1
|
Kohnehrouz BB, Ehsasatvatan M. Redesigning amino/carboxyl ends of DARPin G3 for high thermostability and production in tobacco transplastomic plants. PLANT CELL REPORTS 2024; 43:210. [PMID: 39126530 DOI: 10.1007/s00299-024-03307-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
KEY MESSAGE Redesigning the N- and C-capping repeats of the native DARPin G3 significantly improved its stability, and may facilitate its purification from the total soluble proteins of high-temperature dried leaf materials of transplastomic plants. Designed ankyrin repeat proteins (DARPins) constitute a promising class of binding molecules that can overcome the limitations of monoclonal antibodies and enable the development of novel therapeutic approaches. Despite their inherent stability, detailed studies have revealed that the original capping repeats derived from natural ankyrin repeat proteins impair the stability of the initial DARPin design. Consequently, the development of thermodynamically stabilized antibody mimetics may facilitate the development of innovative drugs in the future. In this study, we replaced the original N- and C-capping repeats with improved caps to enhance the thermostability of native DARPin G3. Computational analyses suggested that the redesigned thermostable DARPin G3 structure possessed optimal quality and stability. Molecular dynamics simulations verified the stability of the redesigned thermostable DARPin G3 at high temperatures. The redesigned thermostable DARPin G3 was expressed at high levels in tobacco transplastomic plants and subsequently purified from high-temperature dried leaf materials. Thermal denaturation results revealed that the redesigned thermostable DARPin G3 had a higher Tm value than the native DARPin G3, with a Tm of 35.51 °C greater than that of native DARPin G3. The results of the in vitro bioassays confirmed that the purified thermostable DARPin G3 from high-temperature dried leaf materials maintained its binding activity without any loss of affinity and specifically bound to the HER2 receptor on the cell surface. These findings demonstrate the successful improvement in the thermostability of DARPin G3 without compromising its biological activity.
Collapse
Affiliation(s)
- Bahram Baghban Kohnehrouz
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, 51666, Iran.
| | - Maryam Ehsasatvatan
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, 51666, Iran
| |
Collapse
|
2
|
Deyev SM, Oroujeni M, Garousi J, Gräslund T, Li R, Rosly AHB, Orlova A, Konovalova E, Schulga A, Vorobyeva A, Tolmachev V. Preclinical Evaluation of HER2-Targeting DARPin G3: Impact of Albumin-Binding Domain (ABD) Fusion. Int J Mol Sci 2024; 25:4246. [PMID: 38673831 PMCID: PMC11050402 DOI: 10.3390/ijms25084246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Designed ankyrin repeat protein (DARPin) G3 is an engineered scaffold protein. This small (14.5 kDa) targeting protein binds with high affinity to human epidermal growth factor receptor 2 (HER2). HER2 is overexpressed in several cancers. The use of the DARPin G3 for radionuclide therapy is complicated by its high renal reabsorption after clearance via the glomeruli. We tested the hypothesis that a fusion of the DARPin G3 with an albumin-binding domain (ABD) would prevent rapid renal excretion and high renal reabsorption resulting in better tumour targeting. Two fusion proteins were produced, one with the ABD at the C-terminus (G3-ABD) and another at the N-terminus (ABD-G3). Both variants were labelled with 177Lu. The binding properties of the novel constructs were evaluated in vitro and their biodistribution was compared in mice with implanted human HER2-expressing tumours. Fusion with the ABD increased the retention time of both constructs in blood compared with the non-ABD-fused control. The effect of fusion with the ABD depended strongly on the order of the domains in the constructs, resulting in appreciably better targeting properties of [177Lu]Lu-G3-ABD. Our data suggest that the order of domains is critical for the design of targeting constructs based on scaffold proteins.
Collapse
Affiliation(s)
- Sergey M. Deyev
- Molecular Immunology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (S.M.D.); (E.K.); (A.S.)
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Maryam Oroujeni
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (M.O.); (J.G.); (A.H.B.R.); (A.V.)
- Affibody AB, 171 65 Solna, Sweden
| | - Javad Garousi
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (M.O.); (J.G.); (A.H.B.R.); (A.V.)
- Department of Protein Science, KTH—Royal Institute of Technology, 106 91 Stockholm, Sweden; (T.G.); (R.L.)
| | - Torbjörn Gräslund
- Department of Protein Science, KTH—Royal Institute of Technology, 106 91 Stockholm, Sweden; (T.G.); (R.L.)
| | - Ruonan Li
- Department of Protein Science, KTH—Royal Institute of Technology, 106 91 Stockholm, Sweden; (T.G.); (R.L.)
| | - Alia Hani Binti Rosly
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (M.O.); (J.G.); (A.H.B.R.); (A.V.)
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden;
| | - Elena Konovalova
- Molecular Immunology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (S.M.D.); (E.K.); (A.S.)
| | - Alexey Schulga
- Molecular Immunology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (S.M.D.); (E.K.); (A.S.)
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Anzhelika Vorobyeva
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (M.O.); (J.G.); (A.H.B.R.); (A.V.)
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (M.O.); (J.G.); (A.H.B.R.); (A.V.)
| |
Collapse
|
3
|
Kulmala A, Lappalainen M, Lamminmäki U, Huovinen T. Synonymous Codons and Hydrophobicity Optimization of Post-translational Signal Peptide PelB Increase Phage Display Efficiency of DARPins. ACS Synth Biol 2022; 11:3174-3181. [PMID: 36178799 PMCID: PMC9594773 DOI: 10.1021/acssynbio.2c00260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
DsbA leader peptide targets proteins for cotranslational translocation by signal recognition particle (SRP) pathway and has been the standard signal sequence for filamentous phage display of fast-folding Designed Ankyrin Repeat Proteins (DARPins). In contrast, translocation of DARPins via the post-translational pathway, for example, with the commonly used PelB leader, has been reported to be highly inefficient. In this study, two PelB signal sequence libraries were screened covering different regions of the leader peptide for identifying mutants with improved display of DARPins on phage. A PelB variant with the most favorable combination of synonymous mutations in the n-region and hydrophobic substitutions in the h-region increased the display efficiency of a DARPin library 44- and 12-fold compared to PelBWT and DsbA, respectively. Based on thioredoxin-1 (TrxA) export studies the triple valine mutant PelB DN5 V3 leader was capable of more efficient cotranslational translocation than PelBWT, but the overall display efficiency improvement over DsbA suggests that besides increased cotranslational translocation other factors contribute to the observed enhancement in DARPin display efficiency.
