IBD data. Studies show high rates of clinical response and remission in both IFX naïve patients and in patients switched from originator to BioS with similar risks of adverse events (AEs) as those reported with IFX originator. In the present review indications, efficacy and AEs of biological therapy in pediatric IBD will be discussed, as well as the role of other biological agents such as Golimumab, Vedolizumab and Ustekinumab, the role of BioS biological therapy and utility of therapeutic drug monitoring in clinical practice.
Collapse
|
19
|
Chang JY, Cheon JH. Thiopurine Therapy in Patients With Inflammatory Bowel Disease: A Focus on Metabolism and Pharmacogenetics. Dig Dis Sci 2019; 64:2395-2403. [PMID: 31290039 DOI: 10.1007/s10620-019-05720-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/02/2019] [Indexed: 12/15/2022]
Abstract
Thiopurines have been widely used for the maintenance of remission or steroid sparing in patients with inflammatory bowel disease. However, potential drug-related adverse events frequently interfere with their use. Indeed, drug withdrawals associated with adverse reactions have been reported in approximately 25% of patients. To balance the efficacy, safety, and tolerability of thiopurines, regular monitoring of biomarkers (complete blood cell count, liver function test, and metabolic profiles), steady dose escalation, and pretreatment thiopurine S-methyltransferase (TPMT) genotype screening have been routinely recommended. However, the complex thiopurine metabolic pathway and individual differences attributed to pharmacogenetic diversity limit the effectiveness of these strategies in the optimization of thiopurine therapy. Recently, in an effort to facilitate more accurate and personalized prediction of thiopurine response or toxicity, novel genetic markers including NUDT15 and FTO genes were discovered. These discoveries are remarkable because TPMT screening has minimal efficacy for predicting myelosuppression especially in Asian populations, despite the fact that thee populations have a higher frequency of myelosuppression than Western populations. This review focuses on the current understanding of the metabolic pathway and the pharmacogenetics of thiopurines and suggests a personalized preventive strategy against potential adverse drug reactions to optimize their therapeutic application.
Collapse
Affiliation(s)
- Ji Young Chang
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Department of Health Promotion Center, Ewha Womans University School of Medicine, Seoul, Korea
| | - Jae Hee Cheon
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
20
|
Hooper KM, Casanova V, Kemp S, Staines KA, Satsangi J, Barlow PG, Henderson P, Stevens C. The Inflammatory Bowel Disease Drug Azathioprine Induces Autophagy via mTORC1 and the Unfolded Protein Response Sensor PERK. Inflamm Bowel Dis 2019; 25:1481-1496. [PMID: 30889246 DOI: 10.1093/ibd/izz039] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/26/2019] [Accepted: 02/22/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Genetic studies have strongly linked autophagy to Crohn's disease (CD), and stimulating autophagy in CD patients may be therapeutically beneficial. The aim of this study was to evaluate the effect of current inflammatory bowel disease (IBD) drugs on autophagy and investigate molecular mechanisms of action and functional outcomes in relation to this cellular process. METHODS Autophagy marker LC3 was evaluated by confocal fluorescence microscopy and flow cytometry. Drug mechanism of action was investigated by polymerase chain reaction (PCR) array with changes in signaling pathways examined by immunoblot and quantitative reverse transcription PCR (RT-qPCR). Clearance of adherent-invasive Escherichia coli (AIEC) and levels of pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) were evaluated by gentamicin protection assays and RT-qPCR, respectively. The marker LC3 was analyzed in peripheral blood mononuclear cells (PBMCs) from pediatric patients by flow cytometry. RESULTS Azathioprine induces autophagy via mechanisms involving modulation of mechanistic target of rapamycin (mTORC1) signaling and stimulation of the unfolded protein response (UPR) sensor PERK. Induction of autophagy with azathioprine correlated with the enhanced clearance of AIEC and dampened AIEC-induced increases in TNFα. Azathioprine induced significant increase in autophagosome bound LC3-II in PBMC populations ex vivo, supporting in vitro findings. In patients, the CD-associated ATG16L1 T300A single-nucleotide polymorphism did not attenuate azathioprine induction of autophagy. CONCLUSIONS Modulation of autophagy via mTORC1 and the UPR may contribute to the therapeutic efficacy of azathioprine in IBD.
