1
|
Kittle WM, Reeves MA, Fulkerson AE, Hamorsky KT, Morris DA, Kitterman KT, Merchant ML, Matoba N. Preclinical Long-Term Stability and Forced Degradation Assessment of EPICERTIN, a Mucosal Healing Biotherapeutic for Inflammatory Bowel Disease. Pharmaceutics 2025; 17:259. [PMID: 40006626 PMCID: PMC11859197 DOI: 10.3390/pharmaceutics17020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: EPICERTIN, a biotherapeutic candidate for mucosal healing in inflammatory bowel disease (IBD) and other mucosal disorders, was subjected to an extensive long-term stability program to evaluate its molecular stability and physicochemical properties. Additionally, a forced degradation assessment was conducted to identify EPICERTIN's degradation products under various conditions, including thermal stress, pH variations, agitation, and oxidation. Methods: The stability of EPICERTIN drug substance (DS), formulated in phosphate-buffered saline (PBS) at 1 mg/mL and stored at 5 °C and 25 °C/60% relative humidity (RH), was monitored over a 2-year period, referencing relevant regulatory guidelines. Evaluations of EPICERTIN DS over the 24-month period included assessment of purity by SDS-PAGE and size exclusion high performance liquid chromatography (SEC-HPLC), identity by electrospray ionization mass spectrometry (ESI-MS) intact mass analysis and Western blotting, and potency by GM1-binding KDEL-detection ELISA (GM1/KDEL ELISA). The forced degradation patterns were analyzed by assessing purity (using SEC-HPLC and SDS-PAGE), potency (via GM1/KDEL ELISA), and intact mass (via ESI-MS). Results: The results overall support that EPICERTIN DS remains stable for 2 years under the tested conditions. The forced degradation assessment effectively identified degradation products, particularly under conditions of high temperatures (above 40 °C for 24 h), low pH values (pH 1 and 4), and oxidation upon exposure to 2% H2O2. Conclusions: These findings highlight EPICERTIN's robust long-term stability in PBS formulation, reinforcing its potential as a viable drug candidate for the treatment of IBD.
Collapse
Affiliation(s)
- Wendy M. Kittle
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (W.M.K.); (M.A.R.); (M.L.M.)
| | - Micaela A. Reeves
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (W.M.K.); (M.A.R.); (M.L.M.)
| | - Ashley E. Fulkerson
- Brown Cancer Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA
- Center for Predictive Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (D.A.M.); (K.T.K.)
| | - Krystal T. Hamorsky
- Brown Cancer Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA
- Center for Predictive Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (D.A.M.); (K.T.K.)
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - David A. Morris
- Center for Predictive Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (D.A.M.); (K.T.K.)
| | - Kathleen T. Kitterman
- Center for Predictive Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (D.A.M.); (K.T.K.)
| | - Michael L. Merchant
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (W.M.K.); (M.A.R.); (M.L.M.)
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
- Core and Clinical Proteomics Laboratories, University of Louisville, Louisville, KY 40202, USA
| | - Nobuyuki Matoba
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (W.M.K.); (M.A.R.); (M.L.M.)
- Brown Cancer Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA
- Center for Predictive Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (D.A.M.); (K.T.K.)
| |
Collapse
|
2
|
Argyris DG, Markaki MP, Afaloniati H, Karagiannis GS, Poutahidis T, Angelopoulou K. Suppression of chemically induced mammary cancer by early-life oral administration of cholera toxin in mice is associated with aberrant regulation of Bmp and Notch signaling pathways. Mol Biol Rep 2025; 52:150. [PMID: 39841292 DOI: 10.1007/s11033-025-10271-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/16/2025] [Indexed: 01/23/2025]
Abstract
BACKGROUND Lately, significant attention has been drawn towards the potential efficacy of cholera toxin (CT)-an exotoxin produced by the small intestine pathogenic bacterium Vibrio cholera-in modulating cancer-promoting events. In a recent study, we demonstrated that early-life oral administration of non-pathogenic doses of CT in mice suppressed chemically-induced carcinogenesis in tissues distantly located from the gut. In the mammary gland, CT pretreatment was shown to reduce tumor multiplicity, increase apoptosis and alter the expression of several cancer-related molecules. In the present work we investigated the protumorigenic mammary microenvironment for possible associations between early life CT administration and the expression of key components of the Bmp and Notch signaling pathways. METHODS AND RESULTS Total RNA from mammary tissue samples were retrieved from a recent experiment where FVB/N female mice were preconditioned with CT and later treated with the carcinogen 7,12-dimethylbenzanthracene (DMBA). Real-time PCR was used for relative quantification of gene expression. Our results revealed that CT anti-tumor effects significantly correlated with deregulation of crucial BMP pathway elements, with downregulation of Bmp7 ligand and upregulation of inhibitory Smad6 being the most prominent alterations observed. Concerning Notch signaling pathway, significantly elevated gene expression levels in the CT-treated DMBA mice, as compared to their non-treated counterparts, were also identified at the ligand-receptor level. CONCLUSIONS These findings suggest that CT tumor protective effects in the mammary gland are associated with discerning deregulation of components of both Bmp and Notch signaling pathways and provide insights into the mechanisms underlying CT's anti-cancer outcome.
Collapse
MESH Headings
- Animals
- Female
- Signal Transduction/drug effects
- Mice
- Receptors, Notch/metabolism
- Receptors, Notch/genetics
- Cholera Toxin/administration & dosage
- Cholera Toxin/pharmacology
- Administration, Oral
- Bone Morphogenetic Proteins/metabolism
- Bone Morphogenetic Proteins/genetics
- Mammary Neoplasms, Experimental/chemically induced
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/genetics
- 9,10-Dimethyl-1,2-benzanthracene
- Mammary Glands, Animal/drug effects
- Mammary Glands, Animal/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
Collapse
Affiliation(s)
- Dimitrios G Argyris
- Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Tumor Microenvironment of Metastasis Program, Montefiore-Einstein Cancer Center, Bronx, NY, USA
| | - Maria P Markaki
- Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Hara Afaloniati
- Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George S Karagiannis
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Tumor Microenvironment of Metastasis Program, Montefiore-Einstein Cancer Center, Bronx, NY, USA
| | - Theofilos Poutahidis
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Katerina Angelopoulou
- Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
3
|
Biswas M, Nurunnabi M, Khatun Z. Understanding Mucosal Physiology and Rationale of Formulation Design for Improved Mucosal Immunity. ACS APPLIED BIO MATERIALS 2024; 7:5037-5056. [PMID: 38787767 DOI: 10.1021/acsabm.4c00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The oral and nasal cavities serve as critical gateways for infectious pathogens, with microorganisms primarily gaining entry through these routes. Our first line of defense against these invaders is the mucosal membrane, a protective barrier that shields the body's internal systems from infection while also contributing to vital functions like air and nutrient intake. One of the key features of this mucosal barrier is its ability to protect the physiological system from pathogens. Additionally, mucosal tolerance plays a crucial role in maintaining homeostasis by regulating the pH and water balance within the body. Recognizing the importance of the mucosal barrier, researchers have developed various mucosal formulations to enhance the immune response. Mucosal vaccines, for example, deliver antigens directly to mucosal tissues, triggering local immune stimulation and ultimately inducing systemic immunity. Studies have shown that lipid-based formulations such as liposomes and virosomes can effectively elicit both local and systemic immune responses. Furthermore, mucoadhesive polymeric particles, with their prolonged delivery to target sites, have demonstrated an enhanced immune response. This Review delves into the critical role of material selection and delivery approaches in optimizing mucosal immunity.
