1
|
Wang J, Tao L, Liu Y, Liu H, Shen X, Tao L. Identification and validation of DLX4 as a prognostic and diagnostic biomarker for clear cell renal cell carcinoma. Oncol Lett 2023; 25:146. [PMID: 36936018 PMCID: PMC10018244 DOI: 10.3892/ol.2023.13732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/09/2021] [Indexed: 03/04/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a lethal cancer, and biomarkers for exact diagnosis and predicting prognosis are urgently needed. The present study aimed to determine the roles of distal-less homeobox (DLX) family genes in ccRCC. The clinicopathological and mRNA expression data of patients with ccRCC were derived from The Cancer Genome Atlas database. Kaplan-Meier curves, univariate and multivariate Cox hazard analyses, in addition to receiver operator characteristic curves were used to evaluate the prognostic and diagnostic values. A single-sample gene set enrichment analysis was used to quantify the infiltration levels of immune cells. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry were conducted to examine the expression levels of DLX4 in tumor and adjacent tissue; the results demonstrated that DLX4 was highly expressed in ccRCC tissues compared with normal renal tissues. Furthermore, DLX4 expression was associated with tumor stage and grade. High proportions of males, advanced pathological stage, higher tumor grade and T, N and M stage were also observed in the high DLX4 expression group. Patients with the high DLX4 expression levels tended to have lower overall survival and disease-free survival rates compared with those with low DLX4 expression. DLX4 expression also showed favorable diagnostic efficiency in ccRCC patients. Based on functional enrichment analysis, cell cycle related pathways, epithelial-mesenchymal transition, glycolysis and inflammatory response were associated with the expression levels of DLX4. Furthermore, DLX4 expression was revealed to be associated with tumor immunosuppressive microenvironment. Overall, the expression level of DLX4 may be considered a novel prognostic indicator in ccRCC and a specific diagnostic biomarker for patients with ccRCC.
Collapse
Affiliation(s)
- Jiawei Wang
- Department of Urology, The Second People's Hospital of Wuhu, Wuhu, Anhui 241000, P.R. China
| | - Liangjun Tao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yingqing Liu
- Department of Urology, The Second People's Hospital of Wuhu, Wuhu, Anhui 241000, P.R. China
| | - Heqian Liu
- Department of Urology, The Second People's Hospital of Wuhu, Wuhu, Anhui 241000, P.R. China
| | - Xudong Shen
- Department of Urology, The Second People's Hospital of Wuhu, Wuhu, Anhui 241000, P.R. China
| | - Lingsong Tao
- Department of Urology, The Second People's Hospital of Wuhu, Wuhu, Anhui 241000, P.R. China
- Correspondence to: Dr Lingsong Tao, Department of Urology, The Second People's Hospital of Wuhu, 259 JiuHuaShan Avenue, Wuhu, Anhui 241000, P.R. China, E-mail:
| |
Collapse
|
2
|
Zhou JD, Zhao YJ, Leng JY, Gu Y, Xu ZJ, Ma JC, Wen XM, Lin J, Zhang TJ, Qian J. DNA methylation-mediated differential expression of DLX4 isoforms has opposing roles in leukemogenesis. Cell Mol Biol Lett 2022; 27:59. [PMID: 35883028 PMCID: PMC9327205 DOI: 10.1186/s11658-022-00358-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/28/2022] [Indexed: 11/14/2022] Open
Abstract
Background Previously, we reported the expression of DLX4 isoforms (BP1 and DLX7) in myeloid leukemia, but the functional role of DLX4 isoforms remains poorly understood. In the work described herein, we further determined the underlying role of DLX4 isoforms in chronic myeloid leukemia (CML) leukemogenesis. Methods The expression and methylation of DLX4 isoforms were detected by real-time quantitative PCR (RT-qPCR) and real-time quantitative methylation-specific PCR (RT-qMSP) in patients with CML. The functional role of DLX4 isoforms was determined in vitro and in vivo. The molecular mechanism of DLX4 isoforms in leukemogenesis was identified based on chromatin immunoprecipitation with high-throughput sequencing (ChIP-Seq)/assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-Seq) and RNA sequencing (RNA-Seq). Results BP1 expression was increased in patients with CML with unmethylated promoter, but DLX7 expression was decreased with hypermethylated promoter. Functionally, overexpression of BP1 increased the proliferation rate of K562 cells with S/G2 promotion, whereas DLX7 overexpression reduced the proliferation rate of K562 cells with G1 arrest. Moreover, K562 cells with BP1 overexpression increased the tumorigenicity in NCG mice, whereas K562 cells with DLX7 overexpression decreased the tumorigenicity. Mechanistically, a total of 91 genes including 79 messenger RNAs (mRNAs) and 12 long noncoding RNAs (lncRNAs) were discovered by ChIP-Seq and RNA-Seq as direct downstream targets of BP1. Among the downstream genes, knockdown of RREB1 and SGMS1-AS1 partially revived the proliferation caused by BP1 overexpression in K562 cells. Similarly, using ATAC-Seq and RNA-Seq, a total of 282 genes including 151 mRNA and 131 lncRNAs were identified as direct downstream targets of DLX7. Knockdown of downstream genes PTPRB and NEAT1 partially revived the proliferation caused by DLX7 overexpression in K562 cells. Finally, we also identified and validated a SGMS1-AS1/miR-181d-5p/SRPK2 competing endogenous RNA (ceRNA) network caused by BP1 overexpression in K562 cells. Conclusions The current findings reveal that DNA methylation-mediated differential expression of DLX4 isoforms BP1 and DLX7 plays opposite functions in leukemogenesis. BP1 plays an oncogenic role in leukemia development, whereas DLX7 acts as a tumor suppressor gene. These results suggest DLX4 as a therapeutic target for antileukemia therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00358-0.
