1
|
Wettergren Y, Rolny P, Lindegren H, Odin E, Rotter Sopasakis V, Keane S, Ejeskär K. Increased MLH1, MGMT, and p16INK4a methylation levels in colon mucosa potentially useful as early risk marker of colon cancer. Mol Cell Oncol 2025; 12:2503069. [PMID: 40357388 PMCID: PMC12068326 DOI: 10.1080/23723556.2025.2503069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025]
Abstract
The genes MutL Homolog 1 (MLH1), O6-methylguanine-DNA methyltransferase (MGMT), and cyclin-dependent kinase inhibitor p16INK4a are commonly downregulated by hypermethylation in colorectal cancer. Long interspersed nucleotide element 1 (LINE-1) can be used as marker for global hypomethylation. This study compared MLH1, MGMT, p16INK4a, and LINE-1 methylation with gene expression in colon tumors, matched non-cancerous mucosa, and control mucosa to identify signs of premalignancy. Tissues were obtained from 20 colon cancer patients and 40 controls. CpG site methylation was quantified by pyrosequencing, expression by qPCR, and MSI/KRAS status by fragment analysis and droplet digital PCR. MLH1, MGMT, and p16INK4a methylation was increasingly higher in control mucosa, non-cancerous mucosa, and tumors. MLH1 expression was lower in tumors compared to non-cancerous mucosa but higher compared to control mucosa. Tumoral LINE-1 methylation correlated negatively with MLH1 (r = -0.51, p = .021) and p16INK4a (r = -0.55, p = .012) methylation, but positively (r = 0.74, p = .0002) with MLH1 expression. A p16INK4a SNP (rs3814960 C>T) was associated with methylation, expression, and MSI/KRAS status. Aberrant methylation of tumor suppressor genes in colon mucosa could be an early cancer risk marker. Control mucosa is a more reliable reference than non-cancerous mucosa when identifying premalignant changes. Extended studies will evaluate the possible association between rs3814960 and cancer susceptibility. Trial registration: NCT03072641.
Collapse
Affiliation(s)
- Yvonne Wettergren
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Surgery, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Peter Rolny
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medicine, Division of Gastroenterology and Hepatology, Region Västra Götaland, Sahlgrenska University Hospital/Östra, Gothenburg, Sweden
| | - Helena Lindegren
- Department of Medicine, Division of Gastroenterology and Hepatology, Region Västra Götaland, Sahlgrenska University Hospital/Östra, Gothenburg, Sweden
| | - Elisabeth Odin
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Victoria Rotter Sopasakis
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Simon Keane
- Translational Medicine, School of Health Sciences, University of Skövde, Skövde, Sweden
| | - Katarina Ejeskär
- Translational Medicine, School of Health Sciences, University of Skövde, Skövde, Sweden
| |
Collapse
|
2
|
Lapkina E, Zinchenko I, Kutcenko V, Bondar E, Kirichenko A, Yamskikh I, Palkina N, Ruksha T. MiR-204-5p overexpression abrogates Dacarbazine-induced senescence in melanoma cells in vivo. Noncoding RNA Res 2025; 10:130-139. [PMID: 39385998 PMCID: PMC11462174 DOI: 10.1016/j.ncrna.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Cancer cell drug resistance hinders significantly therapeutic modalities in oncology. Dacarbazine is chemotherapeutic agent traditionally used for melanoma treatment although it's effectiveness insufficient. In the present study we performed NGS-based transcriptomic profiling of B16 melanoma tumors after Dacarbazine treatment in vivo. Whole transcriptome sequencing revealed 34 differentially expressed genes most of them associated with drug resistance and apoptosis evading. In accordance to bionformatic analysis, 6 signaling cascades: "D-Amino acid metabolism", "NF-kappa B signaling pathway", "Phosphatidylinositol signaling system", "P53 signaling pathway", "IL-17 signaling pathway" and "Bile secretion" were enriched by differentially expressed genes. Next we provided a combined treatment by Dacarbazine and miR-204-5p mimic as miR-204-5p was considered previously implicated in cancer drug resistance. This approach lead to an increase of miR-204-5p expression in B16 melanoma cells in vivo that was accompanied by subsequent decrease in the expression of miR-204-5p target genes - BCL2 and SIRT1 in the primary tumors. MiR-204-5p overexpression with Dacarbazine application resulted in increased the weight, and volume of primary tumors and diminished the proportion of β-Galactosidase expression in melanoma B16-bearing mice. Taking together, our study revealed that although miR-204-5p showed antiproliferative capacities in vitro, it's mimic in combination with Dacarbazine is able to potentiate tumor growth triggering probably a switch from senescent to proliferative phenotype of malignant cells.
Collapse
Affiliation(s)
- Ekaterina Lapkina
- Department of Pathophysiology, Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - Ivan Zinchenko
- Department of Pathophysiology, Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - Viktoriya Kutcenko
- Department of Pathophysiology, Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - Eugeniya Bondar
- Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
- Laboratory of Forest Genomics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
- Laboratory of Genomic Research and Biotechnology, Federal Research Center “Krasnoyarsk Science Center” Siberian Branch, Russian Academy of Science, Krasnoyarsk, Russia
| | - Andrey Kirichenko
- Department of Pathological Anatomy, Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - Irina Yamskikh
- Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
- Laboratory of Forest Genomics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
- Laboratory of Genomic Research and Biotechnology, Federal Research Center “Krasnoyarsk Science Center” Siberian Branch, Russian Academy of Science, Krasnoyarsk, Russia
| | - Nadezhda Palkina
- Department of Pathophysiology, Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - Tatiana Ruksha
- Department of Pathophysiology, Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| |
Collapse
|
3
|
Jiang J, Xu J, Ji S, Yu X, Chen J. Unraveling the mysteries of MGMT: Implications for neuroendocrine tumors. Biochim Biophys Acta Rev Cancer 2024; 1879:189184. [PMID: 39303858 DOI: 10.1016/j.bbcan.2024.189184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/15/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Neuroendocrine tumors (NETs) are a diverse group of tumors that arise from neuroendocrine cells and are commonly found in various organs. A considerable proportion of NET patients were diagnosed at an advanced or metastatic stage. Alkylating agents are the primary treatment for NET, and O6-methylguanine methyltransferase (MGMT) remains the first-line of defense against DNA damage caused by these agents. Clinical trials have indicated that MGMT promoter methylation or its low/lacked expression can predict a favorable outcome with Temozolomide in NETs. Its status could help select NET patients who can benefit from alkylating agents. Therefore, MGMT status serves as a biomarker to guide decisions on the efficacy of Temozolomide as a personalized treatment option. Additionally, delving into the regulatory mechanisms of MGMT status can lead to the development of MGMT-targeted therapies, benefiting individuals with high levels of MGMT expression. This review aims to explore the polymorphism of MGMT regulation and summarize its clinical implications in NETs, which would help establish the role of MGMT as a biomarker and its potential as a therapeutic target in NETs. Additionally, we explore the benefits of combining Temozolomide and immunotherapy in MGMT hypermethylated subgroups. Future studies can focus on optimizing Temozolomide administration to induce specific immunomodulatory changes.
Collapse
Affiliation(s)
- Jianyun Jiang
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Junfeng Xu
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Shunrong Ji
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Xianjun Yu
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Jie Chen
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
4
|
DeBenedictis JN, Baars E, Ochoteco-Asensio J, van Breda SG, de Kok TM. Genetic Variability Impacts Genotoxic and Transcriptome Responses in the Human Colon after the Consumption of Processed Red Meat Products and Those with Added Phytochemical Extracts. Nutrients 2024; 16:425. [PMID: 38337709 PMCID: PMC10857093 DOI: 10.3390/nu16030425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
The PHYTOME study investigated the effect of consuming processed meat products on outcomes related to colorectal cancer risk without testing the impact of genetic variability on these responses. This research aims to elucidate the genetic impact on apparent total N-nitroso compound (ATNC) excretion, colonic DNA adduct formation, ex vivo-induced DNA damage, and gene expression changes in colon biopsies of healthy participants. Through a systematic literature review, candidate polymorphisms were selected and then detected using TaqMan and PCR analysis. The effect of genotype on study outcomes was determined via a linear mixed model and analysis of variance. Machine learning was used to evaluate relative allele importance concerning genotoxic responses, which established a ranking of the most protective alleles and a combination of genotypes (gene scores). Participants were grouped by GSTM1 genotype and differentially expressed genes (DEGs), and overrepresented biological pathways were compared between groups. Stratifying participants by ten relevant genes revealed significant variations in outcome responses. After consumption of processed red meat, variations in NQO1 and COMT impacted responses in ATNC levels (µmol/L) (+9.56 for wildtype vs. heterozygous) and DNA adduct levels (pg/µg DNA) (+1.26 for variant vs. wildtype and +0.43 for variant vs. heterozygous), respectively. After phytochemicals were added to the meat, GSTM1 variation impacted changes in DNA adduct levels (-6.12 for deletion vs. wildtype). The gene scores correlated with these responses and DEGs were identified by GSTM1 genotype. The altered pathways specific to the GSTM1 wildtype group included 'metabolism', 'cell cycle', 'vitamin D receptor', and 'metabolism of water-soluble vitamins and co-factors'. Genotype impacted both the potential genotoxicity of processed red meat and the efficacy of protective phytochemical extracts.
Collapse
Affiliation(s)
| | | | | | - Simone G. van Breda
- Toxicogenomics Department, GROW School of Oncology & Reproduction, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6211 LK Maastricht, The Netherlands (J.O.-A.)
| | | |
Collapse
|
5
|
Shyamala N, Kongettira CL, Puranam K, Kupsal K, Kummari R, Padala C, Hanumanth SR. In silico identification of single nucleotide variations at CpG sites regulating CpG island existence and size. Sci Rep 2022; 12:3574. [PMID: 35246549 PMCID: PMC8897451 DOI: 10.1038/s41598-022-05198-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 01/03/2022] [Indexed: 12/20/2022] Open
Abstract
Genetic and epigenetic modifications of genes involved in the key regulatory pathways play a significant role in the pathophysiology and progression of multifactorial diseases. The present study is an attempt to identify single nucleotide variations (SNVs) at CpG sites of promoters of ACAT1, APOB, APOE, CYBA, FAS, FLT1, KSR2, LDLR, MMP9, PCSK9, PHOX2A, REST, SH2B3, SORT1 and TIMP1 genes influencing CpG island (CGI) existence and size associated with the pathophysiology of Diabetes mellitus, Coronary artery disease and Cancers. Promoter sequences located between -2000 to + 2000 bp were retrieved from the EPDnew database and predicted the CpG island using MethPrimer. Further, SNVs at CpG sites were accessed from NCBI, Ensembl while transcription factor (TF) binding sites were accessed using AliBaba2.1. CGI existence and size were determined for each SNV at CpG site with respect to wild type and variant allele by MethPrimer. A total of 200 SNVs at CpG sites were analyzed from the promoters of ACAT1, APOB, APOE, CYBA, FAS, FLT1, KSR2, LDLR, MMP9, PCSK9, PHOX2A, REST, SH2B3, SORT1 and TIMP1 genes. Of these, only 17 (8.5%) SNVs were found to influence the loss of CGI while 70 (35%) SNVs were found to reduce the size of CGI. It has also been found that 59% (10) of CGI abolishing SNVs are showing differences in binding of TFs. The findings of the study suggest that the candidate SNVs at CpG sites regulating CGI existence and size might influence the DNA methylation status and expression of genes involved in molecular pathways associated with several diseases. The insights of the present study may pave the way for new experimental studies to undertake challenges in DNA methylation, gene expression and protein assays.
Collapse
Affiliation(s)
- Nivas Shyamala
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, 500007, Telangana State, India
| | - Chaitra Lava Kongettira
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, 500007, Telangana State, India
| | - Kaushik Puranam
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, 500007, Telangana State, India
| | - Keerthi Kupsal
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, 500007, Telangana State, India
| | - Ramanjaneyulu Kummari
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, 500007, Telangana State, India
| | - Chiranjeevi Padala
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, 500007, Telangana State, India
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana State, India
| | - Surekha Rani Hanumanth
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, 500007, Telangana State, India.
| |
Collapse
|
6
|
The Immunogenetics of Lichen Planus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:119-135. [DOI: 10.1007/978-3-030-92616-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Genomic Space of MGMT in Human Glioma Revisited: Novel Motifs, Regulatory RNAs, NRF1, 2, and CTCF Involvement in Gene Expression. Int J Mol Sci 2021; 22:ijms22052492. [PMID: 33801310 PMCID: PMC7958331 DOI: 10.3390/ijms22052492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 01/08/2023] Open
Abstract
Background: The molecular regulation of increased MGMT expression in human brain tumors, the associated regulatory elements, and linkages of these to its epigenetic silencing are not understood. Because the heightened expression or non-expression of MGMT plays a pivotal role in glioma therapeutics, we applied bioinformatics and experimental tools to identify the regulatory elements in the MGMT and neighboring EBF3 gene loci. Results: Extensive genome database analyses showed that the MGMT genomic space was rich in and harbored many undescribed RNA regulatory sequences and recognition motifs. We extended the MGMT’s exon-1 promoter to 2019 bp to include five overlapping alternate promoters. Consensus sequences in the revised promoter for (a) the transcriptional factors CTCF, NRF1/NRF2, GAF, (b) the genetic switch MYC/MAX/MAD, and (c) two well-defined p53 response elements in MGMT intron-1, were identified. A putative protein-coding or non-coding RNA sequence was located in the extended 3′ UTR of the MGMT transcript. Eleven non-coding RNA loci coding for miRNAs, antisense RNA, and lncRNAs were identified in the MGMT-EBF3 region and six of these showed validated potential for curtailing the expression of both MGMT and EBF3 genes. ChIP analysis verified the binding site in MGMT promoter for CTCF which regulates the genomic methylation and chromatin looping. CTCF depletion by a pool of specific siRNA and shRNAs led to a significant attenuation of MGMT expression in human GBM cell lines. Computational analysis of the ChIP sequence data in ENCODE showed the presence of NRF1 in the MGMT promoter and this occurred only in MGMT-proficient cell lines. Further, an enforced NRF2 expression markedly augmented the MGMT mRNA and protein levels in glioma cells. Conclusions: We provide the first evidence for several new regulatory components in the MGMT gene locus which predict complex transcriptional and posttranscriptional controls with potential for new therapeutic avenues.