Collapse
Affiliation(s)
- Mila Biswas
- Department of Electrical and Computer Engineering, University of Texas at El Paso, El Paso, Texas 79902, United States
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
- Department of Biomedical Engineering, College of Engineering, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Zehedina Khatun
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
| |
Collapse
|
4
|
Afaloniati H, Aindelis G, Spyridopoulou K, Lagou MK, Tsingotjidou A, Chlichlia K, Erdman SE, Poutahidis T, Angelopoulou K. Peri-weaning cholera toxin consumption suppresses chemically-induced carcinogenesis in mice. Int J Cancer 2024; 154:1097-1110. [PMID: 38095490 DOI: 10.1002/ijc.34816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/27/2023] [Accepted: 11/17/2023] [Indexed: 01/23/2024]
Abstract
Gastrointestinal bacteria are known to have an impact on local and systemic immunity, and consequently either promote or suppress cancer development. Following the notion that perinatal bacterial exposure might confer immune system competency for life, we investigated whether early-life administration of cholera-toxin (CT), a protein exotoxin of the small intestine pathogenic bacterium Vibrio cholerae, may shape local and systemic immunity to impart a protective effect against tumor development in epithelia distantly located from the gut. For that, newborn mice were orally treated with low non-pathogenic doses of CT and later challenged with the carcinogen 7,12-dimethylbenzanthracene (DMBA), known to cause mainly mammary, but also skin, lung and stomach cancer. Our results revealed that CT suppressed the overall incidence and multiplicity of tumors, with varying efficiencies among cancer types, and promoted survival. Harvesting mouse tissues at an earlier time-point (105 instead of 294 days), showed that CT does not prevent preneoplastic lesions per se but it rather hinders their evolution into tumors. CT pretreatment universally increased apoptosis in the cancer-prone mammary, lung and nonglandular stomach, and altered the expression of several cancer-related molecules. Moreover, CT had a long-term effect on immune system cells and factors, the most prominent being the systemic neutrophil decrease. Finally, CT treatment significantly affected gut bacterial flora composition, leading among others to a major shift from Clostridia to Bacilli class abundance. Overall, these results support the notion that early-life CT consumption is able to affect host's immune, microbiome and gene expression profiles toward the prevention of cancer.
Collapse
Affiliation(s)
- Hara Afaloniati
- Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Aindelis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus Dragana, Alexandroupolis, Greece
| | - Katerina Spyridopoulou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus Dragana, Alexandroupolis, Greece
| | - Maria K Lagou
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anastasia Tsingotjidou
- Laboratory of Anatomy, Histology and Embryology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Katerina Chlichlia
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus Dragana, Alexandroupolis, Greece
| | - Suzan E Erdman
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Theofilos Poutahidis
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Katerina Angelopoulou
- Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
5
|
Meunier M, Spillmann A, Rousseaux C, Schwamborn K, Hanson M. An oral cholera vaccine in the prevention and/or treatment of inflammatory bowel disease. PLoS One 2023; 18:e0283489. [PMID: 37639428 PMCID: PMC10461820 DOI: 10.1371/journal.pone.0283489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/12/2023] [Indexed: 08/31/2023] Open
Abstract
The oral cholera vaccine WC-rBS consists of 4 different inactivated strains of Vibrio cholerae (LPS source) admixed with recombinant cholera toxin B subunit. Because of its unique composition and anti-inflammatory properties reported for both CTB and low doses of LPS from other Gram-negative bacteria, we speculated that WC-rBS might have anti-inflammatory potential in a chronic autoimmune disease such as inflammatory bowel diseases. First in vitro endotoxin tolerance experiments showed the surprising WC-rBS potential in the modulation of inflammatory responses on both PBMCs and THP1 cells. WC-rBS was further evaluated in the Dextran Sodium Sulfate colitis mouse model. Administrated orally at different dosages, WC-rBS vaccine was safe and showed immunomodulatory properties when administered in a preventive mode (before and during the induction of DSS colitis) as well as in a curative mode (after colitis induction); with improvement of disease activity index (from 27 to 73%) and histological score (from 65 to 88%). Interestingly, the highest therapeutic effect of WC-rBS vaccine was observed with the lowest dosage, showing even better anti-inflammatory properties than mesalamine; an approved 5-aminosalicylic acid drug for treating IBD patients. In summary, this is the first time that a prophylactic medicine, safe and approved for prevention of an infectious disease, showed a benefit in an inflammatory bowel disease model, potentially offering a novel therapeutic modality for IBD patients.
Collapse
Affiliation(s)
| | | | - Christel Rousseaux
- Intestinal Biotech Development, Faculté de Médicine—Pole Recherche, Lille, France
| | | | | |
Collapse
|
6
|
Susnik E, Balog S, Taladriz-Blanco P, Petri-Fink A, Rothen-Rutishauser B. The Functions of Cholera Toxin Subunit B as a Modulator of Silica Nanoparticle Endocytosis. Toxins (Basel) 2023; 15:482. [PMID: 37624239 PMCID: PMC10467089 DOI: 10.3390/toxins15080482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/15/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
The gastrointestinal tract is the main target of orally ingested nanoparticles (NPs) and at the same time is exposed to noxious substances, such as bacterial components. We investigated the interaction of 59 nm silica (SiO2) NPs with differentiated Caco-2 intestinal epithelial cells in the presence of cholera toxin subunit B (CTxB) and compared the effects to J774A.1 macrophages. CTxB can affect cellular functions and modulate endocytosis via binding to the monosialoganglioside (GM1) receptor, expressed on both cell lines. After stimulating macrophages with CTxB, we observed notable changes in the membrane structure but not in Caco-2 cells, and no secretion of the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) was detected. Cells were then exposed to 59 nm SiO2 NPs and CtxB sequentially and simultaneously, resulting in a high NP uptake in J774A.1 cells, but no uptake in Caco-2 cells was detected. Flow cytometry analysis revealed that the exposure of J774A.1 cells to CTxB resulted in a significant reduction in the uptake of SiO2 NPs. In contrast, the uptake of NPs by highly selective Caco-2 cells remained unaffected following CTxB exposure. Based on colocalization studies, CTxB and NPs might enter cells via shared endocytic pathways, followed by their sorting into different intracellular compartments. Our findings provide new insights into CTxB's function of modulating SiO2 NP uptake in phagocytic but not in differentiated intestine cells.