Collapse
Affiliation(s)
- Jing-Dong Zhou
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Yang-Jing Zhao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Jia-Yan Leng
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Yu Gu
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Zi-Jun Xu
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Ji-Chun Ma
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Xiang-Mei Wen
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Jiang Lin
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China. .,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China. .,Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China.
| | - Ting-Juan Zhang
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China. .,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China. .,Department of Oncology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China.
| | - Jun Qian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China. .,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China. .,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Jain N, Pilmane M. Evaluating the Expression of Candidate Homeobox Genes and Their Role in Local-Site Inflammation in Mucosal Tissue Obtained from Children with Non-Syndromic Cleft Lip and Palate. J Pers Med 2021; 11:jpm11111135. [PMID: 34834487 PMCID: PMC8618679 DOI: 10.3390/jpm11111135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 11/16/2022] Open
Abstract
Craniofacial development including palatogenesis is a complex process which requires an orchestrated and spatiotemporal expression of various genes and factors for proper embryogenesis and organogenesis. One such group of genes essential for craniofacial development is the homeobox genes, transcriptional factors that are commonly associated with congenital abnormalities. Amongst these genes, DLX4, HOXB3, and MSX2 have been recently shown to be involved in the etiology of non-syndromic cleft lip and palate. Hence, we investigated the gene and protein expression of these genes in normal and cleft affected mucosal tissue obtained from 22 children, along with analyzing their role in promoting local-site inflammation using NF-κB. Additionally, we investigated the role of PTX3, which plays a critical role in tissue remodeling and wound repair. We found a residual gene and protein expression of DLX4 in cleft mucosa, although no differences in gene expression levels of HOXB3 and MSX2 were noted. However, a significant increase in protein expression for these genes was noted in the cleft mucosa (p < 0.05), indicating increased cellular proliferation. This was coupled with a significant increase in NF-κB protein expression in cleft mucosa (p < 0.05), highlighting the role of these genes in promotion of pro-inflammatory environment. Finally, no differences in gene expression of PTX3 were noted.
Collapse
|
4
|
Management of Borderline Ovarian Tumors: Series of Case Report and Review of the Literature. Indian J Surg 2021. [DOI: 10.1007/s12262-020-02455-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
5
|
Sun G, Ge Y, Zhang Y, Yan L, Wu X, Ouyang W, Wang Z, Ding B, Zhang Y, Long G, Liu M, Shi R, Zhou H, Chen Z, Ye Z. Transcription Factors BARX1 and DLX4 Contribute to Progression of Clear Cell Renal Cell Carcinoma via Promoting Proliferation and Epithelial-Mesenchymal Transition. Front Mol Biosci 2021; 8:626328. [PMID: 34124141 PMCID: PMC8188704 DOI: 10.3389/fmolb.2021.626328] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 05/06/2021] [Indexed: 11/29/2022] Open
Abstract
Dysregulation of transcription factors contributes to the carcinogenesis and progression of cancers. However, their roles in clear cell renal cell carcinoma remain largely unknown. This study aimed to evaluate the clinical significance of TFs and investigate their potential molecular mechanisms in ccRCC. Data were accessed from the cancer genome atlas kidney clear cell carcinoma cohort. Bioinformatics algorithm was used in copy number alterations mutations, and differentially expressed TFs’ analysis. Univariate and multivariate Cox regression analyses were performed to identify clinically significant TFs and construct a six-TF prognostic panel. TFs’ expression was validated in human tissues. Gene set enrichment analysis (GSEA) was utilized to find enriched cancer hallmark pathways. Functional experiments were conducted to verify the cancer-promoting effect of BARX homeobox 1 (BARX1) and distal-less homeobox 4 (DLX4) in ccRCC, and Western blot was performed to explore their downstream pathways. As for results, many CNAs and mutations were identified in transcription factor genes. TFs were differentially expressed in ccRCC. An applicable predictive panel of six-TF genes was constructed to predict the overall survival for ccRCC patients, and its diagnostic efficiency was evaluated by the area under the curve (AUC). BARX1 and DLX4 were associated with poor prognosis, and they could promote the proliferation and migration of ccRCC. In conclusion, the six-TF panel can be used as a prognostic biomarker for ccRCC patients. BARX1 and DLX4 play oncogenic roles in ccRCC via promoting proliferation and epithelial–mesenchymal transition. They have the potential to be novel therapeutic targets for ccRCC.