Collapse
|
8
|
Vohra M, Sharma AR, Prabhu B N, Rai PS. SNPs in Sites for DNA Methylation, Transcription Factor Binding, and miRNA Targets Leading to Allele-Specific Gene Expression and Contributing to Complex Disease Risk: A Systematic Review. Public Health Genomics 2020; 23:155-170. [PMID: 32966991 DOI: 10.1159/000510253] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 07/16/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The complex genetic diversity among human populations results from an assortment of factors acting at various sequential levels, including mutations, population migrations, genetic drift, and selection. Although there are a plethora of DNA sequence variations identified through genome-wide association studies (GWAS), the challenge remains to explain the mechanisms underlying interindividual phenotypic disparity accounting for disease susceptibility. Single nucleotide polymorphisms (SNPs) present in the sites for DNA methylation, transcription factor (TF) binding, or miRNA targets can alter the gene expression. The systematic review aimed to evaluate the complex crosstalk among SNPs, miRNAs, DNA methylation, and TFs for complex multifactorial disease risk. METHODS PubMed and Scopus databases were used from inception until May 15, 2019. Initially, screening of articles involved studies assessing the interaction of SNPs with TFs, DNA methylation, or miRNAs resulting in allele-specific gene expression in complex multifactorial diseases. We also included the studies which provided experimental validation of the interaction of SNPs with each of these factors. The results from various studies on multifactorial diseases were assessed. RESULTS A total of 11 articles for SNPs interacting with DNA methylation, 30 articles for SNPs interacting with TFs, and 11 articles for SNPs in miRNA binding sites were selected. The interactions of SNPs with epigenetic factors were found to be implicated in different types of cancers, autoimmune diseases, cardiovascular diseases, diabetes, and asthma. CONCLUSION The systematic review provides evidence for the interplay between genetic and epigenetic risk factors through allele-specific gene expression in various complex multifactorial diseases.
Collapse
Affiliation(s)
- Manik Vohra
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Anu Radha Sharma
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Navya Prabhu B
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Padmalatha S Rai
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India,
| |
Collapse
|
9
|
Ma L, Liang B, Yang Y, Chen L, Liu Q, Zhang A. hOGG1 promoter methylation, hOGG1 genetic variants and their interactions for risk of coal-borne arsenicosis: A case-control study. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 75:103330. [PMID: 32004920 DOI: 10.1016/j.etap.2020.103330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
To identify the effect of hOGG1 methylation, Ser326Cys polymorphism and their interactions on the risk of coal-borne arsenicosis, 113 coal-borne arsenicosis subjects and 55 reference subjects were recruited. Urinary arsenic contents were analyzed with ICP-MS. hOGG1 methylation and Ser326Cys polymorphism was measured by mehtylation-specific PCR and restriction fragment length polymorphism PCR in PBLCs, respectively. The results showed that the prevalence of methylated hOGG1 and variation genotype (326 Ser/Cys & 326 Cys/Cys) were increased with raised levels of urinary arsenic in arsenicosis subjects. Increased prevalence of methylated hOGG1 and variation genotype were associated with raised risk of arsenicosis. Moreover, the results revealed that variant genotype might increase the susceptibility to hOGG1 methylation. The interactions of methylated hOGG1 and variation genotype were also found to contribute to increased risk of arsenicosis. Taken together, hOGG1 hypermethylation, hOGG1 variants and their interactions might be potential biomarkers for evaluating risk of coal-borne arsenicosis.
Collapse
Affiliation(s)
- Lu Ma
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China.
| | - Bing Liang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China.
| | - Yuan Yang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China.
| | - Liyuan Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China.
| | - Qizhan Liu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, PR China.
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China.
| |
Collapse
|
10
|
Sánchez‐Siles M, Aliaga‐Sánchez A, Medina S, Adoamnei E, Fernández‐Ruiz JA, Pelegrín‐Hernández JP, Corno‐Caparrós A, Rosa‐Salazar V, Camacho‐Alonso F. Genotyping of the C>T allele of rs16906252, predictor of O16‐methylguanine‐DNA methyltransferase (MGMT) promoter methylation status, in erosive atrophic lesions of oral lichen planus. Int J Dermatol 2019; 58:1078-1082. [DOI: 10.1111/ijd.14473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 02/18/2019] [Accepted: 04/11/2019] [Indexed: 12/11/2022]
Affiliation(s)
| | - Alfonso Aliaga‐Sánchez
- Oral and Maxillofacial Surgery Reina Sofia Hospital Murcia Spain
- Department of Oral Surgery University of Murcia Murcia Spain
| | - Sonia Medina
- Department of Food Science and Technology CEBAS‐CSIC Murcia Spain
| | - Evdochia Adoamnei
- Department of Public Health Sciences University of Murcia Murcia Spain
| | | | | | | | - Vladimir Rosa‐Salazar
- Tromboembolic Disease Unit/Short Stay Unit Virgen de la Arrixaca University Hospital Murcia Spain
| | | |
Collapse
|
11
|
Tóth C, Sükösd F, Valicsek E, Herpel E, Schirmacher P, Tiszlavicz L. Loss of CDX2 gene expression is associated with DNA repair proteins and is a crucial member of the Wnt signaling pathway in liver metastasis of colorectal cancer. Oncol Lett 2018; 15:3586-3593. [PMID: 29467879 PMCID: PMC5796384 DOI: 10.3892/ol.2018.7756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 12/13/2017] [Indexed: 12/23/2022] Open
Abstract
Caudal type homeobox 2 (CDX2) has been well-established as a diagnostic marker for colorectal cancer (CRC); however, less is known about its regulation, particularly its potential interactions with the DNA repair proteins, adenomatous polyposis coli (APC) and β-catenin, in a non-transcriptional manner. In the present study, the protein expression of CDX2 was analyzed, depending on the expression of the DNA repair proteins, mismatch repair (MMR), O6-methylguanine DNA methyltransferase (MGMT) and excision repair cross-complementing 1 (ERCC1), and its importance in Wnt signaling was also determined. A total of 101 liver metastases were punched into tissue microarray (TMA) blocks and serial sections were cut for immunohistochemistry. For each protein, an immunoreactive score was generated according to literature data and the scores were fitted to TMA. Subsequently, statistical analysis was performed to compare the levels of expression with each other and with clinical data. CDX2 loss of expression was observed in 38.5% of the CRC liver metastasis cases. A statistically significant association between CDX2 and each of the investigated MMRs was observed: MutL Homolog 1 (P<0.01), MutS protein Homolog (MSH) 2 (P<0.01), MSH6 (P<0.01), and postmeiotic segregation increased 2 (P=0.040). Furthermore, loss of MGMT and ERCC1 was also associated with CDX2 loss (P=0.039 and P<0.01, respectively). In addition, CDX2 and ERCC1 were inversely associated with metastatic tumor size (P=0.038 and P=0.027, respectively). Sustained CDX2 expression was associated with a higher expression of cytoplasmic/membranous β-catenin and with nuclear APC expression (P=0.042 and P<0.01, respectively). In conclusion, CDX2 loss of expression was not a rare event in liver metastasis of CRC and the results suggested that CDX2 may be involved in mechanisms resulting in the loss of DNA repair protein expression, and in turn methylation; however, its exact function in this context remains to be elucidated.
Collapse
Affiliation(s)
- Csaba Tóth
- Institute of Pathology, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Farkas Sükösd
- Department of Pathology, University of Szeged, 6725 Szeged, Hungary
| | - Erzsébet Valicsek
- Department of Oncotherapy, University of Szeged, 6725 Szeged, Hungary
| | - Esther Herpel
- Institute of Pathology, University Hospital Heidelberg, D-69120 Heidelberg, Germany.,Tissue Bank of The National Center for Tumor Diseases (NCT), D-69120 Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | | |
Collapse
|
12
|
Jayaprakash C, Radhakrishnan R, Ray S, Satyamoorthy K. Promoter methylation of MGMT in oral carcinoma: A population-based study and meta-analysis. Arch Oral Biol 2017; 80:197-208. [DOI: 10.1016/j.archoralbio.2017.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 03/02/2017] [Accepted: 04/07/2017] [Indexed: 12/17/2022]
|
13
|
Wei KC, Chen CY, Feng LY, Huang WT, Chen CH, Hsu PW, Wang K, Hood LE, Chen LY. The rs16906252:C>T SNP is not associated with increased overall survival or temozolomide response in a Han-Chinese glioma cohort. PLoS One 2017; 12:e0178842. [PMID: 28575062 PMCID: PMC5456392 DOI: 10.1371/journal.pone.0178842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/19/2017] [Indexed: 12/31/2022] Open
Abstract
The methylation status of O-6-methylguanine-DNA methyltransferase (MGMT) is associated with the prognosis in gliomas and in other cancers. Recent studies showed that rs16906252, an SNP in the MGMT promoter, is associated with promoter methylation and is a predictor of the overall survival time (OST) and the response to temozolomide (TMZ) treatment. However, these findings haven’t been systematically investigated in the Han-Chinese population. We analyzed the relevance between rs16906252 polymorphisms, the MGMT methylation status, and the OST in 72 Han-Chinese gliomas patients. The MGMT promoter methylation was measured by bisulfite conversion followed by pyro-sequencing, while rs16906252 was measured by restriction endonuclease digestion. Contrary to the previous findings, we found no association between rs16906252 genotypes and promoter methylation on MGMT. The lower-grade glioma (LGGs) patients carrying the C allele with rs16906252 showed a surprisingly better OST (P = 0.04). Furthermore, the LGG patients carrying hypo-methylated MGMT promoter and rs16906252 T allele showed significantly poorer prognosis. The prognostic benefit of MGMT promoter methylation and genotypes on gliomas patients is marginal. A new molecular stratified patient grouping of LGGs is potentially associated with poorer OST. Active MGMT might have a protective role in LGG tumors, enabling evolution to severe malignancy.
Collapse
Affiliation(s)
- Kuo-Chen Wei
- Department of Neurosurgery, Chang Gung Memorial Hospital-Linkou Medical Center, Taoyuan, Taiwan, Republic of China
- College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Chia-Yuan Chen
- Department of Medical Research and Development, Chang Gung Memorial Hospital-Linkou Medical Center, Taoyuan, Taiwan, Republic of China
| | - Li-Ying Feng
- Department of Neurosurgery, Chang Gung Memorial Hospital-Linkou Medical Center, Taoyuan, Taiwan, Republic of China
- College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Wei-Tzu Huang
- Department of Medical Research and Development, Chang Gung Memorial Hospital-Linkou Medical Center, Taoyuan, Taiwan, Republic of China
| | - Chia-Hua Chen
- Department of Neurosurgery, Chang Gung Memorial Hospital-Linkou Medical Center, Taoyuan, Taiwan, Republic of China
| | - Peng-Wei Hsu
- Department of Neurosurgery, Chang Gung Memorial Hospital-Linkou Medical Center, Taoyuan, Taiwan, Republic of China
| | - Kai Wang
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Leroy E. Hood
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Leslie Y. Chen
- Department of Medical Research and Development, Chang Gung Memorial Hospital-Linkou Medical Center, Taoyuan, Taiwan, Republic of China
- Institute for Systems Biology, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
14
|
Fu T, Sharmab A, Xie F, Liu Y, Li K, Wan W, Baylin SB, Wolfgang CL, Ahuja N. Methylation of MGMT Is Associated with Poor Prognosis in Patients with Stage III Duodenal Adenocarcinoma. PLoS One 2016; 11:e0162929. [PMID: 27643594 PMCID: PMC5028050 DOI: 10.1371/journal.pone.0162929] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 08/30/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND O6-methylguanine-DNA methyltransferase (MGMT) methylation status has not been extensively investigated in duodenal adenocarcinoma (DA). The aim of this study was to evaluate the MGMT methylation status and examine its possible prognostic value in patients with stage III DA. METHODS Demographics, tumor characteristics and survival were available for 64 patients with stage III DA. MGMT methylation was detected by using MethyLight. A Cox proportional hazard model was built to predict survival, adjusted for clinicopathological characteristics and tumor molecular features, including the CpG island methylator phenotype (CIMP), microsatellite instability (MSI), and KRAS mutations. RESULTS MGMT methylation was detected in 17 of 64 (26.6%) patients, and was not correlated with sex, age, tumor differentiation, CIMP, MSI, or KRAS mutations. MGMT methylation was the only one factor associated with both overall survival (OS) and disease-free survival (DFS) on both univariate and multivariate analyses. In patients treated with surgery alone, MGMT-methylated group had worse OS and DFS when compared with MGMT-unmethylated group. However, in patients treated with chemotherapy/radiotherapy, outcomes became comparable between the two groups. CONCLUSIONS Our results demonstrate MGMT methylation is a reliable and independent prognostic factor in DAs. Methylation of MGMT is associated with poor prognosis in patients with stage III DAs.
