1
|
Fukumoto K, Kanatani S, Jaremko G, West Z, Li Y, Takamatsu K, Al Rayyes I, Mikami S, Niwa N, Axelsson TA, Tanaka N, Oya M, Miyakawa A, Brehmer M, Uhlén P. Three-dimensional imaging of upper tract urothelial carcinoma improves diagnostic yield and accuracy. JCI Insight 2024; 9:e175751. [PMID: 39133649 PMCID: PMC11383588 DOI: 10.1172/jci.insight.175751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Upper tract urothelial carcinoma (UTUC) is a rare form of urothelial cancer with a high incidence of recurrence and a low survival rate. Almost two-thirds of UTUCs are invasive at the time of diagnosis; therefore, improving diagnostic methods is key to increasing survival rates. Histopathological analysis of UTUC is essential for diagnosis and typically requires endoscopy biopsy, tissue sectioning, and labeling. However, endoscopy biopsies are minute, and it is challenging to cut into thin sections for conventional histopathology; this complicates diagnosis. Here, we used volumetric 3-dimensional (3D) imaging to explore the inner landscape of clinical UTUC biopsies, without sectioning, revealing that 3D analysis of phosphorylated ribosomal protein S6 (pS6) could predict tumor grade and prognosis with improved accuracy. By visualizing the tumor vasculature, we discovered that pS6+ cells were localized near blood vessels at significantly higher levels in high-grade tumors than in low-grade tumors. Furthermore, the clustering of pS6+ cells was associated with shorter relapse-free survival. Our results demonstrate that 3D volume imaging of the structural niches of pS6 cells deep inside the UTUC samples improved diagnostic yield, grading, and prognosis prediction.
Collapse
Affiliation(s)
- Keishiro Fukumoto
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Shigeaki Kanatani
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Georg Jaremko
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Zoe West
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Yue Li
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Kimiharu Takamatsu
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ibrahim Al Rayyes
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Shuji Mikami
- Department of Diagnostic Pathology, National Hospital Organization Saitama Hospital, Saitama, Japan
| | - Naoya Niwa
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | - Nobuyuki Tanaka
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Ayako Miyakawa
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Division of Urology, Department of Molecular Medicine and Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Marianne Brehmer
- Department of Urology and Department of Clinical Science and Education, Stockholm South General Hospital, Sweden
| | - Per Uhlén
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Chua V, Lopez-Anton M, Terai M, Tanaka R, Baqai U, Purwin TJ, Haj JI, Waltrich FJ, Trachtenberg I, Luo K, Tudi R, Jeon A, Han A, Chervoneva I, Davies MA, Aguirre-Ghiso JA, Sato T, Aplin AE. Slow proliferation of BAP1-deficient uveal melanoma cells is associated with reduced S6 signaling and resistance to nutrient stress. Sci Signal 2024; 17:eadn8376. [PMID: 38861613 PMCID: PMC11328427 DOI: 10.1126/scisignal.adn8376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/22/2024] [Indexed: 06/13/2024]
Abstract
Uveal melanoma (UM) is the deadliest form of eye cancer in adults. Inactivating mutations and/or loss of expression of the gene encoding BRCA1-associated protein 1 (BAP1) in UM tumors are associated with an increased risk of metastasis. To investigate the mechanisms underlying this risk, we explored the functional consequences of BAP1 deficiency. UM cell lines expressing mutant BAP1 grew more slowly than those expressing wild-type BAP1 in culture and in vivo. The ability of BAP1 reconstitution to restore cell proliferation in BAP1-deficient cells required its deubiquitylase activity. Proteomic analysis showed that BAP1-deficient cells had decreased phosphorylation of ribosomal S6 and its upstream regulator, p70S6K1, compared with both wild-type and BAP1 reconstituted cells. In turn, expression of p70S6K1 increased S6 phosphorylation and proliferation of BAP1-deficient UM cells. Consistent with these findings, BAP1 mutant primary UM tumors expressed lower amounts of p70S6K1 target genes, and S6 phosphorylation was decreased in BAP1 mutant patient-derived xenografts (PDXs), which grew more slowly than wild-type PDXs in the liver (the main metastatic site of UM) in mice. BAP1-deficient UM cells were also more resistant to amino acid starvation, which was associated with diminished phosphorylation of S6. These studies demonstrate that BAP1 deficiency slows the proliferation of UM cells through regulation of S6 phosphorylation. These characteristics may be associated with metastasis by ensuring survival during amino acid starvation.
Collapse
Affiliation(s)
- Vivian Chua
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Perth, WA 6027 Australia
- Centre for Precision Health, Edith Cowan University, Joondalup, Perth, WA 6027 Australia
| | - Melisa Lopez-Anton
- Division of Hematology and Oncology, Department of Medicine, Department of Otolaryngology, Department of Oncological Sciences, Black Family Stem Cell Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Mizue Terai
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Ryota Tanaka
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Usman Baqai
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Timothy J. Purwin
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Jelan I. Haj
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Francis J. Waltrich
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Isabella Trachtenberg
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Kristine Luo
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Rohith Tudi
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Angela Jeon
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Anna Han
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea
| | - Inna Chervoneva
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Michael A. Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Julio A. Aguirre-Ghiso
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY 10461 USA
- Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461 USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461 USA
- Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Takami Sato
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Andrew E. Aplin
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107 USA
| |
Collapse
|
3
|
Tan YQ, Chiou YS, Guo H, Zhang S, Huang X, Dukanya D, Kumar AM, Basappa S, Liu S, Zhu T, Basappa B, Pandey V, Lobie PE. Vertical pathway inhibition of receptor tyrosine kinases and BAD with synergistic efficacy in triple negative breast cancer. NPJ Precis Oncol 2024; 8:8. [PMID: 38200104 PMCID: PMC10781691 DOI: 10.1038/s41698-023-00489-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
Aberrant activation of the PI3K/AKT signaling axis along with the sustained phosphorylation of downstream BAD is associated with a poor outcome of TNBC. Herein, the phosphorylated to non-phosphorylated ratio of BAD, an effector of PI3K/AKT promoting cell survival, was observed to be correlated with worse clinicopathologic indicators of outcome, including higher grade, higher proliferative index and lymph node metastasis. The structural optimization of a previously reported inhibitor of BAD-Ser99 phosphorylation was therefore achieved to generate a small molecule inhibiting the phosphorylation of BAD at Ser99 with enhanced potency and improved oral bioavailability. The molecule 2-((4-(2,3-dichlorophenyl)piperazin-1-yl)(pyridin-3-yl)methyl) phenol (NCK) displayed no toxicity at supra-therapeutic doses and was therefore assessed for utility in TNBC. NCK promoted apoptosis and G0/G1 cell cycle arrest of TNBC cell lines in vitro, concordant with gene expression analyses, and reduced in vivo xenograft growth and metastatic burden, demonstrating efficacy as a single agent. Additionally, combinatorial oncology compound library screening demonstrated that NCK synergized with tyrosine kinase inhibitors (TKIs), specifically OSI-930 or Crizotinib in reducing cell viability and promoting apoptosis of TNBC cells. The synergistic effects of NCK and TKIs were also observed in vivo with complete regression of a percentage of TNBC cell line derived xenografts and prevention of metastatic spread. In patient-derived TNBC xenograft models, NCK prolonged survival times of host animals, and in combination with TKIs generated superior survival outcomes to single agent treatment. Hence, this study provides proof of concept to further develop rational and mechanistic based therapeutic strategies to ameliorate the outcome of TNBC.
Collapse
Grants
- This research was supported by the National Natural Science Foundation of China (82172618 to P.E.L. and 82102768 to Y.Q.T.), China; the Shenzhen Key Laboratory of Innovative Oncotherapeutics (ZDSYS20200820165400003 to P.E.L.) (Shenzhen Science and Technology Innovation Commission), China; Shenzhen Development and Reform Commission Subject Construction Project ([2017]1434 to P.E.L.), China; Universities Stable Funding Key Projects (WDZC20200821150704001 to P.E.L.), China; Guangdong Basic and Applied Basic Research Foundation (2020A1515111064 to Y.Q.T.), China; The Shenzhen Bay Laboratory, Oncotherapeutics (21310031 to P.E.L.), China; Overseas Research Cooperation Project (HW2020008 to V.P.) (Tsinghua Shenzhen International Graduate School), China; Research Fund, Kaohsiung Medical University (KMU-Q112002 to Y.C.), Taiwan and China Postdoctoral Science Foundation (2022M721894 to X.H.), China.
Collapse
Affiliation(s)
- Yan Qin Tan
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Yi-Shiou Chiou
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, People's Republic of China
- Master Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, People's Republic of China
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Hui Guo
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Shuwei Zhang
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Xiaoming Huang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, People's Republic of China
- Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Dukanya Dukanya
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, 570006, Mysore, India
| | - Arun M Kumar
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, 570006, Mysore, India
| | - Shreeja Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, 570006, Mysore, India
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Breast Cancer in Shanghai, Innovation Center for Cell Signaling Network, Cancer Institute, Fudan University, Shanghai, People's Republic of China
| | - Tao Zhu
- Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, People's Republic of China
- Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
- Hefei National Laboratory for Physical Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, 570006, Mysore, India.
| | - Vijay Pandey
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China.
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, People's Republic of China.
| | - Peter E Lobie
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China.
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, People's Republic of China.
- Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, People's Republic of China.
| |
Collapse
|
4
|
Sherwood DR, Kenny-Ganzert IW, Balachandar Thendral S. Translational regulation of cell invasion through extracellular matrix-an emerging role for ribosomes. F1000Res 2023; 12:1528. [PMID: 38628976 PMCID: PMC11019292 DOI: 10.12688/f1000research.143519.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/22/2023] [Indexed: 04/19/2024] Open
Abstract
Many developmental and physiological processes require cells to invade and migrate through extracellular matrix barriers. This specialized cellular behavior is also misregulated in many diseases, such as immune disorders and cancer. Cell invasive activity is driven by pro-invasive transcriptional networks that activate the expression of genes encoding numerous different proteins that expand and regulate the cytoskeleton, endomembrane system, cell adhesion, signaling pathways, and metabolic networks. While detailed mechanistic studies have uncovered crucial insights into pro-invasive transcriptional networks and the distinct cell biological attributes of invasive cells, less is known about how invasive cells modulate mRNA translation to meet the robust, dynamic, and unique protein production needs of cell invasion. In this review we outline known modes of translation regulation promoting cell invasion and focus on recent studies revealing elegant mechanisms that expand ribosome biogenesis within invasive cells to meet the increased protein production requirements to invade and migrate through extracellular matrix barriers.
Collapse
|
5
|
Jia W, Yuan J, Li S, Cheng B. The role of dysregulated mRNA translation machinery in cancer pathogenesis and therapeutic value of ribosome-inactivating proteins. Biochim Biophys Acta Rev Cancer 2023; 1878:189018. [PMID: 37944831 DOI: 10.1016/j.bbcan.2023.189018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/17/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Dysregulated protein synthesis is a hallmark of tumors. mRNA translation reprogramming contributes to tumorigenesis, which is fueled by abnormalities in ribosome formation, tRNA abundance and modification, and translation factors. Not only malignant cells but also stromal cells within tumor microenvironment can undergo transformation toward tumorigenic phenotypes during translational reprogramming. Ribosome-inactivating proteins (RIPs) have garnered interests for their ability to selectively inhibit protein synthesis and suppress tumor growth. This review summarizes the role of dysregulated translation machinery in tumor development and explores the potential of RIPs in cancer treatment.
Collapse
Affiliation(s)
- Wentao Jia
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China
| | - Jiaying Yuan
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Shu Li
- Department of Gastroenterology, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201900, China.
