1
|
Hwang PY, Mathur J, Cao Y, Almeida J, Ye J, Morikis V, Cornish D, Clarke M, Stewart SA, Pathak A, Longmore GD. A Cdh3-β-catenin-laminin signaling axis in a subset of breast tumor leader cells control leader cell polarization and directional collective migration. Dev Cell 2023; 58:34-50.e9. [PMID: 36626870 PMCID: PMC10010282 DOI: 10.1016/j.devcel.2022.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 08/10/2022] [Accepted: 12/07/2022] [Indexed: 01/11/2023]
Abstract
Carcinoma dissemination can occur when heterogeneous tumor and tumor-stromal cell clusters migrate together via collective migration. Cells at the front lead and direct collective migration, yet how these leader cells form and direct migration are not fully appreciated. From live videos of primary mouse and human breast tumor organoids in a 3D microfluidic system mimicking native breast tumor microenvironment, we developed 3D computational models, which hypothesize that leader cells need to generate high protrusive forces and overcome extracellular matrix (ECM) resistance at the leading edge. From single-cell sequencing analyses, we find that leader cells are heterogeneous and identify and isolate a keratin 14- and cadherin-3-positive subpopulation sufficient to lead collective migration. Cdh3 controls leader cell protrusion dynamics through local production of laminin, which is required for integrin/focal adhesion function. Our findings highlight how a subset of leader cells interact with the microenvironment to direct collective migration.
Collapse
Affiliation(s)
- Priscilla Y Hwang
- Departments of Medicine (Oncology), Washington University in St. Louis, St Louis, MO 63110, USA; ICCE Institute, Washington University in St. Louis, St Louis, MO 63110, USA; Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Jairaj Mathur
- Departments of Mechanical Engineering and Materials Science, Washington University in St. Louis, St Louis, MO 63110, USA
| | - Yanyang Cao
- Departments of Medicine (Oncology), Washington University in St. Louis, St Louis, MO 63110, USA; ICCE Institute, Washington University in St. Louis, St Louis, MO 63110, USA
| | - Jose Almeida
- Departments of Biomedical Engineering, Washington University in St. Louis, St Louis, MO 63110, USA
| | - Jiayu Ye
- Departments of Cell Biology and Physiology, Washington University in St. Louis, St Louis, MO 63110, USA; ICCE Institute, Washington University in St. Louis, St Louis, MO 63110, USA
| | - Vasilios Morikis
- Departments of Medicine (Oncology), Washington University in St. Louis, St Louis, MO 63110, USA; ICCE Institute, Washington University in St. Louis, St Louis, MO 63110, USA
| | - Daphne Cornish
- Departments of Medicine (Oncology), Washington University in St. Louis, St Louis, MO 63110, USA; ICCE Institute, Washington University in St. Louis, St Louis, MO 63110, USA
| | - Maria Clarke
- Departments of Medicine (Oncology), Washington University in St. Louis, St Louis, MO 63110, USA; ICCE Institute, Washington University in St. Louis, St Louis, MO 63110, USA
| | - Sheila A Stewart
- Departments of Cell Biology and Physiology, Washington University in St. Louis, St Louis, MO 63110, USA; ICCE Institute, Washington University in St. Louis, St Louis, MO 63110, USA
| | - Amit Pathak
- Departments of Mechanical Engineering and Materials Science, Washington University in St. Louis, St Louis, MO 63110, USA; Departments of Biomedical Engineering, Washington University in St. Louis, St Louis, MO 63110, USA
| | - Gregory D Longmore
- Departments of Medicine (Oncology), Washington University in St. Louis, St Louis, MO 63110, USA; Departments of Cell Biology and Physiology, Washington University in St. Louis, St Louis, MO 63110, USA; ICCE Institute, Washington University in St. Louis, St Louis, MO 63110, USA; Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
| |
Collapse
|
2
|
Qi R, Lin J, Chen S, Jiang J, Zhang X, Yao B, Zheng H, Jin Z, Yuan Y, Hou W, Hua B, Guo Q. Breast cancer prognosis and P-cadherin expression: systematic review and study-level meta-analysis. BMJ Support Palliat Care 2022; 12:e893-e905. [PMID: 32943470 DOI: 10.1136/bmjspcare-2020-002204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/01/2020] [Accepted: 07/23/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVE P-cadherin can act both as a tumour suppressor and an oncogene. The clinical prognostic value of P-cadherin overexpression in breast cancer (BC) remains unclear. We conducted a study-level meta-analysis to determine whether P-cadherin expression can help predict prognosis in BC. METHODS A systematic literature search was performed to review eligible studies and clarify the relationship between P-cadherin overexpression and overall survival (OS), disease-free survival (DFS), pathological features, molecular subtypes and molecular phenotypes in BC. RESULTS Thirty-one studies including 12 332 patients were included. P-cadherin overexpression was correlated with significantly worse OS (HR=1.77, p<0.00001) and DFS (HR=1.96, p<0.00001) than P-cadherin-negative. P-cadherin overexpression could lead to high histological grade (OR=3.33, p<0.00001) and lymph node metastasis (OR=1.62, p<0.00001). Moreover, P-cadherin overexpression was associated with low odds of the luminal A subtype and high odds of the human epidermal growth factor receptor-2 (HER2)-positive and triple-negative subtypes. P-cadherin expression led to low expression of oestrogen and progesterone receptor (OR=0.37 and OR=0.36, respectively, both p<0.00001) and high expression of HER2 (OR=2.31, p<0.00001), Ki-67 (OR=2.79, p<0.00001), epidermal growth factor receptor (OR=5.85, p<0.00001) and cytokeratin 5/6 (OR=6.79, p<0.00001). CONCLUSIONS P-cadherin was found to be associated with invasiveness and metastasis. P-cadherin expression can probably be a useful biomarker for predicting poor survival and may act as an independent prognostic predictor.