Collapse
Affiliation(s)
- Eva Susnik
- Adolphe Merkle Institute, University of Fribourg, 1700 Fribourg, Switzerland; (E.S.); (S.B.); (A.P.-F.)
| | - Sandor Balog
- Adolphe Merkle Institute, University of Fribourg, 1700 Fribourg, Switzerland; (E.S.); (S.B.); (A.P.-F.)
| | | | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, 1700 Fribourg, Switzerland; (E.S.); (S.B.); (A.P.-F.)
- Department of Chemistry, University of Fribourg, 1700 Fribourg, Switzerland
| | | |
Collapse
|
7
|
Verjan Garcia N, Hong KU, Matoba N. The Unfolded Protein Response and Its Implications for Novel Therapeutic Strategies in Inflammatory Bowel Disease. Biomedicines 2023; 11:2066. [PMID: 37509705 PMCID: PMC10377089 DOI: 10.3390/biomedicines11072066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The endoplasmic reticulum (ER) is a multifunctional organelle playing a vital role in maintaining cell homeostasis, and disruptions to its functions can have detrimental effects on cells. Dysregulated ER stress and the unfolded protein response (UPR) have been linked to various human diseases. For example, ER stress and the activation of the UPR signaling pathways in intestinal epithelial cells can either exacerbate or alleviate the severity of inflammatory bowel disease (IBD), contingent on the degree and conditions of activation. Our recent studies have shown that EPICERTIN, a recombinant variant of the cholera toxin B subunit containing an ER retention motif, can induce a protective UPR in colon epithelial cells, subsequently promoting epithelial restitution and mucosal healing in IBD models. These findings support the idea that compounds modulating UPR may be promising pharmaceutical candidates for the treatment of the disease. In this review, we summarize our current understanding of the ER stress and UPR in IBD, focusing on their roles in maintaining cell homeostasis, dysregulation, and disease pathogenesis. Additionally, we discuss therapeutic strategies that promote the cytoprotection of colon epithelial cells and reduce inflammation via pharmacological manipulation of the UPR.
Collapse
Affiliation(s)
- Noel Verjan Garcia
- UofL Health-Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Kyung U Hong
- UofL Health-Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Nobuyuki Matoba
- UofL Health-Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
8
|
Verjan Garcia N, Santisteban Celis IC, Dent M, Matoba N. Characterization and utility of two monoclonal antibodies to cholera toxin B subunit. Sci Rep 2023; 13:4305. [PMID: 36922604 PMCID: PMC10016189 DOI: 10.1038/s41598-023-30834-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/02/2023] [Indexed: 03/17/2023] Open
Abstract
Cholera toxin B subunit (CTB) is a potent immunomodulator exploitable in mucosal vaccine and immunotherapeutic development. To aid in the characterization of pleiotropic biological functions of CTB and its variants, we generated a panel of anti-CTB monoclonal antibodies (mAbs). By ELISA and surface plasmon resonance, two mAbs, 7A12B3 and 9F9C7, were analyzed for their binding affinities to cholera holotoxin (CTX), CTB, and EPICERTIN: a recombinant CTB variant possessing mucosal healing activity. Both 7A12B3 and 9F9C7 bound efficiently to CTX, CTB, and EPICERTIN with equilibrium dissociation constants at low to sub-nanomolar concentrations but bound weakly, if at all, to Escherichia coli heat-labile enterotoxin B subunit. In a cyclic adenosine monophosphate assay using Caco2 human colon epithelial cells, the 7A12B3 mAb was found to be a potent inhibitor of CTX, whereas 9F9C7 had relatively weak inhibitory activity. Meanwhile, the 9F9C7 mAb effectively detected CTB and EPICERTIN bound to the surface of Caco2 cells and mouse spleen leukocytes by flow cytometry. Using 9F9C7 in immunohistochemistry, we confirmed the preferential localization of EPICERTIN in colon crypts following oral administration of the protein in mice. Collectively, these mAbs provide valuable tools to investigate the biological functions and preclinical development of CTB variants.
Collapse
Affiliation(s)
- Noel Verjan Garcia
- UofL Health - Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | | | - Matthew Dent
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Nobuyuki Matoba
- UofL Health - Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA. .,Center for Predictive Medicine, University of Louisville School of Medicine, 505 S. Hancock Street, Room 615, Louisville, KY, 40202, USA. .,Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
9
|
Tusé D, Reeves M, Royal J, Hamorsky KT, Ng H, Arolfo M, Green C, Trigunaite A, Parman T, Lee G, Matoba N. Pharmacokinetics and Safety Studies in Rodent Models Support Development of EPICERTIN as a Novel Topical Wound-Healing Biologic for Ulcerative Colitis. J Pharmacol Exp Ther 2022; 380:162-170. [PMID: 35058349 PMCID: PMC11046972 DOI: 10.1124/jpet.121.000904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/02/2022] [Indexed: 04/28/2024] Open
Abstract
The novel wound-healing biologic EPICERTIN, a recombinant analog of cholera toxin B subunit, is in early development for the management of ulcerative colitis. This study established for the first time the pharmacokinetics (PK), bioavailability (BA), and acute safety of EPICERTIN in healthy and dextran sodium sulfate-induced colitic mice and healthy rats. For PK and BA assessments, single administrations of various concentrations of EPICERTIN were given intravenously or intrarectally to healthy and colitic C57BL/6 mice and to healthy Sprague-Dawley rats. After intravenous administration to healthy animals, the drug's plasma half-life (t 1/2) for males and females was 0.26 and 0.3 hours in mice and 19.4 and 14.5 hours in rats, respectively. After intrarectal administration, drug was detected at very low levels in only four samples of mouse plasma, with no correlation to colon epithelial integrity. No drug was detected in rat plasma. A single intrarectal dose of 0.1 µM (0.6 µg/mouse) EPICERTIN significantly facilitated the healing of damaged colonic epithelium as determined by disease activity index and histopathological scoring, whereas 10-fold higher or lower concentrations showed no effect. For acute toxicity evaluation, healthy rats were given a single intrarectal administration of various doses of EPICERTIN with sacrifice on Day 8, recording body weight, morbidity, mortality, clinical pathology, and gross necropsy observations. There were no drug-related effects of toxicological significance. The no observed adverse effect level (intrarectal) in rats was determined to be 5 µM (307 µg/animal, or 5.2 µg drug/cm2 of colorectal surface area), which is 14 times the anticipated intrarectally delivered clinical dose. SIGNIFICANCE STATEMENT: EPICERTIN is a candidate wound-healing biologic for the management of ulcerative colitis. This study determined for the first time the intravenous and intrarectal pharmacokinetics and bioavailability of the drug in healthy and colitic mice and healthy rats, and its acute safety in a dose-escalation study in rats. An initial therapeutic dose in colitic mice was also established. EPICERTIN delivered intrarectally was minimally absorbed systemically, was well tolerated, and induced epithelial wound healing topically at a low dose.