Collapse
Affiliation(s)
- Tao Fu
- Department of Gastrointestinal Surgery II, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital, Wuhan University, Wuhan, China
| | - Anup Sharmab
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Fei Xie
- Department of Gastrointestinal Surgery II, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital, Wuhan University, Wuhan, China
| | - Yanliang Liu
- Department of Gastrointestinal Surgery II, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital, Wuhan University, Wuhan, China
| | - Kai Li
- Department of Gastrointestinal Surgery II, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital, Wuhan University, Wuhan, China
| | - Weiwei Wan
- Department of Gastrointestinal Surgery II, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital, Wuhan University, Wuhan, China
| | - Stephen B. Baylin
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Christopher L. Wolfgang
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Nita Ahuja
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
15
|
Bagci B, Sari M, Karadayi K, Turan M, Ozdemir O, Bagci G. KRAS, BRAF oncogene mutations and tissue specific promoter hypermethylation of tumor suppressor SFRP2, DAPK1, MGMT, HIC1 and p16 genes in colorectal cancer patients. Cancer Biomark 2016; 17:133-43. [PMID: 27540971 DOI: 10.3233/cbm-160624] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Binnur Bagci
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Cumhuriyet University, Sivas, Turkey
- Advanced Technology Research Center (CÜTAM), Cumhuriyet University, Sivas, Turkey
| | - Musa Sari
- Department of Biology, Faculty of Science, Cumhuriyet University, Sivas, Turkey
| | - Kursat Karadayi
- Department of General Surgery, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Mustafa Turan
- Department of General Surgery, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Ozturk Ozdemir
- Department of Medical Genetics, Faculty of Medicine, On Sekiz Mart University, Çanakkale, Turkey
| | - Gokhan Bagci
- Department of Medical Genetics, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
16
|
MGMT DNA repair gene promoter/enhancer haplotypes alter transcription factor binding and gene expression. Cell Oncol (Dordr) 2016; 39:435-447. [PMID: 27306526 DOI: 10.1007/s13402-016-0286-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2016] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND The O6-methylguanine-DNA methyltransferase (MGMT) protein removes O6-alkyl-guanine adducts from DNA. MGMT expression can thus alter the sensitivity of cells and tissues to environmental and chemotherapeutic alkylating agents. Previously, we defined the haplotype structure encompassing single nucleotide polymorphisms (SNPs) in the MGMT promoter/enhancer (P/E) region and found that haplotypes, rather than individual SNPs, alter MGMT promoter activity. The exact mechanism(s) by which these haplotypes exert their effect on MGMT promoter activity is currently unknown, but we noted that many of the SNPs comprising the MGMT P/E haplotypes are located within or in close proximity to putative transcription factor binding sites. Thus, these haplotypes could potentially affect transcription factor binding and, subsequently, alter MGMT promoter activity. METHODS In this study, we test the hypothesis that MGMT P/E haplotypes affect MGMT promoter activity by altering transcription factor (TF) binding to the P/E region. We used a promoter binding TF profiling array and a reporter assay to evaluate the effect of different P/E haplotypes on TF binding and MGMT expression, respectively. RESULTS Our data revealed a significant difference in TF binding profiles between the different haplotypes evaluated. We identified TFs that consistently showed significant haplotype-dependent binding alterations (p ≤ 0.01) and revealed their role in regulating MGMT expression using siRNAs and a dual-luciferase reporter assay system. CONCLUSIONS The data generated support our hypothesis that promoter haplotypes alter the binding of TFs to the MGMT P/E and, subsequently, affect their regulatory function on MGMT promoter activity and expression level.
Collapse
|
17
|
Kuroiwa-Trzmielina J, Wang F, Rapkins RW, Ward RL, Buchanan DD, Win AK, Clendenning M, Rosty C, Southey MC, Winship IM, Hopper JL, Jenkins MA, Olivier J, Hawkins NJ, Hitchins MP. SNP rs16906252C>T Is an Expression and Methylation Quantitative Trait Locus Associated with an Increased Risk of Developing MGMT-Methylated Colorectal Cancer. Clin Cancer Res 2016; 22:6266-6277. [PMID: 27267851 DOI: 10.1158/1078-0432.ccr-15-2765] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 05/20/2016] [Accepted: 06/01/2016] [Indexed: 01/15/2023]
Abstract
PURPOSE Methylation of the MGMT promoter is the major cause of O6-methylguanine methyltransferase deficiency in cancer and has been associated with the T variant of the promoter enhancer SNP rs16906252C>T. We sought evidence for an association between the rs16906252C>T genotype and increased risk of developing a subtype of colorectal cancer featuring MGMT methylation, mediated by genotype-dependent epigenetic silencing within normal tissues. EXPERIMENTAL DESIGN By applying a molecular pathologic epidemiology case-control study design, associations between rs16906252C>T and risk for colorectal cancer overall, and colorectal cancer stratified by MGMT methylation status, were estimated using multinomial logistic regression in two independent retrospective series of colorectal cancer cases and controls. The test sample comprised 1,054 colorectal cancer cases and 451 controls from Sydney, Australia. The validation sample comprised 612 colorectal cancer cases and 245 controls from the Australasian Colon Cancer Family Registry (ACCFR). To determine whether rs16906252C>T was linked to a constitutively altered epigenetic state, quantitative allelic expression and methylation analyses were performed in normal tissues. RESULTS An association between rs16906252C>T and increased risk of developing MGMT-methylated colorectal cancer in the Sydney sample was observed [OR, 3.3; 95% confidence interval (CI), 2.0-5.3; P < 0.0001], which was replicated in the ACCFR sample (OR, 4.0; 95% CI, 2.4-6.8; P < 0.0001). The T allele demonstrated about 2.5-fold reduced transcription in normal colorectal mucosa from cases and controls and was selectively methylated in a minority of normal cells, indicating that rs16906252C>T represents an expression and methylation quantitative trait locus. CONCLUSIONS We provide evidence that rs16906252C>T is associated with elevated risk for MGMT-methylated colorectal cancer, likely mediated by constitutive epigenetic repression of the T allele. Clin Cancer Res; 22(24); 6266-77. ©2016 AACR.
Collapse
Affiliation(s)
- Joice Kuroiwa-Trzmielina
- Medical Epigenetics Laboratory, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Fan Wang
- Department of Medicine (Oncology), Stanford University, Stanford, California.,School of Public Health (Epidemiology), Harbin Medical University, Harbin, PR China
| | - Robert W Rapkins
- Medical Epigenetics Laboratory, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, Australia.,Cure Brain Cancer Foundation Biomarkers and Translational Research Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Robyn L Ward
- Integrated Cancer Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Parkville, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
| | - Aung Ko Win
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
| | - Mark Clendenning
- Colorectal Oncogenomics Group, Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Parkville, Australia
| | - Christophe Rosty
- Colorectal Oncogenomics Group, Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Parkville, Australia.,Envoi Specialist Pathologists, Herston, Australia.,School of Medicine, University of Queensland, Herston, Australia
| | - Melissa C Southey
- Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Parkville, Australia
| | - Ingrid M Winship
- Genetic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Australia.,Department of Medicine, The University of Melbourne, Parkville, Australia
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia.,Department of Epidemiology and Institute of Health and Environment, School of Public Health, Seoul National University, Seoul, Korea
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
| | - Jake Olivier
- School of Mathematics and Statistics, University of New South Wales, Sydney, Australia
| | - Nicholas J Hawkins
- Department of Pathology, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Megan P Hitchins
- Department of Medicine (Oncology), Stanford University, Stanford, California.
| |
Collapse
|
18
|
Zarzour P, Hesson LB, Ward RL. Establishing the clinical utility of epigenetic markers in cancer: many challenges ahead. Epigenomics 2016; 5:513-23. [PMID: 24059798 DOI: 10.2217/epi.13.53] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The use of epigenetic biomarkers in cancer management relies on the availability of robust assays and evidence that these markers are able to segregate clinically significant groups of patients. While many cancers are characterized by genetic and epigenetic modifications, it is far simpler to develop molecular tests that detect genetic rather than epigenetic changes. In this special report, we will describe the challenges associated with developing epigenetic assays and the practical issues that must be overcome before they can be used in the clinic.
Collapse
Affiliation(s)
- Peter Zarzour
- Adult Cancer Program, Lowy Cancer Research Centre & Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia
| | | | | |
Collapse
|
19
|
Kristensen LS, Michaelsen SR, Dyrbye H, Aslan D, Grunnet K, Christensen IJ, Poulsen HS, Grønbæk K, Broholm H. Assessment of Quantitative and Allelic MGMT Methylation Patterns as a Prognostic Marker in Glioblastoma. J Neuropathol Exp Neurol 2016; 75:246-55. [PMID: 26883115 PMCID: PMC4777218 DOI: 10.1093/jnen/nlv024] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Methylation of the O6-methylguanine-DNA methyltransferase (MGMT) gene is a predictive and prognostic marker in newly diagnosed glioblastoma patients treated with temozolomide but how MGMT methylation should be assessed to ensure optimal detection accuracy is debated. We developed a novel quantitative methylation-specific PCR (qMSP) MGMT assay capable of providing allelic methylation data and analyzed 151 glioblastomas from patients receiving standard of care treatment (Stupp protocol). The samples were also analyzed by immunohistochemistry (IHC), standard bisulfite pyrosequencing, and genotyped for the rs1690252 MGMT promoter single nucleotide polymorphism. Monoallelic methylation was observed more frequently than biallelic methylation, and some cases with monoallelic methylation expressed the MGMT protein whereas others did not. The presence of MGMT methylation was associated with better overall survival (p = 0.006; qMSP and p = 0.002; standard pyrosequencing), and the presence of the protein was associated with worse overall survival (p = 0.009). Combined analyses of qMSP and standard pyrosequencing or IHC identified additional patients who benefited from temozolomide treatment. Finally, low methylation levels were also associated with better overall survival (p = 0.061; qMSP and p = 0.02; standard pyrosequencing). These data support the use of both MGMT methylation and MGMT IHC but not allelic methylation data as prognostic markers in patients with temozolomide-treated glioblastoma.
Collapse
Affiliation(s)
- Lasse S Kristensen
- From the Department of Hematology (LSK, DA, KG); Department of Radiation Biology (SRM, KG, IJC, HSP); and Department of Pathology, Rigshospitalet, Copenhagen Ø, Denmark (HD, HB).
| | - Signe R Michaelsen
- From the Department of Hematology (LSK, DA, KG); Department of Radiation Biology (SRM, KG, IJC, HSP); and Department of Pathology, Rigshospitalet, Copenhagen Ø, Denmark (HD, HB)
| | - Henrik Dyrbye
- From the Department of Hematology (LSK, DA, KG); Department of Radiation Biology (SRM, KG, IJC, HSP); and Department of Pathology, Rigshospitalet, Copenhagen Ø, Denmark (HD, HB)
| | - Derya Aslan
- From the Department of Hematology (LSK, DA, KG); Department of Radiation Biology (SRM, KG, IJC, HSP); and Department of Pathology, Rigshospitalet, Copenhagen Ø, Denmark (HD, HB)
| | - Kirsten Grunnet
- From the Department of Hematology (LSK, DA, KG); Department of Radiation Biology (SRM, KG, IJC, HSP); and Department of Pathology, Rigshospitalet, Copenhagen Ø, Denmark (HD, HB)
| | - Ib J Christensen
- From the Department of Hematology (LSK, DA, KG); Department of Radiation Biology (SRM, KG, IJC, HSP); and Department of Pathology, Rigshospitalet, Copenhagen Ø, Denmark (HD, HB)
| | - Hans S Poulsen
- From the Department of Hematology (LSK, DA, KG); Department of Radiation Biology (SRM, KG, IJC, HSP); and Department of Pathology, Rigshospitalet, Copenhagen Ø, Denmark (HD, HB)
| | - Kirsten Grønbæk
- From the Department of Hematology (LSK, DA, KG); Department of Radiation Biology (SRM, KG, IJC, HSP); and Department of Pathology, Rigshospitalet, Copenhagen Ø, Denmark (HD, HB)
| | - Helle Broholm
- From the Department of Hematology (LSK, DA, KG); Department of Radiation Biology (SRM, KG, IJC, HSP); and Department of Pathology, Rigshospitalet, Copenhagen Ø, Denmark (HD, HB)
| |
Collapse
|
20
|
Wang M, Spiegelman D, Kuchiba A, Lochhead P, Kim S, Chan AT, Poole EM, Tamimi R, Tworoger SS, Giovannucci E, Rosner B, Ogino S. Statistical methods for studying disease subtype heterogeneity. Stat Med 2015; 35:782-800. [PMID: 26619806 DOI: 10.1002/sim.6793] [Citation(s) in RCA: 238] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 09/08/2015] [Accepted: 10/13/2015] [Indexed: 12/31/2022]
Abstract
A fundamental goal of epidemiologic research is to investigate the relationship between exposures and disease risk. Cases of the disease are often considered a single outcome and assumed to share a common etiology. However, evidence indicates that many human diseases arise and evolve through a range of heterogeneous molecular pathologic processes, influenced by diverse exposures. Pathogenic heterogeneity has been considered in various neoplasms such as colorectal, lung, prostate, and breast cancers, leukemia and lymphoma, and non-neoplastic diseases, including obesity, type II diabetes, glaucoma, stroke, cardiovascular disease, autism, and autoimmune disease. In this article, we discuss analytic options for studying disease subtype heterogeneity, emphasizing methods for evaluating whether the association of a potential risk factor with disease varies by disease subtype. Methods are described for scenarios where disease subtypes are categorical and ordinal and for cohort studies, matched and unmatched case-control studies, and case-case study designs. For illustration, we apply the methods to a molecular pathological epidemiology study of alcohol intake and colon cancer risk by tumor LINE-1 methylation subtypes. User-friendly software to implement the methods is publicly available.