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| |
Collapse
|
6
|
Sohrabi A, Lefebvre AEYT, Harrison MJ, Condro MC, Sanazzaro TM, Safarians G, Solomon I, Bastola S, Kordbacheh S, Toh N, Kornblum HI, Digman MA, Seidlits SK. Microenvironmental stiffness induces metabolic reprogramming in glioblastoma. Cell Rep 2023; 42:113175. [PMID: 37756163 PMCID: PMC10842372 DOI: 10.1016/j.celrep.2023.113175] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The mechanical properties of solid tumors influence tumor cell phenotype and the ability to invade surrounding tissues. Using bioengineered scaffolds to provide a matrix microenvironment for patient-derived glioblastoma (GBM) spheroids, this study demonstrates that a soft, brain-like matrix induces GBM cells to shift to a glycolysis-weighted metabolic state, which supports invasive behavior. We first show that orthotopic murine GBM tumors are stiffer than peritumoral brain tissues, but tumor stiffness is heterogeneous where tumor edges are softer than the tumor core. We then developed 3D scaffolds with μ-compressive moduli resembling either stiffer tumor core or softer peritumoral brain tissue. We demonstrate that the softer matrix microenvironment induces a shift in GBM cell metabolism toward glycolysis, which manifests in lower proliferation rate and increased migration activities. Finally, we show that these mechanical cues are transduced from the matrix via CD44 and integrin receptors to induce metabolic and phenotypic changes in cancer cells.
Collapse
Affiliation(s)
- Alireza Sohrabi
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Austin E Y T Lefebvre
- Department of Biomedical Engineering, University of California at Irvine, Irvine, CA 92697, USA
| | - Mollie J Harrison
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Michael C Condro
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Talia M Sanazzaro
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Gevick Safarians
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Itay Solomon
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Soniya Bastola
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shadi Kordbacheh
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nadia Toh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Harley I Kornblum
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michelle A Digman
- Department of Biomedical Engineering, University of California at Irvine, Irvine, CA 92697, USA
| | - Stephanie K Seidlits
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
7
|
Miyanishi K, Nururrozi A, Igase M, Tanabe M, Sakurai M, Sakai Y, Shimonohara N, Murakami M, Mizuno T. Activation of the Akt signalling pathway as a prognostic indicator in canine soft tissue sarcoma. J Comp Pathol 2023; 206:44-52. [PMID: 37839309 DOI: 10.1016/j.jcpa.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/18/2023] [Accepted: 08/31/2023] [Indexed: 10/17/2023]
Abstract
Canine soft tissue sarcoma (STS) is relatively common in dogs and is the generic term for tumours that originate from mesenchymal cells. While histopathological grade and immunolabelling with Ki-67 have been used for estimating prognosis, additional indicators are needed for predicting prognosis. Aberrant cell signalling pathways may contribute to disease activity and, therefore, prognostic markers. However, their role in canine STS remains poorly understood. The aim of this study was to investigate expression of phosphorylated Akt (phospho-Akt) and phosphorylated S6 (phospho-S6) as potential prognostic indicators. Immunohistochemical labelling was conducted on clinical samples of canine STS (n = 67). We found that phospho-Akt expression was positively correlated with histopathological grade (P = 0.001) and Ki-67 index (P <0.01). There was no apparent relationship between the type of STS and the expression of phospho-Akt. The number of cases that expressed phospho-S6, which is the downstream molecule of the Akt signalling pathway, was higher in immunopositive phospho-Akt cases than in immunonegative phospho-Akt cases (P <0.0001). Furthermore, phospho-Akt expression was significantly higher in recurrent and metastatic cases. We also confirmed that phosphorylation of Akt occurred in conjunction with S6 phosphorylation in three canine STS cell lines. These results suggest that immunolabelling for phospho-Akt, phospho-S6 and Ki-67 could potentially be used as a prognostic indicator and therapeutic target in canine STS.
Collapse
Affiliation(s)
- Kyohei Miyanishi
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Alfarisa Nururrozi
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Masaya Igase
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Mika Tanabe
- Veterinary Pathology Diagnostic Center, Fukuoka, Japan
| | - Masashi Sakurai
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Yusuke Sakai
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | | | - Mami Murakami
- Laboratory of Veterinary Clinical Oncology, Joint Department of Veterinary Medicine, Gifu University, Gifu, Japan
| | - Takuya Mizuno
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan.
| |
Collapse
|
8
|
Temaj G, Saha S, Dragusha S, Ejupi V, Buttari B, Profumo E, Beqa L, Saso L. Ribosomopathies and cancer: pharmacological implications. Expert Rev Clin Pharmacol 2022; 15:729-746. [PMID: 35787725 DOI: 10.1080/17512433.2022.2098110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The ribosome is a ribonucleoprotein organelle responsible for protein synthesis, and its biogenesis is a highly coordinated process that involves many macromolecular components. Any acquired or inherited impairment in ribosome biogenesis or ribosomopathies is associated with the development of different cancers and rare genetic diseases. Interference with multiple steps of protein synthesis has been shown to promote tumor cell death. AREAS COVERED We discuss the current insights about impaired ribosome biogenesis and their secondary consequences on protein synthesis, transcriptional and translational responses, proteotoxic stress, and other metabolic pathways associated with cancer and rare diseases. Studies investigating the modulation of different therapeutic chemical entities targeting cancer in in vitro and in vivo models have also been detailed. EXPERT OPINION Despite the association between inherited mutations affecting ribosome biogenesis and cancer biology, the development of therapeutics targeting the essential cellular machinery has only started to emerge. New chemical entities should be designed to modulate different checkpoints (translating oncoproteins, dysregulation of specific ribosome-assembly machinery, ribosomal stress, and rewiring ribosomal functions). Although safe and effective therapies are lacking, consideration should also be given to using existing drugs alone or in combination for long-term safety, with known risks for feasibility in clinical trials and synergistic effects.
Collapse
Affiliation(s)
| | - Sarmistha Saha
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | | | - Valon Ejupi
- College UBT, Faculty of Pharmacy, Prishtina, Kosovo
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | - Elisabetta Profumo
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | - Lule Beqa
- College UBT, Faculty of Pharmacy, Prishtina, Kosovo
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Italy
| |
Collapse
|
9
|
Tang Y, Luo J, Zhou Y, Zang H, Yang Y, Liu S, Zheng H, Ma J, Fan S, Wen Q. Overexpressed p-S6 associates with lymph node metastasis and predicts poor prognosis in non-small cell lung cancer. BMC Cancer 2022; 22:564. [PMID: 35596155 PMCID: PMC9123697 DOI: 10.1186/s12885-022-09664-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/10/2022] [Indexed: 12/25/2022] Open
Abstract
Background Ribosomal protein S6 (S6), a downstream effect media of the AKT/mTOR pathway, not only is a part of 40S small subunit of eukaryotic ribosome, but also involves in protein synthesis and cell proliferation during cancer development. Methods In present study, we explore the association between phosphorylated S6 (p-S6) protein expression and clinicopathological features as well as prognostic implications in NSCLC. P-S6 was detected in tissue microarrays (TMAs) containing 350 NSCLC, 53 non-cancerous lung tissues (Non-CLT), and 88 cases of matched metastatic lymph node lesions via immunohistochemistry (IHC). Transwell assays and wound healing assay were used to assess the effects of p-S6 inhibition on NSCLC cell metastasis. Results The p-S6 expression in NSCLC was more evident than that in Non-CLT (p < 0.05). Compared to NSCLC patients who have no lymph node metastasis (LNM), those with LNM had higher p-S6 expression (p = 0.001). Regardless of lung squamous cell carcinoma (SCC) or adenocarcinoma (ADC), p-S6 was increased obviously in metastatic lymph nodes compared with matched primary cancers (p = 0.001, p = 0.022, respectively). Inhibition of p-S6 decreased the metastasis ability of NSCLC cells. In addition, p-S6 was an independent predicted marker for LNM in patients with NSCLC (p < 0.001). According to survival analysis, patients with highly expressed p-S6 had a lower survival rate compared with that with lower expression (p = 0.013). P-S6 is an unfavorable independent prognostic factor for NSCLC patients (p = 0.011). Conclusion Increased expression of p-S6 is not only a novel predictive biomarker of LNM but also poor prognosis in NSCLC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09664-4.
Collapse
Affiliation(s)
- Yaoxiang Tang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Jiadi Luo
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Ying Zhou
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Hongjing Zang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yang Yang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Sile Liu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Hongmei Zheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Jian Ma
- Cancer Research Institute of Central South University, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Central South University, Changsha, 410011, Hunan, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Qiuyuan Wen
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
10
|
Identifying Key Biomarkers and Immune Infiltration in Female Patients with Ischemic Stroke Based on Weighted Gene Co-Expression Network Analysis. Neural Plast 2022; 2022:5379876. [PMID: 35432523 PMCID: PMC9012649 DOI: 10.1155/2022/5379876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 01/02/2023] Open
Abstract
Stroke is one of the leading causes of death and disability worldwide. Evidence shows that ischemic stroke (IS) accounts for nearly 80 percent of all strokes and that the etiology, risk factors, and prognosis of this disease differ by gender. Female patients may bear a greater burden than male patients. The immune system may play an important role in the pathophysiology of females with IS. Therefore, it is critical to investigate the key biomarkers and immune infiltration of female IS patients to develop effective treatment methods. Herein, we used weighted gene co-expression network analysis (WGCNA) to determine the key modules and core genes in female IS patients using the GSE22255, GSE37587, and GSE16561 datasets from the GEO database. Subsequently, we performed functional enrichment analysis and built a protein-protein interaction (PPI) network. Ten genes were selected as the true central genes for further investigation. After that, we explored the specific molecular and biological functions of these hub genes to gain a better understanding of the underlying pathogenesis of female IS patients. Moreover, the “Cell type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT)” was used to examine the distribution pattern of immune subtypes in female patients with IS and normal controls, revealing a new potential target for clinical treatment of the disease.
Collapse
|
11
|
Altered protein profile of plasma extracellular vesicles in oral squamous cell carcinoma development. J Proteomics 2022; 251:104422. [PMID: 34775099 DOI: 10.1016/j.jprot.2021.104422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/16/2021] [Accepted: 11/01/2021] [Indexed: 11/20/2022]
Abstract
Extracellular vesicles (EVs) are involved in a wide range of pathological processes and recognized as potential and novel biomarkers for oral squamous cell carcinoma (OSCC). Here, we describe the plasma EV proteome of rats with 4-nitroquinoline-1-oxide (4NQO)-induced OSCC or moderate dysplasia (MD), which can progress to OSCC, by tandem mass tag (TMT)-labeled mass spectrometry. The proteomic profiles suggest the differential expression of various proteins in MD and OSCC, some well-recognized pathological changes (e.g., translation, ATP metabolism, and mesenchymal transition), and some novel pathological changes (e.g., podosome, focal adhesion, and S100 binding). We re-examined the presence of traditional exosomal markers and the reported novel pan-EV markers. In summary, these results suggest potential EV biomarkers and underlying pathological changes in early OSCC as well as the presence of oral-derived EVs in plasma and the need for pan-EV markers. SIGNIFICANCE: This research suggests potential EV biomarkers and underlying pathological changes in early OSCC as well as the presence of oral-derived EVs in plasma and the need for pan-EV markers.
Collapse
|
12
|
Yi YW, You KS, Park JS, Lee SG, Seong YS. Ribosomal Protein S6: A Potential Therapeutic Target against Cancer? Int J Mol Sci 2021; 23:ijms23010048. [PMID: 35008473 PMCID: PMC8744729 DOI: 10.3390/ijms23010048] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Ribosomal protein S6 (RPS6) is a component of the 40S small ribosomal subunit and participates in the control of mRNA translation. Additionally, phospho (p)-RPS6 has been recognized as a surrogate marker for the activated PI3K/AKT/mTORC1 pathway, which occurs in many cancer types. However, downstream mechanisms regulated by RPS6 or p-RPS remains elusive, and the therapeutic implication of RPS6 is underappreciated despite an approximately half a century history of research on this protein. In addition, substantial evidence from RPS6 knockdown experiments suggests the potential role of RPS6 in maintaining cancer cell proliferation. This motivates us to investigate the current knowledge of RPS6 functions in cancer. In this review article, we reviewed the current information about the transcriptional regulation, upstream regulators, and extra-ribosomal roles of RPS6, with a focus on its involvement in cancer. We also discussed the therapeutic potential of RPS6 in cancer.