Collapse
Affiliation(s)
- Antti Kulmala
- Department
of Life Technologies, University of Turku Kiinamyllynkatu 10, 20520 Turku, Finland
| | - Matias Lappalainen
- Department
of Life Technologies, University of Turku Kiinamyllynkatu 10, 20520 Turku, Finland
| | - Urpo Lamminmäki
- Department
of Life Technologies, University of Turku Kiinamyllynkatu 10, 20520 Turku, Finland
| | - Tuomas Huovinen
- Department
of Life Technologies, University of Turku Kiinamyllynkatu 10, 20520 Turku, Finland,
| |
Collapse
|
4
|
Sitia L, Sevieri M, Signati L, Bonizzi A, Chesi A, Mainini F, Corsi F, Mazzucchelli S. HER-2-Targeted Nanoparticles for Breast Cancer Diagnosis and Treatment. Cancers (Basel) 2022; 14:2424. [PMID: 35626028 PMCID: PMC9139811 DOI: 10.3390/cancers14102424] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
Human epidermal growth factor receptor-2 (HER-2) overexpressing breast cancer is a breast cancer subtype characterized by high aggressiveness, high frequency of brain metastases and poor prognosis. HER-2, a glycoprotein belonging to the ErbB receptor family, is overexpressed on the outer membrane of cancer cells and has been an important therapeutic target for the development of targeted drugs, such as the monoclonal antibodies trastuzumab and pertuzumab. These therapies have been available in clinics for more than twenty years. However, despite the initial enthusiasm, a major issue emerged limiting HER-2 targeted therapy efficacy, i.e., the evolution of drug resistance, which could be tackled by nanotechnology. The aim of this review is to provide a first critical update on the different types of HER-2-targeted nanoparticles that have been proposed in the literature in the last decade for therapeutic purposes. We focus on the different targeting strategies that have been explored, their relative outcomes and current limitations that still need to be improved. Then, we review the nanotools developed as diagnostic kits, focusing on the most recent techniques, which allow accurate quantification of HER-2 levels in tissues, with the aim of promoting more personalized medicinal approaches in patients.
Collapse
Affiliation(s)
- Leopoldo Sitia
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, 20157 Milano, Italy; (L.S.); (M.S.); (L.S.); (A.B.); (A.C.); (F.M.); (F.C.)
| | - Marta Sevieri
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, 20157 Milano, Italy; (L.S.); (M.S.); (L.S.); (A.B.); (A.C.); (F.M.); (F.C.)
| | - Lorena Signati
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, 20157 Milano, Italy; (L.S.); (M.S.); (L.S.); (A.B.); (A.C.); (F.M.); (F.C.)
| | - Arianna Bonizzi
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, 20157 Milano, Italy; (L.S.); (M.S.); (L.S.); (A.B.); (A.C.); (F.M.); (F.C.)
| | - Arianna Chesi
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, 20157 Milano, Italy; (L.S.); (M.S.); (L.S.); (A.B.); (A.C.); (F.M.); (F.C.)
| | - Francesco Mainini
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, 20157 Milano, Italy; (L.S.); (M.S.); (L.S.); (A.B.); (A.C.); (F.M.); (F.C.)
| | - Fabio Corsi
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, 20157 Milano, Italy; (L.S.); (M.S.); (L.S.); (A.B.); (A.C.); (F.M.); (F.C.)
- IRCCS Istituti Clinici Scientifici Salvatore Maugeri, 27100 Pavia, Italy
| | - Serena Mazzucchelli
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, 20157 Milano, Italy; (L.S.); (M.S.); (L.S.); (A.B.); (A.C.); (F.M.); (F.C.)
| |
Collapse
|
5
|
A Panel of Engineered Ubiquitin Variants Targeting the Family of Domains Found in Ubiquitin Specific Proteases (DUSPs). J Mol Biol 2021; 433:167300. [PMID: 34666042 DOI: 10.1016/j.jmb.2021.167300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/16/2021] [Accepted: 10/04/2021] [Indexed: 11/21/2022]
Abstract
Domains found in ubiquitin specific proteases (DUSPs) occur in seven members of the ubiquitin specific protease (USP) family. DUSPs are defined by a distinct structural fold but their functions remain largely unknown, although studies with USP4 suggest that its DUSP enhances deubiquitination activity. We used phage-displayed libraries of ubiquitin variants (UbVs) to derive protein-based tools to target DUSP family members with high affinity and specificity. We designed a UbV library based on insights from the structure of a previously identified UbV bound to the DUSP of USP15. The new library yielded 33 unique UbVs that bound to DUSPs from five different USPs (USP4, USP11, USP15, USP20 and USP33). For each USP, we were able to identify at least one DUSP that bound with high affinity and absolute specificity relative to the other DUSPs. We showed that UbVs targeting the DUSPs of USP15, USP11 and USP20 inhibited the catalytic activity of the enzyme, despite the fact that the DUSP is located outside of the catalytic domain. These findings provide an alternative means of inhibiting USP activity by targeting DUSPs, and this mechanism could be potentially extended other DUSP-containing USPs.
Collapse
|
6
|
Wang X, Li F, Qiu W, Xu B, Li Y, Lian X, Yu H, Zhang Z, Wang J, Li Z, Xue W, Zhu F. SYNBIP: synthetic binding proteins for research, diagnosis and therapy. Nucleic Acids Res 2021; 50:D560-D570. [PMID: 34664670 PMCID: PMC8728148 DOI: 10.1093/nar/gkab926] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/13/2021] [Accepted: 10/14/2021] [Indexed: 12/11/2022] Open
Abstract
The success of protein engineering and design has extensively expanded the protein space, which presents a promising strategy for creating next-generation proteins of diverse functions. Among these proteins, the synthetic binding proteins (SBPs) are smaller, more stable, less immunogenic, and better of tissue penetration than others, which make the SBP-related data attracting extensive interest from worldwide scientists. However, no database has been developed to systematically provide the valuable information of SBPs yet. In this study, a database named ‘Synthetic Binding Proteins for Research, Diagnosis, and Therapy (SYNBIP)’ was thus introduced. This database is unique in (a) comprehensively describing thousands of SBPs from the perspectives of scaffolds, biophysical & functional properties, etc.; (b) panoramically illustrating the binding targets & the broad application of each SBP and (c) enabling a similarity search against the sequences of all SBPs and their binding targets. Since SBP is a human-made protein that has not been found in nature, the discovery of novel SBPs relied heavily on experimental protein engineering and could be greatly facilitated by in-silico studies (such as AI and computational modeling). Thus, the data provided in SYNBIP could lay a solid foundation for the future development of novel SBPs. The SYNBIP is accessible without login requirement at both official (https://idrblab.org/synbip/) and mirror (http://synbip.idrblab.net/) sites.