Collapse
Affiliation(s)
- Molin Wang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, U.S.A.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, U.S.A.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, U.S.A
| | - Donna Spiegelman
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, U.S.A.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, U.S.A.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, U.S.A.,Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, U.S.A
| | - Aya Kuchiba
- Department of Biostatistics, National Cancer Center, Tokyo, Japan
| | - Paul Lochhead
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, U.S.A
| | - Sehee Kim
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, U.S.A
| | - Andrew T Chan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, U.S.A.,Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, U.S.A
| | - Elizabeth M Poole
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, U.S.A
| | - Rulla Tamimi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, U.S.A.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, U.S.A
| | - Shelley S Tworoger
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, U.S.A.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, U.S.A
| | - Edward Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, U.S.A.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, U.S.A.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, U.S.A
| | - Bernard Rosner
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, U.S.A.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, U.S.A
| | - Shuji Ogino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, U.S.A.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, U.S.A.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, U.S.A
| |
Collapse
|
21
|
Nishihara R, VanderWeele TJ, Shibuya K, Mittleman MA, Wang M, Field AE, Giovannucci E, Lochhead P, Ogino S. Molecular pathological epidemiology gives clues to paradoxical findings. Eur J Epidemiol 2015; 30:1129-35. [PMID: 26445996 PMCID: PMC4639412 DOI: 10.1007/s10654-015-0088-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/26/2015] [Indexed: 12/23/2022]
Abstract
A number of epidemiologic studies have described what appear to be paradoxical associations, where an incongruous relationship is observed between a certain well-established risk factor for disease incidence and favorable clinical outcome among patients with that disease. For example, the "obesity paradox" represents the association between obesity and better survival among patients with a certain disease such as coronary heart disease. Paradoxical observations cause vexing clinical and public health problems as they raise questions on causal relationships and hinder the development of effective interventions. Compelling evidence indicates that pathogenic processes encompass molecular alterations within cells and the microenvironment, influenced by various exogenous and endogenous exposures, and that interpersonal heterogeneity in molecular pathology and pathophysiology exists among patients with any given disease. In this article, we introduce methods of the emerging integrative interdisciplinary field of molecular pathological epidemiology (MPE), which is founded on the unique disease principle and disease continuum theory. We analyze and decipher apparent paradoxical findings, utilizing the MPE approach and available literature data on tumor somatic genetic and epigenetic characteristics. Through our analyses in colorectal cancer, renal cell carcinoma, and glioblastoma (malignant brain tumor), we can readily explain paradoxical associations between disease risk factors and better prognosis among disease patients. The MPE paradigm and approach can be applied to not only neoplasms but also various non-neoplastic diseases where there exists indisputable ubiquitous heterogeneity of pathogenesis and molecular pathology. The MPE paradigm including consideration of disease heterogeneity plays an essential role in advancements of precision medicine and public health.
Collapse
Affiliation(s)
- Reiko Nishihara
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 655 Huntington Ave., Boston, MA, 02115, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave., Boston, MA, 02215, USA.
- Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan.
| | - Tyler J VanderWeele
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Ave., Boston, MA, 02115, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave., Boston, MA, 02115, USA
| | - Kenji Shibuya
- Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Murray A Mittleman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Ave., Boston, MA, 02115, USA
- Cardiovascular Epidemiology Research Unit, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 375 Longwood Ave., Boston, MA, USA
| | - Molin Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Ave., Boston, MA, 02115, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave., Boston, MA, 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 181 Longwood Ave., Boston, MA, 02115, USA
| | - Alison E Field
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Ave., Boston, MA, 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 181 Longwood Ave., Boston, MA, 02115, USA
- Division of Adolescent Medicine, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, 02115, USA
- Department of Epidemiology, Brown University, 121 South Main Street, Providence, RI, 02912, USA
| | - Edward Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 655 Huntington Ave., Boston, MA, 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Ave., Boston, MA, 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 181 Longwood Ave., Boston, MA, 02115, USA
| | - Paul Lochhead
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Shuji Ogino
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave., Boston, MA, 02215, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Ave., Boston, MA, 02115, USA.
- Department of Pathology, Brigham and Women's Hospital, Boston, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
22
|
Abstract
Constitutional epimutation, which is an aberration in gene expression due to an altered epigenotype that is widely distributed in normal tissues (albeit frequently mosaic), provides an alternative mechanism to genetic mutation for cancer predisposition. Observational studies in cancer-affected families have revealed intergenerational inheritance of constitutional epimutation, providing unique insights into the heritability of epigenetic traits in humans. In this Opinion article, the potential contribution of constitutional epimutation to the 'missing' causality and heritability of cancer is explored.
Collapse
Affiliation(s)
- Megan P Hitchins
- Department of Medicine (Oncology), Stanford Cancer Institute, Stanford University, Grant Building S169, 1291 Welch Road, Stanford, California 94305, USA
| |
Collapse
|
23
|
Wang M, Kuchiba A, Ogino S. A Meta-Regression Method for Studying Etiological Heterogeneity Across Disease Subtypes Classified by Multiple Biomarkers. Am J Epidemiol 2015; 182:263-70. [PMID: 26116215 DOI: 10.1093/aje/kwv040] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 02/04/2015] [Indexed: 12/22/2022] Open
Abstract
In interdisciplinary biomedical, epidemiologic, and population research, it is increasingly necessary to consider pathogenesis and inherent heterogeneity of any given health condition and outcome. As the unique disease principle implies, no single biomarker can perfectly define disease subtypes. The complex nature of molecular pathology and biology necessitates biostatistical methodologies to simultaneously analyze multiple biomarkers and subtypes. To analyze and test for heterogeneity hypotheses across subtypes defined by multiple categorical and/or ordinal markers, we developed a meta-regression method that can utilize existing statistical software for mixed-model analysis. This method can be used to assess whether the exposure-subtype associations are different across subtypes defined by 1 marker while controlling for other markers and to evaluate whether the difference in exposure-subtype association across subtypes defined by 1 marker depends on any other markers. To illustrate this method in molecular pathological epidemiology research, we examined the associations between smoking status and colorectal cancer subtypes defined by 3 correlated tumor molecular characteristics (CpG island methylator phenotype, microsatellite instability, and the B-Raf protooncogene, serine/threonine kinase (BRAF), mutation) in the Nurses' Health Study (1980-2010) and the Health Professionals Follow-up Study (1986-2010). This method can be widely useful as molecular diagnostics and genomic technologies become routine in clinical medicine and public health.
Collapse
|
24
|
Abstract
Background With one million new cases of colorectal cancer (CRC) diagnosed annually in the world, CRC is the third most commonly diagnosed cancer in the Western world. Patients with stage I-III CRC can be cured with surgery but are at risk for recurrence. Colorectal cancer is characterized by the presence of chromosomal deletions and gains. Large genomic profiling studies have however not been conducted in this disease. The number of a specific genetic aberration in a tumour sample could correlate with recurrence-free survival or overall survival, possibly leading to its use as biomarker for therapeutic decisions. At this point there are not sufficient markers for prediction of disease recurrence in colorectal cancer, which can be used in the clinic to discriminate between stage II patients who will benefit from adjuvant chemotherapy. For instance, the benefit of adjuvant chemotherapy has been most clearly demonstrated in stage III disease with an approximately 30 percent relative reduction in the risk of disease recurrence. The benefits of adjuvant chemotherapy in stage II disease are less certain, the risk for relapse is much smaller in the overall group and the specific patients at risk are hard to identify. Materials and Methods In this study, array-comparative genomic hybridization analysis (array-CGH) was applied to study high-resolution DNA copy number alterations in 93 colon carcinoma samples. These genomic data were combined with parameters like KRAS mutation status, microsatellite status and clinicopathological characteristics. Results Both large and small chromosomal losses and gains were identified in our sample cohort. Recurrent gains were found for chromosome 1q, 7, 8q, 13 and 20 and losses were mostly found for 1p, 4, 8p, 14, 15, 17p, 18, 21 and 22. Data analysis demonstrated that loss of chromosome 4 is linked to a worse prognosis in our patients series. Besides these alterations, two interesting small regions of overlap were identified, which could be associated with disease recurrence. Gain of the 16p13.3 locus (including the RNA binding protein, fox-1 homolog gene, RBFOX1) was linked with a worse recurrence-free survival in our patient cohort. On the other hand, loss of RBFOX1 was only found in patients without disease recurrence. Most interestingly, above mentioned characteristics were also found in stage II patients, for whom there is a high medical need for the identification of new prognostic biomarkers. Conclusions In conclusion, copy number variation of the 16p13.3 locus seems to be an important parameter for prediction of disease recurrence in colon cancer.
Collapse
|
25
|
Leng S, Wu G, Collins LB, Thomas CL, Tellez CS, Jauregui AR, Picchi MA, Zhang X, Juri DE, Desai D, Amin SG, Crowell RE, Stidley CA, Liu Y, Swenberg JA, Lin Y, Wathelet MG, Gilliland FD, Belinsky SA. Implication of a Chromosome 15q15.2 Locus in Regulating UBR1 and Predisposing Smokers to MGMT Methylation in Lung. Cancer Res 2015; 75:3108-17. [PMID: 26183928 DOI: 10.1158/0008-5472.can-15-0243] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/22/2015] [Indexed: 11/16/2022]
Abstract
O(6)-Methylguanine-DNA methyltransferase (MGMT) is a DNA repair enzyme that protects cells from carcinogenic effects of alkylating agents; however, MGMT is silenced by promoter hypermethylation during carcinogenesis. A single-nucleotide polymorphism (SNP) in an enhancer in the MGMT promoter was previously identified to be highly significantly associated with risk for MGMT methylation in lung cancer and sputum from smokers. To further genetic investigations, a genome-wide association and replication study was conducted in two smoker cohorts to identify novel loci for MGMT methylation in sputum that were independent of the MGMT enhancer polymorphism. Two novel trans-acting loci (15q15.2 and 17q24.3) that were identified acted together with the enhancer SNP to empower risk prediction for MGMT methylation. We found that the predisposition to MGMT methylation arising from the 15q15.2 locus involved regulation of the ubiquitin protein ligase E3 component UBR1. UBR1 attenuation reduced turnover of MGMT protein and increased repair of O6-methylguanine in nitrosomethylurea-treated human bronchial epithelial cells, while also reducing MGMT promoter activity and abolishing MGMT induction. Overall, our results substantiate reduced gene transcription as a major mechanism for predisposition to MGMT methylation in the lungs of smokers, and support the importance of UBR1 in regulating MGMT homeostasis and DNA repair of alkylated DNA adducts in cells.