Collapse
Affiliation(s)
- Yong Weon Yi
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
| | - Kyu Sic You
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
| | - Jeong-Soo Park
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
| | - Seok-Geun Lee
- Graduate School, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (S.-G.L.); (Y.-S.S.); Tel.: +82-2-961-2355 (S.-G.L.); +82-41-550-3875 (Y.-S.S.); Fax: +82-2-961-9623 (S.-G.L.)
| | - Yeon-Sun Seong
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
- Correspondence: (S.-G.L.); (Y.-S.S.); Tel.: +82-2-961-2355 (S.-G.L.); +82-41-550-3875 (Y.-S.S.); Fax: +82-2-961-9623 (S.-G.L.)
| |
Collapse
|
13
|
Chen Z, Chen C, Li L, Zhang T, Wang X. The spliceosome pathway activity correlates with reduced anti-tumor immunity and immunotherapy response, and unfavorable clinical outcomes in pan-cancer. Comput Struct Biotechnol J 2021; 19:5428-5442. [PMID: 34667536 PMCID: PMC8501672 DOI: 10.1016/j.csbj.2021.09.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/20/2021] [Accepted: 09/26/2021] [Indexed: 12/12/2022] Open
Abstract
Alterations in the spliceosome pathway (SP) have been associated with diverse human cancers. In this study, we explored associations of the SP activity with various clinical features, anti-tumor immune signatures, tumor immunity-related genomic and molecular features, and the response to immunotherapies and targeted therapies in 29 cancer types from The Cancer Genome Atlas (TCGA) database. We showed that the SP activity was an oncogenic signature, as evidenced by its hyperactivation in cancer and invasive cancer subtypes and correlations with unfavorable clinical outcomes and anti-tumor immunosuppression in various cancers. The SP activity showed positive correlations with tumor mutation burden (TMB) and aneuploidy in diverse cancers, suggesting its association with genomic instability. However, the negative association between the SP activity and anti-tumor immune response was independent of its associations with aneuploidy and TMB. Furthermore, we supported that the SP activity had a negative correlation with immunotherapy response in four cancer cohorts treated by immune checkpoint inhibitors. Moreover, elevated SP activity is correlated with increased drug sensitivity for a broad spectrum of anti-tumor targeted therapies. In conclusion, the SP activity is a negative biomarker for anti-tumor immune response, prognosis, and the response to immunotherapeutic and targeted drugs in pan-cancer.
Collapse
Affiliation(s)
- Zuobing Chen
- Department of Rehabilitation Medicine, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Canping Chen
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.,Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.,Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, China
| | - Lin Li
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.,Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.,Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, China
| | - Tianfang Zhang
- Department of Rehabilitation Medicine, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.,Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.,Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
14
|
Romero SA, Pavan ICB, Morelli AP, Mancini MCS, da Silva LGS, Fagundes I, Silva CHR, Ponte LGS, Rostagno MA, Bezerra RMN, Simabuco FM. Anticancer effects of root and beet leaf extracts (Beta vulgaris L.) in cervical cancer cells (HeLa). Phytother Res 2021; 35:6191-6203. [PMID: 34494317 DOI: 10.1002/ptr.7255] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/25/2021] [Accepted: 07/21/2021] [Indexed: 01/07/2023]
Abstract
Cervical cancer is the fourth leading cause of cancer mortality in women worldwide. Beetroot (Beta vulgaris L.) has bioactive compounds that can inhibit the progression of different types of cancer. To analyze the antiproliferative effects of beet leaf and root extracts, we performed MTT, clonogenic survival, cell cycle analysis, Annexin/PI labeling, and western blotting. Here, we report that 10 and 100 μg/ml of root and leaf extracts decreased cell viability and potentiated rapamycin and cisplatin effects while decreased the number of large colonies, especially at 10 μg/ml (293.6 of control vs. 200.0 of leaf extract, p = .0059; 138.6 of root extract, p = .0002). After 48 hr, 100 μg/ml of both extracts led to increased sub-G1 and G0/G1 populations. In accordance, 100 μg/ml of root extract induced early apoptosis (mean = 0.64 control vs. 1.56 root; p = .048) and decreased cell size (p < .0001). Both extracts decreased phosphorylation and expression of mechanistic Target of Rapamycin (mTOR) signaling, especially by inhibiting ribosomal protein S6 (S6) phosphorylation, increasing cleaved poly(ADP-ribose) polysomerase 1 (PARP1) and Bcl-2-like protein 11 (BIM), and decreasing cyclin D1 expression, which regulates cell cycle progression. Here, we demonstrate that beetroot and leaf extracts could be an efficient strategy against cervical cancer.
Collapse
Affiliation(s)
- Stefhani Andrioli Romero
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Isadora Carolina Betim Pavan
- Laboratory of Signal Mechanisms, School of Pharmaceutical Sciences (FCF), University of Campinas (UNICAMP), Campinas, Brazil
| | - Ana Paula Morelli
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Mariana Camargo Silva Mancini
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Luiz Guilherme Salvino da Silva
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Isabella Fagundes
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Cayo Henrique Rocha Silva
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Luis Gustavo Saboia Ponte
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Mauricio Ariel Rostagno
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Rosângela Maria Neves Bezerra
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Fernando Moreira Simabuco
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| |
Collapse
|
15
|
Chaudhary S, Pothuraju R, Rachagani S, Siddiqui JA, Atri P, Mallya K, Nasser MW, Sayed Z, Lyden ER, Smith L, Gupta SD, Ralhan R, Lakshmanan I, Jones DT, Ganti AK, Macha MA, Batra SK. Dual blockade of EGFR and CDK4/6 delays head and neck squamous cell carcinoma progression by inducing metabolic rewiring. Cancer Lett 2021; 510:79-92. [PMID: 33878394 PMCID: PMC8153085 DOI: 10.1016/j.canlet.2021.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022]
Abstract
Despite preclinical success, monotherapies targeting EGFR or cyclin D1-CDK4/6 in Head and Neck squamous cell carcinoma (HNSCC) have shown a limited clinical outcome. Here, we aimed to determine the combined effect of palbociclib (CDK4/6) and afatinib (panEGFR) inhibitors as an effective strategy to target HNSCC. Using TCGA-HNSCC co-expression analysis, we found that patients with high EGFR and cyclin D1 expression showed enrichment of gene clusters associated with cell-growth, glycolysis, and epithelial to mesenchymal transition processes. Phosphorylated S6 (p-S6), a downstream effector of EGFR and cyclin D1-CDK4/6 signalling, showed a progressive increase from normal oral tissues to leukoplakia and frank malignancy, and associated with poor outcome of the patients. This increased p-S6 expression was drastically reduced after combination treatment with afatinib and palbociclib in the cell lines and mouse models, suggesting its utiliy as a prognostic marker in HNSCC. Combination treatment also reduced the cell growth and induced cell senescence via increasing reactive oxygen species with concurrent ablation of glycolytic and tricarboxylic acid cycle intermediates. Finally, our findings in sub-cutaneous and genetically engineered mouse model (K14-CreERtam;LSL-KrasG12D/+;Trp53R172H/+) studies showed a significant reduction in the tumor growth and delayed tumor progression after combination treatment. This study collectively demonstrates that dual targeting may be a critical therapeutic strategy in blocking tumor progression via inducing metabolic alteration and warrants clinical evaluation.
Collapse
Affiliation(s)
- Sanjib Chaudhary
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jawed A Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kavita Mallya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mohd W Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Zafar Sayed
- Department of Otolaryngology-Head & Neck Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Elizabeth R Lyden
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Lynette Smith
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Siddhartha D Gupta
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Ranju Ralhan
- Department of Otolaryngology-Head & Neck Surgery, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Dwight T Jones
- Department of Otolaryngology-Head & Neck Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Apar Kishor Ganti
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Division of Oncology-Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68105, USA.
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Jammu and Kashmir, 192122, India.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
16
|
Ribosome Biogenesis and Cancer: Overview on Ribosomal Proteins. Int J Mol Sci 2021; 22:ijms22115496. [PMID: 34071057 PMCID: PMC8197113 DOI: 10.3390/ijms22115496] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Cytosolic ribosomes (cytoribosomes) are macromolecular ribonucleoprotein complexes that are assembled from ribosomal RNA and ribosomal proteins, which are essential for protein biosynthesis. Mitochondrial ribosomes (mitoribosomes) perform translation of the proteins essential for the oxidative phosphorylation system. The biogenesis of cytoribosomes and mitoribosomes includes ribosomal RNA processing, modification and binding to ribosomal proteins and is assisted by numerous biogenesis factors. This is a major energy-consuming process in the cell and, therefore, is highly coordinated and sensitive to several cellular stressors. In mitochondria, the regulation of mitoribosome biogenesis is essential for cellular respiration, a process linked to cell growth and proliferation. This review briefly overviews the key stages of cytosolic and mitochondrial ribosome biogenesis; summarizes the main steps of ribosome biogenesis alterations occurring during tumorigenesis, highlighting the changes in the expression level of cytosolic ribosomal proteins (CRPs) and mitochondrial ribosomal proteins (MRPs) in different types of tumors; focuses on the currently available information regarding the extra-ribosomal functions of CRPs and MRPs correlated to cancer; and discusses the role of CRPs and MRPs as biomarkers and/or molecular targets in cancer treatment.
Collapse
|
17
|
PI3K/mTOR Dual Inhibitor PF-04691502 Is a Schedule-Dependent Radiosensitizer for Gastroenteropancreatic Neuroendocrine Tumors. Cells 2021; 10:cells10051261. [PMID: 34065268 PMCID: PMC8160730 DOI: 10.3390/cells10051261] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/27/2022] Open
Abstract
Patients with advanced-stage gastroenteropancreatic neuroendocrine tumors (GEP-NETs) have a poor overall prognosis despite chemotherapy and radiotherapy (e.g., peptide receptor radionuclide therapy (PRRT)). Better treatment options are needed to improve disease regression and patient survival. The purpose of this study was to examine a new treatment strategy by combining PI3K/mTOR dual inhibition and radiotherapy. First, we assessed the efficacy of two PI3K/mTOR dual inhibitors, PF-04691502 and PKI-402, to inhibit pAkt and increase apoptosis in NET cell lines (BON and QGP-1) and patient-derived tumor spheroids as single agents or combined with radiotherapy (XRT). Treatment with PF-04691502 decreased pAkt (Ser473) expression for up to 72 h compared with the control; in contrast, decreased pAkt expression was noted for less than 24 h with PKI-402. Simultaneous treatment with PF-04691502 and XRT did not induce apoptosis in NET cells; however, the addition of PF-04691502 48 h after XRT significantly increased apoptosis compared to PF-04691502 or XRT treatment alone. Our results demonstrate that schedule-dependent administration of a PI3K/mTOR inhibitor, combined with XRT, can enhance cytotoxicity by promoting the radiosensitivity of NET cells. Moreover, our findings suggest that radiotherapy, in combination with timed PI3K/mTOR inhibition, may be a promising therapeutic regimen for patients with GEP-NET.
Collapse
|
18
|
Alboushi L, Hackett AP, Naeli P, Bakhti M, Jafarnejad SM. Multifaceted control of mRNA translation machinery in cancer. Cell Signal 2021; 84:110037. [PMID: 33975011 DOI: 10.1016/j.cellsig.2021.110037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/06/2021] [Indexed: 12/15/2022]
Abstract
The mRNA translation machinery is tightly regulated through several, at times overlapping, mechanisms that modulate its efficiency and accuracy. Due to their fast rate of growth and metabolism, cancer cells require an excessive amount of mRNA translation and protein synthesis. However, unfavorable conditions, such as hypoxia, amino acid starvation, and oxidative stress, which are abundant in cancer, as well as many anti-cancer treatments inhibit mRNA translation. Cancer cells adapt to the various internal and environmental stresses by employing specialised transcript-specific translation to survive and gain a proliferative advantage. We will highlight the major signaling pathways and mechanisms of translation that regulate the global or mRNA-specific translation in response to the intra- or extra-cellular signals and stresses that are key components in the process of tumourigenesis.