Collapse
Affiliation(s)
- Xiaona Wang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Fengcheng Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wenqi Qiu
- Department of Surgery, HKU-SZH & Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Binbin Xu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yanlin Li
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xichen Lian
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hongyan Yu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Zhao Zhang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Zhaorong Li
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Weiwei Xue
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Feng Zhu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
7
|
Chang MP, Huang W, Mai DJ. Monomer‐scale design of functional protein polymers using consensus repeat sequences. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Marina P. Chang
- Department of Materials Science and Engineering Stanford University Stanford California USA
| | - Winnie Huang
- Department of Chemical Engineering Stanford University Stanford California USA
| | - Danielle J. Mai
- Department of Chemical Engineering Stanford University Stanford California USA
| |
Collapse
|
8
|
Simeon RA, Zeng Y, Chonira V, Aguirre AM, Lasagna M, Baloh M, Sorg JA, Tommos C, Chen Z. Protease-stable DARPins as promising oral therapeutics. Protein Eng Des Sel 2021; 34:gzab028. [PMID: 34882774 PMCID: PMC8861517 DOI: 10.1093/protein/gzab028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/16/2021] [Accepted: 10/02/2021] [Indexed: 12/30/2022] Open
Abstract
Clostridioides difficile is an enteric bacterium whose exotoxins, TcdA and TcdB, inactivate small GTPases within the host cells, leading to bloody diarrhea. In prior work, our group engineered a panel of potent TcdB-neutralizing designed ankyrin repeat proteins (DARPin) as oral therapeutics against C. difficile infection. However, all these DARPins are highly susceptible to digestion by gut-resident proteases, i.e. trypsin and chymotrypsin. Close evaluation of the protein sequence revealed a large abundance of positively charged and aromatic residues in the DARPin scaffold. In this study, we significantly improved the protease stability of one of the DARPins, 1.4E, via protein engineering. Unlike 1.4E, whose anti-TcdB EC50 increased >83-fold after 1-hour incubation with trypsin (1 mg/ml) or chymotrypsin (0.5 mg/ml), the best progenies-T10-2 and T10b-exhibit similar anti-TcdB potency as their parent in PBS regardless of protease treatment. The superior protease stability of T10-2 and T10b is attributed to the removal of nearly all positively charged and aromatic residues except those directly engaged in target binding. Furthermore, T10-2 was found to retain significant toxin-neutralization ability in ex vivo cecum fluid and can be easily detected in mouse fecal samples upon oral administration. Both T10-2 and T10b enjoy a high thermo- and chemo-stability and can be expressed very efficiently in Escherichia coli (>100 mg/l in shaker flasks). We believe that, in additional to their potential as oral therapeutics against C. difficile infection, T10-2 and T10b can also serve as a new generation DARPin scaffold with superior protease stability.
Collapse
Affiliation(s)
- Rudo A Simeon
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, 8847 Riverside Pkwy, Bryan, TX 77807, USA
| | - Yu Zeng
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, 8847 Riverside Pkwy, Bryan, TX 77807, USA
| | - Vikas Chonira
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, 8847 Riverside Pkwy, Bryan, TX 77807, USA
| | | | - Mauricio Lasagna
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, TX 77843, USA
| | - Marko Baloh
- Department of Biology, Texas A&M University, 424 Nagle St, College Station, TX 77840, USA
| | - Joseph A Sorg
- Department of Biology, Texas A&M University, 424 Nagle St, College Station, TX 77840, USA
| | - Cecilia Tommos
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, TX 77843, USA
| | - Zhilei Chen
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, 8847 Riverside Pkwy, Bryan, TX 77807, USA
| |
Collapse
|
9
|
Ricci F, Bandello F, Navarra P, Staurenghi G, Stumpp M, Zarbin M. Neovascular Age-Related Macular Degeneration: Therapeutic Management and New-Upcoming Approaches. Int J Mol Sci 2020; 21:ijms21218242. [PMID: 33153227 PMCID: PMC7662479 DOI: 10.3390/ijms21218242] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/24/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022] Open
Abstract
Age-related macular degeneration (AMD) constitutes a prevalent, chronic, and progressive retinal degenerative disease of the macula that affects elderly people and cause central vision impairment. Despite therapeutic advances in the management of neovascular AMD, none of the currently used treatments cures the disease or reverses its course. Medical treatment of neovascular AMD experienced a significant advance due to the introduction of vascular endothelial growth factor inhibitors (anti-VEGF), which dramatically changed the prognosis of the disease. However, although anti-VEGF therapy has become the standard treatment for neovascular AMD, many patients do not respond adequately to this therapy or experience a slow loss of efficacy of anti-VEGF agents after repeated administration. Additionally, current treatment with intravitreal anti-VEGF agents is associated with a significant treatment burden for patients, caregivers, and physicians. New approaches have been proposed for treating neovascular AMD. Among them, designed ankyrin repeat proteins (DARPins) seem to be as effective as monthly ranibizumab, but with greater durability, which may enhance patient compliance with needed injections.
Collapse
Affiliation(s)
- Federico Ricci
- Department of Experimental Medicine, University Tor Vergata, Viale Oxford, 00133 Rome, Italy
- Correspondence: ; Tel.: +39-33-5663-3319
| | - Francesco Bandello
- Scientific Institute San Raffaele, University Vita Salute, 20132 Milan, Italy;
| | - Pierluigi Navarra
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
- Department of Pharmacology, Medical School, Catholic University, 00198 Rome, Italy
| | | | - Michael Stumpp
- Molecular Partners AG—Wagistrasse, 14 8952 Zurich-Schlieren, Switzerland;
| | - Marco Zarbin
- Institute of Ophthalmology and Visual Science, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA;
| |
Collapse
|
10
|
Chagula DB, Rechciński T, Rudnicka K, Chmiela M. Ankyrins in human health and disease - an update of recent experimental findings. Arch Med Sci 2020; 16:715-726. [PMID: 32542072 PMCID: PMC7286341 DOI: 10.5114/aoms.2019.89836] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/25/2018] [Indexed: 12/17/2022] Open
Abstract
Ankyrins are adaptor molecules that in eukaryotic cells form complexes with ion channel proteins, cell adhesion and signalling molecules and components of the cytoskeleton. They play a pivotal role as scaffolding proteins, in the structural anchoring to the muscle membrane, in muscle development, neurogenesis and synapse formation. Dysfunction of ankyrins is implicated in numerous diseases such as hereditary spherocytosis, neurodegeneration of Purkinje cells, cardiac arrhythmia, Brugada syndrome, bipolar disorders and schizophrenia, congenital myopathies and congenital heart disease as well as cancers. Detecting either down- or over-expression of ankyrins and ergo their use as biomarkers can provide a new paradigm in the diagnosis of these diseases. This paper provides an outline of knowledge about the structure of ankyrins, and by making use of recent experimental research studies critically discusses their role in several health disorders. Moreover, therapeutic options utilizing engineered ankyrins, designed ankyrin repeat proteins (DARPins), are discussed.