Collapse
Affiliation(s)
- Guoliang Sun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Institute of Urology, Wuhan, China.,Department of Urology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yue Ge
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Institute of Urology, Wuhan, China
| | - Yangjun Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Institute of Urology, Wuhan, China
| | - Libin Yan
- Department of Urology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoliang Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Institute of Urology, Wuhan, China
| | - Wei Ouyang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Institute of Urology, Wuhan, China
| | - Zhize Wang
- Department of Urology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Beichen Ding
- Department of Urology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yucong Zhang
- Department of Geriatric, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gongwei Long
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Institute of Urology, Wuhan, China
| | - Man Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Institute of Urology, Wuhan, China
| | - Runlin Shi
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Zhou
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Institute of Urology, Wuhan, China
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Institute of Urology, Wuhan, China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Institute of Urology, Wuhan, China
| |
Collapse
|
6
|
Hu F, Zeng W, Liu X. A Gene Signature of Survival Prediction for Kidney Renal Cell Carcinoma by Multi-Omic Data Analysis. Int J Mol Sci 2019; 20:ijms20225720. [PMID: 31739630 PMCID: PMC6888680 DOI: 10.3390/ijms20225720] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
Kidney renal cell carcinoma (KIRC), which is the most common subtype of kidney cancer, has a poor prognosis and a high mortality rate. In this study, a multi-omics analysis is performed to build a multi-gene prognosis signature for KIRC. A combination of a DNA methylation analysis and a gene expression data analysis revealed 863 methylated differentially expressed genes (MDEGs). Seven MDEGs (BID, CCNF, DLX4, FAM72D, PYCR1, RUNX1, and TRIP13) were further screened using LASSO Cox regression and integrated into a prognostic risk score model. Then, KIRC patients were divided into high- and low-risk groups. A univariate cox regression analysis revealed a significant association between the high-risk group and a poor prognosis. The time-dependent receiver operating characteristic (ROC) curve shows that the risk group performs well in predicting overall survival. Furthermore, the risk group is contained in the best multivariate model that was obtained by a multivariate stepwise analysis, which further confirms that the risk group can be used as a potential prognostic biomarker. In addition, a nomogram was established for the best multivariate model and shown to perform well in predicting the survival of KIRC patients. In summary, a seven-MDEG signature is a powerful prognosis factor for KIRC patients and may provide useful suggestions for their personalized therapy.
Collapse
Affiliation(s)
- Fuyan Hu
- Department of Statistics, Faculty of Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China;
| | - Wenying Zeng
- Department of Water Resources and Hydro-elctricity Engineering, College of Water Resources and Architectural Engineering, Northwest A&F University, No.3 Taicheng Road, Yangling 712100, China;
| | - Xiaoping Liu
- School of Mathematics and Statistics, Shandong University at Weihai, Weihai 264209, China
- Correspondence: ; Tel.: +86-631-5688523
| |
Collapse
|
7
|
Nakamura N, Vijay V, Desai VG, Hansen DK, Han T, Chang CW, Chen YC, Harrouk W, McIntyre B, Foster PM, Fuscoe JC, Inselman AL. Transcript profiling in the testes and prostates of postnatal day 30 Sprague-Dawley rats exposed prenatally and lactationally to 2-hydroxy-4-methoxybenzophenone. Reprod Toxicol 2018; 82:111-123. [PMID: 30316929 PMCID: PMC6434700 DOI: 10.1016/j.reprotox.2018.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/19/2018] [Accepted: 10/03/2018] [Indexed: 01/13/2023]
Abstract
2-hydroxy-4-methoxybenzophenone (HMB) is an ultraviolet light-absorbing compound that is used in sunscreens, cosmetics and plastics. HMB has been reported to have weak estrogenic activity by in vivo and in vitro studies, making it a chemical with potential reproductive concern. To explore if prenatal and lactational HMB exposure alters gene expression profiles of the developing reproductive organs, we performed microarray analysis using the prostate and testis of postnatal day (PND) 30 male Sprague-Dawley rats offspring exposed to 0, 3000, or 30,000 ppm of HMB from gestational day 6 through PND 21. Gene expression profiles of the prostate and testis were differentially affected by HMB dose with significant alterations observed at the 30,000 ppm HMB group. Tissue-specific gene expression was also identified. These genes, whose expression was altered by HMB exposure, may be considered as candidate biomarker(s) for testicular or prostatic toxicity; however, further studies are necessary to explore this potential.
Collapse
Affiliation(s)
- Noriko Nakamura
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States.
| | - Vikrant Vijay
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| | - Varsha G Desai
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| | - Deborah K Hansen
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| | - Tao Han
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| | - Ching-Wei Chang
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| | - Yu-Chuan Chen
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| | - Wafa Harrouk
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Barry McIntyre
- National Toxicology Program, Research Triangle Park, NC 27709, United States
| | - Paul M Foster
- National Toxicology Program, Research Triangle Park, NC 27709, United States
| | - James C Fuscoe
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| | - Amy L Inselman
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| |
Collapse
|
8
|
Jeong J, Naab TJ, Fernandez AI, Ongkeko MS, Makambi KH, Blancato JK. Homeoprotein DLX4 expression is increased in inflammatory breast cancer cases from an urban African-American population. Oncotarget 2018; 9:31253-31263. [PMID: 30131852 PMCID: PMC6101289 DOI: 10.18632/oncotarget.25790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/05/2018] [Indexed: 02/07/2023] Open
Abstract
Protein expression of Distal-less homeobox 4 (DLX4) was analyzed in inflammatory breast cancer (IBC) cases from an African-American (AA) population to determine if a) DLX4 gene over expression exists in this cohort and b) if the overexpression is associated with breast cancer clinicopathological characteristics (ER, PR, HER2, triple-negative). Twenty-nine blocks of formalin-fixed paraffin-embedded (FFPE) tissue from well-characterized human IBC cases were used for immunohistochemical staining (IHC). IHC results were assigned an intensity and percentage score. Percentage scores were assigned as 0, 1, 2, 3, or 4 and intensity scores were assigned 0, 1+, 2+ or 3+. For the analysis of the IHC, a percentage score of 3 or 4 and an intensity score of 2+ or 3+ were categorized as high. Chi-square or Fisher's exact tests were used to compare the high and low groups. In this cohort, 89.7% (26 out of 29) of IBC cases showed high percentages of positive cells staining for the DLX4 protein, while 40.0% (12 out of 30) of normal breast tissue from reduction mammoplasty cases demonstrated DLX4 expression (p < 0.01). In IBC patients, 65.5% of cases showed a high level of staining intensity, compared to 20.0% of normal breast tissues (test, p = 0.001). Intensity to DLX4 was higher in the HER2 negative status (78.3%) than the HER2 positive status (16.7%) (test, p = 0.011). DLX4 expression is higher in the IBC cases in this study of an urban AA population than in normal breast tissue cases. HER2 negative status is positively associated with high intensity of DLX4.