Collapse
Affiliation(s)
- Daniel Tusé
- GROW Biomedicine, LLC and DT/Consulting Group, Sacramento, California (D.T.); Department of Pharmacology and Toxicology (M.R., J.R., N.M.), Department of Medicine (K.T.H.), and James Graham Brown Cancer Center, Center for Predictive Medicine (K.T.H., N.M.), University of Louisville, Louisville, Kentucky; SRI Biosciences Division, SRI International, Menlo Park, California (H.N., M.A., C.G., A.T., T.P.); and Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama (G.L.)
| | - Micaela Reeves
- GROW Biomedicine, LLC and DT/Consulting Group, Sacramento, California (D.T.); Department of Pharmacology and Toxicology (M.R., J.R., N.M.), Department of Medicine (K.T.H.), and James Graham Brown Cancer Center, Center for Predictive Medicine (K.T.H., N.M.), University of Louisville, Louisville, Kentucky; SRI Biosciences Division, SRI International, Menlo Park, California (H.N., M.A., C.G., A.T., T.P.); and Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama (G.L.)
| | - Joshua Royal
- GROW Biomedicine, LLC and DT/Consulting Group, Sacramento, California (D.T.); Department of Pharmacology and Toxicology (M.R., J.R., N.M.), Department of Medicine (K.T.H.), and James Graham Brown Cancer Center, Center for Predictive Medicine (K.T.H., N.M.), University of Louisville, Louisville, Kentucky; SRI Biosciences Division, SRI International, Menlo Park, California (H.N., M.A., C.G., A.T., T.P.); and Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama (G.L.)
| | - Krystal T Hamorsky
- GROW Biomedicine, LLC and DT/Consulting Group, Sacramento, California (D.T.); Department of Pharmacology and Toxicology (M.R., J.R., N.M.), Department of Medicine (K.T.H.), and James Graham Brown Cancer Center, Center for Predictive Medicine (K.T.H., N.M.), University of Louisville, Louisville, Kentucky; SRI Biosciences Division, SRI International, Menlo Park, California (H.N., M.A., C.G., A.T., T.P.); and Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama (G.L.)
| | - Hanna Ng
- GROW Biomedicine, LLC and DT/Consulting Group, Sacramento, California (D.T.); Department of Pharmacology and Toxicology (M.R., J.R., N.M.), Department of Medicine (K.T.H.), and James Graham Brown Cancer Center, Center for Predictive Medicine (K.T.H., N.M.), University of Louisville, Louisville, Kentucky; SRI Biosciences Division, SRI International, Menlo Park, California (H.N., M.A., C.G., A.T., T.P.); and Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama (G.L.)
| | - Maria Arolfo
- GROW Biomedicine, LLC and DT/Consulting Group, Sacramento, California (D.T.); Department of Pharmacology and Toxicology (M.R., J.R., N.M.), Department of Medicine (K.T.H.), and James Graham Brown Cancer Center, Center for Predictive Medicine (K.T.H., N.M.), University of Louisville, Louisville, Kentucky; SRI Biosciences Division, SRI International, Menlo Park, California (H.N., M.A., C.G., A.T., T.P.); and Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama (G.L.)
| | - Carol Green
- GROW Biomedicine, LLC and DT/Consulting Group, Sacramento, California (D.T.); Department of Pharmacology and Toxicology (M.R., J.R., N.M.), Department of Medicine (K.T.H.), and James Graham Brown Cancer Center, Center for Predictive Medicine (K.T.H., N.M.), University of Louisville, Louisville, Kentucky; SRI Biosciences Division, SRI International, Menlo Park, California (H.N., M.A., C.G., A.T., T.P.); and Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama (G.L.)
| | - Abhishek Trigunaite
- GROW Biomedicine, LLC and DT/Consulting Group, Sacramento, California (D.T.); Department of Pharmacology and Toxicology (M.R., J.R., N.M.), Department of Medicine (K.T.H.), and James Graham Brown Cancer Center, Center for Predictive Medicine (K.T.H., N.M.), University of Louisville, Louisville, Kentucky; SRI Biosciences Division, SRI International, Menlo Park, California (H.N., M.A., C.G., A.T., T.P.); and Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama (G.L.)
| | - Toufan Parman
- GROW Biomedicine, LLC and DT/Consulting Group, Sacramento, California (D.T.); Department of Pharmacology and Toxicology (M.R., J.R., N.M.), Department of Medicine (K.T.H.), and James Graham Brown Cancer Center, Center for Predictive Medicine (K.T.H., N.M.), University of Louisville, Louisville, Kentucky; SRI Biosciences Division, SRI International, Menlo Park, California (H.N., M.A., C.G., A.T., T.P.); and Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama (G.L.)
| | - Goo Lee
- GROW Biomedicine, LLC and DT/Consulting Group, Sacramento, California (D.T.); Department of Pharmacology and Toxicology (M.R., J.R., N.M.), Department of Medicine (K.T.H.), and James Graham Brown Cancer Center, Center for Predictive Medicine (K.T.H., N.M.), University of Louisville, Louisville, Kentucky; SRI Biosciences Division, SRI International, Menlo Park, California (H.N., M.A., C.G., A.T., T.P.); and Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama (G.L.)
| | - Nobuyuki Matoba
- GROW Biomedicine, LLC and DT/Consulting Group, Sacramento, California (D.T.); Department of Pharmacology and Toxicology (M.R., J.R., N.M.), Department of Medicine (K.T.H.), and James Graham Brown Cancer Center, Center for Predictive Medicine (K.T.H., N.M.), University of Louisville, Louisville, Kentucky; SRI Biosciences Division, SRI International, Menlo Park, California (H.N., M.A., C.G., A.T., T.P.); and Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama (G.L.)