Collapse
Affiliation(s)
- Kirsty M Hooper
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, Scotland
| | - Victor Casanova
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, Scotland
| | - Sadie Kemp
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, Scotland
| | - Katherine A Staines
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, Scotland
| | - Jack Satsangi
- Centre for Genomic & Experimental Medicine, University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh Scotland
- Translational Gastroenterology Unit, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, England
| | - Peter G Barlow
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, Scotland
| | - Paul Henderson
- Child Life and Health, University of Edinburgh, Edinburgh, Scotland
- Department of Pediatric Gastroenterology and Nutrition, Royal Hospital for Sick Children, Edinburgh, Scotland
| | - Craig Stevens
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, Scotland
| |
Collapse
|
21
|
Wu D, Zhang K, Hu P. The Role of Autophagy in Acute Myocardial Infarction. Front Pharmacol 2019; 10:551. [PMID: 31214022 PMCID: PMC6554699 DOI: 10.3389/fphar.2019.00551] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/01/2019] [Indexed: 12/14/2022] Open
Abstract
Acute myocardial infarction refers to a sudden death of cardiomyocytes, which leads to a large mortality worldwide. To attenuate acute myocardial infarction, strategies should be made to increase cardiomyocyte survival, improve postinfarcted cardiac function, and reverse the process of cardiac remodeling. Autophagy, a pivotal cellular response, has been widely studied and is known to be involved in various kinds of diseases. In the recent few years, the role of autophagy in diseases has been drawn increasing attention to by researchers. Here in this review, we mainly focus on the discussion of the effect of autophagy on the pathogenesis and progression of acute myocardial infarction under ischemic and ischemia/reperfusion injuries. Furthermore, several popular therapeutic agents and strategies taking advantage of autophagy will be described.
Collapse
Affiliation(s)
- Du Wu
- Department of Internal Medicine, The WuYun Mountain Sanatorium of Hangzhou, Hangzhou, China
| | - Kangfeng Zhang
- Department of Internal Medicine, The WuYun Mountain Sanatorium of Hangzhou, Hangzhou, China
| | - Pengfei Hu
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
22
|
Wu Y, Tang L, Wang B, Sun Q, Zhao P, Li W. The role of autophagy in maintaining intestinal mucosal barrier. J Cell Physiol 2019; 234:19406-19419. [PMID: 31020664 DOI: 10.1002/jcp.28722] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/23/2019] [Accepted: 04/02/2019] [Indexed: 12/12/2022]
Abstract
The intestinal mucosal barrier is the first line to defense against luminal content penetration and performs numerous biological functions. The intestinal epithelium contains a huge surface that is lined by a monolayer of intestinal epithelial cells (IECs). IECs are dominant mediators in maintaining intestinal homeostasis that drive diverse functions including nutrient absorption, physical segregation, secretion of antibacterial peptides, and modulation of immune responses. Autophagy is a cellular self-protection mechanism in response to various stresses, and accumulating studies have revealed its importance in participating physiological processes of IECs. The regulatory effects of autophagy depend on the specific IEC types. This review aims to elucidate the myriad roles of autophagy in regulating the functions of different IECs (stem cells, enterocytes, goblet cells, and Paneth cells), and present the progress of autophagy-targeting therapy in intestinal diseases. Understanding the involved mechanisms can provide new preventive and therapeutic strategies for gastrointestinal dysfunction and diseases.
Collapse
Affiliation(s)
- Yanping Wu
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Li Tang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Baikui Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Qiming Sun
- Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou, China
| | - Pengwei Zhao
- Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Hooper KM, Barlow PG, Henderson P, Stevens C. Interactions Between Autophagy and the Unfolded Protein Response: Implications for Inflammatory Bowel Disease. Inflamm Bowel Dis 2019; 25:661-671. [PMID: 30590697 DOI: 10.1093/ibd/izy380] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis, is characterized by chronic inflammation of the gastrointestinal tract. The etiology involves a combination of genetic and environmental factors resulting in abnormal immune responses to intestinal microbiota. Genetic studies have strongly linked genes involved in autophagy to CD, and genes involved in the unfolded protein response (UPR) to IBD. The UPR is triggered in response to accumulation of misfolded proteins in the endoplasmic reticulum (ER), and autophagy plays a key role in relieving ER stress and restoring homeostasis. This review summarizes the known interactions between autophagy and the UPR and discusses the impact of these converging pathways on IBD pathogenesis. With a paucity of effective long-term treatments for IBD, targeting of synergistic pathways may provide novel and more effective therapeutic options.