Collapse
Affiliation(s)
- Jaehong Jeong
- Department of Oncology, Georgetown University Medical Center, Washington DC 20057, USA
- Comprehensive and Integrative Medicine Institute, Daegu 42473, South Korea
| | - Tammey J. Naab
- Department of Pathology, Howard University Hospital, Washington DC 20059, USA
| | - Aileen I. Fernandez
- Department of Oncology, Georgetown University Medical Center, Washington DC 20057, USA
| | - Martin S. Ongkeko
- Department of Pathology, Georgetown University Medical Center, Washington DC 20057, USA
| | - Kepher H. Makambi
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University, Washington DC 20057, USA
| | - Jan K. Blancato
- Department of Oncology, Georgetown University Medical Center, Washington DC 20057, USA
| |
Collapse
|
9
|
Lou Y, Fallah Y, Yamane K, Berg PE. BP1, a potential biomarker for breast cancer prognosis. Biomark Med 2018; 12:535-545. [DOI: 10.2217/bmm-2017-0212] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Homeobox genes are critical in tumor development. An isoform protein of DLX4 called BP1 is expressed in 80% of invasive ductal breast carcinomas. BP1 overexpression is implicated in an aggressive phenotype and poor prognosis. BP1 upregulation is associated with estrogen receptor negativity so those tumors do not respond to antiestrogens. Breast cancer is the second leading cause of death in women. BP1 could serve as both a novel prognostic biomarker for breast cancer and a therapeutic target. In this review, we address the role of BP1 protein in tumorigenesis of breast cancer and four other malignancies. A number of functions of BP1 in cancer are also discussed.
Collapse
Affiliation(s)
- Yaoxian Lou
- Department of Biochemistry & Molecular Medicine, George Washington University, Washington, DC 20037, USA
| | - Yassi Fallah
- Department of Oncology, Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, DC 20057, USA
| | - Kellie Yamane
- NantOmics, Diagnostic Center in Montgomery County, Rockville, MD 20850, USA
| | - Patricia E Berg
- Department of Biochemistry & Molecular Medicine, George Washington University, Washington, DC 20037, USA
| |
Collapse
|
10
|
Bhattacharya S, Duverger O, Brooks SR, Morasso MI. Homeobox transcription factor DLX4 is not necessary for skin development and homeostasis. Exp Dermatol 2018; 27:289-292. [PMID: 29380438 PMCID: PMC5844850 DOI: 10.1111/exd.13503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2018] [Indexed: 12/18/2022]
Abstract
Dlx4 is a member of a family of homeobox genes with homology to Drosophila distal-less (dll) gene. We show that Dlx4 expression pattern partially overlaps with its cis-linked gene Dlx3 during mouse development as well as in neonatal and adult skin. In mice, Dlx4 is expressed in the branchial arches, embryonic limbs, digits, nose, hair follicle and in the basal and suprabasal layers of mouse interfollicular epidermis. We show that inactivation of Dlx4 in mice did not result in any overtly gross pathology. Skin development, homeostasis and response to TPA treatment were similar in mice with loss of Dlx4 compared to wild-type counterparts.
Collapse
Affiliation(s)
- Shreya Bhattacharya
- Laboratory of Skin Biology, National Institute for Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA
| | - Olivier Duverger
- Laboratory of Skin Biology, National Institute for Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA
| | - Stephen R. Brooks
- Biodata Mining and Discovery Section, National Institute for Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, USA
| | - Maria I. Morasso
- Laboratory of Skin Biology, National Institute for Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Fu SW, Kirolikar SP, Ginsburg E, Tan X, Schwartz A, Simmens SJ, Man YG, Pinzone JJ, Teal C, Awate S, Vonderhaar BK, Berg PE. Beta protein 1 homeoprotein induces cell growth and estrogen-independent tumorigenesis by binding to the estrogen receptor in breast cancer. Oncotarget 2016; 7:53204-53216. [PMID: 27449292 PMCID: PMC5288179 DOI: 10.18632/oncotarget.10633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 07/06/2016] [Indexed: 12/18/2022] Open
Abstract
Expression of Beta Protein 1 (BP1), a homeotic transcription factor, increases during breast cancer progression and may be associated with tumor aggressiveness. In our present work, we investigate the influence of BP1 on breast tumor formation and size in vitro and in vivo. Cells overexpressing BP1 showed higher viability when grown in the absence of serum (p < 0.05), greater invasive potential (p < 0.05) and formed larger colonies (p < 0.004) compared with the controls. To determine the influence of BP1 overexpression on tumor characteristics, MCF-7 cells transfected with either empty vector (V1) or overexpressor plasmids (O2 and O4) were injected into the fat pads of athymic nude mice. Tumors grew larger in mice receiving O2 or O4 cells than in mice receiving V1 cells. Moreover, BP1 mRNA expression levels were positively correlated with tumor size in patients (p = 0.01). Interestingly, 20% of mice injected with O2 or O4 cells developed tumors in the absence of estrogen, while no mice receiving V1 cells developed tumors. Several mechanisms of estrogen independent tumor formation related to BP1 were established. These data are consistent with the fact that expression of breast cancer anti-estrogen resistance 1 (BCAR1) was increased in O2 compared to V1 cells (p < 0.01). Importantly, O2 cells exhibited increased proliferation when treated with tamoxifen, while V1 cells showed growth inhibition. Overall, BP1 overexpresssion in MCF-7 breast cancer cells leads to increased cell growth, estrogen-independent tumor formation, and increased proliferation. These findings suggest that BP1 may be an important biomarker and therapeutic target in ER positive breast cancer.
