1
|
Shokoohi M, Sedaghatshoar S, Arian H, Mokarami M, Habibi F, Bamarinejad F. Genetic advancements in breast cancer treatment: a review. Discov Oncol 2025; 16:127. [PMID: 39918655 PMCID: PMC11805739 DOI: 10.1007/s12672-025-01884-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/03/2025] [Indexed: 02/09/2025] Open
Abstract
Breast cancer (BC) remains a leading cause of cancer-related deaths among women globally, highlighting the urgent need for more effective and targeted therapies. Traditional treatments, including surgery, chemotherapy, and radiation, face limitations such as drug resistance, metastasis, and severe side effects. Recent advancements in gene therapy, particularly CRISPR/Cas9 technology and Oncolytic Virotherapy (OVT), are transforming the BC treatment landscape. CRISPR/Cas9 enables precise gene editing to correct mutations in oncogenes like HER2 and MYC, directly addressing tumor growth and immune evasion. Simultaneously, OVT leverages genetically engineered viruses to selectively destroy cancer cells and stimulate robust antitumor immune responses. Despite their potential, gene therapies face challenges, including off-target effects, delivery issues, and ethical concerns. Innovations in delivery systems, combination strategies, and integrating gene therapy with existing treatments offer promising solutions to overcome these barriers. Personalized medicine, guided by genomic profiling, further enhances treatment precision by identifying patient-specific mutations, such as BRCA1 and BRCA2, allowing for more tailored and effective interventions. As research progresses, the constructive interaction between gene therapy, immunotherapy, and traditional approaches is paving the way for groundbreaking advancements in BC care. Continued collaboration between researchers and clinicians is essential to translate these innovations into clinical practice, ultimately improving BC patients' survival rates and quality of life.
Collapse
Affiliation(s)
- Marzieh Shokoohi
- Department of Life Sciences Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran.
- Amino Techno Gene Virtual Private Laboratory, Tehran, Iran.
| | - Sadaf Sedaghatshoar
- Kent School of Social Work and Family Science, University of Louisville, Louisville, KY, USA
| | - Homaira Arian
- Pharmaceutical Biotechnology Department, Pharmacy Faculty, Anadolu University, Eskishehir, Turkey.
| | - Milad Mokarami
- Student Research Committee, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Fatemeh Habibi
- Department of Speech Therapy, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Bamarinejad
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Cheah W, Cutress RI, Eccles D, Copson E. Clinical Impact of Constitutional Genomic Testing on Current Breast Cancer Care. Clin Oncol (R Coll Radiol) 2025; 38:103631. [PMID: 39242249 DOI: 10.1016/j.clon.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 07/24/2024] [Accepted: 08/08/2024] [Indexed: 09/09/2024]
Abstract
The most commonly diagnosed cancer in women worldwide is cancer of the breast. Up to 20% of familial cases are attributable to pathogenic mutations in high-penetrance (BReast CAncer gene 1 [BRCA1], BRCA2, tumor protein p53 [TP53], partner and localizer of breast cancer 2 [PALB2]) or moderate-penetrance (checkpoint kinase 2 [CHEK2], Ataxia-telangiectasia mutated [ATM], RAD51C, RAD51D) breast-cancer-predisposing genes. Most of the breast-cancer-predisposing genes are involved in DNA damage repair via homologous recombination pathways. Understanding these pathways can facilitate the development of risk-reducing and therapeutic strategies. The number of breast cancer patients undergoing testing for pathogenic mutations in these genes is rapidly increasing due to various factors. Advances in multigene panel testing have led to increased detection of pathogenic mutation carriers at high risk for developing breast cancer and contralateral breast cancer. However, the lack of long-term clinical outcome data and incomplete understanding of variants, particularly for moderate-risk genes limits clinical application. In this review, we have summarized the key functions, risks, and prognosis of breast-cancer-predisposing genes listed in the National Health Service (NHS) England National Genomic Test Directory for inherited breast cancer and provide an update on current management implications including surgery, radiotherapy, systemic treatments, and post-treatment surveillance.
Collapse
Affiliation(s)
- W Cheah
- Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton SO16 6YD, UK
| | - R I Cutress
- Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton SO16 6YD, UK
| | - D Eccles
- Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton SO16 6YD, UK
| | - E Copson
- Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton SO16 6YD, UK.
| |
Collapse
|
3
|
Nalla LV, Kanukolanu A, Yeduvaka M, Gajula SNR. Advancements in Single-Cell Proteomics and Mass Spectrometry-Based Techniques for Unmasking Cellular Diversity in Triple Negative Breast Cancer. Proteomics Clin Appl 2025; 19:e202400101. [PMID: 39568435 PMCID: PMC11726282 DOI: 10.1002/prca.202400101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is an aggressive and complex subtype of breast cancer characterized by a lack of targeted treatment options. Intratumoral heterogeneity significantly drives disease progression and complicates therapeutic responses, necessitating advanced analytical approaches to understand its underlying biology. This review aims to explore the advancements in single-cell proteomics and their application in uncovering cellular diversity in TNBC. It highlights innovations in sample preparation, mass spectrometry-based techniques, and the potential for integrating proteomics into multi-omics platforms. METHODS The review discusses the combination of improved sample preparation methods and cutting-edge mass spectrometry techniques in single-cell proteomics. It emphasizes the challenges associated with protein analysis, such as the inability to amplify proteins akin to transcripts, and examines strategies to overcome these limitations. RESULTS Single-cell proteomics provides a direct link to phenotype and cell behavior, complementing transcriptomic approaches and offering new insights into the mechanisms driving TNBC. The integration of advanced techniques has enabled deeper exploration of cellular heterogeneity and disease mechanisms. CONCLUSION Despite the challenges, single-cell proteomics holds immense potential to evolve into a high-throughput and scalable multi-omics platform. Addressing existing hurdles will enable deeper biological insights, ultimately enhancing the diagnosis and treatment of TNBC.
Collapse
Affiliation(s)
- Lakshmi Vineela Nalla
- Department of Pharmacology, GITAM School of PharmacyGITAM (Deemed to be University)VisakhapatnamAndhra PradeshIndia
| | - Aarika Kanukolanu
- Department of Pharmaceutical Analysis, GITAM School of PharmacyGITAM (Deemed to be University)VisakhapatnamAndhra PradeshIndia
| | - Madhuri Yeduvaka
- Department of Pharmacology, GITAM School of PharmacyGITAM (Deemed to be University)VisakhapatnamAndhra PradeshIndia
| | - Siva Nageswara Rao Gajula
- Department of Pharmaceutical Analysis, GITAM School of PharmacyGITAM (Deemed to be University)VisakhapatnamAndhra PradeshIndia
| |
Collapse
|
4
|
Apostolou P, Dellatola V, Papathanasiou A, Kalfakakou D, Fountzilas E, Tryfonopoulos D, Karageorgopoulou S, Yannoukakos D, Konstantopoulou I, Fostira F. Genetic Testing of Breast Cancer Patients with Very Early-Onset Breast Cancer (≤30 Years) Yields a High Rate of Germline Pathogenic Variants, Mainly in the BRCA1, TP53, and BRCA2 Genes. Cancers (Basel) 2024; 16:2368. [PMID: 39001430 PMCID: PMC11240773 DOI: 10.3390/cancers16132368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Early-onset breast cancer constitutes a major criterion for genetic testing referral. Nevertheless, studies focusing on breast cancer patients (≤30 years) are limited. We investigated the contribution and spectrum of known breast-cancer-associated genes in 267 Greek women with breast cancer ≤30 years while monitoring their clinicopathological characteristics and outcomes. In this cohort, a significant proportion (39.7%) carried germline pathogenic variants (PVs) distributed in 8 genes. The majority, namely 36.7%, involved BRCA1, TP53, and BRCA2. PVs in BRCA1 were the most prevalent (28.1%), followed by TP53 (4.5%) and BRCA2 (4.1%) PVs. The contribution of PVs in CHEK2, ATM, PALB2, PTEN, and RAD51C was limited to 3%. In the patient group ≤26 years, TP53 PVs were significantly higher compared to the group 26-30 years (p = 0.0023). A total of 74.8% of TP53 carriers did not report a family history of cancer. Carriers of PVs receiving neoadjuvant chemotherapy showed an improved event-free survival (p < 0.0001) compared to non-carriers. Overall, many women with early-onset breast cancer carry clinically actionable variants, mainly in the BRCA1/2 and TP53 genes. The inclusion of timely testing of TP53 in these patients provides essential information for appropriate clinical management. This is important for countries where reimbursement involves the cost of genetic analysis of BRCA1/2 only.
Collapse
Affiliation(s)
- Paraskevi Apostolou
- Human Molecular Genetics Laboratory, National Center for Scientific Research "Demokritos", 15341 Athens, Greece
| | - Vasiliki Dellatola
- Human Molecular Genetics Laboratory, National Center for Scientific Research "Demokritos", 15341 Athens, Greece
| | - Athanasios Papathanasiou
- Human Molecular Genetics Laboratory, National Center for Scientific Research "Demokritos", 15341 Athens, Greece
| | | | - Elena Fountzilas
- Department of Medical Oncology, St. Lukes's Hospital, 55236 Thessaloniki, Greece
- European University Cyprus, 6, Diogenes 2404 Engomi, Nicosia 1516, Cyprus
| | | | | | - Drakoulis Yannoukakos
- Human Molecular Genetics Laboratory, National Center for Scientific Research "Demokritos", 15341 Athens, Greece
| | - Irene Konstantopoulou
- Human Molecular Genetics Laboratory, National Center for Scientific Research "Demokritos", 15341 Athens, Greece
| | - Florentia Fostira
- Human Molecular Genetics Laboratory, National Center for Scientific Research "Demokritos", 15341 Athens, Greece
| |
Collapse
|
5
|
Zhu Z, Jiang L, Ding X. Advancing Breast Cancer Heterogeneity Analysis: Insights from Genomics, Transcriptomics and Proteomics at Bulk and Single-Cell Levels. Cancers (Basel) 2023; 15:4164. [PMID: 37627192 PMCID: PMC10452610 DOI: 10.3390/cancers15164164] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/23/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Breast cancer continues to pose a significant healthcare challenge worldwide for its inherent molecular heterogeneity. This review offers an in-depth assessment of the molecular profiling undertaken to understand this heterogeneity, focusing on multi-omics strategies applied both in traditional bulk and single-cell levels. Genomic investigations have profoundly informed our comprehension of breast cancer, enabling its categorization into six intrinsic molecular subtypes. Beyond genomics, transcriptomics has rendered deeper insights into the gene expression landscape of breast cancer cells. It has also facilitated the formulation of more precise predictive and prognostic models, thereby enriching the field of personalized medicine in breast cancer. The comparison between traditional and single-cell transcriptomics has identified unique gene expression patterns and facilitated the understanding of cell-to-cell variability. Proteomics provides further insights into breast cancer subtypes by illuminating intricate protein expression patterns and their post-translational modifications. The adoption of single-cell proteomics has been instrumental in this regard, revealing the complex dynamics of protein regulation and interaction. Despite these advancements, this review underscores the need for a holistic integration of multiple 'omics' strategies to fully decipher breast cancer heterogeneity. Such integration not only ensures a comprehensive understanding of breast cancer's molecular complexities, but also promotes the development of personalized treatment strategies.
Collapse
Affiliation(s)
- Zijian Zhu
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai 200030, China;
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200025, China;
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai 200030, China;
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200025, China;
| |
Collapse
|
6
|
Sakibuzzaman M, Mahmud S, Afroze T, Fathma S, Zakia UB, Afroz S, Zafar F, Hossain M, Barua A, Akter S, Chowdhury HI, Ahsan E, Eshan SH, Fariza TT. Pathology of breast cancer metastasis and a view of metastasis to the brain. Int J Neurosci 2023; 133:544-554. [PMID: 34044732 DOI: 10.1080/00207454.2021.1935929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
Despite the advances in diagnosis and management of breast cancer, metastasis has been responsible for the staggering percentage of breast cancer-related death. Mortality threat can be explained mostly by the lack of proper understanding of the diversity of pathological features and underlying mechanism of breast cancer metastasis and effective targeted therapy. Breast cancer stem cells (BCSCs) are the potential source of tumor cells spread to distant organs. BCSCs targeted therapy can suppress the breast cancer progression to metastasis. Spreading of tumor cells to the bone, lung, liver, and brain occurs through a distinct non-random process; called metastasis organotropism. Recently, brain metastasis in breast cancer patients has been detected more frequently, causing a significant clinical burden. BRCA1 and BRCA2 associated breast cancers carry a remarkably higher propensity of CNS metastasis. BRCA1 and BRCA2 associated breast cancers commonly have the propensity to be the triple-negative (TN) and hormone receptors (HR)-positive/human epidermal growth factor receptor 2 (HER2)-negative molecular subtypes, respectively. Regardless of molecular subtypes, metastasis is most commonly evident at the bone. Heterogeneity is a critical pathological feature, leads to therapeutic resistance. BCSCs, biomarkers expression patterns, and mutations contribute to heterogeneity. In this paper, we discuss crucial pathological features of breast cancer metastasis, emphasizing metastasis organotropism and heterogeneity; and mechanisms of breast cancer metastasis, highlighting the pathways of metastasis to the brain. We consider that this paper reinforces future research areas and benefits the general readers, physicians, and researchers to identify potential areas to develop targeted therapies.