Collapse
Affiliation(s)
- Lilas Alboushi
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Angela P Hackett
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Parisa Naeli
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
19
|
Li RZ, Li YY, Qin H, Li SS. ACTL6A Promotes the Proliferation of Esophageal Squamous Cell Carcinoma Cells and Correlates with Poor Clinical Outcomes. Onco Targets Ther 2021; 14:199-211. [PMID: 33469301 PMCID: PMC7812043 DOI: 10.2147/ott.s288807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
Background ACTL6A, a regulatory subunit of ATP-dependent chromatin-remodeling complexes SWI/SNF, has been identified as a central oncogenic driver in many tumor types. Materials and Methods We used immunohistochemistry (IHC) to detect ACTL6A expression in esophageal squamous cell carcinoma (ESCC) tissues. Then, the effect of ACTL6A on proliferation and DNA synthesis was explored by using cell counting kit 8 (CCK8) and EdU retention assays. The potential oncogenic mechanism of ACTL6A in ESCC cells was also analyzed by flow cytometry and Western blotting. We further established an ESCC xenograft mouse model to validate the in vitro results. Results ACTL6A expression, localized in cancer cell nuclei, was markedly higher in ESCC tissues than in the corresponding noncancerous tissues (P<0.001) and was positively associated with tumor size, histological differentiation, T stage and tumor-node-metastasis (TNM) stage. Kaplan–Meier analysis revealed that high ACTL6A expression was significantly associated with poor overall survival (OS) (P = 0.008, HR= 2.562, 95% CI: 1.241–5.289), and decision curve analysis (DCA) demonstrated that ACTL6A could increase the clinical prognostic efficiency of the original clinical prediction model. Further in vitro experiments showed that ACTL6A knockdown led to inhibition of cell proliferation and DNA synthesis in ESCC cell lines, while overexpression of ACTL6A had the opposite effects. ACTL6A knockdown resulted in G1 phase arrest, with downregulation of cyclin D1, CDK2 and S6K1/pS6 pathway proteins and upregulation of p21 and p27, while overexpression of ACTL6A facilitated the entry of more cells into S phase with upregulated cyclin D1, CDK2 and S6K1/pS6 pathway proteins and downregulated p21 and p27. Finally, a xenograft mouse model of ESCC cells validated the results in vitro. Conclusion ACTL6A expression may affect the proliferation and DNA synthesis of ESCC cells by facilitating ESCC cell cycle redistribution via the S6K1/pS6 pathway. Therefore, ACTL6A may potentially become an alternative therapeutic target for ESCC.
Collapse
Affiliation(s)
- Rui-Zhe Li
- Department of Pathology, School of Basic Medical Sciences, Zhengzhou University and First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, People's Republic of China
| | - Yun-Yun Li
- Department of Pathology, School of Basic Medical Sciences, Zhengzhou University and First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, People's Republic of China.,Department of Stomatology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, People's Republic of China
| | - Hui Qin
- Department of Pathology, School of Basic Medical Sciences, Zhengzhou University and First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, People's Republic of China
| | - Shan-Shan Li
- Department of Pathology, School of Basic Medical Sciences, Zhengzhou University and First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, People's Republic of China
| |
Collapse
|
20
|
Yang X, Xu L, Yang YE, Xiong C, Yu J, Wang Y, Lin Y. Knockdown of ribosomal protein S6 suppresses proliferation, migration, and invasion in epithelial ovarian cancer. J Ovarian Res 2020; 13:100. [PMID: 32862831 PMCID: PMC7457759 DOI: 10.1186/s13048-020-00707-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/20/2020] [Indexed: 12/26/2022] Open
Abstract
Background Ovarian cancer typically is diagnosed late because insensitivity and lack of specificity of current biomarkers prior to its clinical detection. Ribosomal protein S6 (RPS6) is a ribosomal protein involved in the ribosomal 40S subunit, but its biological role in epithelial ovarian cancer (EOC) is still unknown. Results RPS6 was elevated in EOC compared to normal ovarian tissues and adenomas. Higher expression of RPS6 predicted worse prognosis in EOC. The level of RPS6 was correlated with clinical stage, histological type and pathological grade. Knockdown of RPS6 reduced the proliferation of ovarian cancer cell lines SKOV-3 and HO8910, and inhibit the migration and invasion ability. It revealed that cells arrested at G0G1 phase after knockdown of RPS6, and the expressions of CyclinD1, Cyclin E, CDK2, CDK4, CDK6 and pRb were also reduced. Conclusions RPS6 is involved in EOC and knockdown of RPS6 could inhibit the proliferation, invasion and migration ability of EOC in vitro by inducing G0/G1 phase arrest. RPS6 is expected to be a novel biomarker and molecular target to the EOC.
Collapse
Affiliation(s)
- Xueqing Yang
- Department of Medicine, Jiangnan University, Wuxi, 214000, People's Republic of China.,Department of Obstetrics and Gynecology, Affiliated Hospital of Jiangnan University, Wuxi, 214000, People's Republic of China
| | - Luxi Xu
- Department of Medicine, Jiangnan University, Wuxi, 214000, People's Republic of China.,Department of Obstetrics and Gynecology, Affiliated Hospital of Jiangnan University, Wuxi, 214000, People's Republic of China
| | - Yu-E Yang
- Department of Medicine, Jiangnan University, Wuxi, 214000, People's Republic of China.,Department of Obstetrics and Gynecology, Affiliated Hospital of Jiangnan University, Wuxi, 214000, People's Republic of China
| | - Chang Xiong
- Department of Medicine, Jiangnan University, Wuxi, 214000, People's Republic of China.,Department of Obstetrics and Gynecology, Affiliated Hospital of Jiangnan University, Wuxi, 214000, People's Republic of China
| | - Jinjin Yu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Jiangnan University, Wuxi, 214000, People's Republic of China
| | - Yuan Wang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Jiangnan University, Wuxi, 214000, People's Republic of China.
| | - Yaying Lin
- Department of Obstetrics and Gynecology, Affiliated Hospital of Jiangnan University, Wuxi, 214000, People's Republic of China.
| |
Collapse
|
21
|
Zhang S, Hu B, Lv X, Chen S, Liu W, Shao Z. The Prognostic Role of Ribosomal Protein S6 Kinase 1 Pathway in Patients With Solid Tumors: A Meta-Analysis. Front Oncol 2019; 9:390. [PMID: 31139572 PMCID: PMC6527894 DOI: 10.3389/fonc.2019.00390] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 04/26/2019] [Indexed: 12/26/2022] Open
Abstract
Background: Recent studies supported the predictive role of ribosomal protein S6 kinase 1 (S6K1), phosphorylated S6K1 (p-S6K1), and phosphorylated ribosomal protein S6 (p-S6) for the outcome of cancer patients. However, inconsistent results were acquired across different researches. To comprehensively and quantitatively elucidate their prognostic significance in solid malignancies, the current meta-analysis was carried out utilizing the results of clinical studies. Methods: We conducted the literature retrieval by searching PubMed, Web of Science, EMBASE, and Cochrane library to identify eligible publications. Data were collected from included articles to calculate pooled overall survival (OS), disease-free survival (DFS), recurrence-free survival (RFS), and progression-free survival (PFS). Hazard ratios (HRs) with 95% confidence intervals (CIs) served as appropriate parameters to assess prognostic significance. Results: Forty-four original studies were included, of which 7 studies were analyzed for S6K1, 24 for p-S6K1, and 16 for p-S6. The overexpression of p-S6K1 was significantly associated with poorer prognosis of solid tumor patients in OS (HR = 1.706, 95%CI: 1.369–2.125, p < 0.001), DFS (HR = 1.665, 95%CI: 1.002–2.768, p = 0.049). However, prognostic role of p-S6K1 in RFS and PFS was not found. The result also revealed that S6K1 and p-S6 were significantly associated with reduced OS (HR = 1.691, 95%CI: 1.306–2.189, p < 0.001; HR = 2.019, 95%CI: 1.775–2.296, p < 0.001, respectively). Conclusions: The present meta-analysis demonstrated that elevated expression of S6K1, p-S6K1, or p-S6 might indicate worse prognosis of patients with solid tumors, and supported a promising clinical test to predict solid tumor prognosis based on the level of S6K1 pathway.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Binwu Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Songfeng Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weijian Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Liu Q, Jiang L, Wang W, Jiang T. BTF3 Silencing Inhibits the Proliferation of Osteosarcoma Cells. J Cancer 2019; 10:1855-1861. [PMID: 31205542 PMCID: PMC6547992 DOI: 10.7150/jca.28476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 02/22/2019] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma (OS) is one of the bone malignancy cancers with poor prognosis in the early stages worldwide. Basic transcription factor 3 (BTF3) is associated with the development of several types of cancer. The present study aimed to evaluate the role of BTF3 in OS. Silencing of BTF3 was achieved by using stable lentivirus transfection of siRNA targeting BTF3 in the human OS cell line Saos-2. Cell viability and colony-forming ability were measured using methyl-thaizolyl-tetrazolium (MTT) and colony formation assays, respectively. Propidium iodide staining and flow cytometry was used to detect the progression of the cell cycle. To evaluate the possible intracellular signaling molecules involved, a PathScan Intracellular Signaling Array Kit was utilized. Lentivirus-BTF3-shRNA (LV-BTF3-shRNA) suppressed expression of BTF3 in Saos-2 cells (inhibition ratio: 89.8%), which significantly inhibited cell proliferation (48.5%), colony formation and enhanced apoptosis to 48.2% compared to 4.5% with lentivirus control shRNA (N-shRNA). Additionally, BTF3 silencing enhanced the percentage of Saos-2 cells in S and G2/M phases, but significantly reduced cells in the G0/M phase (all P < 0.01). The proteins activated by BTF3 included STAT3, S6 ribosomal protein, HSP27 and SAPK/JNK2, all of which were inhibited by BTF3 silencing, whereas SAPK/JNK1 was upregulated by BTF3 silencing. In the present study, we explored the crucial role of BTF3 in promoting OS cell proliferation as well as laying the foundations for further research to investigate the clinical potential of lentivirus-mediated delivery of BTF3 interruption therapy for the treatment of OS.
Collapse
Affiliation(s)
- Qi Liu
- Department of General Surgery, People's Hospital of Hunan Province, First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan Province, China
| | - Lin Jiang
- Department of Orthopedic Surgery, Traumatology and Orthopedics Hospital of Liuyang, Liuyang 410300, Hunan Province, China
| | - Wanchun Wang
- Department of Orthopedic Surgery, The Second Xiangya Hospital, Central South University, Changsha 410005, Hunan Province, China
| | - Tao Jiang
- Department of Orthopedic Surgery, The Second Xiangya Hospital, Central South University, Changsha 410005, Hunan Province, China
| |
Collapse
|
23
|
Nayman AH, Siginc H, Zemheri E, Yencilek F, Yildirim A, Telci D. Dual-Inhibition of mTOR and Bcl-2 Enhances the Anti-tumor Effect of Everolimus against Renal Cell Carcinoma In Vitro and In Vivo. J Cancer 2019; 10:1466-1478. [PMID: 31031856 PMCID: PMC6485234 DOI: 10.7150/jca.29192] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/03/2019] [Indexed: 12/14/2022] Open
Abstract
Renal cell carcinoma (RCC) is the predominant type of kidney cancer. Mammalian target of rapamycin (mTOR) inhibitor everolimus is currently used as a second-line therapy for sorafenib or sunitinib-refractory metastatic RCC patients. The clinical limitation confronted during everolimus therapy is the onset of drug resistance that decreases the efficacy of the drug. Elevated level of anti-apoptotic Bcl-2 protein is proposed to be an emerging feedback loop for the acquired drug-resistance in various cancer types. In this study, the Bcl-2 inhibitor ABT-737 was used in combination with everolimus to enhance its anti-tumor effectiveness in everolimus-resistant RCC cell lines. Everolimus and ABT-737 combination synergistically led to a decrease in the proliferation of primary site A-498 and metastatic site Caki-1 RCC cell lines, which was accompanied by a reduction in protein levels of cell cycle and mTOR pathway proteins. In both RCC cell lines, everolimus-ABT-737 combination not only induced apoptosis, caspase and PARP-1 cleavage but also a decrease in Bcl-2 protein levels in parallel with a concomitant increase in Bim and Noxa levels. In order to confirm our in vitro findings, we have generated everolimus-resistant RenCa cell line (RenCares) to establish a RCC mouse xenograft model. Animals co-treated with everolimus and ABT-737 exhibited a complete suppression of tumor growth without any notable toxicity. This study thus proposes the everolimus-ABT-737 combination as a novel therapeutic strategy for the treatment of RCC to overcome the current clinical problem of everolimus resistance.