Collapse
Affiliation(s)
- Damian B. Chagula
- Laboratory of Gastroimmunology, Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Tomasz Rechciński
- Department of Cardiology, Bieganski Regional Speciality Hospital, Medical University of Lodz, Lodz, Poland
| | - Karolina Rudnicka
- Laboratory of Gastroimmunology, Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Magdalena Chmiela
- Laboratory of Gastroimmunology, Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
- Corresponding author: Prof. Magdalena Chmiela Laboratory of Gastroimmunology, Department of Immmunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St, 90-237 Lodz, Poland, E-mail:
| |
Collapse
|
11
|
Computational Modeling of Designed Ankyrin Repeat Protein Complexes with Their Targets. J Mol Biol 2019; 431:2852-2868. [DOI: 10.1016/j.jmb.2019.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 01/24/2023]
|
12
|
Studies of the oligomerisation mechanism of a cystatin-based engineered protein scaffold. Sci Rep 2019; 9:9067. [PMID: 31227800 PMCID: PMC6588553 DOI: 10.1038/s41598-019-45565-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/06/2019] [Indexed: 12/11/2022] Open
Abstract
Engineered protein scaffolds are an alternative to monoclonal antibodies in research and drug design due to their small size, ease of production, versatility, and specificity for chosen targets. One key consideration when engineering such proteins is retaining the original scaffold structure and stability upon insertion of target-binding loops. SQT is a stefin A derived scaffold protein that was used as a model to study possible problems associated with solution behaviour of such aptamers. We used an SQT variant with AU1 and Myc insertion peptides (SQT-1C) to study the effect of peptide insertions on protein structure and oligomerisation. The X-ray structure of monomeric SQT-1C revealed a cystatin-like fold. Furthermore, we show that SQT-1C readily forms dimers and tetramers in solution. NMR revealed that these oligomers are symmetrical, with inserted loops comprising the interaction interface. Two possible mechanisms of oligomerisation are compared using molecular dynamics simulations, with domain swap oligomerisation being thermodynamically favoured. We show that retained secondary structure upon peptide insertion is not indicative of unaltered 3D structure and solution behaviour. Therefore, additional methods should be employed to comprehensively assess the consequences of peptide insertions in all aptamers, particularly as uncharacterized oligomerisation may alter binding epitope presentation and affect functional efficiency.
Collapse
|
13
|
Simeon R, Jiang M, Chamoun-Emanuelli AM, Yu H, Zhang Y, Meng R, Peng Z, Jakana J, Zhang J, Feng H, Chen Z. Selection and characterization of ultrahigh potency designed ankyrin repeat protein inhibitors of C. difficile toxin B. PLoS Biol 2019; 17:e3000311. [PMID: 31233493 PMCID: PMC6590788 DOI: 10.1371/journal.pbio.3000311] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 05/20/2019] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile infection (CDI) is a major nosocomial disease associated with significant morbidity and mortality. The pathology of CDI stems primarily from the 2 C. difficile-secreted exotoxins-toxin A (TcdA) and toxin B (TcdB)-that disrupt the tight junctions between epithelial cells leading to the loss of colonic epithelial barrier function. Here, we report the engineering of a series of monomeric and dimeric designed ankyrin repeat proteins (DARPins) for the neutralization of TcdB. The best dimeric DARPin, DLD-4, inhibited TcdB with a half maximal effective concentration (EC50) of 4 pM in vitro, representing an approximately 330-fold higher potency than the Food and Drug Administration (FDA)-approved anti-TcdB monoclonal antibody bezlotoxumab in the same assay. DLD-4 also protected mice from a toxin challenge in vivo. Cryo-electron microscopy (cryo-EM) studies revealed that the 2 constituent DARPins of DLD-4-1.4E and U3-bind the central and C-terminal regions of the delivery domain of TcdB. Competitive enzyme-linked immunosorbent assay (ELISA) studies showed that the DARPins 1.4E and U3 interfere with the interaction between TcdB and its receptors chondroitin sulfate proteoglycan 4 (CSPG4) and frizzled class receptor 2 (FZD2), respectively. Our cryo-EM studies revealed a new conformation of TcdB (both apo- and DARPin-bound at pH 7.4) in which the combined repetitive oligopeptides (CROPS) domain points away from the delivery domain. This conformation of the CROPS domain is in stark contrast to that seen in the negative-stain electron microscopy (EM) structure of TcdA and TcdB at the same pH, in which the CROPS domain bends toward and "kisses" the delivery domain. The ultrapotent anti-TcdB molecules from this study serve as candidate starting points for CDI drug development and provide new biological tools for studying the pathogenicity of C. difficile. The structural insights regarding both the "native" conformation of TcdB and the putative sites of TcdB interaction with the FZD2 receptor, in particular, should help accelerate the development of next-generation anti-C. difficile toxin therapeutics.
Collapse
Affiliation(s)
- Rudo Simeon
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Mengqiu Jiang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Ana M. Chamoun-Emanuelli
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Hua Yu
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, Maryland, United Sates of America
| | - Yongrong Zhang
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, Maryland, United Sates of America
| | - Ran Meng
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Zeyu Peng
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Joanita Jakana
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Junjie Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Hanping Feng
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, Maryland, United Sates of America
| | - Zhilei Chen
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas, United States of America
| |
Collapse
|
14
|
Advances in the Application of Designed Ankyrin Repeat Proteins (DARPins) as Research Tools and Protein Therapeutics. Methods Mol Biol 2018; 1798:307-327. [PMID: 29868969 DOI: 10.1007/978-1-4939-7893-9_23] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nonimmunoglobulin scaffolds have been developed to overcome the limitations of monoclonal antibodies with regard to stability and size. Of these scaffolds, the class of designed ankyrin repeat proteins (DARPins) has advanced the most in biochemical and biomedical applications. This review focuses on the recent progress in DARPin technology, highlighting the scaffold's potential and possibilities.
Collapse
|
15
|
Proshkina GM, Kiseleva DV, Shilova ON, Ryabova AV, Shramova EI, Stremovskiy OA, Deyev SM. Bifunctional Toxin DARP-LoPE Based on the Her2-Specific Innovative Module of a Non-Immunoglobulin Scaffold as a Promising Agent for Theranostics. Mol Biol 2017. [DOI: 10.1134/s0026893317060140] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Bedford R, Tiede C, Hughes R, Curd A, McPherson MJ, Peckham M, Tomlinson DC. Alternative reagents to antibodies in imaging applications. Biophys Rev 2017; 9:299-308. [PMID: 28752365 PMCID: PMC5578921 DOI: 10.1007/s12551-017-0278-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 07/06/2017] [Indexed: 12/21/2022] Open
Abstract
Antibodies have been indispensable tools in molecular biology, biochemistry and medical research. However, a number of issues surrounding validation, specificity and batch variation of commercially available antibodies have prompted research groups to develop novel non-antibody binding reagents. The ability to select highly specific monoclonal non-antibody binding proteins without the need for animals, the ease of production and the ability to site-directly label has enabled a wide variety of applications to be tested, including imaging. In this review, we discuss the success of a number of non-antibody reagents in imaging applications, including the recently reported Affimer.