Collapse
Affiliation(s)
- Md Sakibuzzaman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Shahriar Mahmud
- Sher-E-Bangla Medical College and Hospital, Barisal, Bangladesh
| | | | - Sawsan Fathma
- Bangladesh Medical College and Hospital, Dhaka, Bangladesh
| | | | - Sabrina Afroz
- Faridpur Medical College and Hospital, Faridpur, Bangladesh
| | - Farzina Zafar
- Shaheed Suhrawardy Medical College and Hospital, Dhaka, Bangladesh
| | - Maksuda Hossain
- Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Amit Barua
- Institute of Applied Health Sciences, Chattogram, Bangladesh
| | - Sabiha Akter
- Sher-E-Bangla Medical College and Hospital, Barisal, Bangladesh
| | | | - Eram Ahsan
- Medical College for Women and Hospital, Dhaka, Bangladesh
| | - Shayet Hossain Eshan
- Department of Internal Medicine, Amita Health Saint Joseph Hospital Chicago, Chicago, IL, USA
| | | |
Collapse
|
7
|
Sokolova A, Johnstone KJ, McCart Reed AE, Simpson PT, Lakhani SR. Hereditary breast cancer: syndromes, tumour pathology and molecular testing. Histopathology 2023; 82:70-82. [PMID: 36468211 PMCID: PMC10953374 DOI: 10.1111/his.14808] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/12/2022] [Accepted: 09/18/2022] [Indexed: 12/09/2022]
Abstract
Hereditary factors account for a significant proportion of breast cancer risk. Approximately 20% of hereditary breast cancers are attributable to pathogenic variants in the highly penetrant BRCA1 and BRCA2 genes. A proportion of the genetic risk is also explained by pathogenic variants in other breast cancer susceptibility genes, including ATM, CHEK2, PALB2, RAD51C, RAD51D and BARD1, as well as genes associated with breast cancer predisposition syndromes - TP53 (Li-Fraumeni syndrome), PTEN (Cowden syndrome), CDH1 (hereditary diffuse gastric cancer), STK11 (Peutz-Jeghers syndrome) and NF1 (neurofibromatosis type 1). Polygenic risk, the cumulative risk from carrying multiple low-penetrance breast cancer susceptibility alleles, is also a well-recognised contributor to risk. This review provides an overview of the established breast cancer susceptibility genes as well as breast cancer predisposition syndromes, highlights distinct genotype-phenotype correlations associated with germline mutation status and discusses molecular testing and therapeutic implications in the context of hereditary breast cancer.
Collapse
Affiliation(s)
- A Sokolova
- Sullivan and Nicolaides PathologyBrisbane
- Centre for Clinical Research, Faculty of MedicineThe University of QueenslandBrisbane
| | - K J Johnstone
- Centre for Clinical Research, Faculty of MedicineThe University of QueenslandBrisbane
- Pathology Queensland, The Royal Brisbane and Women's HospitalBrisbaneQueenslandAustralia
| | - A E McCart Reed
- Centre for Clinical Research, Faculty of MedicineThe University of QueenslandBrisbane
| | - P T Simpson
- Centre for Clinical Research, Faculty of MedicineThe University of QueenslandBrisbane
| | - S R Lakhani
- Centre for Clinical Research, Faculty of MedicineThe University of QueenslandBrisbane
- Pathology Queensland, The Royal Brisbane and Women's HospitalBrisbaneQueenslandAustralia
| |
Collapse
|
8
|
Tenedini E, Piana S, Toss A, Marino M, Barbieri E, Artuso L, Venturelli M, Gasparini E, Mandato VD, Marchi I, Castellano S, Luppi M, Trenti T, Cortesi L, Tagliafico E. Constitutional Mosaicism: A Critical Issue in the Definition of BRCA-Inherited Cancer Risk. JCO Precis Oncol 2022; 6:e2200138. [PMID: 36075010 PMCID: PMC9489180 DOI: 10.1200/po.22.00138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Elena Tenedini
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics Unit, Modena University Hospital, Modena, Italy
| | - Simonetta Piana
- Pathology Unit, Azienda USL-IRCCS Reggio Emilia, Reggio Emilia, Italy
| | - Angela Toss
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Department of Oncology and Hematology, Modena University Hospital, Modena, Italy
| | - Marco Marino
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics Unit, Modena University Hospital, Modena, Italy
| | - Elena Barbieri
- Department of Oncology and Hematology, Modena University Hospital, Modena, Italy
| | - Lucia Artuso
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics Unit, Modena University Hospital, Modena, Italy
| | - Marta Venturelli
- Department of Oncology and Hematology, Modena University Hospital, Modena, Italy
| | - Elisa Gasparini
- Oncology Unit, Azienda USL-IRCCS Reggio Emilia, Reggio Emilia, Italy
| | - Vincenzo Dario Mandato
- Unit of Obstetrics and Gynecology, Azienda USL-IRCCS Reggio Emilia, Reggio Emilia, Italy
| | - Isabella Marchi
- Department of Oncology and Hematology, Modena University Hospital, Modena, Italy
| | - Sara Castellano
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Mario Luppi
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Department of Oncology and Hematology, Modena University Hospital, Modena, Italy
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics Unit, Modena University Hospital, Modena, Italy
| | - Laura Cortesi
- Department of Oncology and Hematology, Modena University Hospital, Modena, Italy
| | - Enrico Tagliafico
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics Unit, Modena University Hospital, Modena, Italy.,Center for Genome Research, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
9
|
Layman RM, Lin H, Gutierrez Barrera AM, Karuturi MS, Yam C, Arun BK. Clinical outcomes and Oncotype DX Breast Recurrence Score® in early-stage BRCA-associated hormone receptor-positive breast cancer. Cancer Med 2022; 11:1474-1483. [PMID: 35128817 PMCID: PMC8921901 DOI: 10.1002/cam4.4566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/20/2021] [Accepted: 12/07/2021] [Indexed: 12/20/2022] Open
Abstract
Background BRCA‐associated breast cancers tend to have distinctive features compared to sporadic breast cancers; further characterization can aid in optimizing treatment. Methods The study evaluated a patient cohort with early‐stage estrogen receptor positive, HER2 negative invasive breast cancer who had Oncotype DX Breast Recurrence Score® analysis and genetic testing for hereditary breast and ovarian cancer syndrome. Data on patients and their breast cancers with outcomes were collected and analyzed. Results 745 patients were included, of whom 33 had pathogenic BRCA mutations (8 BRCA1, 25 BRCA2). Patients with BRCA mutations were younger and received more adjuvant chemotherapy, but less endocrine therapy and radiation therapy. BRCA‐associated breast cancers had less progesterone receptor expression, higher nuclear grade, and higher Oncotype DX Breast Recurrence Scores® with median Recurrence Score® 29, compared to 16 in cancers without mutations (p < 0.0001). Breast cancer recurrence developed in 18% of patients with BRCA mutations and 9% of patient without mutations, although multivariate analysis of relapse‐free survival was not significant, HR 1.519 (95% confidence interval [CI] 0.64–3.58; p = 0.3401). After adjusting for Recurrence Score®, overall survival by BRCA status was improved HR 0.448 (95% CI 0.06–3.34; p = 0.4333). Conclusions BRCA‐associated early‐stage hormone receptor‐positive breast cancers have higher Oncotype DX Breast Recurrence Score® compared to those without mutations. BRCA status did not significantly impact relapse‐free survival and overall survival. Larger clinical trials are needed to further assess the findings, and if confirmed, could impact clinical management of BRCA‐associated breast cancers.
Collapse
Affiliation(s)
- Rachel M Layman
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Heather Lin
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Meghan S Karuturi
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Clinton Yam
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Banu K Arun
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
10
|
BRCA Variations Risk Assessment in Breast Cancers Using Different Artificial Intelligence Models. Genes (Basel) 2021; 12:genes12111774. [PMID: 34828379 PMCID: PMC8623958 DOI: 10.3390/genes12111774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 01/03/2023] Open
Abstract
Artificial intelligence provides modelling on machines by simulating the human brain using learning and decision-making abilities. Early diagnosis is highly effective in reducing mortality in cancer. This study aimed to combine cancer-associated risk factors including genetic variations and design an artificial intelligence system for risk assessment. Data from a total of 268 breast cancer patients have been analysed for 16 different risk factors including genetic variant classifications. In total, 61 BRCA1, 128 BRCA2 and 11 both BRCA1 and BRCA2 genes associated breast cancer patients’ data were used to train the system using Mamdani’s Fuzzy Inference Method and Feed-Forward Neural Network Method as the model softwares on MATLAB. Sixteen different tests were performed on twelve different subjects who had not been introduced to the system before. The rates for neural network were 99.9% for training success, 99.6% for validation success and 99.7% for test success. Despite neural network’s overall success was slightly higher than fuzzy logic accuracy, the results from developed systems were similar (99.9% and 95.5%, respectively). The developed models make predictions from a wider perspective using more risk factors including genetic variation data compared with similar studies in the literature. Overall, this artificial intelligence models present promising results for BRCA variations’ risk assessment in breast cancers as well as a unique tool for personalized medicine software.
Collapse
|
11
|
Masood S. The role of pathologists in recognition of morphologic and biologic features of genetically mutated breast cancer. Breast J 2021; 26:1583-1588. [PMID: 32845077 DOI: 10.1111/tbj.14012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/30/2022]
Abstract
The recent introduction of genomic medicine and emphasis on optimizing breast cancer risk reduction mortalities has provided opportunities for pathologists to partner with clinicians in advancing the diagnosis and management of breast cancer patients. The discovery of breast cancer genes BRCA1, BRCA2, and other breast cancer genes is considered a major breakthrough in the understanding of hereditary breast cancer. These discoveries have contributed to investigate the nature of tumorigenesis and the genetic and molecular pathology in multistep tumor development, as well as their relationship to endocrine and environmental factors. The recognition of unique morphologic and biological features associated with genetically mutated breast cancer by pathologists may have an impact on appropriate follow-up management of breast cancer patients.
Collapse
Affiliation(s)
- Shahla Masood
- Department of Pathology and Laboratory Medicine, University of Florida College of Medicine - Jax, Jacksonville, Florida, USA
| |
Collapse
|
12
|
BRCA1/2 Mutation Detection in the Tumor Tissue from Selected Polish Patients with Breast Cancer Using Next Generation Sequencing. Genes (Basel) 2021; 12:genes12040519. [PMID: 33918338 PMCID: PMC8065856 DOI: 10.3390/genes12040519] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/24/2022] Open
Abstract
(1) Background: Although, in the mutated BRCA detected in the Polish population of patients with breast cancer, there is a large percentage of recurrent pathogenic variants, an increasing need for the assessment of rare BRCA1/2 variants using NGS can be observed. (2) Methods: We studied 75 selected patients with breast cancer (negative for the presence of 5 mutations tested in the Polish population in the prophylactic National Cancer Control Program). DNA extracted from the cancer tissue of these patients was used to prepare a library and to sequence all coding regions of the BRCA1/2 genes. (3) Results: We detected nine pathogenic variants in 8 out of 75 selected patients (10.7%). We identified one somatic and eight germline variants. We also used different bioinformatic NGS software programs to analyze NGS FASTQ files and established that tertiary analysis performed with different tools was more likely to give the same outcome if we analyzed files received from secondary analysis using the same method. (4) Conclusions: Our study emphasizes (i) the importance of an NGS validation process with a bioinformatic procedure included; (ii) the importance of screening both somatic and germline pathogenic variants; (iii) the urgent need to identify additional susceptible genes in order to explain the high percentage of non-BRCA-related hereditary cases of breast cancer.