Collapse
Affiliation(s)
- Ayse Hande Nayman
- Yeditepe University, Faculty of Engineering, Department of Genetics and Bioengineering, Kayisdagi Cad., 34755, Istanbul, Turkey
| | - Halime Siginc
- Yeditepe University, Faculty of Engineering, Department of Genetics and Bioengineering, Kayisdagi Cad., 34755, Istanbul, Turkey
| | - Ebru Zemheri
- Department of Pathology, Umraniye Training and Research Hospital, Istanbul, Turkey
| | - Faruk Yencilek
- Yeditepe University, Faculty/School of Medicine, Yeditepe University Hospital, Istanbul, Turkey
| | - Asif Yildirim
- Department of Urology/Faculty of Medicine, Medeniyet University, Istanbul, Turkey
| | - Dilek Telci
- Yeditepe University, Faculty of Engineering, Department of Genetics and Bioengineering, Kayisdagi Cad., 34755, Istanbul, Turkey
| |
Collapse
|
24
|
Vanichtantikul A, Hodge KG, Somparn P, Saethang T, Triratanachat S, Pisitkun T, Lertkhachonsuk R. Proteomic identification of predictive biomarkers for malignant transformation in complete hydatidiform moles. Placenta 2019; 77:58-64. [PMID: 30827356 DOI: 10.1016/j.placenta.2019.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/11/2018] [Accepted: 02/04/2019] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Protein expression in cells are associated with oncogenesis. This study aims to explore proteomic profiles and discover potential biomarkers that can predict malignant transformation of hydatidiform mole. METHODS Retrospective analysis was done in 14 cases of remission hydatidiform mole and 14 cases of hydatidiform mole who later developed malignancy (GTN group). Molar tissues were retrieved from -70 °C frozen tissue. Subsequently, a large-scale proteomic analysis was performed to identify proteins and compare their abundance levels in the preserved molar tissues from these two groups using a dimethyl-labeling technique coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS A total of 2,153 proteins were identified from all samples. 22 and 10 proteins were significantly up-regulated and down-regulated, respectively, in the GTN group compared with the mole group. These altered proteins were found in several biological groups such as cell-cell adhesion, secreted proteins, and ribonucleoproteins. Several hormone-related proteins were among the most up-regulated proteins in the GTN group including choriogonadotropin subunit beta (β-hCG) and alpha (α-hCG), growth/differentiation factor 15, as well as both pregnancy-specific beta-1-glycoproteins 2 and 3. In contrast, protein S100-A11 and l-lactate dehydrogenase A chain, were down-regulated in molar tissue from most patients in the GTN group. DISCUSSION This study identified a set of differentially expressed proteins in molar tissues that could potentially be further examined as predictive biomarkers for the malignant transformation of CHMs. A molar proteome database was constructed and can be accessible online at http://sysbio.chula.ac.th/Database/GTD_DB/Supplementary_Data.xlsx.
Collapse
Affiliation(s)
- Asama Vanichtantikul
- Placental Related Disease Research Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Thailand
| | - Kenneth G Hodge
- Systems Biology Center, Faculty of Medicine, Chulalongkorn University, Thailand
| | - Poorichaya Somparn
- Systems Biology Center, Faculty of Medicine, Chulalongkorn University, Thailand
| | - Thammakorn Saethang
- Systems Biology Center, Faculty of Medicine, Chulalongkorn University, Thailand
| | - Surang Triratanachat
- Division of Gynecologic Cytopathology, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Thailand
| | - Trairak Pisitkun
- Systems Biology Center, Faculty of Medicine, Chulalongkorn University, Thailand
| | - Ruangsak Lertkhachonsuk
- Placental Related Disease Research Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Thailand.
| |
Collapse
|
25
|
Sironi J, Aranda E, Nordstrøm LU, Schwartz EL. Lysosome Membrane Permeabilization and Disruption of the Molecular Target of Rapamycin (mTOR)-Lysosome Interaction Are Associated with the Inhibition of Lung Cancer Cell Proliferation by a Chloroquinoline Analog. Mol Pharmacol 2019; 95:127-138. [PMID: 30409790 PMCID: PMC6284226 DOI: 10.1124/mol.118.113118] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/31/2018] [Indexed: 01/07/2023] Open
Abstract
Lysosomes degrade cellular proteins and organelles and regulate cell signaling by providing a surface for the formation of critical protein complexes, notably molecular target of rapamycin (mTOR) complex 1 (mTORC1). Striking differences in the lysosomes of cancer versus normal cells suggest that they could be targets for drug development. Although the lysomotropic drugs chloroquine (CQ) and hydroxychloroquine (HCQ) have been widely investigated, studies have focused on their ability to inhibit autophagy. We synthesized a novel compound, called EAD1, which is structurally related to CQ but is a 14-fold more potent inhibitor of cell proliferation. Here we find that EAD1 causes rapid relocation, membrane permeabilization (LMP), and deacidification of lysosomes, and it induces apoptosis and irreversibly blocks proliferation of human lung cancer H460, H520, H1299, HCC827, and H1703 cells. EAD1 causes dissociation of mTOR from lysosomes and increases mTOR's perinuclear versus cytoplasmic localization, changes previously shown to inactivate mTORC1. The effect on mTOR was not seen with HCQ, even at >10-fold greater concentrations. Phosphorylation of a downstream target of mTORC1, ribosomal protein S6, was inhibited by EAD1. Although EAD1 also inhibited autophagy, it retained full antiproliferative activity in autophagy-deficient H1650 lung cancer cells, which have a biallelic deletion of Atg7, and in H460 Atg7-knockout cells. As Atg7 is critical for the canonical autophagy pathway, it is likely that inhibition of autophagy is not how EAD1 inhibits cell proliferation. Further studies are needed to determine the relationship of LMP to mTORC1 disruption and their relative contributions to drug-induced cell death. These studies support the lysosome as an underexplored target for new drug development.
Collapse
Affiliation(s)
- Juan Sironi
- Departments of Medicine (Oncology) (J.S., E.A., E.L.S.) and Biochemistry (L.U.N.), Albert Einstein College of Medicine and the Einstein Cancer Center, Bronx, New York
| | - Evelyn Aranda
- Departments of Medicine (Oncology) (J.S., E.A., E.L.S.) and Biochemistry (L.U.N.), Albert Einstein College of Medicine and the Einstein Cancer Center, Bronx, New York
| | - Lars Ulrik Nordstrøm
- Departments of Medicine (Oncology) (J.S., E.A., E.L.S.) and Biochemistry (L.U.N.), Albert Einstein College of Medicine and the Einstein Cancer Center, Bronx, New York
| | - Edward L Schwartz
- Departments of Medicine (Oncology) (J.S., E.A., E.L.S.) and Biochemistry (L.U.N.), Albert Einstein College of Medicine and the Einstein Cancer Center, Bronx, New York
| |
Collapse
|
26
|
Gambardella V, Gimeno-Valiente F, Tarazona N, Martinez-Ciarpaglini C, Roda D, Fleitas T, Tolosa P, Cejalvo JM, Huerta M, Roselló S, Castillo J, Cervantes A. NRF2 through RPS6 Activation Is Related to Anti-HER2 Drug Resistance in HER2-Amplified Gastric Cancer. Clin Cancer Res 2018; 25:1639-1649. [PMID: 30504425 DOI: 10.1158/1078-0432.ccr-18-2421] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/06/2018] [Accepted: 11/27/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE Despite the clinical advantage of the combination of trastuzumab and platinum-based chemotherapy in HER2-amplified tumors, resistance will eventually develop. The identification of molecular mechanisms related to primary and acquired resistance is needed. EXPERIMENTAL DESIGN We generated lapatinib- and trastuzumab-resistant clones deriving from two different HER2-amplified gastric cancer cell lines. Molecular changes such as protein expression and gene-expression profile were evaluated to detect alterations that could be related to resistance. Functional studies in vitro were corroborated in vivo. The translational relevance of our findings was verified in a patient cohort. RESULTS We found RPS6 activation and NRF2 to be related to anti-HER2 drug resistance. RPS6 or NRF2 inhibition with siRNA reduced viability and resistance to anti-HER2 drugs. In knockdown cells for RPS6, a decrease of NRF2 expression was demonstrated, suggesting a potential link between these two proteins. The use of a PI3K/TORC1/TORC2 inhibitor, tested in vitro and in vivo, inhibited pRPS6 and NRF2 expression and caused cell and tumor growth reduction, in anti-HER2-resistant models. In a cohort of HER2-amplified patients treated with trastuzumab and chemotherapy, a high level of NRF2 at baseline corresponds with worse progression-free survival. CONCLUSIONS NRF2 through the PI3K/AKT/mTOR/RPS6 pathway could be a potential effector of resistance to anti-HER2 drugs in our models. RPS6 inhibition decreases NRF2 expression and restores sensitivity in HER2-amplified gastric cancer in vitro and in vivo. High NRF2 expression in gastric cancer patients predicts resistance to treatment. RPS6 and NRF2 inhibition could prevent resistance to anti-HER2 drugs.
Collapse
Affiliation(s)
- Valentina Gambardella
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
| | - Francisco Gimeno-Valiente
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
| | - Noelia Tarazona
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain.,CIBERONC, Network of Biomedical Research, Instituto de Salud Carlos III, Spain
| | | | - Desamparados Roda
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain.,CIBERONC, Network of Biomedical Research, Instituto de Salud Carlos III, Spain
| | - Tania Fleitas
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
| | - Pablo Tolosa
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
| | - Juan Miguel Cejalvo
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
| | - Marisol Huerta
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
| | - Susana Roselló
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain.,CIBERONC, Network of Biomedical Research, Instituto de Salud Carlos III, Spain
| | - Josefa Castillo
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain. .,CIBERONC, Network of Biomedical Research, Instituto de Salud Carlos III, Spain.,Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - Andrés Cervantes
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain. .,CIBERONC, Network of Biomedical Research, Instituto de Salud Carlos III, Spain
| |
Collapse
|
27
|
Molavi G, Samadi N, Hosseingholi EZ. The roles of moonlight ribosomal proteins in the development of human cancers. J Cell Physiol 2018; 234:8327-8341. [PMID: 30417503 DOI: 10.1002/jcp.27722] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 09/23/2018] [Indexed: 12/13/2022]
Abstract
"Moonlighting protein" is a term used to define a single protein with multiple functions and different activities that are not derived from gene fusions, multiple RNA splicing, or the proteolytic activity of promiscuous enzymes. Different proteinous constituents of ribosomes have been shown to have important moonlighting extra-ribosomal functions. In this review, we introduce the impact of key moonlight ribosomal proteins and dependent signal transduction in the initiation and progression of various cancers. As a future perspective, the potential role of these moonlight ribosomal proteins in the diagnosis, prognosis, and development of novel strategies to improve the efficacy of therapies for human cancers has been suggested.
Collapse
Affiliation(s)
- Ghader Molavi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Samadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
28
|
Transcriptome-wide analysis of alternative mRNA splicing signature in the diagnosis and prognosis of stomach adenocarcinoma. Oncol Rep 2018; 40:2014-2022. [PMID: 30106437 PMCID: PMC6111597 DOI: 10.3892/or.2018.6623] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 07/17/2018] [Indexed: 12/12/2022] Open
Abstract
Alternative mRNA splicing (AS) contributes greatly to expanding the diversity and function of the proteome. Increasing evidence has suggested that dysregulation of mRNA splicing may be associated with various types of cancer. In the present study, RNA sequencing data were used to investigate alterations to the global mRNA splicing landscape of cellular genes from 452 stomach adenocarcinoma (STAD) tissues available in The Cancer Genome Atlas. Seven types of AS events, including the profiles of exon skipping events, were analyzed using SpliceSeq software. A total of 60,754 AS events in 10,611 genes were detected, more than half of which were exon skipping events. The AS events were compared between 415 STAD tissues and 37 normal tissues, and 3,895 differentially spliced cancer-specific events were identified. In addition, the association of the AS events with the overall survival of 373 STAD patients was analyzed. Multivariate Cox regression analysis revealed that prognosis prediction models based on the AS events with clinical parameters had an excellent performance in predicting the survival of STAD patients. This study provides a comprehensive portrait of global changes in mRNA splicing signatures that occur in gastric cancer. These results allowed the identification of a core set of AS in gastric cancer and indicated that AS events may serve as prognostic indicators.