Collapse
Affiliation(s)
- Kirsty M Hooper
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Peter G Barlow
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Paul Henderson
- Child Life and Health, University of Edinburgh, Edinburgh, United Kingdom
- Department of Paediatric Gastroenterology and Nutrition, Royal Hospital for Sick Children, Edinburgh, United Kingdom
| | - Craig Stevens
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| |
Collapse
|
24
|
Wang X, Zhang Y, Feng T, Su G, He J, Gao W, Shen Y, Liu X. Fluid Shear Stress Promotes Autophagy in Hepatocellular Carcinoma Cells. Int J Biol Sci 2018; 14:1277-1290. [PMID: 30123076 PMCID: PMC6097484 DOI: 10.7150/ijbs.27055] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/18/2018] [Indexed: 12/18/2022] Open
Abstract
The autophagy in cancer cells is recognized as an essential hallmark of tumors, which can enhance cancer cell migration and invasion, and result in high incidence of tumor metastasis. The fluid shear stress (FSS) in tumor mechanical microenvironment plays a pivotal role in mediating the behaviors and functions of cells. In this study, the hepatocellular carcinoma cells were exposed to 1.4 dyn/cm2 FSS to explore whether FSS could induce autophagy. The results of TEM, Ad-mCherry-GFP labeled LC3B, and mRNA and protein expression of autophagy markers confirmed that FSS could induce autophagy in a time-dependent manner. Additionally, the inhibition of autophagy significantly downregulated the expression of PI3K, FAK and Rho GTPases, and attenuated the ability of cell migration, suggesting that FSS-induced autophagy depended on PI3K- FAK-Rho GTPases pathway. This study elucidated the role of FSS in inducing autophagy during tumor progression, which has emerged as a promising clinical strategy for cancer.
Collapse
Affiliation(s)
- Xiaoli Wang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yingying Zhang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Tang Feng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Guanyue Su
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Jia He
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Wenbo Gao
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yang Shen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| |
Collapse
|
25
|
Autophagy in dendritic cells. Cell Mol Immunol 2018; 15:944-952. [PMID: 29578531 PMCID: PMC6207777 DOI: 10.1038/cmi.2018.2] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/24/2017] [Accepted: 12/24/2017] [Indexed: 12/15/2022] Open
Abstract
Autophagy and immunity share the property of being auto-protective for the organism. Autophagy is an important degradation pathway that buffers nutrient deprivation by recycling macromolecules in organisms from yeast to man. Perturbations in autophagy are associated with inflammation and cancer development. Emerging studies have characterized the molecular details regarding how autophagy is controlled by immune cells. Among these, dendritic cells (DCs) are one of the most potent professional antigen-presenting cells critical for the activation of naïve T cells to maintain immune tolerance and drive protective immunity to infection and cancer. DCs undergo functional maturation that can either lead to an immunostimulatory phenotype, as in the context of infection, or to a tolerogenic phenotype associated with immunosuppression to self-antigens, as well as to cancer. An increasing number of recent studies has characterized the involvement of autophagy in DC functions in various physiological and pathological contexts. Here, we provide a comprehensive review of these outcomes and discuss the limitation of the models used and the forefront of the knowledge concerning the crosstalk between autophagy and DC biology.