Collapse
Affiliation(s)
- Sidney W Fu
- Department of Medicine, Division of Genomic Medicine, George Washington University, Washington, DC 20037, USA
| | - Saurabh P Kirolikar
- Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC 20037, USA
| | - Erika Ginsburg
- Mammary Biology and Tumorigenesis Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaohui Tan
- Department of Medicine, Division of Genomic Medicine, George Washington University, Washington, DC 20037, USA
| | - Arnold Schwartz
- Department of Pathology, George Washington University Medical Center, Washington, DC 20037, USA
| | - Samuel J Simmens
- Department of Epidemiology and Biostatistics, School of Public Health and Health Services, George Washington University, Washington, DC 20037, USA
| | - Yan-Gao Man
- Department of Gynecologic and Breast Pathology, Armed Forces Institute of Pathology, Washington, DC 20306, USA
| | - Joseph J Pinzone
- David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Christine Teal
- Department of Surgery, George Washington University, Washington, DC 20037, USA
| | - Sanket Awate
- Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC 20037, USA
| | - Barbara K Vonderhaar
- Mammary Biology and Tumorigenesis Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Patricia E Berg
- Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC 20037, USA
| |
Collapse
|
12
|
Zhou JD, Yang J, Guo H, Deng ZQ, Wen XM, Yang L, Yin JY, Xiao GF, Lin J, Qian J. BP1 overexpression is associated with adverse prognosis in de novo acute myeloid leukemia. Leuk Lymphoma 2015; 57:828-34. [PMID: 26325005 DOI: 10.3109/10428194.2015.1088648] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
To investigate DLX4 isoforms expression and their clinical significance in acute myeloid leukemia (AML). DLX4 transcript variant 1 (BP1) expression was significantly up-regulated in AML patients compared with normal controls. However, DLX4 transcript variant 2 (DLX7) was significantly down-regulated in AML patients. Both in the overall AML and the non-M3 AML cohorts, those patients with high BP1 expression (BP1(high)) showed significantly lower rates of complete remission than those with low BP1 expression (BP1(low)). BP1(high) cases had significantly shorter overall survival than BP1(low) cases in the overall AML cohort, non-M3 AML, and cytogenetically normal AML (CN-AML). Multivariate analysis confirmed the independent prognostic value of BP1 expression among both the overall AML cohort and non-M3 AML as well as CN-AML patients. However, we did not observe the impact of DLX7 expression on prognosis in AML patients. Our study reveals that BP1 overexpression serves as an independent risk factor in de novo AML patients.
Collapse
Affiliation(s)
- Jing-dong Zhou
- a Department of Hematology, Affiliated People's Hospital of Jiangsu University , Zhenjiang , Jiangsu , People's Republic of China
| | - Jing Yang
- a Department of Hematology, Affiliated People's Hospital of Jiangsu University , Zhenjiang , Jiangsu , People's Republic of China
| | - Hong Guo
- b Laboratory Center , Affiliated People's Hospital of Jiangsu University , Zhenjiang , Jiangsu , People's Republic of China
| | - Zhao-qun Deng
- b Laboratory Center , Affiliated People's Hospital of Jiangsu University , Zhenjiang , Jiangsu , People's Republic of China
| | - Xiang-mei Wen
- b Laboratory Center , Affiliated People's Hospital of Jiangsu University , Zhenjiang , Jiangsu , People's Republic of China
| | - Lei Yang
- a Department of Hematology, Affiliated People's Hospital of Jiangsu University , Zhenjiang , Jiangsu , People's Republic of China
| | - Jia-yu Yin
- a Department of Hematology, Affiliated People's Hospital of Jiangsu University , Zhenjiang , Jiangsu , People's Republic of China
| | - Gao-fei Xiao
- b Laboratory Center , Affiliated People's Hospital of Jiangsu University , Zhenjiang , Jiangsu , People's Republic of China
| | - Jiang Lin
- a Department of Hematology, Affiliated People's Hospital of Jiangsu University , Zhenjiang , Jiangsu , People's Republic of China
| | - Jun Qian
- a Department of Hematology, Affiliated People's Hospital of Jiangsu University , Zhenjiang , Jiangsu , People's Republic of China
| |
Collapse
|
13
|
Wu D, Mandal S, Choi A, Anderson A, Prochazkova M, Perry H, Gil-Da-Silva-Lopes VL, Lao R, Wan E, Tang PLF, Kwok PY, Klein O, Zhuan B, Slavotinek AM. DLX4 is associated with orofacial clefting and abnormal jaw development. Hum Mol Genet 2015; 24:4340-52. [PMID: 25954033 DOI: 10.1093/hmg/ddv167] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/05/2015] [Indexed: 01/10/2023] Open
Abstract
Cleft lip and/or palate (CL/P) are common structural birth defects in humans. We used exome sequencing to study a patient with bilateral CL/P and identified a single nucleotide deletion in the patient and her similarly affected son—c.546_546delG, predicting p.Gln183Argfs*57 in the Distal-less 4 (DLX4) gene. The sequence variant was absent from databases, predicted to be deleterious and was verified by Sanger sequencing. In mammals, there are three Dlx homeobox clusters with closely located gene pairs (Dlx1/Dlx2, Dlx3/Dlx4, Dlx5/Dlx6). In situ hybridization showed that Dlx4 was expressed in the mesenchyme of the murine palatal shelves at E12.5, prior to palate closure. Wild-type human DLX4, but not mutant DLX4_c.546delG, could activate two murine Dlx conserved regulatory elements, implying that the mutation caused haploinsufficiency. We showed that reduced DLX4 expression after short interfering RNA treatment in a human cell line resulted in significant up-regulation of DLX3, DLX5 and DLX6, with reduced expression of DLX2 and significant up-regulation of BMP4, although the increased BMP4 expression was demonstrated only in HeLa cells. We used antisense morpholino oligonucleotides to target the orthologous Danio rerio gene, dlx4b, and found reduced cranial size and abnormal cartilaginous elements. We sequenced DLX4 in 155 patients with non-syndromic CL/P and CP, but observed no sequence variants. From the published literature, Dlx1/Dlx2 double homozygous null mice and Dlx5 homozygous null mice both have clefts of the secondary palate. This first finding of a DLX4 mutation in a family with CL/P establishes DLX4 as a potential cause of human clefts.