Collapse
|
29
|
Abstract
Several lines of evidence are consistent with the hypothesis that activated platelets contribute to colorectal tumorigenesis and metastatization through direct cell-cell interactions and the release of different lipid and protein mediators, and microvesicles. This review examines the clinical pharmacology of low-dose aspirin as a basis for discussing the mechanisms underlying the contribution of platelets to neoplastic transformation and progression of cancer via the development of metastases.
Collapse
Affiliation(s)
- Paola Patrignani
- a Department of Neuroscience, Imaging and Clinical Sciences, Section of Cardiovascular and Pharmacological Sciences, and CeSI-MeT (Centro Scienze dell' Invecchiamento e Medicina Traslazionale) , "G. d'Annunzio" University , Chieti , Italy
| | - Carlo Patrono
- b Department of Pharmacology , Catholic University School of Medicine , Rome , Italy
| |
Collapse
|
30
|
Son SW, Kim SH, Moon EY, Kim DH, Pyo S, Um SH. Prognostic significance and function of the vacuolar H+-ATPase subunit V1E1 in esophageal squamous cell carcinoma. Oncotarget 2018; 7:49334-49348. [PMID: 27384996 PMCID: PMC5226512 DOI: 10.18632/oncotarget.10340] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/13/2016] [Indexed: 01/05/2023] Open
Abstract
Vacuolar H+-ATPase (V-ATPase), a hetero-multimeric ATP-driven proton pump has recently emerged as a critical regulator of mTOR-induced amino acid sensing for cell growth. Although dysregulated activity of cell growth regulators is often associated with cancer, the prognostic significance and metabolic roles of V-ATPase in esophageal cancer progression remain unclear. Here, we show that high levels of V-ATPase subunit V1E1 (V-ATPase V1E1) were significantly associated with shortened disease-free survival in patients with esophageal squamous cell carcinoma (ESCC). Multivariate analysis identified the V-ATPase V1E1 as an independent adverse prognostic factor (hazard ratio;1.748, P = 0.018). In addition, depletion of V-ATPase V1E1 resulted in reduced cell motility, decreased glucose uptake, diminished levels of lactate, and decreased ATP production, as well as inhibition of glycolytic enzyme expression in TE8 esophageal cancer cells. Consistent with these results, the Cancer Genome Atlas (TCGA) data and Gene Set Enrichment Analysis (GSEA) showed a high frequency of copy number alterations of the V-ATPase V1E1 gene, and identified a correlation between levels of V-ATPase V1E1 mRNA and Pyruvate Kinase M2 (PKM2) in ESCC. High expression levels of both V-ATPase V1E1 and phosphorylated PKM2 (p-PKM2), a key player in cancer metabolism, were associated with poorer prognosis in ESCC. Collectively, our findings suggest that expression of the V-ATPase V1E1 has prognostic significance in ESCC, and is closely linked to migration, invasion, and aerobic glycolysis in esophageal cancer cells.
Collapse
Affiliation(s)
- Sung Wook Son
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Gyeonggi-do, 16419, Korea
| | - Seok-Hyung Kim
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University, Seoul, 06351, Korea
| | - Eun-Yi Moon
- Department of Bioscience and Biotechnology, Sejong University, Seoul, 05006, Korea
| | - Dong-Hoon Kim
- Department of Pharmacology, Korea University College of Medicine, Seoul, 02841, Korea
| | - Suhkneung Pyo
- Division of Immunopharmacology, School of Pharmacy, Sungkyunkwan University, Gyeonggi-do, 16419, Korea
| | - Sung Hee Um
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Gyeonggi-do, 16419, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University, Seoul, 06351, Korea
| |
Collapse
|
31
|
Zou Y, Wang J, Leng X, Huang J, Xue W, Zhang J, Huang Y. The selective MEK1 inhibitor Selumetinib enhances the antitumor activity of everolimus against renal cell carcinoma in vitro and in vivo. Oncotarget 2017; 8:20825-20833. [PMID: 28212559 PMCID: PMC5400548 DOI: 10.18632/oncotarget.15346] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/27/2017] [Indexed: 02/07/2023] Open
Abstract
Renal cell carcinoma (RCC) is a urologic malignant cancer and often diagnosed at an advanced stage, which results in high mortality. Targeted therapy may improve the quality of life and survival of patients who are not suitable for nephrectomy. Everolimus, an mTOR inhibitor, is currently used as sequential or second-line therapy for RCC refractory to Sunitinib or sorafenib. However, its efficiency is palliative. In this study, we evaluated whether the antitumor activity of everolimus against RCC is enhanced by Selumetinib, a selective MEK1 inhibitor. We discovered that everolimus in combination with Selumetinib synergistically inhibited the proliferation of Caki-1, 786-O and 769-P cells in vitro. Mechanistically, this combination decreased p-RPS6 and p-4E-BP1 dramatically, which causes G1 cell cycle arrest and prevents reactivation of AKT and ERK. In vivo, the antitumor efficacy and pharmacodynamic biomarkers of the combination therapy were recapitulated in Caki-1 xenograft model. In addition, this combination treatment potently inhibited angiogenesis in xenograft models by impairing VEGF secretion from tumor cells. Our findings provide a sound evidence that combination of everolimus and Selumetinib is a potential dual-targeted strategy for renal cell carcinoma.
Collapse
Affiliation(s)
- Yun Zou
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianfeng Wang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuejiao Leng
- Department of Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jiwei Huang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Xue
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Zhang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yiran Huang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
32
|
Xie X, Guo P, Yu H, Wang Y, Chen G. Ribosomal proteins: insight into molecular roles and functions in hepatocellular carcinoma. Oncogene 2017; 37:277-285. [PMID: 28945227 DOI: 10.1038/onc.2017.343] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/21/2017] [Accepted: 08/14/2017] [Indexed: 02/07/2023]
Abstract
Ribosomes, which are important sites for the synthesis of proteins related to expression and transmission of genetic information in humans, have a complex structure and diverse functions. They consist of a variety of ribosomal proteins (RPs), ribosomal RNAs (rRNAs) and small nucleolar RNAs. Owing to the involvement of ribosomes in many important biological processes of cells, their major components, rRNAs and RPs, have an important role in human diseases, including the initiation and evolvement of malignancies. However, the main mechanisms underlying the involvement of ribosomes in cancer remain unclear. This review describes the crucial role of ribosomes in various common malignant tumors; in particular, it examines the effects of RPs, including S6, the receptor for activated C-kinase and RPS15A, on the development and progression of hepatocellular carcinoma.
Collapse
Affiliation(s)
- X Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - P Guo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - H Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Y Wang
- Research Center of Evidence-Based Medicine and Clinical Epidemiology, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - G Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
33
|
de Vicente JC, Peña I, Rodrigo JP, Rodríguez-Santamarta T, Lequerica-Fernández P, Suárez-Fernández L, Allonca E, García-Pedrero JM. Phosphorylated ribosomal protein S6 correlation with p21 expression and inverse association with tumor size in oral squamous cell carcinoma. Head Neck 2017; 39:1876-1887. [PMID: 28675642 DOI: 10.1002/hed.24854] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 03/01/2017] [Accepted: 05/01/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The purpose of this study was to investigate the clinical relevance of phosphorylated ribosomal protein S6 (p-S6), a surrogate marker of mammalian target of rapamycin (mTOR) activation, and p21 in a series of 125 patients with oral squamous cell carcinomas (OSCCs). METHODS Immunohistochemical analysis was performed to ascertain the phosphorylation status of p-S6 at Ser235/236 and Ser240/244, p21, and p53 protein expression. RESULTS Expression of phosphorylated S6 protein on either serine 235/236 or serine 240/244 was detected in 83% and 88% tumors, respectively, and both of them were inversely and significantly correlated with the tumor size and local infiltration. Positive p21 expression was found in 91.5% of the cases, and was inversely correlated with tumor size. In OSCC, p21 expression correlates with p-S6 levels, a surrogate marker of mTOR activation, independently of p53 status. CONCLUSION Expression of both p21 and p-S6 was found to inversely associate with tumor size but not survival outcomes in patients with OSCC.
Collapse
Affiliation(s)
- Juan C de Vicente
- Department of Oral and Maxillofacial Surgery, Hospital Universitario Central de Asturias (HUCA), Oviedo, Asturias, Spain.,Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Hospital Universitario Central de Asturias, Oviedo, Asturias, CIBERONC ISCIII Spain
| | - Ignacio Peña
- Department of Oral and Maxillofacial Surgery, Hospital Universitario Central de Asturias (HUCA), Oviedo, Asturias, Spain
| | - Juan P Rodrigo
- Department of Otolaryngology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Asturias, Spain.,Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Hospital Universitario Central de Asturias, Oviedo, Asturias, CIBERONC ISCIII Spain
| | - Tania Rodríguez-Santamarta
- Department of Oral and Maxillofacial Surgery, Hospital Universitario Central de Asturias (HUCA), Oviedo, Asturias, Spain
| | | | - Laura Suárez-Fernández
- Department of Otolaryngology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Asturias, Spain
| | - Eva Allonca
- Department of Otolaryngology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Asturias, Spain
| | - Juana M García-Pedrero
- Department of Otolaryngology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Asturias, Spain.,Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Hospital Universitario Central de Asturias, Oviedo, Asturias, CIBERONC ISCIII Spain
| |
Collapse
|
34
|
Identifying reproducible cancer-associated highly expressed genes with important functional significances using multiple datasets. Sci Rep 2016; 6:36227. [PMID: 27796338 PMCID: PMC5086981 DOI: 10.1038/srep36227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/12/2016] [Indexed: 01/08/2023] Open
Abstract
Identifying differentially expressed (DE) genes between cancer and normal tissues is of basic importance for studying cancer mechanisms. However, current methods, such as the commonly used Significance Analysis of Microarrays (SAM), are biased to genes with low expression levels. Recently, we proposed an algorithm, named the pairwise difference (PD) algorithm, to identify highly expressed DE genes based on reproducibility evaluation of top-ranked expression differences between paired technical replicates of cells under two experimental conditions. In this study, we extended the application of the algorithm to the identification of DE genes between two types of tissue samples (biological replicates) based on several independent datasets or sub-datasets of a dataset, by constructing multiple paired average gene expression profiles for the two types of samples. Using multiple datasets for lung and esophageal cancers, we demonstrated that PD could identify many DE genes highly expressed in both cancer and normal tissues that tended to be missed by the commonly used SAM. These highly expressed DE genes, including many housekeeping genes, were significantly enriched in many conservative pathways, such as ribosome, proteasome, phagosome and TNF signaling pathways with important functional significances in oncogenesis.