Collapse
|
26
|
Chaabane W, Appell ML. Interconnections between apoptotic and autophagic pathways during thiopurine-induced toxicity in cancer cells: the role of reactive oxygen species. Oncotarget 2018; 7:75616-75634. [PMID: 27689330 PMCID: PMC5342765 DOI: 10.18632/oncotarget.12313] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/15/2016] [Indexed: 12/13/2022] Open
Abstract
Thiopurines (azathioprine, 6-mercaptopurine and 6-thioguanine) are a class of genotoxic drugs extensively used in the treatment of various illnesses including leukemia. Their underlying molecular mechanism of action involves the activation of apoptosis and autophagy but remains widely unclear. Here we present evidence that autophagy induction by thiopurines is a survival mechanism that antagonizes apoptosis and is involved in degrading damaged mitochondria through mitophagy. On the other hand, apoptosis is the main cell death mechanism by thiopurines as its inhibition prohibited cell death. Thus a tight interplay between apoptosis and autophagy controls cell fate in response to thiopurine treatment. Moreover, thiopurines disrupt mitochondrial function and induce a loss of the mitochondrial transmembrane potential. The involvement of the mitochondrial pathway in thiopurine-induced apoptosis was further confirmed by increased formation of reactive oxygen species (ROS). Inhibiting oxidative stress protected the cells from thiopurine-induced cell death and ROS scavenging prohibited autophagy induction by thiopurines. Our data indicate that the anticarcinogenic effects of thiopurines are mediated by complex interplay between cellular mechanisms governing redox homeostasis, apoptosis and autophagy.
Collapse
Affiliation(s)
- Wiem Chaabane
- Division of Drug Research, Department of Medical and Health Sciences, Linköping University, SE-58183 Linköping, Sweden
| | - Malin Lindqvist Appell
- Division of Drug Research, Department of Medical and Health Sciences, Linköping University, SE-58183 Linköping, Sweden
| |
Collapse
|
27
|
Abstract
Whether to use biologic treatment for inflammatory bowel disease as monotherapy or in combination with immunosuppressives has been a matter of debate in the last 2 decades. Combination therapy was not superior in any of the registration trials for Crohn's disease and ulcerative colitis for TNF antagonists, vedolizumab, or ustekinumab. It needs to be mentioned, though, that none of these trials were powered to detect such differences, and that many patients entered the trial after having failed conventional immunosuppressives.Postmarketing studies revealed that patients on background immunosuppression have a lower risk of immunogenicity (often resulting in infusion/injection reactions) than patients on monotherapy. In the SONIC and UC-SUCCESS trials, superiority of the combination azathioprine-infliximab was demonstrated in Crohn's disease and ulcerative colitis, respectively. This trial design has not been used with any other biologic for IBD, so far. Meanwhile, it has also become clear that combination treatment with TNF antagonists is associated with increased toxicity, mainly infections, but also malignancy such as lymphoproliferative disease. This toxicity could perhaps be reduced by using lower doses of immunosuppressives, a strategy that has been shown to be equally potent in reducing immunogenicity. Additionally, combination treatment could be used for a limited period of time (12 months or even shorter) since most immunogenicity develops in the beginning of the biologic treatment. Patients who develop anti-drug-antibodies later on can often be rescued by reintroduction of thiopurines or methotrexate.In summary, combination treatment is certainly beneficial with infliximab, at least in the first 12 months of treatment. With other TNF antagonists, vedolizumab, and ustekinumab, the available data do not offer clear guidance. In patients without increased risk of toxicity, and certainly in those with limited treatment options, it may be wise to offer combination treatment with all biologics for the time being and at least during the initiation phase.
Collapse
Affiliation(s)
- Steven Bots
- Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands
| | - Krisztina Gecse
- Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands
| | - Murray Barclay
- Departments of Gastroenterology & Clinical Pharmacology, Christchurch Hospital, Christchurch, New Zealand
| | - Geert D'Haens
- Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Abstract
There is a clear link between defects in autophagy and the development of autoimmune and chronic inflammatory diseases, raising interest in better understanding the roles of autophagy within the immune system. In addition, autophagy has been implicated in the immune response to infection by pathogenic microbes. As such, there are efforts currently underway to develop modulators of autophagy as a therapeutic strategy for the treatment of the autoimmune, inflammatory, and infectious diseases. In this review, we discuss the numerous roles for autophagy in immunity and how these activities are linked to disease. We highlight how autophagy affects pathogen clearance, phagocytosis, pattern recognition receptor signaling, inflammation, antigen presentation, cell death, and immune cell development and maintenance. With these diverse and extensive immune-related functions for autophagy in mind, we finish by considering the possible implications of targeting autophagy as a therapeutic strategy.