Collapse
Affiliation(s)
- Shuguang Leng
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Guodong Wu
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Leonard B Collins
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Cynthia L Thomas
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Carmen S Tellez
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Andrew R Jauregui
- Lung Fibrosis Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Maria A Picchi
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Xiequn Zhang
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Daniel E Juri
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Dhimant Desai
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Shantu G Amin
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Richard E Crowell
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico
| | - Christine A Stidley
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico
| | - Yushi Liu
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - James A Swenberg
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Yong Lin
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Marc G Wathelet
- Lung Fibrosis Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Frank D Gilliland
- Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Steven A Belinsky
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico.
| |
Collapse
|
26
|
Paska AV, Hudler P. Aberrant methylation patterns in cancer: a clinical view. Biochem Med (Zagreb) 2015; 25:161-176. [PMID: 26110029 PMCID: PMC4470106 DOI: 10.11613/bm.2015.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/30/2015] [Indexed: 12/14/2022] Open
Abstract
Epigenetic mechanisms, such as DNA methylation, DNA hydroxymethylation, post-translational modifications (PTMs) of histone proteins affecting nucleosome remodelling, and regulation by small and large non-coding RNAs (ncRNAs) work in concert with cis and trans acting elements to drive appropriate gene expression. Advances in detection methods and development of dedicated platforms and methylation arrays resulted in an explosion of information on aberrantly methylated sequences linking deviations in epigenetic landscape with the initiation and progression of complex diseases. Here, we consider how DNA methylation changes in malignancies, such as breast, pancreatic, colorectal, and gastric cancer could be exploited for the purpose of developing specific diagnostic tools. DNA methylation changes can be applicable as biomarkers for detection of malignant disease in easily accessible tissues. Methylation signatures are already proving to be an important marker for determination of drug sensitivity. Even more, promoter methylation patterns of some genes, such as MGMT, SHOX2, and SEPT9, have already been translated into commercial clinical assays aiding in patient assessment as adjunct diagnostic tools. In conclusion, the changes in DNA methylation patterns in tumour cells are slowly gaining entrance into routine diagnostic tests as promising biomarkers and as potential therapeutic targets.
Collapse
Affiliation(s)
- Alja Videtic Paska
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Hudler
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
27
|
Rapkins RW, Wang F, Nguyen HN, Cloughesy TF, Lai A, Ha W, Nowak AK, Hitchins MP, McDonald KL. The MGMT promoter SNP rs16906252 is a risk factor for MGMT methylation in glioblastoma and is predictive of response to temozolomide. Neuro Oncol 2015; 17:1589-98. [PMID: 25910840 DOI: 10.1093/neuonc/nov064] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 03/20/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Promoter methylation of O(6)-methylguanine-DNA methyltransferase (MGMT) is an important predictive biomarker in glioblastoma. The T variant of the MGMT promoter-enhancer single nucleotide polymorphism (SNP; rs16906252) has been associated with the presence of MGMT promoter methylation in other cancers. We examined the association of the T allele of rs16906252 with glioblastoma development, tumor MGMT methylation, MGMT protein expression, and survival outcomes. METHODS Two independent temozolomide-treated glioblastoma cohorts-one Australian (Australian Genomics and Clinical Outcomes of Glioma, n = 163) and the other American (University of California Los Angeles/Kaiser Permanente Los Angeles, n = 159)-were studied. Allelic bisulphite sequencing was used to determine if methylation was specific to the T allele. Additionally, we compared the incidence of the T allele between glioblastoma cases and matched controls to assess whether it was a risk factor for developing MGMT methylated glioblastoma. RESULTS Carriage of the T allele of the rs16906252 SNP was associated with both MGMT methylation and low MGMT protein expression and predicted significantly longer survival in temozolomide-treated patients with both MGMT methylated and nonmethylated glioblastoma. Methylation was linked to the T allele, inferring that the T variant plays a key role in the acquisition of MGMT methylation. Carriage of the T allele was associated with a significantly elevated risk of developing glioblastoma (adjusted odds ratio, 1.96; P = .013), increasing further when glioblastoma was classified by the presence of MGMT methylation (adjusted odds ratio, 2.86; P = .001). CONCLUSIONS The T allele of the rs16906252 SNP is a key determinant in the acquisition of MGMT methylation in glioblastoma. Temozolomide-treated patients with the rs16906252 T genotype have better survival, irrespective of tumor methylation status.
Collapse
Affiliation(s)
- Robert W Rapkins
- Cure Brain Cancer Neuro-oncology Laboratory, Prince of Wales Clinical School, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia (R.W.R., W.H., K.L.M.); Department of Medicine (Oncology), Stanford Cancer Institute, Stanford University, Stanford, California (F.W., M.P.H.); School of Public Health, Harbin Medical University, Harbin, People's Republic of China (F.W.); Department of Neurology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, California (H.N.N., T.F.C., A.L.); School of Medicine and Pharmacology, University of Western Australia, Perth, Australia (A.N.)
| | - Fan Wang
- Cure Brain Cancer Neuro-oncology Laboratory, Prince of Wales Clinical School, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia (R.W.R., W.H., K.L.M.); Department of Medicine (Oncology), Stanford Cancer Institute, Stanford University, Stanford, California (F.W., M.P.H.); School of Public Health, Harbin Medical University, Harbin, People's Republic of China (F.W.); Department of Neurology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, California (H.N.N., T.F.C., A.L.); School of Medicine and Pharmacology, University of Western Australia, Perth, Australia (A.N.)
| | - HuyTram N Nguyen
- Cure Brain Cancer Neuro-oncology Laboratory, Prince of Wales Clinical School, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia (R.W.R., W.H., K.L.M.); Department of Medicine (Oncology), Stanford Cancer Institute, Stanford University, Stanford, California (F.W., M.P.H.); School of Public Health, Harbin Medical University, Harbin, People's Republic of China (F.W.); Department of Neurology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, California (H.N.N., T.F.C., A.L.); School of Medicine and Pharmacology, University of Western Australia, Perth, Australia (A.N.)
| | - Timothy F Cloughesy
- Cure Brain Cancer Neuro-oncology Laboratory, Prince of Wales Clinical School, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia (R.W.R., W.H., K.L.M.); Department of Medicine (Oncology), Stanford Cancer Institute, Stanford University, Stanford, California (F.W., M.P.H.); School of Public Health, Harbin Medical University, Harbin, People's Republic of China (F.W.); Department of Neurology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, California (H.N.N., T.F.C., A.L.); School of Medicine and Pharmacology, University of Western Australia, Perth, Australia (A.N.)
| | - Albert Lai
- Cure Brain Cancer Neuro-oncology Laboratory, Prince of Wales Clinical School, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia (R.W.R., W.H., K.L.M.); Department of Medicine (Oncology), Stanford Cancer Institute, Stanford University, Stanford, California (F.W., M.P.H.); School of Public Health, Harbin Medical University, Harbin, People's Republic of China (F.W.); Department of Neurology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, California (H.N.N., T.F.C., A.L.); School of Medicine and Pharmacology, University of Western Australia, Perth, Australia (A.N.)
| | - Wendy Ha
- Cure Brain Cancer Neuro-oncology Laboratory, Prince of Wales Clinical School, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia (R.W.R., W.H., K.L.M.); Department of Medicine (Oncology), Stanford Cancer Institute, Stanford University, Stanford, California (F.W., M.P.H.); School of Public Health, Harbin Medical University, Harbin, People's Republic of China (F.W.); Department of Neurology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, California (H.N.N., T.F.C., A.L.); School of Medicine and Pharmacology, University of Western Australia, Perth, Australia (A.N.)
| | - Anna K Nowak
- Cure Brain Cancer Neuro-oncology Laboratory, Prince of Wales Clinical School, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia (R.W.R., W.H., K.L.M.); Department of Medicine (Oncology), Stanford Cancer Institute, Stanford University, Stanford, California (F.W., M.P.H.); School of Public Health, Harbin Medical University, Harbin, People's Republic of China (F.W.); Department of Neurology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, California (H.N.N., T.F.C., A.L.); School of Medicine and Pharmacology, University of Western Australia, Perth, Australia (A.N.)
| | - Megan P Hitchins
- Cure Brain Cancer Neuro-oncology Laboratory, Prince of Wales Clinical School, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia (R.W.R., W.H., K.L.M.); Department of Medicine (Oncology), Stanford Cancer Institute, Stanford University, Stanford, California (F.W., M.P.H.); School of Public Health, Harbin Medical University, Harbin, People's Republic of China (F.W.); Department of Neurology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, California (H.N.N., T.F.C., A.L.); School of Medicine and Pharmacology, University of Western Australia, Perth, Australia (A.N.)
| | - Kerrie L McDonald
- Cure Brain Cancer Neuro-oncology Laboratory, Prince of Wales Clinical School, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia (R.W.R., W.H., K.L.M.); Department of Medicine (Oncology), Stanford Cancer Institute, Stanford University, Stanford, California (F.W., M.P.H.); School of Public Health, Harbin Medical University, Harbin, People's Republic of China (F.W.); Department of Neurology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, California (H.N.N., T.F.C., A.L.); School of Medicine and Pharmacology, University of Western Australia, Perth, Australia (A.N.)
| |
Collapse
|
28
|
Zheng CG, Jin C, Ye LC, Chen NZ, Chen ZJ. Clinicopathological significance and potential drug target of O6-methylguanine-DNA methyltransferase in colorectal cancer: a meta-analysis. Tumour Biol 2015; 36:5839-48. [PMID: 25716203 DOI: 10.1007/s13277-015-3254-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/10/2015] [Indexed: 12/18/2022] Open
Abstract
Emerging evidence indicates that O(6)-methylguanine-DNA methyltransferase (MGMT) is a candidate for tumor suppression in several types of human tumors including colorectal cancer (CRC). However, the correlation between MGMT hypermethylation and clinicopathological characteristics of CRC remains unclear. In this study, we conducted a systematic review and meta-analysis to quantitatively evaluate the effects of MGMT hypermethylation on the incidence of CRC and clinicopathological characteristics. A comprehensive literature search was done from Web of Science, the Cochrane Library Database, PubMed, EMBASE, CINAHL, and the Chinese Biomedical Database for related research publications written in English and Chinese. Methodological quality of the studies was also evaluated. Analyses of pooled data were performed with Review Manager 5.2. Odds ratio (OR) and hazard ratio (HR) were calculated and summarized, respectively. Final analysis from 28 eligible studies was performed. MGMT hypermethylation is found to be significantly higher in CRC than in normal colorectal mucosa, the pooled OR from 13 studies including 1085 CRC and 899 normal colorectal mucosa, OR = 6.04, 95 % confidence interval (CI) = 4.69-7.77, p < 0.00001. MGMT hypermethylation is also significantly higher in colorectal adenoma than in normal colorectal mucosa, but it is significantly less compared to that in CRC patients. Interestingly, MGMT hypermethylation is correlated with sex status and is significantly higher in female than in male. MGMT hypermethylation is also associated with high levels of microsatellite instability (MSI). The pooled HR for overall survival (OS) shows that MGMT hypermethylation is not associated with worse survival in CRC patients. The results of this meta-analysis suggest that MGMT hypermethylation is associated with an increased risk and high levels of MSI and may play an important role in CRC initiation. However, MGMT hypermethylation may play an important role in the early stage of CRC progression and development, as well as having limited value in prediction of prognosis in CRC patients. We also discussed that MGMT may serve as a potential drug target of CRC.
Collapse
Affiliation(s)
- Chen-Guo Zheng
- Department of Coloproctology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | | | | | | | | |
Collapse
|
29
|
Lochhead P, Chan AT, Nishihara R, Fuchs CS, Beck AH, Giovannucci E, Ogino S. Etiologic field effect: reappraisal of the field effect concept in cancer predisposition and progression. Mod Pathol 2015; 28:14-29. [PMID: 24925058 PMCID: PMC4265316 DOI: 10.1038/modpathol.2014.81] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/12/2014] [Accepted: 04/02/2014] [Indexed: 02/07/2023]
Abstract
The term 'field effect' (also known as field defect, field cancerization, or field carcinogenesis) has been used to describe a field of cellular and molecular alteration, which predisposes to the development of neoplasms within that territory. We explore an expanded, integrative concept, 'etiologic field effect', which asserts that various etiologic factors (the exposome including dietary, lifestyle, environmental, microbial, hormonal, and genetic factors) and their interactions (the interactome) contribute to a tissue microenvironmental milieu that constitutes a 'field of susceptibility' to neoplasia initiation, evolution, and progression. Importantly, etiological fields predate the acquisition of molecular aberrations commonly considered to indicate presence of filed effect. Inspired by molecular pathological epidemiology (MPE) research, which examines the influence of etiologic factors on cellular and molecular alterations during disease course, an etiologically focused approach to field effect can: (1) broaden the horizons of our inquiry into cancer susceptibility and progression at molecular, cellular, and environmental levels, during all stages of tumor evolution; (2) embrace host-environment-tumor interactions (including gene-environment interactions) occurring in the tumor microenvironment; and, (3) help explain intriguing observations, such as shared molecular features between bilateral primary breast carcinomas, and between synchronous colorectal cancers, where similar molecular changes are absent from intervening normal colon. MPE research has identified a number of endogenous and environmental exposures which can influence not only molecular signatures in the genome, epigenome, transcriptome, proteome, metabolome and interactome, but also host immunity and tumor behavior. We anticipate that future technological advances will allow the development of in vivo biosensors capable of detecting and quantifying 'etiologic field effect' as abnormal network pathology patterns of cellular and microenvironmental responses to endogenous and exogenous exposures. Through an 'etiologic field effect' paradigm, and holistic systems pathology (systems biology) approaches to cancer biology, we can improve personalized prevention and treatment strategies for precision medicine.