Collapse
Affiliation(s)
- Di Wu
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shyamali Mandal
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alex Choi
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - August Anderson
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michaela Prochazkova
- Division of Craniofacial Anomalies, Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA, Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the ASCR, v. v.i., Prague, Czech Republic, Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94114, USA
| | - Hazel Perry
- Division of Craniofacial Anomalies, Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
| | | | - Richard Lao
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, USA and
| | - Eunice Wan
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, USA and
| | - Paul Ling-Fung Tang
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, USA and
| | - Pui-yan Kwok
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, USA and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Ophir Klein
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA, Division of Craniofacial Anomalies, Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA, Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94114, USA
| | - Bian Zhuan
- Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, China
| | - Anne M Slavotinek
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA,
| |
Collapse
|
14
|
Xie XH, Xu XP, Sun CY, Yu ZJ. Regulation of the oncogenic function of distal-less 4 by microRNA-122 in hepatocellular carcinoma. Mol Med Rep 2015; 12:1375-80. [PMID: 25823567 DOI: 10.3892/mmr.2015.3554] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 05/09/2014] [Indexed: 11/06/2022] Open
Abstract
Distal-less 4 (DLX4) is a member of the DLX family of homeobox genes. Recent reports have suggested that abnormal expression of DLX4 is present in several types of human tumors, including breast cancer, leukemia and colon cancer. However, the function and the mechanistic regulation of DLX4 in hepatocellular carcinoma (HCC) are elusive. In the present study, a proportion of hepatocellular carcinomas were identified to exhibit upregulated DLX4 expression. This study proposed that the overexpression of DLX4 is associated with the downregulation of miR-122, an underexpressed miRNA in human HCC. Functional studies have demonstrated that the downregulation of DLX4 in hepatocellular carcinoma cell lines is regulated by miR-122 through binding to its 3'UTR. Furthermore, a DLX4 overexpression vector lacking the 3'UTR was shown to abolish miR-122-induced inhibition of proliferation in the HCC cell line Hep3B. These results gave new insight into the mechanism of the miR-122/DLX4 axis in HCC.
Collapse
Affiliation(s)
- Xu-Hua Xie
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiao-Pei Xu
- Department of Endocrinology, Second Hospital of Zhengzhou, Zhengzhou, Henan 450006, P.R. China
| | - Chang-Yu Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zu-Jiang Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
15
|
Torresan C, Oliveira MMC, Pereira SRF, Ribeiro EMSF, Marian C, Gusev Y, Lima RS, Urban CA, Berg PE, Haddad BR, Cavalli IJ, Cavalli LR. Increased copy number of the DLX4 homeobox gene in breast axillary lymph node metastasis. Cancer Genet 2014; 207:177-87. [PMID: 24947980 DOI: 10.1016/j.cancergen.2014.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/08/2014] [Accepted: 04/20/2014] [Indexed: 10/25/2022]
Abstract
DLX4 is a homeobox gene strongly implicated in breast tumor progression and invasion. Our main objective was to determine the DLX4 copy number status in sentinel lymph node (SLN) metastasis to assess its involvement in the initial stages of the axillary metastatic process. A total of 37 paired samples of SLN metastasis and primary breast tumors (PBT) were evaluated by fluorescence in situ hybridization, quantitative polymerase chain reaction and array comparative genomic hybridization assays. DLX4 increased copy number was observed in 21.6% of the PBT and 24.3% of the SLN metastasis; regression analysis demonstrated that the DLX4 alterations observed in the SLN metastasis were dependent on the ones in the PBT, indicating that they occur in the primary tumor cell populations and are maintained in the early axillary metastatic site. In addition, regression analysis demonstrated that DLX4 alterations (and other DLX and HOXB family members) occurred independently of the ones in the HER2/NEU gene, the main amplification driver on the 17q region. Additional studies evaluating DLX4 copy number in non-SLN axillary lymph nodes and/or distant breast cancer metastasis are necessary to determine if these alterations are carried on and maintained during more advanced stages of tumor progression and if could be used as a predictive marker for axillary involvement.