Collapse
Affiliation(s)
- R Bedford
- School of Molecular and Cellular Biology, Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
| | - C Tiede
- School of Molecular and Cellular Biology, Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
| | - R Hughes
- School of Molecular and Cellular Biology, Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
| | - A Curd
- School of Molecular and Cellular Biology, Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
| | - M J McPherson
- School of Molecular and Cellular Biology, Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
| | - Michelle Peckham
- School of Molecular and Cellular Biology, Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK.
| | - Darren C Tomlinson
- School of Molecular and Cellular Biology, Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
17
|
Tiede C, Bedford R, Heseltine SJ, Smith G, Wijetunga I, Ross R, AlQallaf D, Roberts APE, Balls A, Curd A, Hughes RE, Martin H, Needham SR, Zanetti-Domingues LC, Sadigh Y, Peacock TP, Tang AA, Gibson N, Kyle H, Platt GW, Ingram N, Taylor T, Coletta LP, Manfield I, Knowles M, Bell S, Esteves F, Maqbool A, Prasad RK, Drinkhill M, Bon RS, Patel V, Goodchild SA, Martin-Fernandez M, Owens RJ, Nettleship JE, Webb ME, Harrison M, Lippiat JD, Ponnambalam S, Peckham M, Smith A, Ferrigno PK, Johnson M, McPherson MJ, Tomlinson DC. Affimer proteins are versatile and renewable affinity reagents. eLife 2017; 6:e24903. [PMID: 28654419 PMCID: PMC5487212 DOI: 10.7554/elife.24903] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/07/2017] [Indexed: 12/11/2022] Open
Abstract
Molecular recognition reagents are key tools for understanding biological processes and are used universally by scientists to study protein expression, localisation and interactions. Antibodies remain the most widely used of such reagents and many show excellent performance, although some are poorly characterised or have stability or batch variability issues, supporting the use of alternative binding proteins as complementary reagents for many applications. Here we report on the use of Affimer proteins as research reagents. We selected 12 diverse molecular targets for Affimer selection to exemplify their use in common molecular and cellular applications including the (a) selection against various target molecules; (b) modulation of protein function in vitro and in vivo; (c) labelling of tumour antigens in mouse models; and (d) use in affinity fluorescence and super-resolution microscopy. This work shows that Affimer proteins, as is the case for other alternative binding scaffolds, represent complementary affinity reagents to antibodies for various molecular and cell biology applications.
Collapse
Affiliation(s)
- Christian Tiede
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Robert Bedford
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Sophie J Heseltine
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Gina Smith
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Imeshi Wijetunga
- Leeds Institute of Cancer Studies and Pathology, University of Leeds, Leeds, United Kingdom
| | - Rebecca Ross
- Leeds Institute of Cancer Studies and Pathology, University of Leeds, Leeds, United Kingdom
| | - Danah AlQallaf
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | | | - Alexander Balls
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Alistair Curd
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Ruth E Hughes
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Heather Martin
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Sarah R Needham
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
| | - Laura C Zanetti-Domingues
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
| | | | | | - Anna A Tang
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Naomi Gibson
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Hannah Kyle
- Avacta Life Sciences, Wetherby, United Kingdom
| | | | - Nicola Ingram
- Leeds Institute of Cancer Studies and Pathology, University of Leeds, Leeds, United Kingdom
| | - Thomas Taylor
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Louise P Coletta
- Leeds Institute of Cancer Studies and Pathology, University of Leeds, Leeds, United Kingdom
| | - Iain Manfield
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Margaret Knowles
- Leeds Institute of Cancer Studies and Pathology, University of Leeds, Leeds, United Kingdom
| | - Sandra Bell
- Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, United Kingdom
| | - Filomena Esteves
- Leeds Institute of Cancer Studies and Pathology, University of Leeds, Leeds, United Kingdom
| | - Azhar Maqbool
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Raj K Prasad
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Mark Drinkhill
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Robin S Bon
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | | | | | - Marisa Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
| | - Ray J Owens
- Oxford Protein Production Facility UK, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
| | - Joanne E Nettleship
- Oxford Protein Production Facility UK, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
| | - Michael E Webb
- School of Chemistry, University of Leeds, Leeds, United Kingdom
| | - Michael Harrison
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Jonathan D Lippiat
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Sreenivasan Ponnambalam
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Michelle Peckham
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | | | | | | | - Michael J McPherson
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Darren Charles Tomlinson
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
18
|
Siegler E, Li S, Kim YJ, Wang P. Designed Ankyrin Repeat Proteins as Her2 Targeting Domains in Chimeric Antigen Receptor-Engineered T Cells. Hum Gene Ther 2017; 28:726-736. [PMID: 28796529 DOI: 10.1089/hum.2017.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chimeric antigen receptor (CAR) engineering is a branch of cancer immunotherapy that equips immune cells to target tumor antigens expressed on the cell surface using antibody-derived single-chain variable fragments (scFvs). However, other antibody mimetics, such as designed ankyrin repeat proteins (DARPins), can also serve as antigen-binding domains in CARs. This study shows that CAR-engineered T (CAR-T) cells utilizing Her2-targeting DARPins G3 and 929 can target human epidermal growth factor receptor 2 (Her2)-overexpressing cancer cells as effectively as CAR-T cells with the scFv 4D5 in vitro, and G3 CAR-T cells can slow or eliminate tumor growth in vivo as effectively as 4D5 CAR-T cells. Some DARPins may offer an attractive alternative to scFv usage in CARs, as they are smaller, thermodynamically stable, poorly immunogenic, and can be generated with different binding properties from DARPin libraries.