Collapse
|
13
|
Coignard J, Lush M, Beesley J, O'Mara TA, Dennis J, Tyrer JP, Barnes DR, McGuffog L, Leslie G, Bolla MK, Adank MA, Agata S, Ahearn T, Aittomäki K, Andrulis IL, Anton-Culver H, Arndt V, Arnold N, Aronson KJ, Arun BK, Augustinsson A, Azzollini J, Barrowdale D, Baynes C, Becher H, Bermisheva M, Bernstein L, Białkowska K, Blomqvist C, Bojesen SE, Bonanni B, Borg A, Brauch H, Brenner H, Burwinkel B, Buys SS, Caldés T, Caligo MA, Campa D, Carter BD, Castelao JE, Chang-Claude J, Chanock SJ, Chung WK, Claes KBM, Clarke CL, Collée JM, Conroy DM, Czene K, Daly MB, Devilee P, Diez O, Ding YC, Domchek SM, Dörk T, Dos-Santos-Silva I, Dunning AM, Dwek M, Eccles DM, Eliassen AH, Engel C, Eriksson M, Evans DG, Fasching PA, Flyger H, Fostira F, Friedman E, Fritschi L, Frost D, Gago-Dominguez M, Gapstur SM, Garber J, Garcia-Barberan V, García-Closas M, García-Sáenz JA, Gaudet MM, Gayther SA, Gehrig A, Georgoulias V, Giles GG, Godwin AK, Goldberg MS, Goldgar DE, González-Neira A, Greene MH, Guénel P, Haeberle L, Hahnen E, Haiman CA, Håkansson N, Hall P, Hamann U, Harrington PA, Hart SN, He W, Hogervorst FBL, Hollestelle A, Hopper JL, Horcasitas DJ, Hulick PJ, et alCoignard J, Lush M, Beesley J, O'Mara TA, Dennis J, Tyrer JP, Barnes DR, McGuffog L, Leslie G, Bolla MK, Adank MA, Agata S, Ahearn T, Aittomäki K, Andrulis IL, Anton-Culver H, Arndt V, Arnold N, Aronson KJ, Arun BK, Augustinsson A, Azzollini J, Barrowdale D, Baynes C, Becher H, Bermisheva M, Bernstein L, Białkowska K, Blomqvist C, Bojesen SE, Bonanni B, Borg A, Brauch H, Brenner H, Burwinkel B, Buys SS, Caldés T, Caligo MA, Campa D, Carter BD, Castelao JE, Chang-Claude J, Chanock SJ, Chung WK, Claes KBM, Clarke CL, Collée JM, Conroy DM, Czene K, Daly MB, Devilee P, Diez O, Ding YC, Domchek SM, Dörk T, Dos-Santos-Silva I, Dunning AM, Dwek M, Eccles DM, Eliassen AH, Engel C, Eriksson M, Evans DG, Fasching PA, Flyger H, Fostira F, Friedman E, Fritschi L, Frost D, Gago-Dominguez M, Gapstur SM, Garber J, Garcia-Barberan V, García-Closas M, García-Sáenz JA, Gaudet MM, Gayther SA, Gehrig A, Georgoulias V, Giles GG, Godwin AK, Goldberg MS, Goldgar DE, González-Neira A, Greene MH, Guénel P, Haeberle L, Hahnen E, Haiman CA, Håkansson N, Hall P, Hamann U, Harrington PA, Hart SN, He W, Hogervorst FBL, Hollestelle A, Hopper JL, Horcasitas DJ, Hulick PJ, Hunter DJ, Imyanitov EN, Jager A, Jakubowska A, James PA, Jensen UB, John EM, Jones ME, Kaaks R, Kapoor PM, Karlan BY, Keeman R, Khusnutdinova E, Kiiski JI, Ko YD, Kosma VM, Kraft P, Kurian AW, Laitman Y, Lambrechts D, Le Marchand L, Lester J, Lesueur F, Lindstrom T, Lopez-Fernández A, Loud JT, Luccarini C, Mannermaa A, Manoukian S, Margolin S, Martens JWM, Mebirouk N, Meindl A, Miller A, Milne RL, Montagna M, Nathanson KL, Neuhausen SL, Nevanlinna H, Nielsen FC, O'Brien KM, Olopade OI, Olson JE, Olsson H, Osorio A, Ottini L, Park-Simon TW, Parsons MT, Pedersen IS, Peshkin B, Peterlongo P, Peto J, Pharoah PDP, Phillips KA, Polley EC, Poppe B, Presneau N, Pujana MA, Punie K, Radice P, Rantala J, Rashid MU, Rennert G, Rennert HS, Robson M, Romero A, Rossing M, Saloustros E, Sandler DP, Santella R, Scheuner MT, Schmidt MK, Schmidt G, Scott C, Sharma P, Soucy P, Southey MC, Spinelli JJ, Steinsnyder Z, Stone J, Stoppa-Lyonnet D, Swerdlow A, Tamimi RM, Tapper WJ, Taylor JA, Terry MB, Teulé A, Thull DL, Tischkowitz M, Toland AE, Torres D, Trainer AH, Truong T, Tung N, Vachon CM, Vega A, Vijai J, Wang Q, Wappenschmidt B, Weinberg CR, Weitzel JN, Wendt C, Wolk A, Yadav S, Yang XR, Yannoukakos D, Zheng W, Ziogas A, Zorn KK, Park SK, Thomassen M, Offit K, Schmutzler RK, Couch FJ, Simard J, Chenevix-Trench G, Easton DF, Andrieu N, Antoniou AC. A case-only study to identify genetic modifiers of breast cancer risk for BRCA1/BRCA2 mutation carriers. Nat Commun 2021; 12:1078. [PMID: 33990587 PMCID: PMC7890067 DOI: 10.1038/s41467-020-20496-3] [Show More Authors] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/19/2020] [Indexed: 02/02/2023] Open
Abstract
Breast cancer (BC) risk for BRCA1 and BRCA2 mutation carriers varies by genetic and familial factors. About 50 common variants have been shown to modify BC risk for mutation carriers. All but three, were identified in general population studies. Other mutation carrier-specific susceptibility variants may exist but studies of mutation carriers have so far been underpowered. We conduct a novel case-only genome-wide association study comparing genotype frequencies between 60,212 general population BC cases and 13,007 cases with BRCA1 or BRCA2 mutations. We identify robust novel associations for 2 variants with BC for BRCA1 and 3 for BRCA2 mutation carriers, P < 10-8, at 5 loci, which are not associated with risk in the general population. They include rs60882887 at 11p11.2 where MADD, SP11 and EIF1, genes previously implicated in BC biology, are predicted as potential targets. These findings will contribute towards customising BC polygenic risk scores for BRCA1 and BRCA2 mutation carriers.
Collapse
Affiliation(s)
- Juliette Coignard
- Genetic Epidemiology of Cancer team, Inserm, U900, Paris, France
- Institut Curie Paris, Paris, France
- Mines ParisTech Fontainebleau, Paris, France
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- PSL University Paris, Paris, France
- Paris Sud University, Orsay, France
| | - Michael Lush
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jonathan Beesley
- Department of Genetics and Computational Biology QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Tracy A O'Mara
- Department of Genetics and Computational Biology QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jonathan P Tyrer
- Centre for Cancer Genetic Epidemiology, Department of Oncology University of Cambridge, Cambridge, UK
| | - Daniel R Barnes
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Lesley McGuffog
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Goska Leslie
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Muriel A Adank
- Family Cancer Clinic, The Netherlands Cancer Institute, Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Simona Agata
- Immunology and Molecular Oncology, Unit Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Thomas Ahearn
- Division of Cancer Epidemiology and Genetics National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Kristiina Aittomäki
- Department of Clinical Genetics, Helsinki University Hospital University of Helsinki, Helsinki, Finland
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics University of Toronto, Toronto, ON, Canada
| | - Hoda Anton-Culver
- Department of Epidemiology, Genetic Epidemiology Research Institute University of California Irvine, Irvine, CA, USA
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Norbert Arnold
- Department of Gynaecology and Obstetrics University Hospital of Schleswig-Holstein, Campus Kiel, Christian-Albrechts University Kiel, Kiel, Germany
- Institute of Clinical Molecular Biology University Hospital of Schleswig-Holstein, Campus Kiel, Christian-Albrechts University Kiel, Kiel, Germany
| | - Kristan J Aronson
- Department of Public Health Sciences, and Cancer Research Institute Queen's University, Kingston, ON, Canada
| | - Banu K Arun
- Department of Breast Medical Oncology University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Annelie Augustinsson
- Department of Cancer Epidemiology, Clinical Sciences Lund University, Lund, 22242, Sweden
| | - Jacopo Azzollini
- Unit of Medical Genetics, Department of Medical Oncology and Hematology Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Daniel Barrowdale
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Caroline Baynes
- Centre for Cancer Genetic Epidemiology, Department of Oncology University of Cambridge, Cambridge, UK
| | - Heiko Becher
- Institute for Medical Biometrics and Epidemiology University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marina Bermisheva
- Institute of Biochemistry and Genetics Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
| | - Leslie Bernstein
- Department of Population Sciences Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Katarzyna Białkowska
- Department of Genetics and Pathology Pomeranian Medical University Szczecin, Szczecin, Poland
| | - Carl Blomqvist
- Department of Oncology, Helsinki University Hospital University of Helsinki, Helsinki, Finland
- Department of Oncology Örebro University Hospital, Örebro, Sweden
| | - Stig E Bojesen
- Copenhagen General Population Study, Herlev and Gentofte Hospital Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital Copenhagen University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Ake Borg
- Department of Oncology Lund University and Skåne University Hospital, Lund, Sweden
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- iFIT-Cluster of Excellence University of Tübingen, Tübingen, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Barbara Burwinkel
- Molecular Epidemiology Group, C080 German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Biology of Breast Cancer, University Womens Clinic Heidelberg University of Heidelberg, Heidelberg, Germany
| | - Saundra S Buys
- Department of Medicine Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Trinidad Caldés
- Molecular Oncology Laboratory CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Maria A Caligo
- SOD Genetica Molecolare University Hospital, Pisa, Italy
| | - Daniele Campa
- Department of Biology University of Pisa, Pisa, Italy
- Division of Cancer Epidemiology German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Brian D Carter
- Behavioral and Epidemiology Research Group American Cancer Society Atlanta, Atlanta, GA, USA
| | - Jose E Castelao
- Oncology and Genetics Unit Instituto de Investigacion Sanitaria Galicia Sur (IISGS), Xerencia de Xestion Integrada de Vigo-SERGAS, Vigo, Spain
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH) University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University, New York, NY, USA
| | | | - Christine L Clarke
- Westmead Institute for Medical Research University of Sydney, Sydney, NSW, Australia
| | - J Margriet Collée
- Department of Clinical Genetics Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Don M Conroy
- Centre for Cancer Genetic Epidemiology, Department of Oncology University of Cambridge, Cambridge, UK
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mary B Daly
- Department of Clinical Genetics Fox Chase Cancer Center Philadelphia, Philadelphia, PA, USA
| | - Peter Devilee
- Department of Pathology Leiden University Medical Center, Leiden, The Netherlands
- Department of Human Genetics Leiden University Medical Center, Leiden, The Netherlands
| | - Orland Diez
- Oncogenetics Group Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Clinical and Molecular Genetics Area University Hospital Vall d'Hebron, Barcelona, Spain
| | - Yuan Chun Ding
- Department of Population Sciences Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Susan M Domchek
- Basser Center for BRCA, Abramson Cancer Center University of Pennsylvania, Philadelphia, PA, USA
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Isabel Dos-Santos-Silva
- Department of Non-Communicable Disease Epidemiology London School of Hygiene and Tropical Medicine, London, UK
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology University of Cambridge, Cambridge, UK
| | - Miriam Dwek
- School of Life Sciences University of Westminster, London, UK
| | - Diana M Eccles
- Faculty of Medicine University of Southampton, Southampton, UK
| | - A Heather Eliassen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Epidemiology Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and Epidemiology University of Leipzig, Leipzig, Germany
| | - Mikael Eriksson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - D Gareth Evans
- Genomic Medicine, Division of Evolution and Genomic Sciences The University of Manchester, Manchester Academic Health Science Centre, Manchester Universities Foundation Trust, St Mary's Hospital, Manchester, UK
- Genomic Medicine, North West Genomics hub Manchester Academic Health Science Centre, Manchester Universities Foundation Trust, St Mary's Hospital, Manchester, UK
| | - Peter A Fasching
- David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology University of California at Los Angeles, Los Angeles, CA, USA
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center ER-EMN University Hospital Erlangen, Friedrich-Alexander-University, Erlangen-Nuremberg, Erlangen, Germany
| | - Henrik Flyger
- Department of Breast Surgery, Herlev and Gentofte Hospital Copenhagen University Hospital, Herlev, Denmark
| | - Florentia Fostira
- Molecular Diagnostics Laboratory, INRASTES National Centre for Scientific Research íDemokritosí, Athens, Greece
| | - Eitan Friedman
- The Susanne Levy Gertner Oncogenetics Unit Chaim Sheba Medical Center, Ramat Gan, Israel
- Sackler Faculty of Medicine Tel Aviv University, Ramat Aviv, Israel
| | - Lin Fritschi
- School of Public Health Curtin University, Perth, Western Australia, Australia
| | - Debra Frost
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Manuela Gago-Dominguez
- Genomic Medicine Group, Galician Foundation of Genomic Medicine Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
- Moores Cancer Center University of California, San Diego La Jolla, CA, USA
| | - Susan M Gapstur
- Behavioral and Epidemiology Research Group American Cancer Society Atlanta, Atlanta, GA, USA
| | - Judy Garber
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Vanesa Garcia-Barberan
- Medical Oncology Department, Hospital Clínico San Carlos Instituto de Investigación Sanitaria San Carlos (IdISSC), Centro Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - José A García-Sáenz
- Medical Oncology Department, Hospital Clínico San Carlos Instituto de Investigación Sanitaria San Carlos (IdISSC), Centro Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Mia M Gaudet
- Behavioral and Epidemiology Research Group American Cancer Society Atlanta, Atlanta, GA, USA
| | - Simon A Gayther
- Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Andrea Gehrig
- Department of Human Genetics University Würzburg, Würzburg, Germany
| | | | - Graham G Giles
- Cancer Epidemiology Division Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health Monash University, Clayton, VIC, Australia
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Mark S Goldberg
- Department of Medicine, McGill University, Montréal, QC, Canada
- Division of Clinical Epidemiology, Royal Victoria Hospital McGill University Montréal, Montréal, QC, Canada
| | - David E Goldgar
- Huntsman Cancer Institute and Department of Dermatology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Anna González-Neira
- Human Cancer Genetics Programme Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Mark H Greene
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics National Cancer Institute, Bethesda, MD, USA
| | - Pascal Guénel
- Cancer & Environment Group, Center for Research in Epidemiology and Population Health (CESP) INSERM, University Paris-Sud, University Paris-Saclay, Villejuif, France
| | - Lothar Haeberle
- Department of Gynaecology and Obstetrics, University Hospital Erlangen Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Eric Hahnen
- Center for Hereditary Breast and Ovarian Cancer Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO) Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine University of Southern California, Los Angeles, CA, USA
| | | | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | - Ute Hamann
- Molecular Genetics of Breast Cancer German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patricia A Harrington
- Centre for Cancer Genetic Epidemiology, Department of Oncology University of Cambridge, Cambridge, UK