Collapse
Affiliation(s)
- Clarissa Torresan
- Department of Genetics, Federal University of Paraná, Curitiba, PR, Brazil
| | | | - Silma R F Pereira
- Department of Biology, Federal University of Maranhão, São Luis, MA, Brazil
| | | | - Catalin Marian
- Department of Biochemistry, University of Medicine and Pharmacy, Timisoara, Romania
| | - Yuriy Gusev
- Innovation Center for Biomedical Informatics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Rubens S Lima
- Breast Unit, Hospital Nossa Senhora das Graças, Curitiba, PR, Brazil
| | - Cicero A Urban
- Breast Unit, Hospital Nossa Senhora das Graças, Curitiba, PR, Brazil; Positivo University, Curitiba, PR, Brazil
| | - Patricia E Berg
- Department of Biochemistry and Molecular Medicine, George Washington University Medical Center, Washington, DC, USA
| | - Bassem R Haddad
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Iglenir J Cavalli
- Department of Genetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Luciane R Cavalli
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA.
| |
Collapse
|
16
|
Muff R, Ram Kumar RM, Botter SM, Born W, Fuchs B. Genes regulated in metastatic osteosarcoma: evaluation by microarray analysis in four human and two mouse cell line systems. Sarcoma 2012; 2012:937506. [PMID: 23213280 PMCID: PMC3504467 DOI: 10.1155/2012/937506] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 09/07/2012] [Indexed: 12/27/2022] Open
Abstract
Osteosarcoma (OS) is a rare bone neoplasm that affects mainly adolescents. It is associated with poor prognosis in case of metastases formation. The search for metastasis predicting markers is therefore imperative to optimize treatment strategies for patients at risk and important for the search of new drugs for the treatment of this devastating disease. Here, we have analyzed by microarray the differential gene expression in four human and two mouse OS cell line systems consisting of parental cell lines with low metastatic potential and derivatives thereof with increased metastatic potential. Using two osteoblastic cell line systems, the most common OS phenotype, we have identified forty-eight common genes that are differentially expressed in metastatic cell lines compared to parental cells. The identified subset of metastasis relevant genes in osteoblastic OS overlapped only minimally with differentially expressed genes in the other four preosteoblast or nonosteoblastic cell line systems. The results imply an OS phenotype specific expression pattern of metastasis regulating proteins and form a basis for further investigation of gene expression profiles in patients' samples combined with survival analysis with the aim to optimize treatment strategies to develop new drugs and to consequently improve the survival of patients with the most common form of osteoblastic OS.
Collapse
Affiliation(s)
- Roman Muff
- Laboratory for Orthopedic Research, Balgrist University Hospital, Forchstrasse 340, 8008 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
17
|
Zhang L, Yang M, Gan L, He T, Xiao X, Stewart MD, Liu X, Yang L, Zhang T, Zhao Y, Fu J. DLX4 upregulates TWIST and enhances tumor migration, invasion and metastasis. Int J Biol Sci 2012; 8:1178-87. [PMID: 23091415 PMCID: PMC3477687 DOI: 10.7150/ijbs.4458] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 09/25/2012] [Indexed: 01/13/2023] Open
Abstract
The distal-less homeobox gene 4 (DLX4) is a member of the DLX family of homeobox genes. Although absent from most normal adult tissues, DLX4 is widely expressed in leukemia, lung, breast, ovarian and prostate cancers. However the molecular targets, mechanisms and pathways that mediate the role of DLX4 in tumor metastasis are poorly understood. In this study, we found that DLX4 induces cancer cells to undergo epithelial to mesenchymal transition (EMT) through TWIST. Overexpression of DLX4 increased expression of TWIST expression in cancer cell lines, resulting in increased migratory and invasive capacity. Likewise, knocking down expression of DLX4 decreased TWIST expression and the migration ability of cancer cell lines. DLX4 bound to regulatory regions of the TWIST gene. Both western blotting and immunohistochemistry staining showed that the expression of DLX4 and TWIST are correlated in most of breast tumors. Taken together, these data from both cell models and tumor tissues demonstrate that DLX4 not only upregulates TWIST expression but also induces EMT and tumor metastasis. Altogether, we propose a new pathway in which DLX4 drives expression of TWIST to promote EMT, cancer migration, invasion and metastasis.
Collapse
Affiliation(s)
- Lianmei Zhang
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Luzhou Medical College, Luzhou 646000, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Identification of novel splice variants in horn cancer by RNA-Seq analysis in Zebu cattle. Genomics 2012; 101:57-63. [PMID: 23063905 DOI: 10.1016/j.ygeno.2012.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 08/11/2012] [Accepted: 10/03/2012] [Indexed: 10/27/2022]
Abstract
Horn cancer accounts for nearly 83% of total tumors found in Indian Zebu cattle, which results in chronic suffering and causes heavy economic losses. Alternative splicing has been frequently implicated in the various types of cancer progression. Utilizing the transcriptome sequence generated by next generation sequencing, we analyzed the transcript data for the presence of alternative splicing using BLAT program and identified 27 alternatively spliced genes, of which 12 spliced variants appeared to be the novel spliced candidates. Protein prediction of these novel spliced variants revealed that splice variation has caused either truncation of protein, insertion/deletion of stretch of amino acids or formation of unique carboxy terminus. The RT-PCR analysis confirmed the expression of 8 of the 12 novel spliced variants observed by transcriptome sequencing. Additionally, altered splicing/expression of these novel candidates between cancer and normal tissues revealed by qPCR suggests their potential involvement in the development of horn cancer.