Collapse
Affiliation(s)
- Rachel L Kinsella
- 1 Department of Molecular Microbiology, Washington University School of Medicine, MO, USA
| | - Eric M Nehls
- 1 Department of Molecular Microbiology, Washington University School of Medicine, MO, USA
| | - Christina L Stallings
- 1 Department of Molecular Microbiology, Washington University School of Medicine, MO, USA
| |
Collapse
|
29
|
Wu Q, Wang X, Nepovimova E, Miron A, Liu Q, Wang Y, Su D, Yang H, Li L, Kuca K. Trichothecenes: immunomodulatory effects, mechanisms, and anti-cancer potential. Arch Toxicol 2017; 91:3737-3785. [PMID: 29152681 DOI: 10.1007/s00204-017-2118-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/08/2017] [Indexed: 12/11/2022]
Abstract
Paradoxically, trichothecenes have both immunosuppressive and immunostimulatory effects. The underlying mechanisms have not been fully explored. Early studies show that dose, exposure timing, and the time at which immune function is assessed influence whether trichothecenes act in an immunosuppressive or immunostimulatory fashion. Recent studies suggest that the immunomodulatory function of trichothecenes is also actively shaped by competing cell-survival and death-signaling pathways. Autophagy may also promote trichothecene immunosuppression, although the mechanism may be complicated. Moreover, trichothecenes may generate an "immune evasion" milieu that allows pathogens to escape host and vaccine immune defenses. Some trichothecenes, especially macrocyclic trichothecenes, also potently kill cancer cells. T-2 toxin conjugated with anti-cancer monoclonal antibodies significantly suppresses the growth of thymoma EL-4 cells and colon cancer cells. The type B trichothecene diacetoxyscirpenol specifically inhibits the tumor-promoting factor HIF-1 in cancer cells under hypoxic conditions. Trichothecin markedly inhibits the growth of multiple cancer cells with constitutively activated NF-κB. The type D macrocyclic toxin Verrucarin A is also a promising therapeutic candidate for leukemia, breast cancer, prostate cancer, and pancreatic cancer. The anti-cancer activities of trichothecenes have not been comprehensively summarized. Here, we first summarize the data on the immunomodulatory effects of trichothecenes and discuss recent studies that shed light on the underlying cellular and molecular mechanisms. These mechanisms include autophagy and major signaling pathways and their crosstalk. Second, the anti-cancer potential of trichothecenes and the underlying mechanisms will be discussed. We hope that this review will show how trichothecene bioactivities can be exploited to generate therapies against pathogens and cancer.
Collapse
Affiliation(s)
- Qinghua Wu
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China. .,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Anca Miron
- Department of Pharmacognosy, Faculty of Pharmacy, University of Medicine and Pharmacy Grigore T. Popa, Iasi, Romania
| | - Qianying Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yun Wang
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China
| | - Dongxiao Su
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China
| | - Hualin Yang
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China
| | - Li Li
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| |
Collapse
|
30
|
Li H, Zhang P, Yuan S, Tian H, Tian D, Liu M. Modeling analysis of the relationship between atherosclerosis and related inflammatory factors. Saudi J Biol Sci 2017; 24:1803-1809. [PMID: 29551927 PMCID: PMC5851939 DOI: 10.1016/j.sjbs.2017.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 11/05/2022] Open
Abstract
Objective: To establish early diagnosis model of inflammatory factors for atherosclerosis (AS), providing theoretical evidence for early detection of AS and development of plaques. Methods: Serum samples were collected to detect the inflammatory factors including CysC, Hcy, hs-CRP, UA, FIB, D-D, LP (a), IL-6, SAA, sCD40L and MDA. Using Logistic regression analysis, the inflammatory factors used for modeling were screened out, and then the AS early diagnosis models were established based on receiver operating characteristic (ROC) curve, support vector machine and BP neural network respectively. Results: No significant difference exists between the general materials of two groups. All 11 inflammatory factors had higher level in AS group than in control group. As shown in ROC curve, all inflammatory factors were helpful in AS diagnosis. In terms of sensitivity, UA ranked first (98) and FIB ranked last (55.5); in terms of specificity, UA ranked first (99) and FIB ranked last (78); in terms of area under the curve, UA and SAA ranked first (both were 0.995) and FIB ranked last (0.721). Based on Logistic regression equation, six factors were screened out, including Hcy, Hs-CRP, IL-6, D-D, CysC and MDA. According to classification, the final sixth steps had a prediction accuracy of 99%. When six inflammatory factors included in Logistic regression equation were detected jointly, the sensitivity, specificity and area under the curve were 57%, 97% and 0.821 respectively, while those of the model excluding D-D were 64%, 90% and 0.828, generally superior to results of joint detection including six factors. The ROC curve based on Hcy, Hs-CRP and MDA had a sensitivity of 87%, a specificity of 94% and an area under the curve of 0.869, being inferior to those of the ROC curve based on IL-6, D-D and Cys C, which were 87%, 92% and 0.936 respectively. The accuracy of SVM-AS diagnosis model and BP neural network model were 82.5% and 77.5% respectively. Conclusion: All 11 inflammatory factors are valuable in AS diagnosis. AS early diagnosis models based on Logistic regression analysis, ROC curve, support vector machine and BP neural network possess diagnostic value and can provide reference for clinical diagnosis.