Collapse
Affiliation(s)
- Paul Lochhead
- Gastrointestinal Research Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Andrew T Chan
- 1] Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA [2] Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Reiko Nishihara
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA [2] Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
| | - Charles S Fuchs
- 1] Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA [2] Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Andrew H Beck
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Edward Giovannucci
- 1] Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA [2] Department of Nutrition, Harvard School of Public Health, Boston, MA, USA [3] Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - Shuji Ogino
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA [2] Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA [3] Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Mokarram P, Estiar MA, Ashktorab H. Methylation in Colorectal Cancer. EPIGENETICS TERRITORY AND CANCER 2015:373-455. [DOI: 10.1007/978-94-017-9639-2_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
31
|
Wang Q, Jia P, Cheng F, Zhao Z. Heterogeneous DNA methylation contributes to tumorigenesis through inducing the loss of coexpression connectivity in colorectal cancer. Genes Chromosomes Cancer 2014; 54:110-21. [PMID: 25407423 DOI: 10.1002/gcc.22224] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/16/2014] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence indicates the high heterogeneity of cancer cells. Recent studies have revealed distinct subtypes of DNA methylation in colorectal cancer (CRC); however, the mechanism of heterogeneous methylation remains poorly understood. Gene expression is a natural, intermediate quantitative trait that bridges genotypic and phenotypic features. In this work, we studied the role of heterogeneous DNA methylation in tumorigenesis via gene expression analyses. Specifically, we integrated methylation and expression data in normal and tumor tissues, and examined the perturbations in coexpression patterns. We found that the heterogeneity of methylation leads to significant loss of coexpression connectivity in CRC; this finding was validated in an independent cohort. Functional analyses showed that the lost coexpression partners participate in important cancer-related pathways/networks, such as ErbB and mitogen-activated protein kinase (MAPK) signaling pathways. Our analyses suggest that the loss of coexpression connectivity induced by methylation heterogeneity might play an important role in CRC. To our knowledge, this is the first study to interpret methylation heterogeneity in cancer from the perspective of coexpression perturbation. Our results provide new perspectives in tumor biology and may facilitate the identification of potential biomedical therapies for cancer treatment.
Collapse
Affiliation(s)
- Quan Wang
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN
| | | | | | | |
Collapse
|
32
|
Tang J, Xiong Y, Zhou HH, Chen XP. DNA methylation and personalized medicine. J Clin Pharm Ther 2014; 39:621-7. [PMID: 25230364 DOI: 10.1111/jcpt.12206] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 08/17/2014] [Indexed: 12/12/2022]
Affiliation(s)
- J. Tang
- Department of Clinical Pharmacology; Xiangya Hospital; Central South University; Changsha China
- Pharmacogenetics Research Institute; Institute of Clinical Pharmacology; Hunan Key laboratory of Pharmacogenetics; Central South University; Changsha China
| | - Y. Xiong
- Department of Clinical Pharmacology; Xiangya Hospital; Central South University; Changsha China
- Pharmacogenetics Research Institute; Institute of Clinical Pharmacology; Hunan Key laboratory of Pharmacogenetics; Central South University; Changsha China
| | - H.-H. Zhou
- Department of Clinical Pharmacology; Xiangya Hospital; Central South University; Changsha China
- Pharmacogenetics Research Institute; Institute of Clinical Pharmacology; Hunan Key laboratory of Pharmacogenetics; Central South University; Changsha China
| | - X.-P. Chen
- Department of Clinical Pharmacology; Xiangya Hospital; Central South University; Changsha China
- Pharmacogenetics Research Institute; Institute of Clinical Pharmacology; Hunan Key laboratory of Pharmacogenetics; Central South University; Changsha China
| |
Collapse
|
33
|
Appelqvist F, Yhr M, Erlandson A, Martinsson T, Enerbäck C. Deletion of the MGMT gene in familial melanoma. Genes Chromosomes Cancer 2014; 53:703-11. [PMID: 24801985 DOI: 10.1002/gcc.22180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/08/2014] [Indexed: 11/09/2022] Open
Abstract
The DNA repair gene MGMT (O-6-methylguanine-DNA methyltransferase) is important for maintaining normal cell physiology and genomic stability. Alterations in MGMT play a critical role in the development of several types of cancer, including glioblastoma, lung cancer, and colorectal cancer. The purpose of this study was to explore the function of genetic alterations in MGMT and their connection with familial melanoma (FM). Using multiplex ligation-dependent probe amplification, we identified a deletion that included the MGMT gene in one of 64 families with a melanoma predisposition living in western Sweden. The mutation segregated with the disease as a heterozygous deletion in blood-derived DNA, but a homozygous deletion including the promoter region and exon 1 was seen in tumor tissue based on Affymetrix 500K and 6.0 arrays. By sequence analysis of the MGMT gene in the other 63 families with FM from western Sweden, we identified four common polymorphisms, nonfunctional, as predominantly described in previous studies. We conclude that inherited alterations in the MGMT gene might be a rare cause of FM, and we suggest that MGMT contributes to melanoma predisposition.
Collapse
Affiliation(s)
- Frida Appelqvist
- Department of Dermatology, Institute of Clinical Sciences, Sahlgrenska University Hospital, SE-413 45, Göteborg, Sweden
| | | | | | | | | |
Collapse
|
34
|
Oliver JA, Ortiz R, Melguizo C, Álvarez PJ, Gómez-Millán J, Prados J. Prognostic impact of MGMT promoter methylation and MGMT and CD133 expression in colorectal adenocarcinoma. BMC Cancer 2014; 14:511. [PMID: 25015560 PMCID: PMC4227111 DOI: 10.1186/1471-2407-14-511] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/07/2014] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND New biomarkers are needed for the prognosis of advanced colorectal cancer, which remains incurable by conventional treatments. O6-methylguanine DNA methyltransferase (MGMT) methylation and protein expression have been related to colorectal cancer treatment failure and tumor progression. Moreover, the presence in these tumors of cancer stem cells, which are characterized by CD133 expression, has been associated with chemoresistance, radioresistance, metastasis, and local recurrence. The objective of this study was to determine the prognostic value of CD133 and MGMT and their possible interaction in colorectal cancer patients. METHODS MGMT and CD133 expression was analyzed by immunohistochemistry in 123 paraffin-embedded colorectal adenocarcinoma samples, obtaining the percentage staining and intensity. MGMT promoter methylation status was obtained by using bisulfite modification and methylation-specific PCR (MSP). These values were correlated with clinical data, including overall survival (OS), disease-free survival (DFS), tumor stage, and differentiation grade. RESULTS Low MGMT expression intensity was significantly correlated with shorter OS and was a prognostic factor independently of treatment and histopathological variables. High percentage of CD133 expression was significantly correlated with shorter DFS but was not an independent factor. Patients with low-intensity MGMT expression and ≥50% CD133 expression had the poorest DFS and OS outcomes. CONCLUSIONS Our results support the hypothesis that MGMT expression may be an OS biomarker as useful as tumor stage or differentiation grade and that CD133 expression may be a predictive biomarker of DFS. Thus, MGMT and CD133 may both be useful for determining the prognosis of colorectal cancer patients and to identify those requiring more aggressive adjuvant therapies. Future studies will be necessary to determine its clinical utility.
Collapse
Affiliation(s)
- Jaime Antonio Oliver
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, Granada 18100, Spain
| | - Raúl Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, Granada 18100, Spain
- Department of Health Sciences, University of Jaén, Jaén 23071, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, Granada 18100, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, Granada, Spain
- Department of Anatomy and Embryology, University of Granada, Granada 18012, Spain
| | - Pablo Juan Álvarez
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, Granada 18100, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, Granada, Spain
| | - Jaime Gómez-Millán
- Radiation Oncology Department, Hospital Clinico Universitario Virgen de la Victoria, Málaga 29010, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, Granada 18100, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, Granada, Spain
- Department of Anatomy and Embryology, University of Granada, Granada 18012, Spain
| |
Collapse
|
35
|
Wang BQ, Sun GB, Lou WH, Nan SS, Zhang BQ. Role of O 6-methylguanine-DNA methyltransferase in pathogenesis of colorectal cancer. Shijie Huaren Xiaohua Zazhi 2014; 22:1081-1086. [DOI: 10.11569/wcjd.v22.i8.1081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
As the fourth most common malignancy, colorectal cancer poses a serious threat to human health. With the changes in lifestyle and diet, the incidence of colorectal cancer is increasing year by year. Inactivation of tumor suppressor genes, activation of oncogenes and abnormal overexpression of DNA repair genes have been known to be responsible for the pathogenesis of colorectal cancer. O6-methylguanine DNA methyltransferase (MGMT) is a DNA repair enzyme that can remove the adducts on DNA and repair the DNA damage. Studies have found that methylation of the MGMT gene is closely related to the occurrence of colorectal cancer.
Collapse
|
36
|
Xu M, Nekhayeva I, Cross CE, Rondelli CM, Wickliffe JK, Abdel-Rahman SZ. Influence of promoter/enhancer region haplotypes on MGMT transcriptional regulation: a potential biomarker for human sensitivity to alkylating agents. Carcinogenesis 2014; 35:564-71. [PMID: 24163400 PMCID: PMC3941746 DOI: 10.1093/carcin/bgt355] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/04/2013] [Accepted: 10/18/2013] [Indexed: 01/01/2023] Open
Abstract
The O6-methylguanine-DNA methyltransferase gene (MGMT) encodes the direct reversal DNA repair protein that removes alkyl adducts from the O6 position of guanine. Several single-nucleotide polymorphisms (SNPs) exist in the MGMT promoter/enhancer (P/E) region. However, the haplotype structure encompassing these SNPs and their functional/biological significance are currently unknown. We hypothesized that MGMT P/E haplotypes, rather than individual SNPs, alter MGMT transcription and can thus alter human sensitivity to alkylating agents. To identify the haplotype structure encompassing the MGMT P/E region SNPs, we sequenced 104 DNA samples from healthy individuals and inferred the haplotypes using the data generated. We identified eight SNPs in this region, namely T7C (rs180989103), T135G (rs1711646), G290A (rs61859810), C485A (rs1625649), C575A (rs113813075), G666A (rs34180180), C777A (rs34138162) and C1099T (rs16906252). Phylogenetics and Sequence Evolution analysis predicted 21 potential haplotypes that encompass these SNPs ranging in frequencies from 0.000048 to 0.39. Of these, 10 were identified in our study population as 20 paired haplotype combinations. To determine the functional significance of these haplotypes, luciferase reporter constructs representing these haplotypes were transfected into glioblastoma cells and their effect on MGMT promoter activity was determined. Compared with the most common (reference) haplotype 1, seven haplotypes significantly upregulated MGMT promoter activity (18-119% increase; P < 0.05), six significantly downregulated MGMT promoter activity (29-97% decrease; P < 0.05) and one haplotype had no effect. Mechanistic studies conducted support the conclusion that MGMT P/E haplotypes, rather than individual SNPs, differentially regulate MGMT transcription and could thus play a significant role in human sensitivity to environmental and therapeutic alkylating agents.
Collapse
Affiliation(s)
- Meixiang Xu
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX 77555-1066, USA and
- Department of Global Environmental Health Sciences, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Ilona Nekhayeva
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX 77555-1066, USA and
- Department of Global Environmental Health Sciences, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Courtney E. Cross
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX 77555-1066, USA and
- Department of Global Environmental Health Sciences, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Catherine M. Rondelli
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX 77555-1066, USA and
- Department of Global Environmental Health Sciences, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Jeffrey K. Wickliffe
- Department of Global Environmental Health Sciences, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | | |
Collapse
|
37
|
Oberstadt MC, Bien-Möller S, Weitmann K, Herzog S, Hentschel K, Rimmbach C, Vogelgesang S, Balz E, Fink M, Michael H, Zeden JP, Bruckmüller H, Werk AN, Cascorbi I, Hoffmann W, Rosskopf D, Schroeder HWS, Kroemer HK. Epigenetic modulation of the drug resistance genes MGMT, ABCB1 and ABCG2 in glioblastoma multiforme. BMC Cancer 2013; 13:617. [PMID: 24380367 PMCID: PMC3890604 DOI: 10.1186/1471-2407-13-617] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 12/20/2013] [Indexed: 12/19/2022] Open
Abstract
Background Resistance of the highly aggressive glioblastoma multiforme (GBM) to drug therapy is a major clinical problem resulting in a poor patient’s prognosis. Beside promoter methylation of the O6-methylguanine-DNA-methyltransferase (MGMT) gene the efflux transporters ABCB1 and ABCG2 have been suggested as pivotal factors contributing to drug resistance, but the methylation of ABCB1 and ABCG2 has not been assessed before in GBM. Methods Therefore, we evaluated the proportion and prognostic significance of promoter methylation of MGMT, ABCB1 and ABCG2 in 64 GBM patient samples using pyrosequencing technology. Further, the single nucleotide polymorphisms MGMT C-56 T (rs16906252), ABCB1 C3435T (rs1045642) and ABCG2 C421A (rs2231142) were determined using the restriction fragment length polymorphism method (RFLP). To study a correlation between promoter methylation and gene expression, we analyzed MGMT, ABCB1 and ABCG2 expression in 20 glioblastoma and 7 non-neoplastic brain samples. Results Despite a significantly increased MGMT and ABCB1 promoter methylation in GBM tissue, multivariate regression analysis revealed no significant association between overall survival of glioblastoma patients and MGMT or ABCB1 promoter methylation. However, a significant negative correlation between promoter methylation and expression could be identified for MGMT but not for ABCB1 and ABCG2. Furthermore, MGMT promoter methylation was significantly associated with the genotypes of the MGMT C-56 T polymorphism showing a higher methylation level in the T allele bearing GBM. Conclusions In summary, the data of this study confirm the previous published relation of MGMT promoter methylation and gene expression, but argue for no pivotal role of MGMT, ABCB1 and ABCG2 promoter methylation in GBM patients’ survival.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Heyo K Kroemer
- Department of Pharmacology, Ernst-Moritz-Arndt-University, Greifswald, Germany.