Collapse
|
35
|
Xu X, Xiong X, Sun Y. The role of ribosomal proteins in the regulation of cell proliferation, tumorigenesis, and genomic integrity. SCIENCE CHINA-LIFE SCIENCES 2016; 59:656-72. [DOI: 10.1007/s11427-016-0018-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/06/2016] [Indexed: 01/29/2023]
|
36
|
Kay NE, Sassoon T, Secreto C, Sinha S, Shanafelt TD, Ghosh AK, Arbiser JL. Tris (dibenzylideneacetone) dipalladium: a small-molecule palladium complex is effective in inducing apoptosis in chronic lymphocytic leukemia B-cells. Leuk Lymphoma 2016; 57:2409-16. [PMID: 27189785 DOI: 10.3109/10428194.2016.1161186] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Here we tested impact of Tris (dibenzylideneacetone) dipalladium (Tris-DBA) on chronic lymphocytic leukemia (CLL) B-cell survival. Indeed, treatment of CLL B-cells with Tris-DBA induced apoptosis in a dose-dependent manner irrespective of IgVH mutational status. Further analyses suggest that Tris-DBA-induced apoptosis involves reduced expression of the anti-apoptotic proteins Bcl-xL, and XIAP with an upregulation of the pro-apoptotic protein BIM in CLL B-cells. Our findings also indicate that Tris-DBA targets the ribosomal protein (rp)-S6, an essential component of the Akt/mTOR signaling axis in CLL B-cells. Of interest, CLL bone marrow stromal cells were unable to protect the leukemic B cells from Tris-DBA-induced apoptosis in an in vitro co-culture system. Finally, co-administration of Tris-DBA and the purine nucleoside analog fludarabine (F-ara-A) augmented CLL B-cell apoptosis levels in vitro showing synergistic effects. In total, Tris-DBA is effective at inducing apoptosis in CLL B-cells even in the presence of stromal cells likely by targeting directly the signal mediator, rpS6.
Collapse
Affiliation(s)
- Neil E Kay
- a Division of Hematology , Mayo Clinic , Rochester , MN , USA
| | - Traci Sassoon
- a Division of Hematology , Mayo Clinic , Rochester , MN , USA
| | - Charla Secreto
- a Division of Hematology , Mayo Clinic , Rochester , MN , USA
| | - Sutapa Sinha
- a Division of Hematology , Mayo Clinic , Rochester , MN , USA
| | | | - Asish K Ghosh
- b Stephenson Cancer Center, Department of Pathology , University of Oklahoma , Oklahoma , OK , USA
| | - Jack L Arbiser
- c Department of Dermatology , Emory University, Winship Cancer Institute , Atlanta , GA , USA
| |
Collapse
|
37
|
Stabilization of p21 by mTORC1/4E-BP1 predicts clinical outcome of head and neck cancers. Nat Commun 2016; 7:10438. [PMID: 26832959 PMCID: PMC4740818 DOI: 10.1038/ncomms10438] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 12/10/2015] [Indexed: 12/30/2022] Open
Abstract
The levels, regulation and prognostic value of p21 in head and neck squamous cell carcinomas (HNSCC) has been puzzling for years. Here, we report a new mechanism of regulation of p21 by the mTORC1/4E-BP1 pathway. We find that non-phosphorylated 4E-BP1 interacts with p21 and induces its degradation. Accordingly, hyper-activation of mTORC1 results in phosphorylation of 4E-BP1 and stabilization of p21. In HNSCC, p21 levels strongly correlate with mTORC1 activity but not with p53 status. Finally, clinical data indicate that HNSCC patients with p21 and phospho-S6-double-positive tumours present a better disease-specific survival. We conclude that over-activation of the mTORC1/4E-BP1/p21 pathway is a frequent and clinically relevant alteration in HNSCC. The molecular pathways involving p21 and mTORC1 are frequently deregulated in head and neck squamous cell carcinomas (HNSCC). Here, Llanos et al. report a mechanism that regulates p21 stability through the mTORC1/4E-BP1 pathway independently of p53, and show that the mechanism is prevalent in HNSCC.
Collapse
|
38
|
Chen J, Wei Y, Feng Q, Ren L, He G, Chang W, Zhu D, Yi T, Lin Q, Tang W, Xu J, Qin X. Ribosomal protein S15A promotes malignant transformation and predicts poor outcome in colorectal cancer through misregulation of p53 signaling pathway. Int J Oncol 2016; 48:1628-38. [PMID: 26847263 DOI: 10.3892/ijo.2016.3366] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 01/05/2016] [Indexed: 11/06/2022] Open
Abstract
Ribosomal protein S15A (RPS15A), which has been identified as a highly conserved 40S ribosomal protein, is essential for cell survival and proliferation. The present study evaluated the functional role of RPS15A in colorectal cancer (CRC), and our investigation found that RPS15A was highly expressed in a cohort of human CRC. High RPS15A expression was associated with older age (P=0.035), not receiving preoperative neoadjuvant treatment (P=0.048), higher primary pN stage (P=0.007) and slightly more synchronous distant metastases (P=0.058). The Cox univariate and multivariate hazard regression analysis revealed that higher expression of RPS15A led to a reduction of overall survival rate in CRC, indicating that enhanced RPS15A expression functions as an independent risk factor for the prognosis of CRC patients (P<0.001). Cell based analysis showed that RPS15A was widely expressed in human CRC cell lines. Knockdown of RPS15A significantly suppressed cell proliferation and colony formation in HCT116 and DLD-1 cells, and induced cell cycle arrest at G0/G1 phase. Genechip analysis suggested that knockdown of RPS15A might affect the p53 signaling pathway. Further study indicated that RPS15A knockdown upregulated p53 and p21 expression whereas downregulated CDK1 expression. In summary, the present study identified RPS15A as a novel univariate prognostic factor predicting a poor outcome in CRC patients. The RPS15A overexpression induced by malignant transformation of CRC might function through the p53 signaling pathway.
Collapse
Affiliation(s)
- Jingwen Chen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Ye Wei
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Qingyang Feng
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Li Ren
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Guodong He
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Wenju Chang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Dexiang Zhu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Tuo Yi
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Qi Lin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Wentao Tang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Jianmin Xu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Xinyu Qin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
39
|
Chen B, Tan Z, Gao J, Wu W, Liu L, Jin W, Cao Y, Zhao S, Zhang W, Qiu Z, Liu D, Mo X, Li W. Hyperphosphorylation of ribosomal protein S6 predicts unfavorable clinical survival in non-small cell lung cancer. J Exp Clin Cancer Res 2015; 34:126. [PMID: 26490682 PMCID: PMC4618148 DOI: 10.1186/s13046-015-0239-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/07/2015] [Indexed: 02/07/2023] Open
Abstract
Background Ribosomal protein S6 (rpS6), a component of the 40S ribosomal subunit, is involved in multiple cellular bioactivities. However, its clinicopathological significance in non-small cell lung cancer (NSCLC) is poorly understood. Methods Expressions of total rpS6 (t-rpS6) and phosphorylated rpS6 (Ser235/236, p-rpS6) were detected immunohistochemically in 316 NSCLC tissues and 82 adjacent controls, followed by statistical evaluation of the relationship between proteins expressions and patients’ survivals to identify their prognostic values. Cytological experiments with overexpressing or silencing rpS6 by lentivirus in human bronchial epithelial (HBE) and NSCLC cell lines were performed to explore potential mechanisms by which rpS6 affects the clinical development of NSCLC. Additionally, specific RNA interference for Akt1, Akt2, Akt3, Akt inhibitor and subsequent cellular bioactivity tests were employed as well to investigate the upstream regulation of rpS6. Results Positive rates of t-rpS6 and p-rpS6 were both significantly increased in NSCLC tissues, compared with controls (82.91 vs 62.20 % for t-rpS6; 52.22 vs 21.95 % for p-rpS6; both P < 0.001). However, only hyperphosphorylation of rpS6, expressed as either elevated p-rpS6 alone or the ratio of p-rpS6 to t-rpS6 (p-rpS6/t-rpS6) no less than 0.67, was greatly associated with the unfavorable survival of NSCLC patients, especially for cases at stage I (all P < 0.001). The independent adverse prognostic value of hyperphosphorylated rpS6 was confirmed by multivariate Cox regression analysis (hazard ratios for elevated p-rpS6 alone and p-rpS6/t-rpS6 no less than 0.67 were 2.403, 4.311 respectively, both P < 0.001). Overexpression or knockdown of rpS6, along with parallel alterations of p-rpS6, led to increased or decreased cells proliferations respectively, which were dependent on redistributions of cell cycles (all P < 0.05). Cells migration and invasion also changed with rpS6 interference (all P < 0.05). Furthermore, upstream overexpression or knockdown of Akt2 or Akt2 phosphorylation inhibition, rather than Akt1 or Akt3, resulted in striking hyperphosphorylation or dephosphorylation of mTOR, p70S6K and rpS6 (all P < 0.05), without any change in total proteins expressions. Further tests showed markedly accompanied variation of cells proliferation, cell cycle distribution and invasion (all P < 0.05). Conclusion Hyperphosphorylation of rpS6, probably regulated by the Akt2/mTOR/p70S6K signaling pathway, is closely relevant to the progression of NSCLC and it might be served as a promising therapeutic target for NSCLC treatment. Electronic supplementary material The online version of this article (doi:10.1186/s13046-015-0239-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bojiang Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guo Xue Street, Chengdu, Sichuan, 610041, China
| | - Zhi Tan
- Inspectiong and Quarantine Technical Center of Sichuan Entry-Exit Inspection and Quarantine Bureau, Chengdu, China
| | - Jun Gao
- Department of Toxicological Inspection, Sichuan Center for Disease Prevention and Control, Chengdu, China
| | - Wei Wu
- Department of Outpatient, West China Hospital of Sichuan University, Chengdu, China
| | - Lida Liu
- Department of Toxicological Inspection, Sichuan Center for Disease Prevention and Control, Chengdu, China
| | - Wei Jin
- Department of Toxicological Inspection, Sichuan Center for Disease Prevention and Control, Chengdu, China
| | - Yidan Cao
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Shuang Zhao
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guo Xue Street, Chengdu, Sichuan, 610041, China
| | - Wen Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guo Xue Street, Chengdu, Sichuan, 610041, China.,Department of Respiratory Medicine, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhixin Qiu
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guo Xue Street, Chengdu, Sichuan, 610041, China
| | - Dan Liu
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guo Xue Street, Chengdu, Sichuan, 610041, China
| | - Xianming Mo
- Laboratory of Stem Cell Biology, West China Hospital of Sichuan University, Chengdu, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guo Xue Street, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
40
|
Zhang C, Zhang T, Song E, Himaya SWA, Chen X, Zheng L. Ribosomal protein S15A augments human osteosarcoma cell proliferation in vitro. Cancer Biother Radiopharm 2015; 29:451-6. [PMID: 25409460 DOI: 10.1089/cbr.2014.1698] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
As a highly conserved housekeeping gene, the biological implications of ribosomal protein S15A (RPS15A) during various processes, including carcinogenesis, remain elusive. Herein, the authors reported that knockdown of RPS15A expression significantly inhibited human osteosarcoma U2OS cell proliferation and colony formation in vitro by using a lentivirus-mediated RNA interference (RNAi) system. Moreover, an excess accumulation of cells in the G0/G1 phase was observed in U2OS cells transduced with lentivirus targeting RPS15A, suggesting that the growth inhibition mediated by RPS15A knockdown in osteosarcoma cells was probably due to the induction of cell cycle arrest. Taken together, this study highlights the crucial role of RPS15A in promoting osteosarcoma cell proliferation, and provides a foundation for further study into the clinical potential of inhibition of RPS15A for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Chen Zhang
- 1 Shanghai Tenth People's Hospital, Tongji University School of Medicine , Shanghai, China
| | | | | | | | | | | |
Collapse
|
41
|
Ribosomal Protein S6 Phosphorylation: Four Decades of Research. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 320:41-73. [PMID: 26614871 DOI: 10.1016/bs.ircmb.2015.07.006] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The phosphorylation of ribosomal protein S6 (rpS6) has been described for the first time about four decades ago. Since then, numerous studies have shown that this modification occurs in response to a wide variety of stimuli on five evolutionarily conserved serine residues. However, despite a large body of information on the respective kinases and the signal transduction pathways, the physiological role of rpS6 phosphorylation remained obscure until genetic manipulations were applied in both yeast and mammals in an attempt to block this modification. Thus, studies based on both mice and cultured cells subjected to disruption of the genes encoding rpS6 and the respective kinases, as well as the substitution of the phosphorylatable serine residues in rpS6, have laid the ground for the elucidation of the multiple roles of this protein and its posttranslational modification. This review focuses primarily on newly identified kinases that phosphorylate rpS6, pathways that transduce various signals into rpS6 phosphorylation, and the recently established physiological functions of this modification. It should be noted, however, that despite the significant progress made in the last decade, the molecular mechanism(s) underlying the diverse effects of rpS6 phosphorylation on cellular and organismal physiology are still poorly understood.