Collapse
Affiliation(s)
- Huidong Li
- Department of Hypertension, The Second Affiliated Hospital of Zhengzhou University, Henan Province, China
| | - Pei Zhang
- Department of Hypertension, Henan Provincial People's Hospital, Henan Province, China
| | - Shuaifang Yuan
- Department of Hypertension, Henan Provincial People's Hospital, Henan Province, China
| | - Huiyuan Tian
- Department of Hypertension, Henan Provincial People's Hospital, Henan Province, China
| | - Dandan Tian
- Department of Hypertension, Henan Provincial People's Hospital, Henan Province, China
| | - Min Liu
- Department of Hypertension, Henan Provincial People's Hospital, Henan Province, China
| |
Collapse
|
31
|
Lassen KG, Xavier RJ. Genetic control of autophagy underlies pathogenesis of inflammatory bowel disease. Mucosal Immunol 2017; 10:589-597. [PMID: 28327616 PMCID: PMC6069523 DOI: 10.1038/mi.2017.18] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 02/19/2017] [Indexed: 02/04/2023]
Abstract
Autophagy contributes to cellular homeostasis in the face of nutrient deprivation and other cellular stresses. Cell type-specific functions for autophagy are critical in maintaining homeostasis at both the tissue level and at the whole-organism level. Recent work has highlighted the ways in which human genetic variants modulate autophagy to alter epithelial and immune responses in inflammatory bowel disease.
Collapse
Affiliation(s)
- K G Lassen
- Broad Institute, Cambridge, Massachusetts, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - R J Xavier
- Broad Institute, Cambridge, Massachusetts, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
32
|
Kim DH, Cheon JH. Pathogenesis of Inflammatory Bowel Disease and Recent Advances in Biologic Therapies. Immune Netw 2017; 17:25-40. [PMID: 28261018 PMCID: PMC5334120 DOI: 10.4110/in.2017.17.1.25] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/24/2017] [Accepted: 02/07/2017] [Indexed: 02/08/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory disorder with an unknown etiology. IBD is composed of two different disease entities: Crohn's disease (CD) and ulcerative colitis (UC). IBD has been thought to be idiopathic but has two main attributable causes that include genetic and environmental factors. The gastrointestinal tract in which this disease occurs is central to the immune system, and the innate and the adaptive immune systems are balanced in complex interactions with intestinal microbes under homeostatic conditions. However, in IBD, this homeostasis is disrupted and uncontrolled intestinal inflammation is perpetuated. Recently, the pathogenesis of IBD has become better understood owing to advances in genetic and immunologic technology. Moreover, new therapeutic strategies are now being implemented that accurately target the pathogenesis of IBD. Beyond conventional immunesuppressive therapy, the development of biological agents that target specific disease mechanisms has resulted in more frequent and deeper remission in IBD patients, with mucosal healing as a treatment goal of therapy. Future novel biologics should overcome the limitations of current therapies and ensure that individual patients can be treated with optimal drugs that are safe and precisely target IBD.
Collapse
Affiliation(s)
- Duk Hwan Kim
- Digestive Disease Center, CHA Bundang Hospital, CHA University, Seongnam 13496, Korea
| | - Jae Hee Cheon
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|