Collapse
Affiliation(s)
- Elizabeth Siegler
- 1 Department of Biomedical Engineering, University of Southern California , Los Angeles, California
| | - Si Li
- 2 Department of Pharmacology and Pharmaceutical Sciences, University of Southern California , Los Angeles, California
| | - Yu Jeong Kim
- 2 Department of Pharmacology and Pharmaceutical Sciences, University of Southern California , Los Angeles, California
| | - Pin Wang
- 1 Department of Biomedical Engineering, University of Southern California , Los Angeles, California.,2 Department of Pharmacology and Pharmaceutical Sciences, University of Southern California , Los Angeles, California.,3 Mork Family Department of Chemical Engineering and Materials Science, University of Southern California , Los Angeles, California
| |
Collapse
|
19
|
Plückthun A. Designed ankyrin repeat proteins (DARPins): binding proteins for research, diagnostics, and therapy. Annu Rev Pharmacol Toxicol 2015; 55:489-511. [PMID: 25562645 DOI: 10.1146/annurev-pharmtox-010611-134654] [Citation(s) in RCA: 431] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Designed ankyrin repeat proteins (DARPins) can recognize targets with specificities and affinities that equal or surpass those of antibodies, but because of their robustness and extreme stability, they allow a multitude of more advanced formats and applications. This review highlights recent advances in DARPin design, illustrates their properties, and gives some examples of their use. In research, they have been established as intracellular, real-time sensors of protein conformations and as crystallization chaperones. For future therapies, DARPins have been developed by advanced, structure-based protein engineering to selectively induce apoptosis in tumors by uncoupling surface receptors from their signaling cascades. They have also been used successfully for retargeting viruses. In ongoing clinical trials, DARPins have shown good safety and efficacy in macular degeneration diseases. These developments all ultimately exploit the high stability, solubility, and aggregation resistance of these molecules, permitting a wide range of conjugates and fusions to be produced and purified.
Collapse
Affiliation(s)
- Andreas Plückthun
- Department of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland;
| |
Collapse
|
20
|
Souied EH, Devin F, Mauget-Faÿsse M, Kolář P, Wolf-Schnurrbusch U, Framme C, Gaucher D, Querques G, Stumpp MT, Wolf S. Treatment of exudative age-related macular degeneration with a designed ankyrin repeat protein that binds vascular endothelial growth factor: a phase I/II study. Am J Ophthalmol 2014; 158:724-732.e2. [PMID: 24907435 DOI: 10.1016/j.ajo.2014.05.037] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 05/23/2014] [Accepted: 05/27/2014] [Indexed: 12/31/2022]
Abstract
PURPOSE To evaluate the safety, tolerability and bioactivity of ascending doses of MP0112, a designed ankyrin repeat protein (DARPin) that binds with high affinity to vascular endothelial growth factor-A (VEGF-A), in treatment-naive patients with exudative age-related macular degeneration (AMD). DESIGN Phase I/II, open-label, multicenter, dose-escalation study. METHODS Patients were to receive a single intravitreal injection of MP0112 at doses ranging from 0.04 to 3.6 mg and be monitored for 16 weeks for safety, efficacy, pharmacokinetics, and dose response. RESULTS Altogether, 32 patients received a single injection of MP0112. The maximum tolerated dose was 1.0 mg because of a case of endophthalmitis in the 2.0 mg cohort. Drug-related adverse events were reported by 13 (41%) of 32 patients; they included ocular inflammation in 11 patients (7 mild, 4 moderate in severity). Visual acuity scores were stable or improved compared with baseline for ≥4 weeks following injection; both retinal thickness and fluorescein angiography leakage decreased in a dose-dependent manner. Rescue therapy was administered to 20 (91%) of 22 patients who received 0.04-0.4 mg MP0112 compared with 4 of 10 (40%) patients who received 1.0 or 2.0 mg. Of patients in the higher-dose cohorts who did not require rescue treatment, 83% (5/6) maintained reductions in central retinal thickness through week 16. CONCLUSIONS A single injection of 1.0 or 2.0 mg MP0112 resulted in mean decreases in retinal thickness and leakage area despite ocular inflammation. Larger-scale studies are warranted to confirm these observations.
Collapse
Affiliation(s)
- Eric H Souied
- Department of Ophthalmology, Hôpital Intercommunal de Créteil, Créteil, France
| | - François Devin
- Centre d'ophtalmologie Monticelli-Paradis, Marseille, France
| | | | - Petr Kolář
- Eye Clinic of University Hospital Brno, Masaryk University Brno, Brno, Czech Republic
| | - Ute Wolf-Schnurrbusch
- Bern Photographic Reading Center, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Carsten Framme
- Department of Ophthalmology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - David Gaucher
- Service d'Ophtalmologie des Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, Université Louis-Pasteur, Strasbourg, France
| | - Giuseppe Querques
- Department of Ophthalmology, Hôpital Intercommunal de Créteil, Créteil, France
| | | | - Sebastian Wolf
- Department of Ophthalmology, Inselspital, Bern University Hospital, Bern, Switzerland.
| |
Collapse
|
21
|
Tiede C, Tang AAS, Deacon SE, Mandal U, Nettleship JE, Owen RL, George SE, Harrison DJ, Owens RJ, Tomlinson DC, McPherson MJ. Adhiron: a stable and versatile peptide display scaffold for molecular recognition applications. Protein Eng Des Sel 2014; 27:145-55. [PMID: 24668773 PMCID: PMC4000234 DOI: 10.1093/protein/gzu007] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We have designed a novel non-antibody scaffold protein, termed Adhiron, based on a phytocystatin consensus sequence. The Adhiron scaffold shows high thermal stability (Tm ca. 101°C), and is expressed well in Escherichia coli. We have determined the X-ray crystal structure of the Adhiron scaffold to 1.75 Å resolution revealing a compact cystatin-like fold. We have constructed a phage-display library in this scaffold by insertion of two variable peptide regions. The library is of high quality and complexity comprising 1.3 × 1010 clones. To demonstrate library efficacy, we screened against the yeast Small Ubiquitin-like Modifier (SUMO). In selected clones, variable region 1 often contained sequences homologous to the known SUMO interactive motif (V/I-X-V/I-V/I). Four Adhirons were further characterised and displayed low nanomolar affinities and high specificity for yeast SUMO with essentially no cross-reactivity to human SUMO protein isoforms. We have identified binders against >100 target molecules to date including as examples, a fibroblast growth factor (FGF1), platelet endothelial cell adhesion molecule (PECAM-1; CD31), the SH2 domain Grb2 and a 12-aa peptide. Adhirons are highly stable and well expressed allowing highly specific binding reagents to be selected for use in molecular recognition applications.