Collapse
|
42
|
van Dijk M, Visser A, Buabeng KML, Poutsma A, van der Schors RC, Oudejans CBM. Mutations within the LINC-HELLP non-coding RNA differentially bind ribosomal and RNA splicing complexes and negatively affect trophoblast differentiation. Hum Mol Genet 2015; 24:5475-85. [PMID: 26173455 DOI: 10.1093/hmg/ddv274] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 07/09/2015] [Indexed: 11/14/2022] Open
Abstract
LINC-HELLP, showing chromosomal linkage with the pregnancy-specific HELLP syndrome in Dutch families, reduces differentiation from a proliferative to an invasive phenotype of first-trimester extravillous trophoblasts. Here we show that mutations in LINC-HELLP identified in HELLP families negatively affect this trophoblast differentiation either by inducing proliferation rate or by causing cell cycle exit as shown by a decrease in both proliferation and invasion. As LincRNAs predominantly function through interactions with proteins, we identified the directly interacting proteins using chromatin isolation by RNA purification followed by protein mass spectrometry. We found 22 proteins predominantly clustering in two functional networks, i.e. RNA splicing and the ribosome. YBX1, PCBP1, PCBP2, RPS6 and RPL7 were validated, and binding to these proteins was influenced by the HELLP mutations carried. Finally, we show that the LINC-HELLP transcript levels are significantly upregulated in plasma of women in their first trimester of pregnancy compared with non-pregnant women, whereas this upregulation seems absent in a pilot set of patients later developing pregnancy complications, indicative of its functional significance in vivo.
Collapse
Affiliation(s)
- Marie van Dijk
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands and
| | - Allerdien Visser
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands and
| | - Kwadwo M L Buabeng
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands and
| | - Ankie Poutsma
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands and
| | - Roel C van der Schors
- Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, The Netherlands
| | - Cees B M Oudejans
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands and
| |
Collapse
|
43
|
Li SH, Chen CH, Lu HI, Huang WT, Tien WY, Lan YC, Lee CC, Chen YH, Huang HY, Chang AYW, Lin WC. Phosphorylated p70S6K expression is an independent prognosticator for patients with esophageal squamous cell carcinoma. Surgery 2015; 157:570-580. [PMID: 25726316 DOI: 10.1016/j.surg.2014.10.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 09/22/2014] [Accepted: 10/23/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND Although marked improvements have been made in surgical technique and chemoradiotherapy, the prognosis for patients with esophageal squamous cell carcinoma (ESCC) is still unsatisfactory. The mammalian target of rapamycin (mTOR) and its downstream signaling, p70 ribosomal S6 protein kinase (p70S6K) and eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1), seem to play central roles in the regulation of cancer cell proliferation and survival. The significance of mTOR and its downstream targets, p70S6K and 4E-BP1, on the prognosis of ESCC remains uncertain, but this pathway is of particular concern because effective inhibitors are already available. METHODS Immunohistochemistry performed to evaluate the expression of phosphorylated mTOR (p-mTOR), phosphorylated p70S6K (p-p70S6K), phosphorylated 4E-binding protein 1 (p-4E-BP1), and Ki-67 using 105 surgically resected ESCC correlated with treatment outcome. The effect of the mTOR signaling pathway inhibitor everolimus on ESCC cell lines were investigated in vitro by the 3-(4.5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and in vivo by a nude mouse xenograft model. RESULTS Univariate analysis showed that p-mTOR overexpression (P = .022), p-p70S6K overexpression (P = .002), and Ki-67 labeling index >50% (P = .045) were associated with inferior overall survival (OS). In a multivariate comparison, p-p70S6K overexpression (P = .001; hazard ratio, 2.247) remained independently associated with worse OS. In cell lines and the xenograft model, everolimus significantly inhibited ESCC growth. CONCLUSION Overexpression of p-p70S6K is associated independently with a poor prognosis among patients with ESCC. The mTOR signaling pathway inhibitor everolimus can inhibit ESCC growth in vitro and in vivo. Our findings suggest that inhibition of mTOR signaling pathway may be a promising novel target for ESCC.
Collapse
Affiliation(s)
- Shau-Hsuan Li
- Department of Hematology-Oncology, Kaohsiung Chang Gung Memorial Hospital and the Chang Gung University College of Medicine, Kaohsiung, Taiwan, ROC.
| | - Chang-Han Chen
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital and the Chang Gung University College of Medicine, Kaohsiung, Taiwan, ROC
| | - Hung-I Lu
- Department of Thoracic & Cardiovascular Surgery, Kaohsiung Chang Gung Memorial Hospital and the Chang Gung University College of Medicine, Kaohsiung, Taiwan, ROC
| | - Wan-Ting Huang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and the Chang Gung University College of Medicine, Kaohsiung, Taiwan, ROC
| | - Wan-Yu Tien
- Department of Hematology-Oncology, Kaohsiung Chang Gung Memorial Hospital and the Chang Gung University College of Medicine, Kaohsiung, Taiwan, ROC
| | - Ya-Chun Lan
- Department of Hematology-Oncology, Kaohsiung Chang Gung Memorial Hospital and the Chang Gung University College of Medicine, Kaohsiung, Taiwan, ROC
| | - Ching-Chang Lee
- Department of Gastroenterology, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan, ROC
| | - Yen-Hao Chen
- Department of Hematology-Oncology, Kaohsiung Chang Gung Memorial Hospital and the Chang Gung University College of Medicine, Kaohsiung, Taiwan, ROC
| | - Hsuan-Ying Huang
- Department of Thoracic & Cardiovascular Surgery, Kaohsiung Chang Gung Memorial Hospital and the Chang Gung University College of Medicine, Kaohsiung, Taiwan, ROC
| | - Alice Y W Chang
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital and the Chang Gung University College of Medicine, Kaohsiung, Taiwan, ROC
| | - Wei-Che Lin
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital and the Chang Gung University College of Medicine, Kaohsiung, Taiwan, ROC
| |
Collapse
|
44
|
Chen B, Zhang W, Gao J, Chen H, Jiang L, Liu D, Cao Y, Zhao S, Qiu Z, Zeng J, Zhang S, Li W. Downregulation of ribosomal protein S6 inhibits the growth of non-small cell lung cancer by inducing cell cycle arrest, rather than apoptosis. Cancer Lett 2014; 354:378-89. [PMID: 25199762 DOI: 10.1016/j.canlet.2014.08.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 08/06/2014] [Accepted: 08/30/2014] [Indexed: 02/05/2023]
Abstract
Ribosomal protein S6 (rpS6), a component of the small 40S ribosomal subunit, has been found to be associated with multiple physiological and pathophysiological functions. However, its effects and mechanisms in non-small cell lung cancer (NSCLC) still remain unknown. Here, we showed that expressions of total rpS6 and phosphorylation rpS6 (p-rpS6) were both significantly overexpressed in NSCLC. Further survival analysis revealed the shortened overall survival (OS) and relapse-free survival (RFS) in p-rpS6 overexpressed patients and confirmed it as an independent adverse predictor. Stable downregulation of rpS6 in lung adenocarcinoma A549 and squamous cell carcinoma H520 cell lines was then achieved by two specific small hairpin RNA (shRNA) lentiviruses separately. Subsequent experiments showed that downregulation of rpS6 dramatically inhibited cell proliferation in vitro and tumorigenicity in vivo. Moreover, loss of rpS6 promoted cells arrested in G0-G1 phase and reduced in G2-M phase, along with the expression alterations of relative proteins. However, no notable change in apoptosis was observed. Collectively, these results suggested that rpS6 is overactivated in NSCLC and its downregulation suppresses the growth of NSCLC mainly by inducing G0-G1 cell cycle arrest rather than apoptosis.
Collapse
Affiliation(s)
- Bojiang Chen
- Department of Respiratory Medicine, West China Hospital of Sichuan University, Chengdu, China; State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Wen Zhang
- Department of Respiratory Medicine, West China Hospital of Sichuan University, Chengdu, China; Department of Respiratory Medicine, Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Jun Gao
- Department of Toxicological Inspection, Sichuan Center for Disease Prevention and Control, Chengdu, China
| | - Hong Chen
- Department of Geriatric Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Li Jiang
- Department of Respiratory Medicine, West China Hospital of Sichuan University, Chengdu, China; Department of Respiratory Medicine, Second Clinical Medical School, North Sichuan Medical College (Nanchong Central Hospital, Sichuan), Nanchong, China
| | - Dan Liu
- Department of Respiratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Yidan Cao
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Shuang Zhao
- Department of Respiratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Zhixin Qiu
- Department of Respiratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Jing Zeng
- Department of Respiratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Shangfu Zhang
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Weimin Li
- Department of Respiratory Medicine, West China Hospital of Sichuan University, Chengdu, China; State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
45
|
Wang W, Nag S, Zhang X, Wang MH, Wang H, Zhou J, Zhang R. Ribosomal proteins and human diseases: pathogenesis, molecular mechanisms, and therapeutic implications. Med Res Rev 2014; 35:225-85. [PMID: 25164622 DOI: 10.1002/med.21327] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ribosomes are essential components of the protein synthesis machinery. The process of ribosome biogenesis is well organized and tightly regulated. Recent studies have shown that ribosomal proteins (RPs) have extraribosomal functions that are involved in cell proliferation, differentiation, apoptosis, DNA repair, and other cellular processes. The dysfunction of RPs has been linked to the development and progression of hematological, metabolic, and cardiovascular diseases and cancer. Perturbation of ribosome biogenesis results in ribosomal stress, which triggers activation of the p53 signaling pathway through RPs-MDM2 interactions, resulting in p53-dependent cell cycle arrest and apoptosis. RPs also regulate cellular functions through p53-independent mechanisms. We herein review the recent advances in several forefronts of RP research, including the understanding of their biological features and roles in regulating cellular functions, maintaining cell homeostasis, and their involvement in the pathogenesis of human diseases. We also highlight the translational potential of this research for the identification of molecular biomarkers, and in the discovery and development of novel treatments for human diseases.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106; Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106
| | | | | | | | | | | | | |
Collapse
|
46
|
Aust S, Auer K, Bachmayr-Heyda A, Denkert C, Sehouli J, Braicu I, Mahner S, Lambrechts S, Vergote I, Grimm C, Horvat R, Castillo-Tong DC, Zeillinger R, Pils D. Ambivalent role of pFAK-Y397 in serous ovarian cancer--a study of the OVCAD consortium. Mol Cancer 2014; 13:67. [PMID: 24655477 PMCID: PMC3998046 DOI: 10.1186/1476-4598-13-67] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 03/13/2014] [Indexed: 01/08/2023] Open
Abstract
Background Focal adhesion kinase (FAK) autophosphorylation seems to be a potential therapeutic target but little is known about the role and prognostic value of FAK and pFAK in epithelial ovarian cancer (EOC). Recently, we validated a gene signature classifying EOC patients into two subclasses and revealing genes of the focal adhesion pathway as significantly deregulated. Methods FAK expression and pFAK-Y397 abundance were elucidated by immunohistochemistry and microarray analysis in 179 serous EOC patients. In particular the prognostic value of phosphorylated FAK (pFAK-Y397) and FAK in advanced stage EOC was investigated. Results Multiple Cox-regression analysis showed that high pFAK abundance was associated with improved overall survival (HR 0.54; p = 0.034). FAK was positive in a total of 92.2% (n = 165) and high pFAK abundance was found in 36.9% (n = 66). High pFAK abundance (36.9% ; n = 66) was associated with either nodal positivity and/or distant metastasis (p = 0.030). Whole genome gene expression data revealed a connection of the FAK-pFAK-Y397 axis and the mTOR-S6K1 pathway, shown to play a major role in carcinogenesis. Conclusion The role of pFAK-Y397 remains controversial: although high pFAK-Y397 abundance is associated with distant and lymph node metastases, it is independently associated with improved overall survival.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Dietmar Pils
- Department of Obstetrics and Gynecology, Molecular Oncology Group, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, Room-No,: 5,Q9,27, A-1090 Vienna, Austria.
| |
Collapse
|