| | - Steven N Hart
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Wei He
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Frans B L Hogervorst
- Family Cancer Clinic, The Netherlands Cancer Institute, Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Antoinette Hollestelle
- Department of Medical Oncology, Family Cancer Clinic Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Darling J Horcasitas
- New Mexico Oncology Hematology Consultants, University of New Mexico, Albuquerque, NM, USA
| | - Peter J Hulick
- Center for Medical Genetics NorthShore University HealthSystem, Evanston, IL, USA
- The University of Chicago Pritzker School of Medicine Chicago, Chicago, IL, USA
| | - David J Hunter
- Department of Epidemiology Harvard TH Chan School of Public Health, Boston, MA, USA
- Program in Genetic Epidemiology and Statistical Genetics Harvard TH Chan School of Public Health Boston, Boston, MA, USA
- Nuffield Department of Population Health University of Oxford, Oxford, UK
| | | | - Agnes Jager
- Department of Medical Oncology, Family Cancer Clinic Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Anna Jakubowska
- Department of Genetics and Pathology Pomeranian Medical University Szczecin, Szczecin, Poland
- Independent Laboratory of Molecular Biology and Genetic Diagnostics Pomeranian Medical University, Szczecin, Poland
| | - Paul A James
- Sir Peter MacCallum Department of Oncology The University of Melbourne, Melbourne, VIC, Australia
- Parkville Familial Cancer Centre Peter MacCallum Cancer Center, Melbourne, VIC, Australia
| | - Uffe Birk Jensen
- Department of Clinical Genetics Aarhus, University Hospital, Aarhus, Denmark
| | - Esther M John
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael E Jones
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Rudolf Kaaks
- Division of Cancer Epidemiology German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pooja Middha Kapoor
- Division of Cancer Epidemiology German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Genetics and Epidemiology The Institute of Cancer Research, London, UK
| | - Beth Y Karlan
- Faculty of Medicine University of Heidelberg, Heidelberg, Germany
- David Geffen School of Medicine, Department of Obstetrics and Gynecology University of California at Los Angeles, Los Angeles, CA, USA
| | - Renske Keeman
- Womenís Cancer Program at the Samuel Oschin Comprehensive Cancer Institute Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
- Division of Molecular Pathology The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Johanna I Kiiski
- Department of Genetics and Fundamental Medicine Bashkir State Medical University, Ufa, Russia
| | - Yon-Dschun Ko
- Department of Obstetrics and Gynecology, Helsinki University Hospital University of Helsinki, Helsinki, Finland
| | - Veli-Matti Kosma
- Department of Internal Medicine, Evangelische Kliniken Bonn gGmbH Johanniter Krankenhaus, Bonn, Germany
- Translational Cancer Research Area University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine University of Eastern Finland, Kuopio, Finland
| | - Peter Kraft
- Department of Epidemiology Harvard TH Chan School of Public Health, Boston, MA, USA
- Program in Genetic Epidemiology and Statistical Genetics Harvard TH Chan School of Public Health Boston, Boston, MA, USA
| | - Allison W Kurian
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Yael Laitman
- The Susanne Levy Gertner Oncogenetics Unit Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Diether Lambrechts
- VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics University of Leuven, Leuven, Belgium
| | - Loic Le Marchand
- Epidemiology Program University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Jenny Lester
- Faculty of Medicine University of Heidelberg, Heidelberg, Germany
- David Geffen School of Medicine, Department of Obstetrics and Gynecology University of California at Los Angeles, Los Angeles, CA, USA
| | - Fabienne Lesueur
- Genetic Epidemiology of Cancer team, Inserm, U900, Paris, France
- Institut Curie Paris, Paris, France
- Mines ParisTech Fontainebleau, Paris, France
- PSL University Paris, Paris, France
| | - Tricia Lindstrom
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Adria Lopez-Fernández
- High Risk and Cancer Prevention Group Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Jennifer T Loud
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics National Cancer Institute, Bethesda, MD, USA
| | - Craig Luccarini
- Centre for Cancer Genetic Epidemiology, Department of Oncology University of Cambridge, Cambridge, UK
| | - Arto Mannermaa
- Department of Internal Medicine, Evangelische Kliniken Bonn gGmbH Johanniter Krankenhaus, Bonn, Germany
- Translational Cancer Research Area University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine University of Eastern Finland, Kuopio, Finland
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Medical Oncology and Hematology Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Sara Margolin
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
- Department of Clinical Science and Education, Södersjukhuset Karolinska Institutet, Stockholm, Sweden
| | - John W M Martens
- Department of Medical Oncology, Family Cancer Clinic Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Noura Mebirouk
- Genetic Epidemiology of Cancer team, Inserm, U900, Paris, France
- Institut Curie Paris, Paris, France
- Mines ParisTech Fontainebleau, Paris, France
- PSL University Paris, Paris, France
| | - Alfons Meindl
- Department of Gynecology and Obstetrics University of Munich, Campus Grosshadern, Munich, Germany
| | - Austin Miller
- NRG Oncology, Statistics and Data Management Center Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Roger L Milne
- Cancer Epidemiology Division Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health Monash University, Clayton, VIC, Australia
| | - Marco Montagna
- Immunology and Molecular Oncology, Unit Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Katherine L Nathanson
- Basser Center for BRCA, Abramson Cancer Center University of Pennsylvania, Philadelphia, PA, USA
| | - Susan L Neuhausen
- Department of Population Sciences Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Heli Nevanlinna
- Department of Genetics and Fundamental Medicine Bashkir State Medical University, Ufa, Russia
| | - Finn C Nielsen
- Center for Genomic Medicine Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Katie M O'Brien
- Epidemiology Branch National Institute of Environmental Health Sciences, NIH Research Triangle Park, Durham, NC, USA
| | | | - Janet E Olson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Håkan Olsson
- Department of Cancer Epidemiology, Clinical Sciences Lund University, Lund, 22242, Sweden
| | - Ana Osorio
- Human Cancer Genetics Programme Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Laura Ottini
- Department of Molecular Medicine University La Sapienza, Rome, Italy
| | | | - Michael T Parsons
- Department of Genetics and Computational Biology QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Inge Sokilde Pedersen
- Molecular Diagnostics Aalborg University Hospital, Aalborg, Denmark
- Clinical Cancer Research Center Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine Aalborg University, Aalborg, Denmark
| | - Beth Peshkin
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Paolo Peterlongo
- Genome Diagnostics Program IFOM - the FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology, Milan, Italy
| | - Julian Peto
- Department of Non-Communicable Disease Epidemiology London School of Hygiene and Tropical Medicine, London, UK
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology University of Cambridge, Cambridge, UK
| | - Kelly-Anne Phillips
- Department of Genetics and Computational Biology QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology The University of Melbourne, Melbourne, VIC, Australia
| | - Eric C Polley
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Bruce Poppe
- Centre for Medical Genetics Ghent University, Gent, Belgium
| | - Nadege Presneau
- School of Life Sciences University of Westminster, London, UK
| | - Miquel Angel Pujana
- Translational Research Laboratory IDIBELL (Bellvitge Biomedical Research Institute), Catalan Institute of Oncology, CIBERONC, Barcelona, Spain
| | - Kevin Punie
- Leuven Multidisciplinary Breast Center, Department of Oncology Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy
| | | | - Muhammad U Rashid
- Molecular Genetics of Breast Cancer German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Basic Sciences Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH & RC), Lahore, Pakistan
| | - Gad Rennert
- Clalit National Cancer Control Center Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel
| | - Hedy S Rennert
- Clalit National Cancer Control Center Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel
| | - Mark Robson
- Clinical Genetics Service, Department of Medicine Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Atocha Romero
- Medical Oncology Department Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Maria Rossing
- Center for Genomic Medicine Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Dale P Sandler
- Epidemiology Branch National Institute of Environmental Health Sciences, NIH Research Triangle Park, Durham, NC, USA
| | - Regina Santella
- Department of Epidemiology, Mailman School of Public Health Columbia University, New York, NY, USA
| | - Maren T Scheuner
- Cancer Genetics and Prevention Program University of California San Francisco, San Francisco, CA, USA
| | - Marjanka K Schmidt
- Womenís Cancer Program at the Samuel Oschin Comprehensive Cancer Institute Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Psychosocial Research and Epidemiology The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Gunnar Schmidt
- Institute of Human Genetics Hannover Medical School, Hannover, Germany
| | - Christopher Scott
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Priyanka Sharma
- Department of Internal Medicine, Division of Medical Oncology University of Kansas Medical Center, Westwood, KS, USA
| | - Penny Soucy
- Genomics Center, Centre Hospitalier Universitaire de Québec - Université Laval Research Center, Québec City, QC, Canada
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health Monash University, Clayton, VIC, Australia
- Department of Clinical Pathology The University of Melbourne, Melbourne, VIC, Australia
| | - John J Spinelli
- Population Oncology BC Cancer, Vancouver, BC, Canada
- School of Population and Public Health University of British Columbia, Vancouver, BC, Canada
| | - Zoe Steinsnyder
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Jennifer Stone
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- The Curtin UWA Centre for Genetic Origins of Health and Disease Curtin University and University of Western Australia, Perth, Western Australia, Australia
| | - Dominique Stoppa-Lyonnet
- Service de Génétique Institut Curie, Paris, France
- Department of Tumour Biology INSERM U830, Paris, France
- Université Paris Descartes, Paris, France
| | - Anthony Swerdlow
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Division of Breast Cancer Research Institute of Cancer Research, London, UK
| | - Rulla M Tamimi
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Epidemiology Harvard TH Chan School of Public Health, Boston, MA, USA
- Program in Genetic Epidemiology and Statistical Genetics Harvard TH Chan School of Public Health Boston, Boston, MA, USA
| | | | - Jack A Taylor
- Epidemiology Branch National Institute of Environmental Health Sciences, NIH Research Triangle Park, Durham, NC, USA
- Epigenetic and Stem Cell Biology Laboratory National Institute of Environmental Health Sciences, NIH Research Triangle Park, Triangle Park, NC, USA
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health Columbia University, New York, NY, USA
| | - Alex Teulé
- Hereditary Cancer Program ONCOBELL-IDIBELL-IDIBGI-IGTP, Catalan Institute of Oncology, CIBERONC, Barcelona, Spain
| | - Darcy L Thull
- Department of Medicine Magee-Womens Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marc Tischkowitz
- Program in Cancer Genetics, Departments of Human Genetics and Oncology McGill University, Montréal, QC, Canada
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Center, University of Cambridge, Cambridge, UK
| | - Amanda E Toland
- Department of Cancer Biology and Genetics The Ohio State University, Columbus, OH, USA
| | - Diana Torres
- Molecular Genetics of Breast Cancer German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Human Genetics Pontificia Universidad Javeriana, Bogota, Colombia
| | - Alison H Trainer
- Parkville Familial Cancer Centre Peter MacCallum Cancer Center, Melbourne, VIC, Australia
- Department of medicine University Of Melbourne, Melbourne, VIC, Australia
| | - Thérèse Truong
- Cancer & Environment Group, Center for Research in Epidemiology and Population Health (CESP) INSERM, University Paris-Sud, University Paris-Saclay, Villejuif, France
| | - Nadine Tung
- Department of Medical Oncology Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Celine M Vachon
- Department of Health Science Research, Division of Epidemiology Mayo Clinic, Rochester, MN, USA
| | - Ana Vega
- Fundación Pública Galega Medicina Xenómica-SERGAS, Instituto de Investigación Sanitaria Santiago de Compostela (IDIS); CIBERER, Santiago de Compostela, Spain
| | - Joseph Vijai
- Clinical Genetics Service, Department of Medicine Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Barbara Wappenschmidt
- Center for Hereditary Breast and Ovarian Cancer Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO) Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Clarice R Weinberg
- Biostatistics and Computational Biology Branch National Institute of Environmental Health Sciences, NIH Research Triangle Park, Triangle Park, NC, USA
| | | | - Camilla Wendt
- Department of Clinical Science and Education, Södersjukhuset Karolinska Institutet, Stockholm, Sweden
| | - Alicja Wolk
- Institute of Environmental Medicine Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences Uppsala University, Uppsala, Sweden
| | | | - Xiaohong R Yang
- Division of Cancer Epidemiology and Genetics National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Drakoulis Yannoukakos
- Molecular Diagnostics Laboratory, INRASTES National Centre for Scientific Research íDemokritosí, Athens, Greece
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Argyrios Ziogas
- Department of Epidemiology, Genetic Epidemiology Research Institute University of California Irvine, Irvine, CA, USA
| | - Kristin K Zorn
- Magee-Womens Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sue K Park
- Department of Preventive Medicine Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences Seoul National University Graduate School, Seoul, Korea
- Cancer Research Institute Seoul National University, Seoul, Korea
| | - Mads Thomassen
- Department of Clinical Genetics Odense University Hospital, Odence C, Denmark
| | - Kenneth Offit
- Clinical Genetics Service, Department of Medicine Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Rita K Schmutzler
- Center for Hereditary Breast and Ovarian Cancer Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO) Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology Mayo Clinic, Rochester, MN, USA
| | - Jacques Simard
- Department of Epidemiology, Genetic Epidemiology Research Institute University of California Irvine, Irvine, CA, USA
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology University of Cambridge, Cambridge, UK
| | - Nadine Andrieu
- Genetic Epidemiology of Cancer team, Inserm, U900, Paris, France.
- Institut Curie Paris, Paris, France.