| |
Collapse
|
10
|
A potential delivery system based on cholera toxin: A macromolecule carrier with multiple activities. J Control Release 2022; 343:551-563. [DOI: 10.1016/j.jconrel.2022.01.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 11/20/2022]
|
11
|
Abstract
Mucosal vaccines offer the potential to trigger robust protective immune responses at the predominant sites of pathogen infection. In principle, the induction of adaptive immunity at mucosal sites, involving secretory antibody responses and tissue-resident T cells, has the capacity to prevent an infection from becoming established in the first place, rather than only curtailing infection and protecting against the development of disease symptoms. Although numerous effective mucosal vaccines are in use, the major advances seen with injectable vaccines (including adjuvanted subunit antigens, RNA and DNA vaccines) have not yet been translated into licensed mucosal vaccines, which currently comprise solely live attenuated and inactivated whole-cell preparations. The identification of safe and effective mucosal adjuvants allied to innovative antigen discovery and delivery strategies is key to advancing mucosal vaccines. Significant progress has been made in resolving the mechanisms that regulate innate and adaptive mucosal immunity and in understanding the crosstalk between mucosal sites, and this provides valuable pointers to inform mucosal adjuvant design. In particular, increased knowledge on mucosal antigen-presenting cells, innate lymphoid cell populations and resident memory cells at mucosal sites highlights attractive targets for vaccine design. Exploiting these insights will allow new vaccine technologies to be leveraged to facilitate rational mucosal vaccine design for pathogens including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and for cancer.
Collapse
|
12
|
Reeves MA, Royal JM, Morris DA, Jurkiewicz JM, Matoba N, Hamorsky KT. Spray-Dried Formulation of Epicertin, a Recombinant Cholera Toxin B Subunit Variant That Induces Mucosal Healing. Pharmaceutics 2021; 13:pharmaceutics13040576. [PMID: 33919585 PMCID: PMC8073836 DOI: 10.3390/pharmaceutics13040576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 01/31/2023] Open
Abstract
Epicertin (EPT) is a recombinant variant of the cholera toxin B subunit, modified with a C-terminal KDEL endoplasmic reticulum retention motif. EPT has therapeutic potential for ulcerative colitis treatment. Previously, orally administered EPT demonstrated colon epithelial repair activity in dextran sodium sulfate (DSS)-induced acute and chronic colitis in mice. However, the oral dosing requires cumbersome pretreatment with sodium bicarbonate to conserve the acid-labile drug substance while transit through the stomach, hampering its facile application in chronic disease treatment. Here, we developed a solid oral formulation of EPT that circumvents degradation in gastric acid. EPT was spray-dried and packed into enteric-coated capsules to allow for pH-dependent release in the colon. A GM1-capture KDEL-detection ELISA and size-exclusion HPLC indicated that EPT powder maintains activity and structural stability for up to 9 months. Capsule disintegration tests showed that EPT remained encapsulated at pH 1 but was released over 180 min at pH 6.8, the approximate pH of the proximal colon. An acute DSS colitis study confirmed the therapeutic efficacy of encapsulated EPT in C57BL/6 mice upon oral administration without gastric acid neutralization pretreatment compared to vehicle-treated mice (p < 0.05). These results provide a foundation for an enteric-coated oral formulation of spray-dried EPT.
Collapse
Affiliation(s)
- Micaela A. Reeves
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; (M.A.R.); (J.M.R.)
| | - Joshua M. Royal
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; (M.A.R.); (J.M.R.)
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA; (D.A.M.); (J.M.J.)
| | - David A. Morris
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA; (D.A.M.); (J.M.J.)
- Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Jessica M. Jurkiewicz
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA; (D.A.M.); (J.M.J.)
| | - Nobuyuki Matoba
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; (M.A.R.); (J.M.R.)
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA; (D.A.M.); (J.M.J.)
- Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Correspondence: (N.M.); (K.T.H.); Tel.: +1-502-852-8412 (N.M.); +1-502-852-1445 (K.T.H.)
| | - Krystal T. Hamorsky
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA; (D.A.M.); (J.M.J.)
- Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Correspondence: (N.M.); (K.T.H.); Tel.: +1-502-852-8412 (N.M.); +1-502-852-1445 (K.T.H.)
| |
Collapse
|
13
|
Morris DA, Reeves MA, Royal JM, Hamorsky KT, Matoba N. Isolation and detection of a KDEL-tagged recombinant cholera toxin B subunit from Nicotiana benthamiana. Process Biochem 2020; 101:42-49. [PMID: 33304198 DOI: 10.1016/j.procbio.2020.10.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Here we describe refined methods for the isolation and detection of a KDEL-tagged, plant-produced recombinant cholera toxin B subunit (CTB) that exhibits unique mucosal wound healing activity. The protein was transiently overexpressed in Nicotiana benthamiana, which generates some C-terminal KDEL truncated molecular species that are deficient in epithelial repair activity. With a new CHT chromatographical method described herein, these product-derived impurities were successfully separated from CTB with the intact KDEL sequence, as confirmed by mass spectrometry. In addition, an immunoassay capable of specifically detecting GM1 ganglioside-binding CTB with intact KDEL sequences was developed. Coupled together, these methods will aid in the quality control of KDEL-attached CTB produced in plant-based manufacturing systems towards a novel topical biotherapeutic for the treatment of acute and chronic mucosal inflammation.
Collapse
Affiliation(s)
- David A Morris
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA.,Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Micaela A Reeves
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Joshua M Royal
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA.,Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, KY, USA.,Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Krystal T Hamorsky
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA.,Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, KY, USA.,Department of Medicine, University of Louisville School of Medicine, Louisville, KY
| | - Nobuyuki Matoba
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA.,Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, KY, USA.,Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
14
|
Dent M, Matoba N. Cancer biologics made in plants. Curr Opin Biotechnol 2020; 61:82-88. [PMID: 31785553 PMCID: PMC7096282 DOI: 10.1016/j.copbio.2019.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/27/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023]
Abstract
Plants are routinely utilized as efficient production platforms for the development of anti-cancer biologics leading to novel anti-cancer vaccines, immunotherapies, and drug-delivery modalities. Various biosimilar/biobetter antibodies and immunogens based on tumor-associated antigens have been produced and optimized for plant expression. Plant virus nanoparticles, including those derived from cowpea mosaic virus or tobacco mosaic virus in particular have shown promise as immunotherapies stimulating tumor-associated immune cells and as drug carriers delivering conjugated chemotherapeutics effectively to tumors. Advancements have also been made toward the development of lectins that can selectively recognize cancer cells. The ease at which plant systems can be utilized for the production of these products presents an opportunity to further develop novel and exciting anti-cancer biologics.