Collapse
Affiliation(s)
- Runzhi Qi
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinyin Lin
- Administrative Department, Beijing Tongren Hospital Affiliated to Capital Medical University, Beijing, China
| | - Shuntai Chen
- Beijing University of Chinese Medicine, Beijing, China
| | - Juling Jiang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xing Zhang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo Yao
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Heilongjiang, China
| | - Honggang Zheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhichao Jin
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Yuan Yuan
- Department of Pneumology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Hou
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baojin Hua
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiujun Guo
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Conde I, Ribeiro AS, Paredes J. Breast Cancer Stem Cell Membrane Biomarkers: Therapy Targeting and Clinical Implications. Cells 2022; 11:934. [PMID: 35326385 PMCID: PMC8946706 DOI: 10.3390/cells11060934] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most common malignancy affecting women worldwide. Importantly, there have been significant improvements in prevention, early diagnosis, and treatment options, which resulted in a significant decrease in breast cancer mortality rates. Nevertheless, the high rates of incidence combined with therapy resistance result in cancer relapse and metastasis, which still contributes to unacceptably high mortality of breast cancer patients. In this context, a small subpopulation of highly tumourigenic cancer cells within the tumour bulk, commonly designated as breast cancer stem cells (BCSCs), have been suggested as key elements in therapy resistance, which are responsible for breast cancer relapses and distant metastasis. Thus, improvements in BCSC-targeting therapies are crucial to tackling the metastatic progression and might allow therapy resistance to be overcome. However, the design of effective and specific BCSC-targeting therapies has been challenging since there is a lack of specific biomarkers for BCSCs, and the most common clinical approaches are designed for commonly altered BCSCs signalling pathways. Therefore, the search for a new class of BCSC biomarkers, such as the expression of membrane proteins with cancer stem cell potential, is an area of clinical relevance, once membrane proteins are accessible on the cell surface and easily recognized by specific antibodies. Here, we discuss the significance of BCSC membrane biomarkers as potential prognostic and therapeutic targets, reviewing the CSC-targeting therapies under clinical trials for breast cancer.
Collapse
Affiliation(s)
- Inês Conde
- i3S, Institute of Investigation and Innovation in Health, 4200-135 Porto, Portugal; (I.C.); (A.S.R.)
- Ipatimup, Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Ana Sofia Ribeiro
- i3S, Institute of Investigation and Innovation in Health, 4200-135 Porto, Portugal; (I.C.); (A.S.R.)
- Ipatimup, Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Joana Paredes
- i3S, Institute of Investigation and Innovation in Health, 4200-135 Porto, Portugal; (I.C.); (A.S.R.)
- Ipatimup, Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
4
|
Martins EP, Gonçalves CS, Pojo M, Carvalho R, Ribeiro AS, Miranda‐Gonçalves V, Taipa R, Pardal F, Pinto AA, Custódia C, Faria CC, Baltazar F, Sousa N, Paredes J, Costa BM. Cadherin‐3
is a novel oncogenic biomarker with prognostic value in glioblastoma. Mol Oncol 2021; 16:2611-2631. [PMID: 34919784 PMCID: PMC9297769 DOI: 10.1002/1878-0261.13162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 12/01/2021] [Accepted: 12/15/2021] [Indexed: 11/08/2022] Open
Abstract
Glioblastoma (GBM) is the most common and malignant primary brain tumor in adults. The prognosis of patients is very poor, with a median overall survival of ~ 15 months after diagnosis. Cadherin‐3 (also known as P‐cadherin), a cell–cell adhesion molecule encoded by the CDH3 gene, is deregulated in several cancer types, but its relevance in GBM is unknown. In this study, we investigated the functional roles, the associated molecular signatures, and the prognostic value of CDH3/P‐cadherin in this highly malignant brain tumor. CDH3/P‐cadherin mRNA and protein levels were evaluated in human glioma samples. Knockdown and overexpression models of P‐cadherin in GBM were used to evaluate its functional role in vitro and in vivo. CDH3‐associated gene signatures were identified by enrichment analyses and correlations. The impact of CDH3 in the survival of GBM patients was assessed in independent cohorts using both univariable and multivariable models. We found that P‐cadherin protein is expressed in a subset of gliomas, with an increased percentage of positive samples in grade IV tumors. Concordantly, CDH3 mRNA levels in glioma samples from The Cancer Genome Atlas (TCGA) database are increased in high‐grade gliomas. P‐cadherin displays oncogenic functions in multiple knockdown and overexpression GBM cell models by affecting cell viability, cell cycle, cell invasion, migration, and neurosphere formation capacity. Genes that were positively correlated with CDH3 are enriched for oncogenic pathways commonly activated in GBM. In vivo, GBM cells expressing high levels of P‐cadherin generate larger subcutaneous tumors and cause shorter survival of mice in an orthotopic intracranial model. Concomitantly, high CDH3 expression is predictive of shorter overall survival of GBM patients in independent cohorts. Together, our results show that CDH3/P‐cadherin expression is associated with aggressiveness features of GBM and poor patient prognosis, suggesting that it may be a novel therapeutic target for this deadly brain tumor.