- Mines ParisTech Fontainebleau, Paris, France.
- PSL University Paris, Paris, France.
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
| |
Collapse
|
14
|
Ye F, Huang L, Lang G, Hu X, Di G, Shao Z, Cao A. Outcomes and risk of subsequent breast events in breast-conserving surgery patients with BRCA1 and BRCA2 mutation. Cancer Med 2020; 9:1903-1910. [PMID: 31912664 PMCID: PMC7050073 DOI: 10.1002/cam4.2836] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 12/18/2019] [Accepted: 12/26/2019] [Indexed: 12/20/2022] Open
Abstract
Purpose Previous studies provide inconsistent interpretations of the effect of inherited genetic factors on the survival and prognosis of patients with breast cancer. The aim of this study was to examine the effect of germline BRCA1 and BRCA2 mutation on survival and subsequent breast events in Chinese women who underwent breast‐conserving surgery. Methods A retrospective review of the clinical and pathological records was performed in patients diagnosed with primary invasive breast cancer between 2005 and 2018 in the cancer registry database. Clinicopathological data and data regarding treatment and outcomes, including date and site of disease progression, were collected. The survival outcomes and independent risk factors were conducted using SPSS. Results Overall, a total of 501 patients who underwent breast‐conserving surgery were identified and subjected to analyses, of which 63 cases with BRCA1 or BRCA2 mutation. The median age at diagnosis was 41 (range, 24‐74) for carriers and 37 (range, 17‐84) for noncarriers. After a median follow‐up time of 61 months (range, 8‐161) and 70 months (range, 0‐153), respectively, in carriers and noncarriers, the overall survival (P = .173) and disease‐free survival (P = .424) were not significantly different. Analogously, there was no significant difference between the two groups about the outcomes of ipsilateral breast tumor recurrence (P = .348), yet the contralateral breast cancer (CBC) was overt worse than noncarriers (P < .001). When adjusted to confounding factors, BRCA mutation was the only independent risk factors to CBC (HR = 7.89, P = .01). Conclusion In this study, BRCA mutation carriers have higher risk of CBC. And, BRCA mutation is the only independent risk factor to CBC. Therefore, intensive surveillance and follow‐up as well as more effective individual prevention are urgent. Decisions on alternatively effective prevention, especially the prevention of CBC, are urgent and should take into account patient prognosis and preferences.
Collapse
Affiliation(s)
- Fugui Ye
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Liang Huang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Guantian Lang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Hu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Genhong Di
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhimin Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ayong Cao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
15
|
Kotsopoulos J. BRCA Mutations and Breast Cancer Prevention. Cancers (Basel) 2018; 10:E524. [PMID: 30572612 PMCID: PMC6315560 DOI: 10.3390/cancers10120524] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/05/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022] Open
Abstract
Women who inherit a deleterious BRCA1 or BRCA2 mutation face substantially increased risks of developing breast cancer, which is estimated at 70%. Although annual screening with magnetic resonance imaging (MRI) and mammography promotes the earlier detection of the disease, the gold standard for the primary prevention of breast cancer remains bilateral mastectomy. In the current paper, I review the evidence regarding the management of healthy BRCA mutation carriers, including key risk factors and protective factors, and also discuss potential chemoprevention options. I also provide an overview of the key findings from the literature published to date, with a focus on data from studies that are well-powered, and preferably prospective in nature.
Collapse
Affiliation(s)
- Joanne Kotsopoulos
- Women's College Research Institute, Women's College Hospital, 76 Grenville Street, 6th Floor, Toronto, ON M5S 1B2, Canada.
- Dalla Lana School of Public Health, University of Toronto, 155 College St, Toronto, ON M5T 3M7, Canada.
| |
Collapse
|
16
|
Heindl A, Khan AM, Rodrigues DN, Eason K, Sadanandam A, Orbegoso C, Punta M, Sottoriva A, Lise S, Banerjee S, Yuan Y. Microenvironmental niche divergence shapes BRCA1-dysregulated ovarian cancer morphological plasticity. Nat Commun 2018. [PMID: 30254278 DOI: 10.1038/s41467-018-06130-3] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
How tumor microenvironmental forces shape plasticity of cancer cell morphology is poorly understood. Here, we conduct automated histology image and spatial statistical analyses in 514 high grade serous ovarian samples to define cancer morphological diversification within the spatial context of the microenvironment. Tumor spatial zones, where cancer cell nuclei diversify in shape, are mapped in each tumor. Integration of this spatially explicit analysis with omics and clinical data reveals a relationship between morphological diversification and the dysregulation of DNA repair, loss of nuclear integrity, and increased disease mortality. Within the Immunoreactive subtype, spatial analysis further reveals significantly lower lymphocytic infiltration within diversified zones compared with other tumor zones, suggesting that even immune-hot tumors contain cells capable of immune escape. Our findings support a model whereby a subpopulation of morphologically plastic cancer cells with dysregulated DNA repair promotes ovarian cancer progression through positive selection by immune evasion.
Collapse
Affiliation(s)
- Andreas Heindl
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK.,Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Adnan Mujahid Khan
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK.,Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Daniel Nava Rodrigues
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Katherine Eason
- Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Anguraj Sadanandam
- Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK.,Centre for Molecular Pathology, Royal Marsden Hospital, London, SM2 5NG, UK
| | - Cecilia Orbegoso
- Gynaecology Unit, The Royal Marsden NHS Foundation Trust, London, SW3 6JJ, UK
| | - Marco Punta
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Andrea Sottoriva
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Stefano Lise
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Susana Banerjee
- Gynaecology Unit, The Royal Marsden NHS Foundation Trust, London, SW3 6JJ, UK.,Division of Clinical Studies, the Institute of Cancer Research, London, UK, SM2 5NG
| | - Yinyin Yuan
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK. .,Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK.
| |
Collapse
|
17
|
Heindl A, Khan AM, Rodrigues DN, Eason K, Sadanandam A, Orbegoso C, Punta M, Sottoriva A, Lise S, Banerjee S, Yuan Y. Microenvironmental niche divergence shapes BRCA1-dysregulated ovarian cancer morphological plasticity. Nat Commun 2018; 9:3917. [PMID: 30254278 PMCID: PMC6156340 DOI: 10.1038/s41467-018-06130-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 08/15/2018] [Indexed: 12/22/2022] Open
Abstract
How tumor microenvironmental forces shape plasticity of cancer cell morphology is poorly understood. Here, we conduct automated histology image and spatial statistical analyses in 514 high grade serous ovarian samples to define cancer morphological diversification within the spatial context of the microenvironment. Tumor spatial zones, where cancer cell nuclei diversify in shape, are mapped in each tumor. Integration of this spatially explicit analysis with omics and clinical data reveals a relationship between morphological diversification and the dysregulation of DNA repair, loss of nuclear integrity, and increased disease mortality. Within the Immunoreactive subtype, spatial analysis further reveals significantly lower lymphocytic infiltration within diversified zones compared with other tumor zones, suggesting that even immune-hot tumors contain cells capable of immune escape. Our findings support a model whereby a subpopulation of morphologically plastic cancer cells with dysregulated DNA repair promotes ovarian cancer progression through positive selection by immune evasion.
Collapse
Affiliation(s)
- Andreas Heindl
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Adnan Mujahid Khan
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Daniel Nava Rodrigues
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Katherine Eason
- Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Anguraj Sadanandam
- Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK
- Centre for Molecular Pathology, Royal Marsden Hospital, London, SM2 5NG, UK
| | - Cecilia Orbegoso
- Gynaecology Unit, The Royal Marsden NHS Foundation Trust, London, SW3 6JJ, UK
| | - Marco Punta
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Andrea Sottoriva
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Stefano Lise
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Susana Banerjee
- Gynaecology Unit, The Royal Marsden NHS Foundation Trust, London, SW3 6JJ, UK
- Division of Clinical Studies, the Institute of Cancer Research, London, UK, SM2 5NG
| | - Yinyin Yuan
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK.
- Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK.
| |
Collapse
|
18
|
Microenvironmental niche divergence shapes BRCA1-dysregulated ovarian cancer morphological plasticity. Nat Commun 2018. [PMID: 30254278 DOI: 10.1038/s41467-018-06130-3]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
How tumor microenvironmental forces shape plasticity of cancer cell morphology is poorly understood. Here, we conduct automated histology image and spatial statistical analyses in 514 high grade serous ovarian samples to define cancer morphological diversification within the spatial context of the microenvironment. Tumor spatial zones, where cancer cell nuclei diversify in shape, are mapped in each tumor. Integration of this spatially explicit analysis with omics and clinical data reveals a relationship between morphological diversification and the dysregulation of DNA repair, loss of nuclear integrity, and increased disease mortality. Within the Immunoreactive subtype, spatial analysis further reveals significantly lower lymphocytic infiltration within diversified zones compared with other tumor zones, suggesting that even immune-hot tumors contain cells capable of immune escape. Our findings support a model whereby a subpopulation of morphologically plastic cancer cells with dysregulated DNA repair promotes ovarian cancer progression through positive selection by immune evasion.
Collapse
|
19
|
Comprehensive Proteomic Profiling–derived Immunohistochemistry-based Prediction Models for BRCA1 and BRCA2 Germline Mutation-related Breast Carcinomas. Am J Surg Pathol 2018; 42:1262-1272. [DOI: 10.1097/pas.0000000000001115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Abdulrahman AA, Heintzelman RC, Corbman M, Garcia FU. Invasive breast carcinomas with ATM gene variants of uncertain significance share distinct histopathologic features. Breast J 2017; 24:291-297. [PMID: 28986972 DOI: 10.1111/tbj.12930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 02/21/2017] [Accepted: 02/24/2017] [Indexed: 01/17/2023]
Abstract
The increasing availability of next-generation sequencing for clinical research dramatically improved our understanding of breast cancer genetics and resulted in detection of new mutation variants. Cancer risk data relating to some of these variants are insufficient, prompting the designation of variants of uncertain significance (VUS). The histopathologic characteristics of these variants have not been previously described. We propose to depict these characteristics and determine if invasive carcinomas with similar VUS genes share similar histomorphologic features. In total, 28 invasive breast cancers with VUS were retrospectively identified. Tumor sections were reviewed and a predefined set of histopathologic characteristics were documented and compared. Nine of the 28 cases were variants in the ATM gene and were found to share similar histologic characteristics; all had tumor cells with low nuclear grade, absent tumor infiltrating lymphocytes, as well as a marked desmoplastic response. A subset of the above findings were identified in variants of other genes but none had all findings collectively. Furthermore, variants of ATM gene had smaller tumor size, lower pathologic T stage at presentation, and more favorable surrogate molecular subtype compared to variants of other genes. These findings could potentially be used to reclassify VUS and predict which patients may harbor ATM mutations, and hence could have implications in triaging toward ATM variant identification for potential future targeted therapy.
Collapse
Affiliation(s)
- Ahmed A Abdulrahman
- Department of Pathology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Rebecca C Heintzelman
- Department of Pathology, Cancer Treatment Centers of America at Eastern Regional Medical Center, Philadelphia, PA, USA
| | - Melanie Corbman
- Department of Pathology, Cancer Treatment Centers of America at Eastern Regional Medical Center, Philadelphia, PA, USA
| | - Fernando U Garcia
- Department of Pathology, Cancer Treatment Centers of America at Eastern Regional Medical Center, Philadelphia, PA, USA
| |
Collapse
|
21
|
Abstract
Breast cancer 1 (BRCA1), as a tumor suppressor, exerts an effective influence on protecting DNA integrity to suppress the development of breast cancer (BC). BRCA1 expression is induced in response to DNA-damaging agents such as etoposide. Germline BRCA1 gene mutations are associated with development of hereditary BC. However, besides BRCA-mutated BCs, some sporadic cancers may also exhibit a BRCA-like phenotype, displaying so-called ‘BRCAness’. This common phenotype may respond to similar therapeutic approaches as BRCA-mutated tumors and may thus have important implications for the clinical management of these cancers. In order to determine whether and how etoposide regulates the protein levels of BRCA1 in BC cells, we exposed a panel of five selected cell lines to etoposide, compared the results to untreated control cells, and then stained the cells with the specific, reliable, and reproducible MS110 antibody directed against phosphorylated Ser1423 BRCA1. By evaluating cytoplasmic BRCA1 protein levels, we were able to distinguish three aggressive BC subtypes with BRCAness characteristics. In addition, determination of early and late apoptosis helped to complete the analysis of BRCA1 functions in the DNA damage pathway of aggressive BC. In conclusion, our study suggested that high cytoplasmic BRCA1 protein levels could be considered as a potential predictive marker for response to chemotherapy in both sporadic and hereditary BC. Tumors with either BRCAness phenotype or germline BRCA1 mutation are both aggressive BCs associated with poor prognosis and could both be subjected to targeted therapies against BRCA1-mutated BC in future clinical management strategies.