Collapse
Affiliation(s)
- Matthew Dent
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Nobuyuki Matoba
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA; Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
15
|
Royal JM, Reeves MA, Matoba N. Repeated Oral Administration of a KDEL-tagged Recombinant Cholera Toxin B Subunit Effectively Mitigates DSS Colitis Despite a Robust Immunogenic Response. Toxins (Basel) 2019; 11:E678. [PMID: 31756977 PMCID: PMC6950078 DOI: 10.3390/toxins11120678] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/22/2022] Open
Abstract
Cholera toxin B subunit (CTB), a non-toxic homopentameric component of Vibrio cholerae holotoxin, is an oral cholera vaccine antigen that induces an anti-toxin antibody response. Recently, we demonstrated that a recombinant CTB variant with a Lys-Asp-Glu-Leu (KDEL) endoplasmic reticulum retention motif (CTB-KDEL) exhibits colon mucosal healing effects that have therapeutic implications for inflammatory bowel disease (IBD). Herein, we investigated the feasibility of CTB-KDEL for the treatment of chronic colitis. We found that weekly oral administration of CTB-KDEL, dosed before or after the onset of chronic colitis, induced by repeated dextran sodium sulfate (DSS) exposure, could significantly reduce disease activity index scores, intestinal permeability, inflammation, and histological signs of chronicity. To address the consequences of immunogenicity, mice (C57BL/6 or C3H/HeJ strains) were pre-exposed to CTB-KDEL then subjected to DSS colitis and CTB-KDEL treatment. While the pre-dosing of CTB-KDEL elicited high-titer anti-drug antibodies (ADAs) of the immunoglobin A (IgA) isotype in the intestine of C57BL/6 mice, the therapeutic effects of CTB-KDEL were similar to those observed in C3H/HeJ mice, which showed minimal ADAs under the same experimental conditions. Thus, the immunogenicity of CTB-KDEL does not seem to impede the protein's mucosal healing efficacy. These results support the development of CTB-KDEL for IBD therapy.
Collapse
Affiliation(s)
- Joshua M. Royal
- James Graham Brown Cancer Center, Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA;
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA;
| | - Micaela A. Reeves
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA;
| | - Nobuyuki Matoba
- James Graham Brown Cancer Center, Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA;
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA;
| |
Collapse
|
16
|
Royal JM, Oh YJ, Grey MJ, Lencer WI, Ronquillo N, Galandiuk S, Matoba N. A modified cholera toxin B subunit containing an ER retention motif enhances colon epithelial repair via an unfolded protein response. FASEB J 2019; 33:13527-13545. [PMID: 31560862 DOI: 10.1096/fj.201901255r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cholera toxin B subunit (CTB) exhibits broad-spectrum biologic activity upon mucosal administration. Here, we found that a recombinant CTB containing an endoplasmic reticulum (ER) retention motif (CTB-KDEL) induces colon epithelial wound healing in colitis via the activation of an unfolded protein response (UPR) in colon epithelial cells. In a Caco2 cell wound healing model, CTB-KDEL, but not CTB or CTB-KDE, facilitated cell migration via interaction with the KDEL receptor, localization in the ER, UPR activation, and subsequent TGF-β signaling. Inhibition of the inositol-requiring enzyme 1/X-box binding protein 1 arm of UPR abolished the cell migration effect of CTB-KDEL, indicating that the pathway is indispensable for the activity. CTB-KDEL's capacity to induce UPR and epithelial restitution or wound healing was corroborated in a dextran sodium sulfate-induced acute colitis mouse model. Furthermore, CTB-KDEL induced a UPR, up-regulated wound healing pathways, and maintained viable crypts in colon explants from patients with inflammatory bowel disease (IBD). In summary, CTB-KDEL exhibits unique wound healing effects in the colon that are mediated by its localization to the ER and subsequent activation of UPR in epithelial cells. The results provide implications for a novel therapeutic approach for mucosal healing, a significant unmet need in IBD treatment.-Royal, J. M., Oh, Y. J., Grey, M. J., Lencer, W. I., Ronquillo, N., Galandiuk, S., Matoba, N. A modified cholera toxin B subunit containing an ER retention motif enhances colon epithelial repair via an unfolded protein response.
Collapse
Affiliation(s)
- Joshua M Royal
- Department of Pharmacology and Toxicology, James Graham Brown Cancer Center, Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Young Jun Oh
- Department of Pharmacology and Toxicology, James Graham Brown Cancer Center, Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Michael J Grey
- Division of Gastroenterology, Nutrition, and Hepatology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Digestive Disease Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Wayne I Lencer
- Division of Gastroenterology, Nutrition, and Hepatology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Digestive Disease Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Nemencio Ronquillo
- Division of Anatomic Pathology, Department of Pathology and Laboratory Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Susan Galandiuk
- The Hiram C. Polk Jr., M.D. Department of Surgery, Price Institute of Surgical Research, University of Louisville, Louisville, Kentucky, USA
| | - Nobuyuki Matoba
- Department of Pharmacology and Toxicology, James Graham Brown Cancer Center, Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
17
|
Varian BJ, Poutahidis T, Haner G, Hardas A, Lau V, Erdman SE. Consuming cholera toxin counteracts age-associated obesity. Oncotarget 2019; 10:5497-5509. [PMID: 31565184 PMCID: PMC6756858 DOI: 10.18632/oncotarget.27137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/05/2019] [Indexed: 12/11/2022] Open
Abstract
During the past forty years there has been an inexplicable increase in chronic inflammatory disorders, including obesity. One theory, the ‘hygiene hypothesis’, involves dysregulated immunity arising after too few beneficial early life microbe exposures. Indeed, earlier studies have shown that gut microbe-immune interactions contribute to smoldering inflammation, adiposity, and weight gain. Here we tested a safe and well-established microbe-based immune adjuvant to restore immune homeostasis and counteract inflammation-associated obesity in animal models. We found that consuming Vibrio cholerae exotoxin subunit B (ctB) was sufficient to inhibit age-associated obesogenic outcomes in wild type mice, including reduced crown-like structures (CLS) and granulomatous necrosis histopathology in fat depots. Administration of cholera toxin reduced weight gain irrespective of age during administration; however, exposure during youth imparted greater slenderizing effects when compared with animals receiving ctB for the first time during adulthood. Beneficial effects were transplantable to other obesity-prone animals using immune cells alone, demonstrating an immune-mediated mechanism. Taken together, we concluded that oral vaccination with cholera toxin B helps stimulate health-protective immune responses that counteract age-associated obesity.