Collapse
Affiliation(s)
- Christian Tiede
- Biomedical Health Research Centre, BioScreening Technology Group, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
The clinical potential of circulating tumor cells; the need to incorporate a modern "immunological cocktail" in the assay. Cancers (Basel) 2013; 5:1739-47. [PMID: 24351672 PMCID: PMC3875962 DOI: 10.3390/cancers5041739] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/12/2013] [Accepted: 11/05/2013] [Indexed: 01/04/2023] Open
Abstract
The accepted clinical assay, CellSearch®, and lab-on-a-chip tests for capturing circulating tumor cells are antibody-mediated. Attempts to improve their sensitivity have relied upon physical changes in the instruments. There have been no significant advances in improving the antibody-mediated portion of the capture. Modern immunologic engineering offers major possibilities for improving the sensitivity and other features of the assay. These include obtaining univalent antibody fragments such as scFvs with picomolar binding affinity and sufficient specificity; altering them to enhance their range of potential contact with target antigens; using antibodies directed against different epitopes on epithelial, mesenchymal or organ-specific cell surface markers to allow simultaneous binding and investigating non-antibody binding molecules as substitutes for antibody. These maneuvers could markedly improve the ability of current assays to improve patient care and might result in an acceptable test for detecting cancer earlier in high risk patients.
Collapse
|
23
|
Gremel G, Grannas K, Sutton LA, Pontén F, Zieba A. In situ Protein Detection for Companion Diagnostics. Front Oncol 2013; 3:271. [PMID: 24199171 PMCID: PMC3814083 DOI: 10.3389/fonc.2013.00271] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 10/17/2013] [Indexed: 01/29/2023] Open
Abstract
The emergence of targeted therapies for cancer has created a need for the development of companion diagnostic tests. Assays developed in recent years are aimed at determining both the effectiveness and safety of specific drugs for a defined group of patients, thus, enabling the more efficient design of clinical trials and also supporting physicians when making treatment-related decisions. Immunohistochemistry (IHC) is a widely accepted method for protein expression analyses in human tissues. Immunohistochemical assays, used to localize and quantitate relative protein expression levels within a morphological context, are frequently used as companion diagnostics during clinical trials and also following drug approval. Herein, we describe established immunochemistry-based methods and their application in routine diagnostics. We also explore the possibility of using IHC to detect specific protein mutations in addition to DNA-based tests. Finally, we review alternative protein binders and proximity ligation assays and discuss their potential to facilitate the development of novel, targeted therapies against cancer.
Collapse
Affiliation(s)
- Gabriela Gremel
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University , Uppsala , Sweden
| | | | | | | | | |
Collapse
|
24
|
Jost C, Schilling J, Tamaskovic R, Schwill M, Honegger A, Plückthun A. Structural basis for eliciting a cytotoxic effect in HER2-overexpressing cancer cells via binding to the extracellular domain of HER2. Structure 2013; 21:1979-91. [PMID: 24095059 DOI: 10.1016/j.str.2013.08.020] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/25/2013] [Accepted: 08/26/2013] [Indexed: 12/31/2022]
Abstract
Human epidermal growth factor receptor-2 (HER2) is a receptor tyrosine kinase directly linked to the growth of malignancies from various origins and a validated target for monoclonal antibodies and kinase inhibitors. Utilizing a new approach with designed ankyrin repeat proteins (DARPins) as alternative binders, we show that binding of two DARPins connected by a short linker, one targeting extracellular subdomain I and the other subdomain IV, causes much stronger cytotoxic effects on the HER2-addicted breast cancer cell line BT474, surpassing the therapeutic antibody trastuzumab. We determined crystal structures of these DARPins in complex with the respective subdomains. Detailed models of the full-length receptor, constrained by its rigid domain structures and its membrane anchoring, explain how the bispecific DARPins connect two membrane-bound HER2 molecules, distorting them such that they cannot form signaling-competent dimers with any EGFR family member, preventing any kinase dimerization, and thus leading to a complete loss of signaling.
Collapse
Affiliation(s)
- Christian Jost
- Department of Biochemistry, University of Zürich, 8057 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
25
|
Epa VC, Dolezal O, Doughty L, Xiao X, Jost C, Plückthun A, Adams TE. Structural model for the interaction of a designed Ankyrin Repeat Protein with the human epidermal growth factor receptor 2. PLoS One 2013; 8:e59163. [PMID: 23527120 PMCID: PMC3602593 DOI: 10.1371/journal.pone.0059163] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 02/12/2013] [Indexed: 02/02/2023] Open
Abstract
Designed Ankyrin Repeat Proteins are a class of novel binding proteins that can be selected and evolved to bind to targets with high affinity and specificity. We are interested in the DARPin H10-2-G3, which has been evolved to bind with very high affinity to the human epidermal growth factor receptor 2 (HER2). HER2 is found to be over-expressed in 30% of breast cancers, and is the target for the FDA-approved therapeutic monoclonal antibodies trastuzumab and pertuzumab and small molecule tyrosine kinase inhibitors. Here, we use computational macromolecular docking, coupled with several interface metrics such as shape complementarity, interaction energy, and electrostatic complementarity, to model the structure of the complex between the DARPin H10-2-G3 and HER2. We analyzed the interface between the two proteins and then validated the structural model by showing that selected HER2 point mutations at the putative interface with H10-2-G3 reduce the affinity of binding up to 100-fold without affecting the binding of trastuzumab. Comparisons made with a subsequently solved X-ray crystal structure of the complex yielded a backbone atom root mean square deviation of 0.84-1.14 Ångstroms. The study presented here demonstrates the capability of the computational techniques of structural bioinformatics in generating useful structural models of protein-protein interactions.
Collapse
Affiliation(s)
- V Chandana Epa
- Commonwealth Scientific & Industrial Research Organization Materials Science & Engineering, Parkville, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
26
|
Sawyer N, Chen J, Regan L. All repeats are not equal: a module-based approach to guide repeat protein design. J Mol Biol 2013; 425:1826-1838. [PMID: 23434848 DOI: 10.1016/j.jmb.2013.02.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/11/2013] [Accepted: 02/12/2013] [Indexed: 12/30/2022]
Abstract
Repeat proteins composed of tandem arrays of a short structural motif often mediate protein-protein interactions. Past efforts to design repeat protein-based molecular recognition tools have focused on the creation of templates from the consensus of individual repeats, regardless of their natural context. Such an approach assumes that all repeats are essentially equivalent. In this study, we present the results of a "module-based" approach in which modules composed of tandem repeats are aligned to identify repeat-specific features. Using this approach to analyze tetratricopeptide repeat modules that contain three tandem repeats (3TPRs), we identify two classes of 3TPR modules with distinct structural signatures that are correlated with different sets of functional residues. Our analyses also reveal a high degree of correlation between positions across the entire ligand-binding surface, indicative of a coordinated, coevolving binding surface. Extension of our analyses to different repeat protein modules reveals more examples of repeat-specific features, especially in armadillo repeat modules. In summary, the module-based analyses that we present effectively capture key repeat-specific features that will be important to include in future repeat protein design templates.