Collapse
|
22
|
Kamel HFM, Al-Amodi HSAB. Exploitation of Gene Expression and Cancer Biomarkers in Paving the Path to Era of Personalized Medicine. GENOMICS PROTEOMICS & BIOINFORMATICS 2017; 15:220-235. [PMID: 28813639 PMCID: PMC5582794 DOI: 10.1016/j.gpb.2016.11.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 10/29/2016] [Accepted: 11/11/2016] [Indexed: 02/06/2023]
Abstract
Cancer therapy agents have been used extensively as cytotoxic drugs against tissue or organ of a specific type of cancer. With the better understanding of molecular mechanisms underlying carcinogenesis and cellular events during cancer progression and metastasis, it is now possible to use targeted therapy for these molecular events. Targeted therapy is able to identify cancer patients with dissimilar genetic defects at cellular level for the same cancer type and consequently requires individualized approach for treatment. Cancer therapy begins to shift steadily from the traditional approach of “one regimen for all patients” to a more individualized approach, through which each patient will be treated specifically according to their specific genetic defects. Personalized medicine accordingly requires identification of indicators or markers that guide in the decision making of such therapy to the chosen patients for more effective therapy. Cancer biomarkers are frequently used in clinical practice for diagnosis and prognosis, as well as identification of responsive patients and prediction of treatment response of cancer patient. The rapid breakthrough and development of microarray and sequencing technologies is probably the main tool for paving the way toward “individualized biomarker-driven cancer therapy” or “personalized medicine”. In this review, we aim to provide an updated knowledge and overview of the current landscape of cancer biomarkers and their role in personalized medicine, emphasizing the impact of genomics on the implementation of new potential targeted therapies and development of novel cancer biomarkers in improving the outcome of cancer therapy.
Collapse
Affiliation(s)
- Hala Fawzy Mohamed Kamel
- Biochemistry Department, Faculty of Medicine, Umm AL-Qura University, Makhha 21955, Saudi Arabia; Medical Biochemistry Department, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt.
| | | |
Collapse
|
23
|
Petrovic N, Davidovic R, Bajic V, Obradovic M, Isenovic RE. MicroRNA in breast cancer: The association with BRCA1/2. Cancer Biomark 2017; 19:119-128. [DOI: 10.3233/cbm-160319] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
24
|
The impact of the Biomolecular Era on breast cancer surgery. Surgeon 2017; 15:169-181. [DOI: 10.1016/j.surge.2016.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/14/2016] [Accepted: 09/18/2016] [Indexed: 01/10/2023]
|
25
|
Non-BRCA familial breast cancer: review of reported pathology and molecular findings. Pathology 2017; 49:363-370. [PMID: 28450088 DOI: 10.1016/j.pathol.2017.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/07/2017] [Accepted: 03/16/2017] [Indexed: 01/02/2023]
Abstract
The majority of women evaluated for a clinical concern of possible hereditary breast cancer syndromes have no identified pathogenic variants in genes predisposing them to breast cancer. Non-BRCA1- or BRCA2-related familial breast cancer, also called 'BRCAX', thus comprises a sizeable proportion of familial breast cancer but it is poorly understood. In this study, we reviewed 14 studies on histopathology and molecular studies of BRCAX to determine if there were differences between 'sporadic' breast cancers and compared to cancers arising in women harbouring variants in known cancer predisposition genes. Across available literature, there was inconsistency on inclusion and exclusion criteria, reported parameters, and use of controls. Cohorts were small, and while several studies reported findings that appeared to distinguish the BRCAX cases from sporadic and/or gene-positive controls, no findings were reported in more than one study. To determine whether the BRCAX families might still contain important genetic subsets awaiting discovery will require prospective ascertainment of a large number of women with familial breast cancer who are screened for all currently established predisposition genes, whose tumours are assessed for multiple parameters in a uniform manner, and in which controls (BRCA1/2+ and non-familial 'sporadic' cases) are collected from the same population.
Collapse
|
26
|
Wang X, El-Halaby AA, Zhang H, Yang Q, Laughlin TS, Rothberg PG, Skinner K, Hicks DG. p53 alteration in morphologically normal/benign breast luminal cells in BRCA carriers with or without history of breast cancer. Hum Pathol 2017; 68:22-25. [PMID: 28438622 DOI: 10.1016/j.humpath.2017.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/25/2017] [Accepted: 04/07/2017] [Indexed: 11/29/2022]
Abstract
Germline mutations in BRCA genes have been shown to predispose patients to breast cancer. Studies have suggested that p53 alteration is a necessary step in tumorigenesis in BRCA carriers. Our previous study showed p53 alteration in morphologically normal/benign breast luminal cells in sporadic breast cancer patients, the so-called breast p53 signature. Here, we studied p53 status in 66 BRCA1/2 carriers' breasts: 29 patients with breast carcinoma (2 patients with bilateral breast carcinomas) and 37 without. Seven of the 12 (58%) triple-negative breast carcinomas in BRCA carriers were positive for p53 alteration (immunohistochemical stain and/or sequencing), the same frequency as in sporadic triple-negative breast carcinomas. Focal p53 positivity in adjacent normal/benign luminal cells was identified in 4 of the 7 cases with p53-positive carcinomas but not in breasts with p53-negative carcinomas, indicating that p53 positivity in normal/benign breast luminal cells is not a random event. Furthermore, in BRCA carriers' prophylactic mastectomies, 12 of the 94 (12.77%) breasts had focal p53 positivity in normal/benign luminal cells, with 2 cases in bilateral breasts, significantly higher than in previously studied mammoplasty specimens (0%). Our study suggests that germline BRCA gene mutations could result in genomic instability and an elevated gene mutation rate (such as the p53 gene) in breast luminal cells compared with the general population, predisposing BRCA carriers to develop p53-positive/triple-negative breast carcinomas.
Collapse
Affiliation(s)
- Xi Wang
- Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642.
| | - Amber A El-Halaby
- Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642
| | - Hengwei Zhang
- Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642
| | - Qi Yang
- Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642
| | - Todd S Laughlin
- Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642
| | - Paul G Rothberg
- Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642
| | - Kristin Skinner
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642
| | - David G Hicks
- Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642
| |
Collapse
|
27
|
Downs B, Xiao F, Kim YC, Chen PX, Huang D, Fleissner EA, Cowan K, Wang SM. Single-base LOH can be used as Specific Marker to Classify BRCAx Familial Breast Cancer into More Homogenous Subtypes. Breast J 2017; 23:479-481. [PMID: 28117528 DOI: 10.1111/tbj.12777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Bradley Downs
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Fengxia Xiao
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Yeong C Kim
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Pei Xian Chen
- Department of Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Dali Huang
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Elizabeth A Fleissner
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kenneth Cowan
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - San Ming Wang
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
28
|
Radosa JC, Eaton A, Stempel M, Khander A, Liedtke C, Solomayer EF, Karsten M, Pilewskie M, Morrow M, King TA. Evaluation of Local and Distant Recurrence Patterns in Patients with Triple-Negative Breast Cancer According to Age. Ann Surg Oncol 2016; 24:698-704. [PMID: 27783163 DOI: 10.1245/s10434-016-5631-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) subtype and young patient age are both associated with an increased risk of local recurrence (LR) and distant recurrence (DR). In young women with TNBC, it is unclear whether subtype or patient age is driving prognosis. METHODS Patients treated for primary TNBC from 1998 to 2011 were identified from the breast surgery database. Clinicopathologic characteristics, treatment, and outcomes were compared between patients <40 and ≥40 years of age at diagnosis. Multivariate models were used to identify factors independently associated with LR and DR. RESULTS Among 1930 patients with TNBC, 289 (15 %) were <40 and 1641 (85 %) were ≥40 years of age at diagnosis. Younger patients were more likely to present with higher stage disease and more likely to receive mastectomy (p < 0.01), axillary node dissection (p < 0.01), and chemotherapy (p < 0.01). At a median follow-up of 74 (0-201.1) months, there was no difference in LR or disease-free survival (DFS) by age group [5-year LR = 3.9 % (95 % confidence interval (CI) 1.5-6.2) vs. 4.5 % (95 % CI 3.5-5.6) and 5-year DFS = 75.3 % (95 % CI 70.2-80.7) vs. 77.7 % (95 % CI 75.6-79.8), p = 0.94] in patients aged <40 and ≥40 years, respectively. On multivariate analysis, larger tumor size, lymphovascular invasion, and nodal positivity were associated with increased risk of DR. Age and type of surgery were not significantly associated with either outcome. CONCLUSIONS Young age at diagnosis is not an independent risk factor for LR or DR in patients with TNBC.
Collapse
Affiliation(s)
- Julia C Radosa
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Gynecology and Obstetrics, Saarland University Hospital, Homburg, Germany
| | - Anne Eaton
- Department of Epidemiology-Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michelle Stempel
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amrin Khander
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cornelia Liedtke
- Department of Gynecology and Obstetrics, University of Schleswig-Holstein, Lübeck, Germany
| | - Erich-Franz Solomayer
- Department of Gynecology and Obstetrics, Saarland University Hospital, Homburg, Germany
| | - Maria Karsten
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Melissa Pilewskie
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Monica Morrow
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tari A King
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .,Breast Surgery, Brigham and Women's Hospital, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, USA.
| |
Collapse
|
29
|
Can we prevent BRCA1-associated breast cancer by RANKL inhibition? Breast Cancer Res Treat 2016; 161:11-16. [DOI: 10.1007/s10549-016-4029-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 12/24/2022]
|
30
|
Abstract
The recognition that breast cancer is a group of genetically distinct diseases with differing responses to treatment and varying patterns of both local and systemic failure has led to many questions regarding optimal therapy for those considered to be high risk. Young patients, patients with triple-negative breast cancer (TNBC), and those who harbor a deleterious mutation in BRCA1 or BRCA2 are frequently considered to be at highest risk of local failure, leading to speculation that more-aggressive surgical treatment is warranted in these patients. For both age and the triple-negative subtype, it appears that the intrinsic biology which imparts inferior outcomes is not overcome with mastectomy; therefore, a recommendation for more extensive surgical therapy among these higher-risk groups is not warranted. For those at inherited risk, a more-aggressive surgical approach may be preferable, however; patient age, ER status, stage of the index lesion, and individual patient preferences should all be considered in the surgical decision-making process.
Collapse
Affiliation(s)
- Tari A King
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, New York, NY 10065, USA.
| | - Melissa Pilewskie
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, New York, NY 10065, USA.
| | - Monica Morrow
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, New York, NY 10065, USA.
| |
Collapse
|
31
|
Heublein S, Mayr D, Meindl A, Angele M, Gallwas J, Jeschke U, Ditsch N. Thyroid Hormone Receptors Predict Prognosis in BRCA1 Associated Breast Cancer in Opposing Ways. PLoS One 2015; 10:e0127072. [PMID: 26029931 PMCID: PMC4451081 DOI: 10.1371/journal.pone.0127072] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 04/11/2015] [Indexed: 12/02/2022] Open
Abstract
Since BRCA1 associated breast cancers are frequently classified as hormone receptor negative or even triple negative, the application of endocrine therapies is rather limited in these patients. Like hormone receptors that bind to estrogen or progesterone, thyroid hormone receptors (TRs) are members of the nuclear hormone receptor superfamily. TRs might be interesting biomarkers - especially in the absence of classical hormone receptors. The current study aimed to investigate whether TRs may be specifically expressed in BRCA1 associated cancer cases and whether they are of prognostic significance in these patients as compared to sporadic breast cancer cases. This study analyzed TRα and TRβ immunopositivity in BRCA1 associated (n = 38) and sporadic breast cancer (n = 86). Further, TRs were studied in MCF7 (BRCA1 wildtype) and HCC3153 (BRCA1 mutated) cells. TRβ positivity rate was significantly higher in BRCA1 associated as compared to sporadic breast cancers (p = 0.001). The latter observation remained to be significant when cases that had been matched for clinicopathological criteria were compared (p = 0.037). Regarding BRCA1 associated breast cancer cases TRβ positivity turned out to be a positive prognostic factor for five-year (p = 0.007) and overall survival (p = 0.026) while TRα positivity predicted reduced five-year survival (p = 0.030). Activation of TRβ resulted in down-modulation of CTNNB1 while TRα inhibition reduced cell viability in HCC3153. However, only BRCA1 wildtype MCF7 cells were capable of rapidly degrading TRα1 in response to T3 stimulation. Significantly, this study identified TRβ to be up-regulated in BRCA1 associated breast cancer and revealed TRs to be associated with patients’ prognosis. TRs were also found to be expressed in triple negative BRCA1 associated breast cancer. Further studies need to be done in order to evaluate whether TRs may become interesting targets of endocrine therapeutic approaches, especially when tumors are triple-negative.
Collapse
Affiliation(s)
- Sabine Heublein
- Department of Obstetrics and Gynecology, Ludwig-Maximilians-University of Munich, Munich, Germany
- * E-mail:
| | - Doris Mayr
- Department of Pathology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Alfons Meindl
- Department of Obstetrics and Gynecology, Technical University of Munich, Munich, Germany
| | - Martin Angele
- Department of Surgery, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Julia Gallwas
- Department of Obstetrics and Gynecology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Nina Ditsch
- Department of Obstetrics and Gynecology, Ludwig-Maximilians-University of Munich, Munich, Germany
| |
Collapse
|
32
|
Aloraifi F, Alshehhi M, McDevitt T, Cody N, Meany M, O'Doherty A, Quinn C, Green A, Bracken A, Geraghty J. Phenotypic analysis of familial breast cancer: Comparison of BRCAx tumors with BRCA1-, BRCA2-carriers and non-familial breast cancer. Eur J Surg Oncol 2015; 41:641-6. [DOI: 10.1016/j.ejso.2015.01.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 01/05/2015] [Accepted: 01/15/2015] [Indexed: 01/21/2023] Open
|
33
|
Pettapiece-Phillips R, Narod SA, Kotsopoulos J. The role of body size and physical activity on the risk of breast cancer in BRCA mutation carriers. Cancer Causes Control 2015; 26:333-44. [PMID: 25579073 DOI: 10.1007/s10552-014-0521-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/23/2014] [Indexed: 01/18/2023]
Abstract
Women who inherit a BRCA mutation face a high lifetime risk of developing breast cancer. Given the high penetrance of these mutations, prevention is of extreme importance. Here, we review the literature regarding the role of body size and of physical activity in the context of BRCA-associated breast cancer. There is some evidence to support a protective role of a healthy body size and of regular physical activity among mutation carriers, particularly during adolescence or early adulthood. Factors which increase the physiologic expression of the normal copy of the BRCA1 or BRCA2 gene and thereby normalize protein levels, contribute to stem cell homeostasis, and/or affect hormone levels, might mitigate the effects of an inherited BRCA mutation. Preliminary evidence from one in vivo study and from one epidemiologic report suggests that an increase in BRCA1 mRNA expression occurs with increasing levels of physical activity. The prospect of changing lifestyle for the purpose of preventing breast cancer in high-risk women, complemented by mechanistic evidence, warrants evaluation in large-scale prospective studies.