| |
Collapse
|
38
|
Minoo P. Toward a Molecular Classification of Colorectal Cancer: The Role of MGMT. Front Oncol 2013; 3:266. [PMID: 24151575 PMCID: PMC3798865 DOI: 10.3389/fonc.2013.00266] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/04/2013] [Indexed: 11/23/2022] Open
Abstract
O6-methylguanine DNA methyltransferase (MGMT) is a DNA repair enzyme with the ability to protect cells from DNA mutations by removing alkyl groups from the O6 position of guanine. Colon mucosa is exposed to the direct effects of environmental carcinogens and therefore maintaining a proficient DNA repair system is very important to stay protected against DNA mutagenesis. Loss of MGMT expression is almost exclusively associated with methylation of CpG islands in the MGMT gene promoter region which is found in approximately 40% of colorectal cancers. The role of MGMT loss in colorectal tumorigenesis is complex but numerous studies have documented methylation of this gene even in the normal appearing mucosa as well as in aberrant crypt foci, suggesting that MGMT methylation can be regarded as an early event or “field defect” in colon cancer neoplasia. The focus of this perspective is the role of MGMT in different pathways of colorectal carcinogenesis as well as the implication of this molecule in treatment decisions in colorectal cancer patients.
Collapse
Affiliation(s)
- Parham Minoo
- Calgary Laboratory Services, Department of Pathology, University of Calgary , Calgary, AB , Canada
| |
Collapse
|
39
|
Kristensen LS, Treppendahl MB, Asmar F, Girkov MS, Nielsen HM, Kjeldsen TE, Ralfkiaer E, Hansen LL, Grønbæk K. Investigation of MGMT and DAPK1 methylation patterns in diffuse large B-cell lymphoma using allelic MSP-pyrosequencing. Sci Rep 2013; 3:2789. [PMID: 24071855 PMCID: PMC3784959 DOI: 10.1038/srep02789] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 09/11/2013] [Indexed: 12/11/2022] Open
Abstract
The tumor suppressor genes MGMT and DAPK1 become methylated in several cancers including diffuse large B-cell lymphoma (DLBCL). However, allelic methylation patterns have not been investigated in DLBCL. We developed a fast and cost-efficient method for the analysis of allelic methylation based on pyrosequencing of methylation specific PCR (MSP) products including a SNP. Allelic methylation patterns were reliably analyzed in standards of known allelic methylation status even when diluted in unmethylated DNA to below 1% methylation. When studying 148 DLBCL patients MGMT and DAPK1 methylation was observed in 19% and 89%, respectively, and among methylated and heterozygous patients 29% and 55%, respectively, were biallelically methylated. An association between the T-allele of the rs16906252 SNP and MGMT methylation was observed (p-value=0.04), and DAPK1 methylation of the A-allele was associated with shorter overall survival (p-value=0.006). In future cancer research allelic MSP-pyrosequencing may be used to study a wide range of other loci.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Alleles
- Antibodies, Monoclonal, Murine-Derived
- Antineoplastic Combined Chemotherapy Protocols
- Cell Line
- Cyclophosphamide
- DNA Methylation
- DNA Modification Methylases/genetics
- DNA Repair Enzymes/genetics
- Death-Associated Protein Kinases/genetics
- Doxorubicin
- Female
- Genotype
- Humans
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/mortality
- Lymphoma, Large B-Cell, Diffuse/pathology
- Male
- Middle Aged
- Neoplasm Staging
- Polymorphism, Single Nucleotide
- Prednisone
- Rituximab
- Sensitivity and Specificity
- Sequence Analysis, DNA
- Treatment Outcome
- Tumor Suppressor Proteins/genetics
- Vincristine
- Young Adult
Collapse
Affiliation(s)
| | | | - Fazila Asmar
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
| | | | - Helene Myrtue Nielsen
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | | | | - Kirsten Grønbæk
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
40
|
Kristensen LS, Treppendahl MB, Grønbæk K. Analysis of epigenetic modifications of DNA in human cells. ACTA ACUST UNITED AC 2013; Chapter 20:Unit20.2. [PMID: 23595599 DOI: 10.1002/0471142905.hg2002s77] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Epigenetics, the study of somatically heritable changes in gene expression not related to changes in the DNA sequence, is a rapidly expanding research field that plays important roles in healthy as well as in diseased cells. DNA methylation and hydroxymethylation are epigenetic modifications found in human cells, which are deeply implicated in normal cellular processes as well as in several major human diseases. Here, a range of different methods for the analyses of DNA methylation and hydroxymethylation at locus-specific and genome-wide scales is described.
Collapse
|
41
|
Farzanehfar M, Vossoughinia H, Jabini R, Tavassoli A, Saadatnia H, Khorashad AK, Ahadi M, Afzalaghaee M, Ghayoor Karimiani E, Mirzaei F, Ayatollahi H. Evaluation of methylation of MGMT (O⁶-methylguanine-DNA methyltransferase) gene promoter in sporadic colorectal cancer. DNA Cell Biol 2013; 32:371-7. [PMID: 23705976 DOI: 10.1089/dna.2012.1949] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The DNA repair gene O⁶-methylguanine-DNA methyltransferase (MGMT) is frequently methylated in colorectal cancer (CRC). The aim of this study was to demonstrate that MGMT methylation may be one of the candidate mediators of field cancerization in the colon mucosa. Therefore, quantitative methylation-specific polymerase chain reaction was performed on tumor itself and additional samples of 5 and 10 cm away from the tumor in 40 CRC patients. Moreover, colon mucosa was examined from 30 cases with no evidence of cancer as a control. MGMT promoter methylation was present in 27.5% of colorectal tumor specimens. Tumors that showed MGMT promoter methylation had substantial MGMT promoter methylation in their normal adjacent mucosa. The methylation was also observed in 36.36% (4/11) of normal samples with MGMT promoter methylation in the adjacent tumors, in 20.79% (6/29) of samples without MGMT methylation in the adjacent tumors, and in 6.66% (2/30) of control samples (p<0.006 and p<0.001 respectively). Finally, the mean of MGMT methylation levels was significantly higher in the cancerous group than in the control group (6.25±1.702 vs. 0.086±0.036, p<0.001). Some CRCs arise from a field defect defined by epigenetic inactivation of MGMT. Detection of such abnormality may ultimately be useful in risk assessment for CRCs.
Collapse
Affiliation(s)
- Mohammadreza Farzanehfar
- Department of Internal Medicine, Ghaem Hospital, School of Medicine, Mashhad University of Medical Sciences, Iran
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ogino S, King EE, Beck AH, Sherman ME, Milner DA, Giovannucci E. Interdisciplinary education to integrate pathology and epidemiology: towards molecular and population-level health science. Am J Epidemiol 2012; 176:659-67. [PMID: 22935517 DOI: 10.1093/aje/kws226] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In recent decades, epidemiology, public health, and medical sciences have been increasingly compartmentalized into narrower disciplines. The authors recognize the value of integration of divergent scientific fields in order to create new methods, concepts, paradigms, and knowledge. Herein they describe the recent emergence of molecular pathological epidemiology (MPE), which represents an integration of population and molecular biologic science to gain insights into the etiologies, pathogenesis, evolution, and outcomes of complex multifactorial diseases. Most human diseases, including common cancers (such as breast, lung, prostate, and colorectal cancers, leukemia, and lymphoma) and other chronic diseases (such as diabetes mellitus, cardiovascular diseases, hypertension, autoimmune diseases, psychiatric diseases, and some infectious diseases), are caused by alterations in the genome, epigenome, transcriptome, proteome, metabolome, microbiome, and interactome of all of the above components. In this era of personalized medicine and personalized prevention, we need integrated science (such as MPE) which can decipher diseases at the molecular, genetic, cellular, and population levels simultaneously. The authors believe that convergence and integration of multiple disciplines should be commonplace in research and education. We need to be open-minded and flexible in designing integrated education curricula and training programs for future students, clinicians, practitioners, and investigators.
Collapse
Affiliation(s)
- Shuji Ogino
- Cancer Epidemiology Program, Dana-Farber/Harvard Cancer Center, 450 Brookline Ave., Room JF-215C, Boston, MA 02215, USA.
| | | | | | | | | | | |
Collapse
|
43
|
McDonald KL, Rapkins RW, Olivier J, Zhao L, Nozue K, Lu D, Tiwari S, Kuroiwa-Trzmielina J, Brewer J, Wheeler HR, Hitchins MP. The T genotype of the MGMT C>T (rs16906252) enhancer single-nucleotide polymorphism (SNP) is associated with promoter methylation and longer survival in glioblastoma patients. Eur J Cancer 2012; 49:360-8. [PMID: 22975219 DOI: 10.1016/j.ejca.2012.08.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 08/10/2012] [Accepted: 08/14/2012] [Indexed: 12/18/2022]
Abstract
Clinical studies in patients with newly diagnosed glioblastoma treated with temozolomide have shown that the methylation status of the O(6)-methylguanine-DNA methyltransferase (MGMT) gene is both predictive and prognostic of outcome. Methylation of the promoter region of MGMT is the most clinically relevant measure of MGMT expression and its assessment has become integral in current and planned clinical trials in glioblastoma. Our study confirmed that MGMT methylation, assessed by pyrosequencing, is associated with a significant survival benefit in glioblastoma patients treated with temozolomide (either concurrently with radiotherapy or sequential treatment). More interestingly, our study demonstrated that a promoter variant, the c.-56C>T (rs16906252) single nucleotide polymorphism (SNP) located within a cis-acting enhancer element at the proximal end of MGMT, is associated with the presence of MGMT promoter methylation in de novo glioblastoma. Furthermore, we show that the overall survival of patients carrying both the SNP and MGMT methylation showed a strong survival benefit when compared to either molecular event on their own. Promoter reporter experiments in MGMT methylated glioblastoma cell lines showed the T allele conferred a ∼30% reduction in normalised MGMT promoter activity compared to the wild-type haplotype. This might account for the propensity of the T allele to undergo promoter methylation, and in turn, the improved survival observed in carriers of the T allele. An independent validation on larger cohorts is required to confirm the prognostic and predictive value of individuals carrying the T allele.
Collapse
Affiliation(s)
- K L McDonald
- Prince of Wales Clinical School, University of NSW, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ogino S, King EE, Beck AH, Sherman ME, Milner DA, Giovannucci E. Interdisciplinary education to integrate pathology and epidemiology: towards molecular and population-level health science. Am J Epidemiol 2012. [PMID: 22935517 DOI: 10.1093/aje/kws226.3571252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In recent decades, epidemiology, public health, and medical sciences have been increasingly compartmentalized into narrower disciplines. The authors recognize the value of integration of divergent scientific fields in order to create new methods, concepts, paradigms, and knowledge. Herein they describe the recent emergence of molecular pathological epidemiology (MPE), which represents an integration of population and molecular biologic science to gain insights into the etiologies, pathogenesis, evolution, and outcomes of complex multifactorial diseases. Most human diseases, including common cancers (such as breast, lung, prostate, and colorectal cancers, leukemia, and lymphoma) and other chronic diseases (such as diabetes mellitus, cardiovascular diseases, hypertension, autoimmune diseases, psychiatric diseases, and some infectious diseases), are caused by alterations in the genome, epigenome, transcriptome, proteome, metabolome, microbiome, and interactome of all of the above components. In this era of personalized medicine and personalized prevention, we need integrated science (such as MPE) which can decipher diseases at the molecular, genetic, cellular, and population levels simultaneously. The authors believe that convergence and integration of multiple disciplines should be commonplace in research and education. We need to be open-minded and flexible in designing integrated education curricula and training programs for future students, clinicians, practitioners, and investigators.