Collapse
Affiliation(s)
- Nicholas Sawyer
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, 266 Whitney Avenue, New Haven, CT 06511, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06511, USA
| | - Jieming Chen
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, 266 Whitney Avenue, New Haven, CT 06511, USA.,Program in Computational Biology and Bioinformatics, Yale University, 266 Whitney Avenue, New Haven, CT 06511, USA
| | - Lynne Regan
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, 266 Whitney Avenue, New Haven, CT 06511, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06511, USA.,Program in Computational Biology and Bioinformatics, Yale University, 266 Whitney Avenue, New Haven, CT 06511, USA.,Department of Chemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06511, USA
| |
Collapse
|
27
|
Development of a generic adenovirus delivery system based on structure-guided design of bispecific trimeric DARPin adapters. Proc Natl Acad Sci U S A 2013; 110:E869-77. [PMID: 23431166 DOI: 10.1073/pnas.1213653110] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adenoviruses (Ads) have shown promise as vectors for gene delivery in clinical trials. Efficient viral targeting to a tissue of choice requires both ablation of the virus' original tropism and engineering of an efficient receptor-mediated uptake by a specific cell population. We have developed a series of adapters binding to the virus with such high affinity that they remain fully bound for >10 d, block its natural receptor binding site and mediate interaction with a surface receptor of choice. The adapter contains two fused modules, both consisting of designed ankyrin repeat proteins (DARPins), one binding to the fiber knob of adenovirus serotype 5 and the other binding to various tumor markers. By solving the crystal structure of the complex of the trimeric knob with three bound DARPins at 1.95-Å resolution, we could use computer modeling to design a link to a trimeric protein of extraordinary kinetic stability, the capsid protein SHP from the lambdoid phage 21. We arrived at a module which binds the knob like a trimeric clamp. When this clamp was fused with DARPins of varying specificities, it enabled adenovirus serotype 5-mediated delivery of a transgene in a human epidermal growth factor receptor 2-, epidermal growth factor receptor-, or epithelial cell adhesion molecule-dependent manner with transduction efficiencies comparable to or even exceeding those of Ad itself. With these adapters, efficiently produced in Escherichia coli, Ad can be converted rapidly to new receptor specificities using any ligand as the receptor-binding moiety. Prefabricated Ads with different payloads thus can be retargeted readily to many cell types of choice.
Collapse
|
28
|
Structural and functional analysis of phosphorylation-specific binders of the kinase ERK from designed ankyrin repeat protein libraries. Proc Natl Acad Sci U S A 2012; 109:E2248-57. [PMID: 22843676 DOI: 10.1073/pnas.1205399109] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We have selected designed ankyrin repeat proteins (DARPins) from a synthetic library by using ribosome display that selectively bind to the mitogen-activated protein kinase ERK2 (extracellular signal-regulated kinase 2) in either its nonphosphorylated (inactive) or doubly phosphorylated (active) form. They do not bind to other kinases tested. Crystal structures of complexes with two DARPins, each specific for one of the kinase forms, were obtained. The two DARPins bind to essentially the same region of the kinase, but recognize the conformational change within the activation loop and an adjacent area, which is the key structural difference that occurs upon activation. Whereas the rigid phosphorylated activation loop remains in the same form when bound by the DARPin, the more mobile unphosphorylated loop is pushed to a new position. The DARPins can be used to selectively precipitate the cognate form of the kinases from cell lysates. They can also specifically recognize the modification status of the kinase inside the cell. By fusing the kinase with Renilla luciferase and the DARPin to GFP, an energy transfer from luciferase to GFP can be observed in COS-7 cells upon intracellular complex formation. Phosphorylated ERK2 is seen to increase by incubation of the COS-7 cells with FBS and to decrease upon adding the ERK pathway inhibitor PD98509. Furthermore, the anti-ERK2 DARPin is seen to inhibit ERK phosphorylation as it blocks the target inside the cell. This strategy of creating activation-state-specific sensors and kinase-specific inhibitors may add to the repertoire to investigate intracellular signaling in real time.
Collapse
|
29
|
|
30
|
Boersma YL, Plückthun A. DARPins and other repeat protein scaffolds: advances in engineering and applications. Curr Opin Biotechnol 2011; 22:849-57. [DOI: 10.1016/j.copbio.2011.06.004] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 04/27/2011] [Accepted: 06/01/2011] [Indexed: 10/18/2022]
|
31
|
Dreier B, Mikheeva G, Belousova N, Parizek P, Boczek E, Jelesarov I, Forrer P, Plückthun A, Krasnykh V. Her2-specific multivalent adapters confer designed tropism to adenovirus for gene targeting. J Mol Biol 2011; 405:410-26. [PMID: 21056576 PMCID: PMC3149894 DOI: 10.1016/j.jmb.2010.10.040] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 10/20/2010] [Accepted: 10/22/2010] [Indexed: 11/18/2022]
Abstract
Adenoviruses (Ads) hold great promise as gene vectors for diagnostic or therapeutic applications. The native tropism of Ads must be modified to achieve disease site-specific gene delivery by Ad vectors and this should be done in a programmable way and with technology that can realistically be scaled up. To this end, we applied the technologies of designed ankyrin repeat proteins (DARPins) and ribosome display to develop a DARPin that binds the knob domain of the Ad fiber protein with low nanomolar affinity (K(D) 1.35 nM) and fused this protein with a DARPin specific for Her2, an established cell-surface biomarker of human cancers. The stability of the complex formed by this bispecific targeting adapter and the Ad virion resulted in insufficient gene transfer and was subsequently improved by increasing the valency of adapter-virus binding. In particular, we designed adapters that chelated the knob in a bivalent or trivalent fashion and showed that the efficacy of gene transfer by the adapter-Ad complex increased with the functional affinity of these molecules. This enabled efficient transduction at low stoichiometric adapter-to-fiber ratios. We confirmed the Her2 specificity of this transduction and its dependence on the Her2-binding DARPin component of the adapters. Even the adapter molecules with four fused DARPins could be produced and purified from Escherichia coli at very high levels. In principle, DARPins can be generated against any target and this adapter approach provides a versatile strategy for developing a broad range of disease-specific gene vectors.
Collapse
Affiliation(s)
- Birgit Dreier
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, CH-8057 Zurich, Switzerland
| | - Galina Mikheeva
- Department of Experimental Diagnostic Imaging, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Natalya Belousova
- Department of Experimental Diagnostic Imaging, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Petra Parizek
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, CH-8057 Zurich, Switzerland
| | - Edgar Boczek
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, CH-8057 Zurich, Switzerland
| | - Ilian Jelesarov
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, CH-8057 Zurich, Switzerland
| | - Patrik Forrer
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, CH-8057 Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, CH-8057 Zurich, Switzerland
| | - Victor Krasnykh
- Department of Experimental Diagnostic Imaging, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| |
Collapse
|