Collapse
Affiliation(s)
- Bernard J Varian
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Theofilos Poutahidis
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.,Department of infectious Diseases and Pathology, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124, Greece
| | - Gordon Haner
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Alex Hardas
- Department of infectious Diseases and Pathology, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124, Greece
| | - Vanessa Lau
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Susan E Erdman
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| |
Collapse
|
18
|
Namvarpour M, Tebianian M, Mansouri R, Ebrahimi SM, Kashkooli S. Comparison of different immunization routes on the immune responses induced by Mycobacterium tuberculosis ESAT-6/CFP-10 recombinant protein. Biologicals 2019; 59:6-11. [PMID: 31014910 DOI: 10.1016/j.biologicals.2019.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 12/20/2018] [Accepted: 04/14/2019] [Indexed: 01/09/2023] Open
Abstract
According to some difficulties against tuberculosis (TB) vaccination, development of new TB vaccines has been noted in recent years. Selection of proper route for vaccination is one of the most important factors for induction of good immune responses. Hence, in this study, the effects of different administration routes, including intranasal (I.N), subcutaneous (S.C) and intramuscular (I.M) on immune responses against Mycobacterium tuberculosis ESAT-6/CFP-10 recombinant protein has been considered. Recombinant ESAT-6/CFP-10 protein with or without adjuvant (MF59 or cholera toxin B (CTB)) was administered by three routes of I.M, I.N and S.C to mice for three times. Then, the levels of specific antibodies, lymphocyte proliferation and IFN-γ/IL-5 cytokine profile have been carried out to evaluate the humoral and cellular responses. The results showed that the titers of specific antibodies were quickly elevated in S.C and I.M groups after first immunization. Otherwise, the raise of antibody has delay in the I.N immunized animals. The levels of IFN-γ and lymphocyte proliferation have been increased in all of vaccinated groups. However, the I.N immunized mice have lower levels of IL-5 production. Based on our finding, the ESAT-6/CFP-10 recombinant protein is a potent stimulator of immune responses in all of three immunization strategies. However intranasal administration of this antigen has tended to reinforcement of cellular immune responses.
Collapse
Affiliation(s)
- Mozhdeh Namvarpour
- Department of Immunology, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Majid Tebianian
- Department of Biotechnology, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| | - Reza Mansouri
- Department of Immunology, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Seyyed Mahmoud Ebrahimi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, P.O. Box 14155-3651, Tehran, Iran
| | - Shiva Kashkooli
- - Department of Biotechnology, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, (IAUPS), Tehran, Iran
| |
Collapse
|
19
|
Zhang Q, Xu B, Pan J, Liu D, Lv R, Yan D. Expression and active testing of VP7 from GCRV (Grass carp reovirus) fused with cholera toxin B subunit in rice calli. Protein Expr Purif 2019; 158:1-8. [PMID: 30753891 DOI: 10.1016/j.pep.2019.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 12/16/2018] [Accepted: 02/06/2019] [Indexed: 12/22/2022]
Abstract
Grass carp reovirus (GCRV) is one of the most serious pathogens threatening grass carp (Ctenopharyngodon idellus) production and results in high mortality in China. VP7 from GCRV is involved in viral infection and could be suitable for developing vaccines for the control of GCRV infection. To obtain a genetically engineered vaccine and a plant-based oral vaccine and to evaluate their immune efficacy as an oral vaccine against GCRV, cholera toxin B subunit (CTB) of Vibrio cholerae fused to VP7 (CTB-VP7) was transformed into BL21(DE3) for expression. SDS-PAGE and Western blotting showed that the purified CTB-VP7 fusion protein (rCTB-VP7) was approximately 49.0 kDa. Meanwhile, CTB-VP7 was transformed into rice callus cells by Agrobacterium tumefaciens-mediated gene transformation. CTB-VP7 was integrated into the nuclear genome by PCR, and mRNA transcripts of CTB-VP7 were detected. ELISA and Western blot analyses revealed that the CTB-VP7 fusion protein (CTB-VP7) could be expressed in rice callus lines. The level of expression was determined to be 1.54% ± 0.43 of the total soluble protein. CTB-VP7 showed a binding affinity for monosialoganglioside(GM1), a receptor for CTB. CTB-VP7 showed a higher affinity towards GM1 compared to rCTB-VP7. CTB-VP7 bonded to GM1 with different affinities under different temperatures. Maximum binding of CTB-VP7 to GM1 was reported to occur within 2 h at 37 °C, and approximately half of the binding affinity remained at 25 °C. Our results suggest that CTB-VP7 could be produced in rice calli, increasing the possibility that edible plants can be employed in mucosal vaccines for protection against GCRV in aquaculture.
Collapse
Affiliation(s)
- Qiusheng Zhang
- School of Agriculture, Ludong University, Yantai, 264025, China.
| | - Binglian Xu
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Jiajia Pan
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Danyang Liu
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Ruoxian Lv
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Dongchun Yan
- School of Agriculture, Ludong University, Yantai, 264025, China
| |
Collapse
|
20
|
Quirós M, Nusrat A. Contribution of Wound-Associated Cells and Mediators in Orchestrating Gastrointestinal Mucosal Wound Repair. Annu Rev Physiol 2019; 81:189-209. [PMID: 30354933 PMCID: PMC7871200 DOI: 10.1146/annurev-physiol-020518-114504] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The gastrointestinal mucosa, structurally formed by the epithelium and lamina propria, serves as a selective barrier that separates luminal contents from the underlying tissues. Gastrointestinal mucosal wound repair is orchestrated by a series of spatial and temporal events that involve the epithelium, recruited immune cells, resident stromal cells, and the microbiota present in the wound bed. Upon injury, repair of the gastrointestinal barrier is mediated by collective migration, proliferation, and subsequent differentiation of epithelial cells. Epithelial repair is intimately regulated by a number of wound-associated cells that include immune cells and stromal cells in addition to mediators released by luminal microbiota. The highly regulated interaction of these cell types is perturbed in chronic inflammatory diseases that are associated with impaired wound healing. An improved understanding of prorepair mechanisms in the gastrointestinal mucosa will aid in the development of novel therapeutics that promote mucosal healing and reestablish the critical epithelial barrier function.
Collapse
Affiliation(s)
- Miguel Quirós
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA; ,
| | - Asma Nusrat
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA; ,
| |
Collapse
|
21
|
Ji J, Sundquist J, Sundquist K. Association between post-diagnostic use of cholera vaccine and risk of death in prostate cancer patients. Nat Commun 2018; 9:2367. [PMID: 29915319 PMCID: PMC6006429 DOI: 10.1038/s41467-018-04814-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 05/29/2018] [Indexed: 12/19/2022] Open
Abstract
Recent evidence suggests that cholera toxin might have multiple functions regarding the ability to regulate the immune system. However, it is unknown whether subsequent administration of cholera vaccine might affect the mortality rate in patients with prostate cancer. Here we report that patients in Sweden, who were diagnosed with prostate cancer between July 2005 and December 2014 and used cholera vaccine, have a decreased risk of death from prostate cancer (HR, 0.57; 95% CI, 0.40-0.82) as compared to patients with prostate cancer but without cholera vaccine use, adjusted for a range of confounding factors. In addition, patients using cholera vaccine show a decreased risk of death overall (HR, 0.53; 95% CI, 0.41-0.69). The decreased mortality rate is largely consistent, irrespective of patients' age or tumor stage at diagnosis. In this population-based study, we suggest that subsequent administration of cholera vaccine after prostate cancer diagnosis might reduce the mortality rate.