Collapse
Affiliation(s)
- Shuji Ogino
- Cancer Epidemiology Program, Dana-Farber/Harvard Cancer Center, 450 Brookline Ave., Room JF-215C, Boston, MA 02215, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Subramaniam MM, Loh M, Chan JY, Liem N, Lim PL, Peng YW, Lim XY, Yeoh KG, Iacopetta B, Soong R, Salto-Tellez M. The topography of DNA methylation in the non-neoplastic colonic mucosa surrounding colorectal cancers. Mol Carcinog 2012; 53:98-108. [PMID: 22911899 DOI: 10.1002/mc.21951] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 07/20/2012] [Accepted: 07/27/2012] [Indexed: 12/17/2022]
Abstract
The degree of gene hypermethylation in non-neoplastic colonic mucosa (NNCM) is a potentially important event in the development of colorectal cancer (CRC), particularly for the subgroup with a CpG island methylator phenotype (CIMP). In this study, we aimed to use an unbiased and high-throughput approach to evaluate the topography of DNA methylation in the non-neoplastic colonic mucosa (NNCM) surrounding colorectal cancer (CRC). A total of 61 tissue samples comprising 53 NNCM and 8 tumor samples were obtained from hemicolectomy specimens of two CRC patients (Cases 1 and 2). NNCM was stripped from the underlying colonic wall and samples taken at varying distances from the tumor. The level of DNA methylation in NNCM and tumor tissues was assessed at 1,505 CpG sites in 807 cancer-related genes using Illumina GoldenGate® methylation arrays. Case 1 tumor showed significantly higher levels of methylation compared to surrounding NNCM samples (P < 0.001). The average level of methylation in NNCM decreased with increasing distance from the tumor (r = -0.418; P = 0.017), however this was not continuous and "patches" with higher levels of methylation were observed. Case 2 tumor was less methylated than Case 1 tumor (average β-value 0.181 vs. 0.415) and no significant difference in the level of methylation was observed in comparison to the surrounding NNCM. No evidence was found for a diminishing gradient of methylation in the NNCM surrounding CRC with a high level of methylation. Further work is required to determine whether CIMP+ CRC develop from within "patches" of NCCM that display high levels of methylation.
Collapse
Affiliation(s)
- Manish Mani Subramaniam
- Department of Pathology, National University Health System, National University of Singapore, Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kloth M, Goering W, Ribarska T, Arsov C, Sorensen KD, Schulz WA. The SNP rs6441224 influences transcriptional activity and prognostically relevant hypermethylation of RARRES1 in prostate cancer. Int J Cancer 2012; 131:E897-904. [PMID: 22573467 DOI: 10.1002/ijc.27628] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 04/23/2012] [Indexed: 02/03/2023]
Abstract
Epigenetic aberrations are frequent in prostate cancer and could be useful for detection and prognostication. However, the underlying mechanisms and the sequence of these changes remain to be fully elucidated. The tumor suppressor gene RARRES1 (TIG1) is frequently hypermethylated in several cancers. Having noted changes in the expression of its paralogous neighbor gene LXN at 3q25.32, we used pyrosequencing to quantify DNA methylation at both genes and determine its relationship with clinicopathological parameters in 86 prostate cancer tissues from radical prostatectomies. Methylation at LXN and RARRES1 was highly correlated. Increasing methylation was associated with worse clinical features, including biochemical recurrence, and decreased expression of both genes. However, expression of three neighboring genes was unaffected. Intriguingly, RARRES1 methylation was influenced by the genotype of the rs6441224 single-nucleotide polymorphism (SNP) in its promoter. We found that this SNP is located within an ETS-family-response element and that the more strongly methylated allele confers lower activity in reporter assays. Concomitant methylation of RARRES1 and LXN in cancerous tissues was also detected in prostate cancer cell lines and was shown to be associated with repressive histone modifications and transcriptional downregulation. In conclusion, we found that genotype-associated hypermethylation of the ETS-family target gene RARRES1 influences methylation at its neighbor gene LXN and could be useful as a prognostic biomarker.
Collapse
Affiliation(s)
- Michael Kloth
- Department of Urology, Heinrich Heine University, Duesseldorf, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Moore LE, Nickerson ML, Brennan P, Toro JR, Jaeger E, Rinsky J, Han SS, Zaridze D, Matveev V, Janout V, Kollarova H, Bencko V, Navratilova M, Szeszenia-Dabrowska N, Mates D, Schmidt LS, Lenz P, Karami S, Linehan WM, Merino M, Chanock S, Boffetta P, Chow WH, Waldman FM, Rothman N. Von Hippel-Lindau (VHL) inactivation in sporadic clear cell renal cancer: associations with germline VHL polymorphisms and etiologic risk factors. PLoS Genet 2011; 7:e1002312. [PMID: 22022277 PMCID: PMC3192834 DOI: 10.1371/journal.pgen.1002312] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 07/29/2011] [Indexed: 01/06/2023] Open
Abstract
Renal tumor heterogeneity studies have utilized the von Hippel-Lindau VHL gene to classify disease into molecularly defined subtypes to examine associations with etiologic risk factors and prognosis. The aim of this study was to provide a comprehensive analysis of VHL inactivation in clear cell renal tumors (ccRCC) and to evaluate relationships between VHL inactivation subgroups with renal cancer risk factors and VHL germline single nucleotide polymorphisms (SNPs). VHL genetic and epigenetic inactivation was examined among 507 sporadic RCC/470 ccRCC cases using endonuclease scanning and using bisulfite treatment and Sanger sequencing across 11 CpG sites within the VHL promoter. Case-only multivariate analyses were conducted to identify associations between alteration subtypes and risk factors. VHL inactivation, either through sequence alterations or promoter methylation in tumor DNA, was observed among 86.6% of ccRCC cases. Germline VHL SNPs and a haplotype were associated with promoter hypermethylation in tumor tissue (OR = 6.10; 95% CI: 2.28-16.35, p = 3.76E-4, p-global = 8E-5). Risk of having genetic VHL inactivation was inversely associated with smoking due to a higher proportion of wild-type ccRCC tumors [former: OR = 0.70 (0.20-1.31) and current: OR = 0.56 (0.32-0.99); P-trend = 0.04]. Alteration prevalence did not differ by histopathologic characteristics or occupational exposure to trichloroethylene. ccRCC cases with particular VHL germline polymorphisms were more likely to have VHL inactivation through promoter hypermethylation than through sequence alterations in tumor DNA, suggesting that the presence of these SNPs may represent an example of facilitated epigenetic variation (an inherited propensity towards epigenetic variation) in renal tissue. A proportion of tumors from current smokers lacked VHL alterations and may represent a biologically distinct clinical entity from inactivated cases.
Collapse
Affiliation(s)
- Lee E Moore
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hitchins MP, Rapkins RW, Kwok CT, Srivastava S, Wong JJL, Khachigian LM, Polly P, Goldblatt J, Ward RL. Dominantly inherited constitutional epigenetic silencing of MLH1 in a cancer-affected family is linked to a single nucleotide variant within the 5'UTR. Cancer Cell 2011; 20:200-13. [PMID: 21840485 DOI: 10.1016/j.ccr.2011.07.003] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 05/16/2011] [Accepted: 07/05/2011] [Indexed: 10/17/2022]
Abstract
Constitutional epimutations of tumor suppressor genes manifest as promoter methylation and transcriptional silencing of a single allele in normal somatic tissues, thereby predisposing to cancer. Constitutional MLH1 epimutations occur in individuals with young-onset cancer and demonstrate non-Mendelian inheritance through their reversal in the germline. We report a cancer-affected family showing dominant transmission of soma-wide highly mosaic MLH1 methylation and transcriptional repression linked to a particular genetic haplotype. The epimutation was erased in spermatozoa but reinstated in the somatic cells of the next generation. The affected haplotype harbored two single nucleotide substitutions in tandem; c.-27C > A located near the transcription initiation site and c.85G > T. The c.-27C > A variant significantly reduced transcriptional activity in reporter assays and is the probable cause of this epimutation.
Collapse
Affiliation(s)
- Megan P Hitchins
- Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, Faculty of Medicine at the University of New South Wales, NSW 2052, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Schernhammer ES, Giovannucci E, Baba Y, Fuchs CS, Ogino S. B vitamins, methionine and alcohol intake and risk of colon cancer in relation to BRAF mutation and CpG island methylator phenotype (CIMP). PLoS One 2011; 6:e21102. [PMID: 21738611 PMCID: PMC3124479 DOI: 10.1371/journal.pone.0021102] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 05/20/2011] [Indexed: 12/13/2022] Open
Abstract
Background One-carbon metabolism appears to play an important role in DNA methylation reaction. Evidence suggests that a low intake of B vitamins or high alcohol consumption increases colorectal cancer risk. How one-carbon nutrients affect the CpG island methylator phenotype (CIMP) or BRAF mutation status in colon cancer remains uncertain. Methods Utilizing incident colon cancers in a large prospective cohort of women (the Nurses' Health Study), we determined BRAF status (N = 386) and CIMP status (N = 375) by 8 CIMP-specific markers [CACNA1G, CDKN2A (p16), CRABP1, IGF2, MLH1, NEUROG1, RUNX3, and SOCS1], and 8 other CpG islands (CHFR, HIC1, IGFBP3, MGMT, MINT-1, MINT-31, p14, and WRN). We examined the relationship between intake of one-carbon nutrients and alcohol and colon cancer risk, by BRAF mutation or CIMP status. Results Higher folate intake was associated with a trend towards low risk of CIMP-low/0 tumors [total folate intake ≥400 µg/day vs. <200 µg/day; the multivariate relative risk = 0.73; 95% CI = 0.53–1.02], whereas total folate intake had no influence on CIMP-high tumor risks (Pheterogeneity = 0.73). Neither vitamin B6, methionine or alcohol intake appeared to differentially influence risks for CIMP-high and CIMP-low/0 tumors. Using the 16-marker CIMP panel did not substantially alter our results. B vitamins, methionine or alcohol intake did not affect colon cancer risk differentially by BRAF status. Conclusions This molecular pathological epidemiology study suggests that low level intake of folate may be associated with an increased risk of CIMP-low/0 colon tumors, but not that of CIMP-high tumors. However, the difference between CIMP-high and CIMP-low/0 cancer risks was not statistically significant, and additional studies are necessary to confirm these observations.
Collapse
Affiliation(s)
- Eva S Schernhammer
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America.
| | | | | | | | | |
Collapse
|
50
|
Leng S, Bernauer AM, Hong C, Do KC, Yingling CM, Flores KG, Tessema M, Tellez CS, Willink RP, Burki EA, Picchi MA, Stidley CA, Prados MD, Costello JF, Gilliland FD, Crowell RE, Belinsky SA. The A/G allele of rs16906252 predicts for MGMT methylation and is selectively silenced in premalignant lesions from smokers and in lung adenocarcinomas. Clin Cancer Res 2011; 17:2014-23. [PMID: 21355081 PMCID: PMC3070839 DOI: 10.1158/1078-0432.ccr-10-3026] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE To address the association between sequence variants within the MGMT (O(6)-methylguanine-DNA methyltransferase) promoter-enhancer region and methylation of MGMT in premalignant lesions from smokers and lung adenocarcinomas, their biological effects on gene regulation, and targeting MGMT for therapy. EXPERIMENTAL DESIGN Single nucleotide polymorphisms (SNP) identified through sequencing a 1.9 kb fragment 5' of MGMT were examined in relation to MGMT methylation in 169 lung adenocarcinomas and 1,731 sputum samples from smokers. The effect of promoter haplotypes on MGMT expression was tested using a luciferase reporter assay and cDNA expression analysis along with allele-specific sequencing for methylation. The response of MGMT methylated lung cancer cell lines to the alkylating agent temozolomide (TMZ) was assessed. RESULTS The A allele of rs16906252 and the haplotype containing this SNP were strongly associated with increased risk for MGMT methylation in adenocarcinomas (ORs ≥ 94). This association was observed to a lesser extent in sputum samples in both smoker cohorts. The A allele was selectively methylated in primary lung tumors and cell lines heterozygous for rs16906252. With the most common haplotype as the reference, a 20 to 41% reduction in promoter activity was seen for the haplotype carrying the A allele that correlated with lower MGMT expression. The sensitivity of lung cancer cell lines to TMZ was strongly correlated with levels of MGMT methylation and expression. CONCLUSIONS These studies provide strong evidence that the A allele of a MGMT promoter-enhancer SNP is a key determinant for MGMT methylation in lung carcinogenesis. Moreover, TMZ treatment may benefit a subset of lung cancer patients methylated for MGMT.
Collapse
Affiliation(s)
- Shuguang Leng
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Amanda M. Bernauer
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Chibo Hong
- Brain Tumor Research Center, Department of Neurological Surgery, University of California-San Francisco, San Francisco, California
| | - Kieu C. Do
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Christin M. Yingling
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Kristina G. Flores
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico
| | - Mathewos Tessema
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Carmen S. Tellez
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Randall P. Willink
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Elizabeth A. Burki
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Maria A. Picchi
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Christine A. Stidley
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico
| | - Michael D. Prados
- Brain Tumor Research Center, Department of Neurological Surgery, University of California-San Francisco, San Francisco, California
| | - Joseph F. Costello
- Brain Tumor Research Center, Department of Neurological Surgery, University of California-San Francisco, San Francisco, California
| | - Frank D. Gilliland
- Norris Cancer Center and the Keck School of Medicine, University of Southern California, Los Angeles, California
| | | | - Steven A. Belinsky
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| |
Collapse
|