Collapse
Affiliation(s)
- Rachael Pettapiece-Phillips
- Women's College Research Institute, Women's College Hospital, 790 Bay Street, 7th Floor, Toronto, ON, M5G 1N8, Canada
| | | | | |
Collapse
|
34
|
Molina-Montes E, Pérez-Nevot B, Pollán M, Sánchez-Cantalejo E, Espín J, Sánchez MJ. Cumulative risk of second primary contralateral breast cancer in BRCA1/BRCA2 mutation carriers with a first breast cancer: A systematic review and meta-analysis. Breast 2014; 23:721-42. [PMID: 25467311 DOI: 10.1016/j.breast.2014.10.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/05/2014] [Accepted: 10/12/2014] [Indexed: 12/19/2022] Open
Abstract
BRCA1/2 mutation carriers are at a higher risk of breast cancer and of subsequent contralateral breast cancer (CBC). This study aims to evaluate the evidence of the effect of the BRCA1/2-carriership on CBC cumulative risk in female breast cancer patients. The literature was searched in Pubmed and Embase up to June 2013 for studies on CBC risk after a first primary invasive breast cancer in female BRCA1/2 mutation carriers. A qualitative synthesis was carried out and the methodological quality of the studies evaluated. Cumulative risks of CBC after 5, 10 and 15 years since the first breast cancer diagnosis were pooled by BRCA1/2 mutation status. A total number of 20 articles, out of 1324 retrieved through the search, met the inclusion criteria: 18 retrospective and 2 prospective cohort studies. Cumulative risks of up to five studies were pooled. The cumulative 5-years risk of CBC for BRCA1 and BRCA2 mutation carriers was 15% (95% CI: 9.5%-20%) and 9% (95% CI: 5%-14%), respectively. This risk increases with time since diagnosis of the first breast cancer; the 10-years risk increased up to 27% and 19%, respectively. The 5-years cumulative risk was remarkably lower in non-BRCA carriers (3%; 95% CI: 2%-5%) and remained so over subsequent years (5%; 95% CI: 3%-7%). In conclusion, risk of CBC increases with length of time after the first breast cancer diagnosis in BRCA1/2 mutation carriers. Studies addressing the impact of treatment-related factors and clinical characteristics of the first breast cancer on this risk are warranted.
Collapse
Affiliation(s)
- Esther Molina-Montes
- Granada Cancer Registry, Andalusian School of Public Health, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Instituto de Investigación Biosanitaria de Granada (ibs.Granada), Hospitales Universitarios de Granada, Universidad de Granada, Granada, Spain
| | - Beatriz Pérez-Nevot
- Clinical Analysis Service, Virgen de la Victoria University Hospital, Malaga, Spain
| | - Marina Pollán
- CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Cancer Epidemiology Unit, National Center for Epidemiology, Instituto de Salud Carlos III, Madrid, Spain; Cancer Epidemiology Research Group, Oncology and Hematology Area, IIS Puerta de Hierro (IDIPHIM), Madrid, Spain
| | - Emilio Sánchez-Cantalejo
- Granada Cancer Registry, Andalusian School of Public Health, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Instituto de Investigación Biosanitaria de Granada (ibs.Granada), Hospitales Universitarios de Granada, Universidad de Granada, Granada, Spain
| | - Jaime Espín
- Granada Cancer Registry, Andalusian School of Public Health, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.Granada), Hospitales Universitarios de Granada, Universidad de Granada, Granada, Spain
| | - María-José Sánchez
- Granada Cancer Registry, Andalusian School of Public Health, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Instituto de Investigación Biosanitaria de Granada (ibs.Granada), Hospitales Universitarios de Granada, Universidad de Granada, Granada, Spain.
| |
Collapse
|
35
|
Noori SF, Gangi A, Nelson ME, Choi M, Mirzadehgan P, Bonk AK, Mirocha J, Amersi F, Giuliano AE. Comparison of Nodal Metastasis Between BRCA Mutation Carriers and Non-BRCA Mutation Carriers with Breast Cancer. Ann Surg Oncol 2014; 21:3324-9. [DOI: 10.1245/s10434-014-3904-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Indexed: 11/18/2022]
|
36
|
BRCA1 mRNA levels following a 4-6-week intervention with oral 3,3'-diindolylmethane. Br J Cancer 2014; 111:1269-74. [PMID: 25025957 PMCID: PMC4183839 DOI: 10.1038/bjc.2014.391] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/26/2014] [Accepted: 06/18/2014] [Indexed: 12/19/2022] Open
Abstract
Background: Haploinsufficiency may contribute to the development of breast cancer among women with a BRCA1 mutation. Thus, interventions that enhance BRCA1 expression may represent avenues for prevention. Studies have shown that 3,3′-diindolylmethane (DIM) can upregulate BRCA1 expression in breast cancer cells. This has yet to be demonstrated in vivo. Methods: We conducted a study to evaluate the ability of oral DIM to upregulate BRCA1 mRNA expression in white blood cells. A total of 18 women were enroled in the study, including 13 BRCA1 mutation carriers who received 300 mg per day of Rx Balance BioResponse DIM for 4–6 weeks (intervention group) and 5 BRCA1 mutation carriers who did not take DIM (control group). BRCA1 mRNA expression was assessed at baseline and at 4–6 weeks by real-time, quantitative PCR and the relative change in BRCA1 mRNA expression (that is, 2−ΔΔCT) was calculated. Results: The relative change in BRCA1 mRNA expression among women in the intervention group achieved borderline significance (P paired t-test=0.05). In the intervention group, BRCA1 mRNA expression increased in 10 of the participants, decreased in 2 and remained unchanged in 1 of the participants following DIM intervention (P sign test=0.02). On average, women in the intervention group experienced a 34% increase in BRCA1 mRNA expression (range −24 to 194%). There was no significant difference in the relative change in BRCA1 mRNA expression among women in the control group (P paired t-test=0.45). Conclusions: Under the tested conditions, oral DIM was associated with an increase in BRCA1 mRNA expression in women with a BRCA1 mutation. The possibility of mitigating the effect of an inherited deleterious BRCA1 mutation by increasing the physiologic expression of the gene and normalising protein levels represents a clinically important paradigm shift in the prevention strategies available to these high-risk women. Future studies with a larger sample size and higher doses of DIM are warranted.
Collapse
|
37
|
Rizzolo P, Silvestri V, Tommasi S, Pinto R, Danza K, Falchetti M, Gulino M, Frati P, Ottini L. Male breast cancer: genetics, epigenetics, and ethical aspects. Ann Oncol 2014; 24 Suppl 8:viii75-viii82. [PMID: 24131976 DOI: 10.1093/annonc/mdt316] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND STUDY DESIGN Male breast cancer (MBC) is a rare disease compared with female BC and our current understanding regarding breast carcinogenesis in men has been largely extrapolated from the female counterpart. We focus on differences between the ethical issues related to male and female BC patients. A systematic literature search by using PubMed (http://www.ncbi.nlm.nih.gov/pubmed/), was carried out to provide a synopsis of the current research in the field of MBC genetics, epigenetics and ethics. Original articles and reviews published up to September 2012 were selected by using the following search key words to query the PubMed website: 'male breast cancer', 'male breast cancer and genetic susceptibility', 'male breast cancer and epigenetics', 'male breast cancer and methylation', 'male breast cancer and miRNA', 'male breast cancer and ethics'. RESULTS AND CONCLUSIONS As in women, three classes of breast cancer genetic susceptibility (high, moderate, and low penetrance) are recognized in men. However, genes involved and their impact do not exactly overlap in female and male BC. Epigenetic alterations are currently scarcely investigated in MBC, however, the different methylation and miRNA expression profiles identified to date in female and male BCs suggest a potential role for epigenetic alterations as diagnostic biomarkers. Overall, much still needs to be learned about MBC and, because of its rarity, the main effort is to develop large consortia for moving forward in understanding MBC and improving the management of MBC patients on a perspective of gender medicine.
Collapse
Affiliation(s)
- P Rizzolo
- Department of Molecular Medicine, 'Sapienza' University of Rome, Rome
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Surgical management of breast cancer in BRCA-mutation carriers: a systematic review and meta-analysis. Breast Cancer Res Treat 2014; 144:443-55. [PMID: 24567198 DOI: 10.1007/s10549-014-2890-1] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 02/17/2014] [Indexed: 02/04/2023]
Abstract
This meta-analysis investigates the oncological safety of breast-conserving therapy BCT in BRCA-mutation carriers and the risk for contralateral breast cancer (CBC) compared with non-carriers, potential risk factors for ipsilateral breast recurrence (IBR) or CBC and grades these factors based on the level of evidence. A PubMed search was conducted through April 2013 to identify studies that described the risk for IBR and CBC after BCT in BRCA-mutation carriers versus non-carriers as well as studies that investigated risk factors for IBR and CBC in BRCA-mutation carriers. Results were summarized using meta-analysis when sufficient studies were available. Ten studies investigated the oncological safety of BCT in BRCA-mutation carriers versus non-carriers. There was no significant difference in IBR between carriers and controls (RR 1.45, 95 % CI 0.98-2.14). However, a significant higher risk for IBR in BRCA-mutation carriers was observed in studies with a median follow-up ≥7 years (RR 1.51, 95 % CI 1.15-1.98). CBCs were significantly greater in carriers versus controls (RR 3.56, 95 % CI 2.50-5.08). Use of adjuvant chemotherapy and oophorectomy were associated with a significantly lower risk for IBR in BRCA-mutation carriers. Three factors were associated with a lower risk for CBC in BRCA-mutation carriers: oophorectomy, use of tamoxifen, and age at first breast cancer. Based on current evidence, the use of BCT in BRCA-mutation carriers can be considered a reasonable option since it does not seem to increase the risk for IBR. However, several aspects should be taken into account before the final decision-making.
Collapse
|
39
|
Crippa E, Lusa L, De Cecco L, Marchesi E, Calin GA, Radice P, Manoukian S, Peissel B, Daidone MG, Gariboldi M, Pierotti MA. miR-342 regulates BRCA1 expression through modulation of ID4 in breast cancer. PLoS One 2014; 9:e87039. [PMID: 24475217 PMCID: PMC3903605 DOI: 10.1371/journal.pone.0087039] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 12/17/2013] [Indexed: 01/08/2023] Open
Abstract
A miRNAs profiling on a group of familial and sporadic breast cancers showed that miRNA-342 was significantly associated with estrogen receptor (ER) levels. To investigate at functional level the role of miR-342 in the pathogenesis of breast cancer, we focused our attention on its "in silico" predicted putative target gene ID4, a transcription factor of the helix-loop-helix protein family whose expression is inversely correlated with that of ER. ID4 is expressed in breast cancer and can negatively regulate BRCA1 expression. Our results showed an inverse correlation between ID4 and miR-342 as well as between ID4 and BRCA1 expression. We functionally validated the interaction between ID4 and miR-342 in a reporter Luciferase system. Based on these findings, we hypothesized that regulation of ID4 mediated by miR-342 could be involved in the pathogenesis of breast cancer by downregulating BRCA1 expression. We functionally demonstrated the interactions between miR-342, ID4 and BRCA1 in a model provided by ER-negative MDA-MB-231 breast cancer cell line that presented high levels of ID4. Overexpression of miR-342 in these cells reduced ID4 and increased BRCA1 expression, supporting a possible role of this mechanism in breast cancer. In the ER-positive MCF7 and in the BRCA1-mutant HCC1937 cell lines miR-342 over-expression only reduced ID4. In the cohort of patients we studied, a correlation between miR-342 and BRCA1 expression was found in the ER-negative cases. As ER-negative cases were mainly BRCA1-mutant, we speculate that the mechanism we demonstrated could be involved in the decreased expression of BRCA1 frequently observed in non BRCA1-mutant breast cancers and could be implicated as a causal factor in part of the familial cases grouped in the heterogeneous class of non BRCA1 or BRCA2-mutant cases (BRCAx). To validate this hypothesis, the study should be extended to a larger cohort of ER-negative cases, including those belonging to the BRCAx class.