Collapse
|
19
|
Abstract
NK-like (NKL) homeobox genes code for transcription factors, which can act as key regulators in fundamental cellular processes. NKL genes have been implicated in divergent types of cancer. In this review, we summarize the involvement of NKL genes in cancer and leukemia in particular. NKL genes can act as tumor-suppressor genes and as oncogenes, depending on tissue type. Aberrant expression of NKL genes is especially common in T-cell acute lymphoblastic leukemia (T-ALL). In T-ALL, 8 NKL genes have been reported to be highly expressed in specific T-ALL subgroups, and in ~30% of cases, high expression is caused by chromosomal rearrangement of 1 of 5 NKL genes. Most of these NKL genes are normally not expressed in T-cell development. We hypothesize that the NKL genes might share a similar downstream effect that promotes leukemogenesis, possibly due to mimicking a NKL gene that has a physiological role in early hematopoietic development, such as HHEX. All eight NKL genes posses a conserved Eh1 repressor motif, which has an important role in regulating downstream targets in hematopoiesis and possibly in leukemogenesis as well. Identification of a potential common leukemogenic NKL downstream pathway will provide a promising subject for future studies.
Collapse
|
20
|
Homeodomain protein DLX4 counteracts key transcriptional control mechanisms of the TGF-β cytostatic program and blocks the antiproliferative effect of TGF-β. Oncogene 2011; 30:2718-29. [PMID: 21297662 PMCID: PMC3116964 DOI: 10.1038/onc.2011.4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The antiproliferative activity of transforming growth factor-β (TGF-β) is essential for maintaining normal tissue homeostasis and is lost in many types of tumors. Gene responses that are central to the TGF-β cytostatic program include activation of the cyclin-dependent kinase inhibitors, p15(Ink4B) and p21(WAF1/Cip1), and repression of c-myc. These gene responses are tightly regulated by a repertoire of transcription factors that include Smad proteins and Sp1. The DLX4 homeobox patterning gene encodes a transcription factor that is absent from most normal adult tissues, but is expressed in a wide variety of malignancies, including lung, breast, prostate and ovarian cancers. In this study, we demonstrate that DLX4 blocks the antiproliferative effect of TGF-β. DLX4 inhibited TGF-β-mediated induction of p15(Ink4B) and p21(WAF1/Cip1) expression. DLX4 bound and prevented Smad4 from forming complexes with Smad2 and Smad3, but not with Sp1. However, DLX4 also bound and inhibited DNA-binding activity of Sp1. In addition, DLX4 induced expression of c-myc independently of TGF-β/Smad signaling. The ability of DLX4 to counteract key transcriptional control mechanisms of the TGF-β cytostatic program could explain, in part, the resistance of tumors to the antiproliferative effect of TGF-β.
Collapse
|
21
|
Abstract
DNA methylation in gene promoters causes gene silencing and is a common event in cancer development and progression. The ability of aberrant methylation events to serve as diagnostic and prognostic markers is being appreciated for many cancers, including prostate cancer. Using quantitative MethyLight technology, we evaluated the relationship between HOXD3 methylation and clinicopathological parameters including biochemical recurrence, pathological stage, Gleason score (GS), and Gleason pattern in a series of 232 radical prostatectomies performed between 1998 and 2001. HOXD3 methylation was significantly greater in GS 7 cancers vs GS < or = 6 cancers (P-value <0.001) as well as pT3/pT4 vs pT2 cancers (P-value <0.001). The proportion of cases with high methylation in GS 7 vs < or = GS 6 and pT3/pT4 vs pT2 were also significantly different (P-values=0.002 and 0.005, respectively). There were also significant increases in methylation from Gleason pattern 2-3 and from pattern 3 to 4/5 (paired t-test P-values=0.01 and <0.001, respectively), whereas methylation from lymph node metastases was decreased when compared with matched tumor tissue (P-value=0.029). HOXD3 methylation was associated with biochemical recurrence in univariate analysis (P-value=0.043) and showed evidence for interaction with pathological stage as a predictor variable in Cox regression analysis (P-value=0.028). The results indicate that HOXD3 methylation distinguishes low-grade prostate cancers from intermediate and high-grade ones and may also have prognostic value when considered together with pathological stage.
Collapse
|
22
|
Man YG, Gardner WA. Bad seeds produce bad crops: a single stage-process of prostate tumor invasion. Int J Biol Sci 2008; 4:246-58. [PMID: 18725981 PMCID: PMC2519176 DOI: 10.7150/ijbs.4.246] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 08/06/2008] [Indexed: 11/24/2022] Open
Abstract
It is a commonly held belief that prostate carcinogenesis is a multi-stage process and that tumor invasion is triggered by the overproduction of proteolytic enzymes. This belief is consistent with data from cell cultures and animal models, whereas is hard to interpret several critical facts, including the presence of cancer in "healthy" young men and cancer DNA phenotype in morphologically normal prostate tissues. These facts argue that alternative pathways may exist for prostate tumor invasion in some cases. Since degradation of the basal cell layer is the most distinct sign of invasion, our recent studies have attempted to identify pre-invasive lesions with focal basal cell layer alterations. Our studies revealed that about 30% of prostate cancer patients harbored normal appearing duct or acinar clusters with a high frequency of focal basal cell layer disruptions. These focally disrupted basal cell layers had significantly reduced cell proliferation and tumor suppressor expression, whereas significantly elevated degeneration, apoptosis, and infiltration of immunoreactive cells. In sharp contrast, associated epithelial cell had significantly elevated proliferation, expression of malignancy-signature markers, and physical continuity with invasive lesions. Based on these and other findings, we have proposed that these normal appearing duct or acinar clusters are derived from monoclonal proliferation of genetically damaged stem cells and could progress directly to invasion through two pathways: 1) clonal in situ transformation (CIST) and 2) multi-potential progenitor mediated "budding" (MPMB). These pathways may contribute to early onset of prostate cancer at young ages, and to clinically more aggressive prostate tumors.
Collapse
Affiliation(s)
- Yan-gao Man
- American Registry of Pathology and Armed Forces Institute of Pathology, Washington DC 20306-6000, USA.
| | | |
Collapse
|