Collapse
Affiliation(s)
- Jianguang Ji
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, 20502, Sweden.
| | - Jan Sundquist
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, 20502, Sweden
- Department of Family Medicine and Community Health, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristina Sundquist
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, 20502, Sweden
- Department of Family Medicine and Community Health, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
22
|
Zheng Z, Diaz-Arévalo D, Guan H, Zeng M. Noninvasive vaccination against infectious diseases. Hum Vaccin Immunother 2018; 14:1717-1733. [PMID: 29624470 PMCID: PMC6067898 DOI: 10.1080/21645515.2018.1461296] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The development of a successful vaccine, which should elicit a combination of humoral and cellular responses to control or prevent infections, is the first step in protecting against infectious diseases. A vaccine may protect against bacterial, fungal, parasitic, or viral infections in animal models, but to be effective in humans there are some issues that should be considered, such as the adjuvant, the route of vaccination, and the antigen-carrier system. While almost all licensed vaccines are injected such that inoculation is by far the most commonly used method, injection has several potential disadvantages, including pain, cross contamination, needlestick injury, under- or overdosing, and increased cost. It is also problematic for patients from rural areas of developing countries, who must travel to a hospital for vaccine administration. Noninvasive immunizations, including oral, intranasal, and transcutaneous administration of vaccines, can reduce or eliminate pain, reduce the cost of vaccinations, and increase their safety. Several preclinical and clinical studies as well as experience with licensed vaccines have demonstrated that noninvasive vaccine immunization activates cellular and humoral immunity, which protect against pathogen infections. Here we review the development of noninvasive immunization with vaccines based on live attenuated virus, recombinant adenovirus, inactivated virus, viral subunits, virus-like particles, DNA, RNA, and antigen expression in rice in preclinical and clinical studies. We predict that noninvasive vaccine administration will be more widely applied in the clinic in the near future.
Collapse
Affiliation(s)
- Zhichao Zheng
- a Key Laboratory of Oral Medicine , Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University , Guangzhou , Guangdong , China.,b Center of Emphasis in Infectious Diseases , Department of Biomedical Sciences , Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso , El Paso , Texas , USA
| | - Diana Diaz-Arévalo
- c Grupo Funcional de Inmunología , Fundación Instituto de Inmunología de Colombia-FIDIC, Faculty of Agricultural Sciences, Universidad de Ciencias Aplicadas y Ambientales U.D.C.A, School of Medicine and Health Sciences, Universidad del Rosario , Bogotá , DC . Colombia
| | - Hongbing Guan
- a Key Laboratory of Oral Medicine , Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University , Guangzhou , Guangdong , China
| | - Mingtao Zeng
- a Key Laboratory of Oral Medicine , Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University , Guangzhou , Guangdong , China.,b Center of Emphasis in Infectious Diseases , Department of Biomedical Sciences , Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso , El Paso , Texas , USA
| |
Collapse
|
23
|
Ji J, Sundquist J, Sundquist K. Cholera Vaccine Use Is Associated With a Reduced Risk of Death in Patients With Colorectal Cancer: A Population-Based Study. Gastroenterology 2018; 154:86-92.e1. [PMID: 28923497 DOI: 10.1053/j.gastro.2017.09.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/01/2017] [Accepted: 09/11/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Cholera toxin can act as a modulator of the immune response with anti-inflammatory effects; it reduces development of colon polyps in mouse models of colorectal cancer (CRC). We performed a population-based study to determine whether, in patients with a diagnosis of CRC, subsequent administration of the cholera vaccine (killed Vibrio cholerae O1 whole cells and recombinant cholera toxin B subunit) affects mortality. METHODS We identified patients from the Swedish Cancer Register who were diagnosed with CRC from July 2005 through December 2012. These patients were linked to the Swedish Prescribed Drug Register to retrieve cholera vaccine use. We used Cox regression analysis to calculate the hazard ratio (HR) of death from CRC and overall mortality in patients with post-diagnostic use of cholera vaccine compared with matched controls. RESULTS A total of 175 patients were diagnosed with CRC and given a prescription for the cholera vaccine after their cancer diagnosis. Compared with propensity score-matched controls and adjusted for confounding factors, patients with CRC who received the cholera vaccine had a decreased risk of death from CRC (HR, 0.53; 95% CI, 0.29-0.99) and a decreased risk of death overall (HR, 0.59; 95% CI, 0.37-0.94). The decrease in mortality with cholera vaccination was largely observed, irrespective of patient age or tumor stage at diagnosis or sex. CONCLUSIONS In a population-based study, we associated administration of the cholera vaccine after CRC diagnosis with decreased risk of death from CRC and overall mortality.
Collapse
Affiliation(s)
- Jianguang Ji
- Center for Primary Health Care Research, Lund University/Region Skåne, Sweden.
| | - Jan Sundquist
- Center for Primary Health Care Research, Lund University/Region Skåne, Sweden; Department of Family Medicine and Community Health, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kristina Sundquist
- Center for Primary Health Care Research, Lund University/Region Skåne, Sweden; Department of Family Medicine and Community Health, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
24
|
Royal JM, Matoba N. Therapeutic Potential of Cholera Toxin B Subunit for the Treatment of Inflammatory Diseases of the Mucosa. Toxins (Basel) 2017; 9:toxins9120379. [PMID: 29168738 PMCID: PMC5744099 DOI: 10.3390/toxins9120379] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/14/2017] [Accepted: 11/21/2017] [Indexed: 01/03/2023] Open
Abstract
Cholera toxin B subunit (CTB) is a mucosal immunomodulatory protein that induces robust mucosal and systemic antibody responses. This well-known biological activity has been exploited in cholera prevention (as a component of Dukoral® vaccine) and vaccine development for decades. On the other hand, several studies have investigated CTB's immunotherapeutic potential in the treatment of inflammatory diseases such as Crohn's disease and asthma. Furthermore, we recently found that a variant of CTB could induce colon epithelial wound healing in mouse colitis models. This review summarizes the possible mechanisms behind CTB's anti-inflammatory activity and discuss how the protein could impact mucosal inflammatory disease treatment.
Collapse
Affiliation(s)
- Joshua M Royal
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA.
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| | - Nobuyuki Matoba
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA.
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|