Collapse
Affiliation(s)
- Elisabetta Crippa
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Molecular Genetics of Cancer, Fondazione Istituto FIRC di Oncologia Molecolare, Milano, Italy
| | - Lara Lusa
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Molecular Genetics of Cancer, Fondazione Istituto FIRC di Oncologia Molecolare, Milano, Italy
- Institute for Biostatistics and Medical Informatics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Loris De Cecco
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Molecular Genetics of Cancer, Fondazione Istituto FIRC di Oncologia Molecolare, Milano, Italy
| | - Edoardo Marchesi
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Molecular Genetics of Cancer, Fondazione Istituto FIRC di Oncologia Molecolare, Milano, Italy
| | - George Adrian Calin
- Department of Experimental Therapeutics and The Center for RNA Interference and Non-Coding RNAs, The University of Texas, M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Paolo Radice
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Molecular Genetics of Cancer, Fondazione Istituto FIRC di Oncologia Molecolare, Milano, Italy
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | - Bernard Peissel
- Unit of Medical Genetics, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | - Maria Grazia Daidone
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Manuela Gariboldi
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Molecular Genetics of Cancer, Fondazione Istituto FIRC di Oncologia Molecolare, Milano, Italy
| | | |
Collapse
|
40
|
Soung YH, Pruitt K, Chung J. Epigenetic silencing of ARRDC3 expression in basal-like breast cancer cells. Sci Rep 2014; 4:3846. [PMID: 24457910 PMCID: PMC3900932 DOI: 10.1038/srep03846] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 12/27/2013] [Indexed: 12/13/2022] Open
Abstract
Arrestin domain-containing 3 (ARRDC3) is a tumor suppressor whose expression is either lost or suppressed in basal-like breast cancer (BLBC). However, the mechanism by which BLBC suppresses ARRDC3 expression is not established. Here, we show that expression of ARRDC3 in BLBC cells is suppressed at the transcriptional level. Suppression of ARRDC3 expression in BLBC cells involves epigenetic silencing as inhibitors of class III histone deacetylases (HDACs) significantly restores ARRDC3 levels in BLBC cells. SIRT2, among class III HDACs, plays a major role in epigenetic silencing of ARRDC3 in MDA-MB-231 cells. Acetylation levels of the ARRDC3 promoter in BLBC cells is significantly lower than that of other sub-types of BC cells. Chromatin immunopreciptitation analysis established SIRT2 binding at ARRDC3 promoter in BLBC cells. Our studies indicate that SIRT2 dependent epigenetic silencing of ARRDC3 is one of the important events that may contribute to the aggressive nature of BLBC cells.
Collapse
Affiliation(s)
- Young Hwa Soung
- Department of Physiology and Stephenson cancer center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Kevin Pruitt
- Department of Molecular and Cellular Physiology Louisiana State University Health Science Center Shreveport, Louisiana 71130
| | - Jun Chung
- Department of Physiology and Stephenson cancer center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|
41
|
Supplemental screening ultrasound increases cancer detection yield in BRCA1 and BRCA2 mutation carriers. Arch Gynecol Obstet 2013; 289:663-70. [PMID: 24045978 DOI: 10.1007/s00404-013-3022-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 08/29/2013] [Indexed: 10/26/2022]
Abstract
INTRODUCTION This study aimed at evaluating the efficacy of ultrasound for the early detection of breast cancers in BRCA1/2 mutation carriers. METHODS Between 01/1997 and 10/2008 221 BRCA1/2 mutation carriers participated in a breast cancer screening program which included semi-annual ultrasound in combination with annual mammography and magnetic resonance imaging (MRI). Women underwent on average (median) five semi-annual screening rounds with a range of one to 22 appointments, totaling 1,855 rounds of screening. All three imaging modalities were coded according to the American College of Radiology (BI-RADS classification). RESULTS In total, we detected 27 BRCA-associated breast cancers in 25 patients. The sensitivity was 77% for ultrasound, 27% for mammography, and 100% for MRI. Three tumors were detected directly as a result of only the semi-annual ultrasound screen. CONCLUSIONS Due to the specific tumor morphology and the considerably elevated tumor doubling time, mutation carriers benefit from the addition of semi-annual ultrasound screening as a sensitive and cost-effective method.
Collapse
|
42
|
Rivenbark AG, O'Connor SM, Coleman WB. Molecular and cellular heterogeneity in breast cancer: challenges for personalized medicine. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1113-1124. [PMID: 23993780 DOI: 10.1016/j.ajpath.2013.08.002] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/15/2013] [Indexed: 01/13/2023]
Abstract
Breast cancer is noted for disparate clinical behaviors and patient outcomes, despite common histopathological features at diagnosis. Molecular pathogenesis studies suggest that breast cancer is a collection of diseases with variable molecular underpinnings that modulate therapeutic responses, disease-free intervals, and long-term survival. Traditional therapeutic strategies for individual patients are guided by the expression status of the estrogen and progesterone receptors (ER and PR) and human epidermal growth factor receptor 2 (HER2). Although such methods for clinical classification have utility in selection of targeted therapies, short-term patient responses and long-term survival remain difficult to predict. Molecular signatures of breast cancer based on complex gene expression patterns have utility in prediction of long-term patient outcomes, but are not yet used for guiding therapy. Examination of the correspondence between these methods for breast cancer classification reveals a lack of agreement affecting a significant percentage of cases. To realize true personalized breast cancer therapy, a more complete analysis and evaluation of the molecular characteristics of the disease in the individual patient is required, together with an understanding of the contributions of specific genetic and epigenetic alterations (and their combinations) to management of the patient. Here, we discuss the molecular and cellular heterogeneity of breast cancer, the impact of this heterogeneity on practical breast cancer classification, and the challenges for personalized breast cancer treatment.
Collapse
Affiliation(s)
- Ashley G Rivenbark
- Department of Pathology and Laboratory Medicine, Program in Translational Medicine, UNC Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Siobhan M O'Connor
- Department of Pathology and Laboratory Medicine, Program in Translational Medicine, UNC Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - William B Coleman
- Department of Pathology and Laboratory Medicine, Program in Translational Medicine, UNC Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina.
| |
Collapse
|
43
|
Regan JL, Sourisseau T, Soady K, Kendrick H, McCarthy A, Tang C, Brennan K, Linardopoulos S, White DE, Smalley MJ. Aurora A kinase regulates mammary epithelial cell fate by determining mitotic spindle orientation in a Notch-dependent manner. Cell Rep 2013; 4:110-23. [PMID: 23810554 DOI: 10.1016/j.celrep.2013.05.044] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 04/16/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022] Open
Abstract
Cell fate determination in the progeny of mammary epithelial stem/progenitor cells remains poorly understood. Here, we have examined the role of the mitotic kinase Aurora A (AURKA) in regulating the balance between basal and luminal mammary lineages. We find that AURKA is highly expressed in basal stem cells and, to a lesser extent, in luminal progenitors. Wild-type AURKA expression promoted luminal cell fate, but expression of an S155R mutant reduced proliferation, promoted basal fate, and inhibited serial transplantation. The mechanism involved regulation of mitotic spindle orientation by AURKA and the positioning of daughter cells after division. Remarkably, this was NOTCH dependent, as NOTCH inhibitor blocked the effect of wild-type AURKA expression on spindle orientation and instead mimicked the effect of the S155R mutant. These findings directly link AURKA, NOTCH signaling, and mitotic spindle orientation and suggest a mechanism for regulating the balance between luminal and basal lineages in the mammary gland.
Collapse
Affiliation(s)
- Joseph L Regan
- Division of Breast Cancer Research, Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Im KS, Kim IH, Kim NH, Lim HY, Kim JH, Sur JH. Breed-related differences in altered BRCA1 expression, phenotype and subtype in malignant canine mammary tumors. Vet J 2013; 195:366-72. [DOI: 10.1016/j.tvjl.2012.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 06/18/2012] [Accepted: 07/11/2012] [Indexed: 01/26/2023]
|
46
|
Denkert C. Diagnostic and therapeutic implications of tumor-infiltrating lymphocytes in breast cancer. J Clin Oncol 2013; 31:836-7. [PMID: 23341523 DOI: 10.1200/jco.2012.47.1698] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
47
|
Prediction of BRCA1 germline mutation status in women with ovarian cancer using morphology-based criteria: identification of a BRCA1 ovarian cancer phenotype. Am J Surg Pathol 2012; 36:1170-7. [PMID: 22790858 DOI: 10.1097/pas.0b013e31825d9b8d] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Specific morphologic features that may predict BRCA1 germline mutation in ovarian cancer have neither been well described nor independently tested. We identified 5 morphologic features associated with BRCA1 mutation status in a series of 20 ovarian cancers from BRCA1 mutation carriers: (1) modified Nottingham grade 3; (2) serous/undifferentiated histology; (3) prominent intraepithelial lymphocytes; (4) marked nuclear atypia with giant/bizarre forms; and (5) abundant mitotic figures. These morphologic features were then tested on 325 ovarian tumors drawn from a population-based Greater Bay Area Cancer Registry and classified into 3 categories independent of the BRCA1 status: "Compatible with BRCA1," "Possibly compatible with BRCA1," and "Not compatible with BRCA1." All "Compatible with BRCA1" tumors were additionally investigated for presence of dominant adnexal mass, fallopian tube mucosal involvement, and uterine cornu involvement. The positive and negative predictive values for "Compatible with BRCA1" were 11/42 (26.2%) and 267/283 (94.3%), respectively, whereas combining the "Compatible with BRCA1" and "Possibly compatible with BRCA1" had positive and negative predictive values of 18/85 (21.2%) and 231/240 (96.3%), respectively. Although dominant adnexal mass and uterine cornu involvement did not add further predictive value, the likelihood of BRCA1 positivity increased to 42.9% when a tumor with "Compatible with BRCA1" histology was also associated with fallopian tube mucosal involvement. The combination of modified Nottingham grade 3 serous or undifferentiated histology, prominent intraepithelial lymphocytes, marked nuclear atypia with giant/bizarre nuclei, and high mitotic index should help to identify women for BRCA1 mutational analysis in the appropriate clinical setting. Ovarian tumors lacking this specific phenotype are unlikely to be associated with BRCA1 and should not undergo mutational analysis in the absence of other indications.
Collapse
|
48
|
Bayraktar S, Glück S. Systemic therapy options in BRCA mutation-associated breast cancer. Breast Cancer Res Treat 2012; 135:355-66. [PMID: 22791366 DOI: 10.1007/s10549-012-2158-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 06/26/2012] [Indexed: 01/09/2023]
Abstract
BRCA mutation-associated breast cancers are characterized by deficient homologous recombination of DNA, and 80 % of BRCA1-associated breast cancers display the basal-like molecular subtype. Traditionally, BRCA carriers have received conventional systemic chemotherapy based on their baseline tumor characteristics, and it is generally accepted that after the appropriate treatment the prognosis of a mutation carrier is equivalent to that of a patient with sporadic breast cancer. However, with the growing understanding of the functions of BRCA1/2 proteins in homologous DNA repair, it is recognized that BRCA-associated breast cancer tumors may have distinct biochemical characteristics and thus require tailored treatment strategies. Tumors arising in patients with BRCA mutations were shown to be particularly sensitive to platinum compounds or inhibitors of poly(ADP-ribose) polymerase. In addition, BRCA1-mutation carriers seem to benefit from anthracycline-taxane-containing regimens as much as sporadic triple-negative breast cancers do. In this article, we review the functions of the BRCA1 and BRCA2 genes, and their differential chemosensitivity in both the preclinical and clinical settings. The optimal chemotherapy regimen for this subset of patients still remains to be determined.
Collapse
Affiliation(s)
- Soley Bayraktar
- Department of Medicine, Division of Hematology/Medical Oncology, University of Miami and Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | | |
Collapse
|
49
|
Kotsopoulos J, Kim YI, Narod SA. Folate and breast cancer: what about high-risk women? Cancer Causes Control 2012; 23:1405-20. [DOI: 10.1007/s10552-012-0022-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 06/20/2012] [Indexed: 12/31/2022]
|
50
|
Forma E, Krzeslak A, Bernaciak M, Romanowicz-Makowska H, Brys M. Expression of TopBP1 in hereditary breast cancer. Mol Biol Rep 2012; 39:7795-804. [PMID: 22544570 PMCID: PMC3358587 DOI: 10.1007/s11033-012-1622-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 04/16/2012] [Indexed: 01/27/2023]
Abstract
TopBP1 protein displays structural as well as functional similarities to BRCA1 and is involved in DNA replication, DNA damage checkpoint response and transcriptional regulation. Aberrant expression of TopBP1 may lead to genomic instability and can have pathological consequences. In this study we aimed to investigate expression of TopBP1 gene at mRNA and protein level in hereditary breast cancer. Real-time quantitative PCR was performed in 127 breast cancer samples. Expression of TopBP1 mRNA in lobular carcinoma was significantly lower compared with ductal carcinoma (p < 0.05). The level of TopBP1 mRNA appeared to be lower in poorly differentiated (III grade) hereditary breast cancer in comparison with moderately (II grade) and well-differentiated cancer (I grade) (p < 0.05 and p < 0.001 respectively). We analyzed TopBP1 protein expression using immunohistochemistry and Western blot techniques. Expression of TopBP1 protein was found to be significantly increased in poorly differentiated breast cancer (III grade) (p < 0.05). The percentage of samples with cytoplasmic apart from nuclear staining increased with increasing histological grade. There was no significant association between level and intracellular localization of TopBP1 protein in hereditary breast cancer and other clinicopathological parameters such as estrogen and progesterone receptors status, appearance of metastasis in the axillary lymph nodes and type of cancer. Our data suggest that decreased level of TopBP1 mRNA and increased level of TopBP1 protein might be associated with progression of hereditary breast cancer.
Collapse
Affiliation(s)
- Ewa Forma
- Department of Cytobiochemistry, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | | | | | | | | |
Collapse
|