Collapse
Affiliation(s)
- Eduarda P. Martins
- Life and Health Sciences Research Institute (ICVS) School of Medicine University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Céline S. Gonçalves
- Life and Health Sciences Research Institute (ICVS) School of Medicine University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Marta Pojo
- Life and Health Sciences Research Institute (ICVS) School of Medicine University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Rita Carvalho
- i3S – Instituto de Investigação e Inovação em Saúde Universidade do Porto Rua Alfredo Allen 208, 4200‐135 Porto Portugal
| | - Ana S. Ribeiro
- i3S – Instituto de Investigação e Inovação em Saúde Universidade do Porto Rua Alfredo Allen 208, 4200‐135 Porto Portugal
| | - Vera Miranda‐Gonçalves
- Life and Health Sciences Research Institute (ICVS) School of Medicine University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Ricardo Taipa
- Neuropathology Unit Department of Neurosciences Centro Hospitalar do Porto Porto Portugal
| | - Fernando Pardal
- Department of Pathology, Hospital de Braga 4710‐243 Braga Portugal
| | - Afonso A. Pinto
- Department of Neurosurgery, Hospital de Braga 4710‐243 Braga Portugal
| | - Carlos Custódia
- Instituto de Medicina Molecular Faculdade de Medicina Universidade de Lisboa Lisbon Portugal
| | - Cláudia C. Faria
- Instituto de Medicina Molecular Faculdade de Medicina Universidade de Lisboa Lisbon Portugal
- Neurosurgery Department Hospital de Santa Maria Centro Hospitalar Lisboa Norte (CHLN) Lisbon Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS) School of Medicine University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS) School of Medicine University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Joana Paredes
- i3S – Instituto de Investigação e Inovação em Saúde Universidade do Porto Rua Alfredo Allen 208, 4200‐135 Porto Portugal
- Faculty of Medicine University of Porto Portugal
| | - Bruno M. Costa
- Life and Health Sciences Research Institute (ICVS) School of Medicine University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
| |
Collapse
|
5
|
Chen B, Sun D, Qin X, Gao XH. Screening and identification of potential biomarkers and therapeutic drugs in melanoma via integrated bioinformatics analysis. Invest New Drugs 2021; 39:928-948. [PMID: 33501609 DOI: 10.1007/s10637-021-01072-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022]
Abstract
Melanoma is a highly aggressive malignant skin tumor with a high rate of metastasis and mortality. In this study, a comprehensive bioinformatics analysis was used to clarify the hub genes and potential drugs. Download the GSE3189, GSE22301, and GSE35388 microarray datasets from the Gene Expression Omnibus (GEO), which contains a total of 33 normal samples and 67 melanoma samples. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) approach analyze DEGs based on the DAVID. Use STRING to construct protein-protein interaction network, and use MCODE and cytoHubba plug-ins in Cytoscape to perform module analysis and identified hub genes. Use Gene Expression Profile Interactive Analysis (GEPIA) to assess the prognosis of genes in tumors. Finally, use the Drug-Gene Interaction Database (DGIdb) to screen targeted drugs related to hub genes. A total of 140 overlapping DEGs were identified from the three microarray datasets, including 59 up-regulated DEGs and 81 down-regulated DEGs. GO enrichment analysis showed that these DEGs are mainly involved in the biological process such as positive regulation of gene expression, positive regulation of cell proliferation, positive regulation of MAP kinase activity, cell migration, and negative regulation of the apoptotic process. The cellular components are concentrated in the membrane, dendritic spine, the perinuclear region of cytoplasm, extracellular exosome, and membrane raft. Molecular functions include protein homodimerization activity, calmodulin-binding, transcription factor binding, protein binding, and cytoskeletal protein binding. KEGG pathway analysis shows that these DEGs are mainly related to protein digestion and absorption, PPAR signaling pathway, signaling pathways regulating stem cells' pluripotency, and Retinol metabolism. The 23 most closely related DEGs were identified from the PPI network and combined with the GEPIA prognostic analysis, CDH3, ESRP1, FGF2, GBP2, KCNN4, KIT, SEMA4D, and ZEB1 were selected as hub genes, which are considered to be associated with poor prognosis of melanoma closely related. Besides, ten related drugs that may have therapeutic effects on melanoma were also screened. These newly discovered genes and drugs provide new ideas for further research on melanoma.
Collapse
Affiliation(s)
- Bo Chen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, China
| | - Donghong Sun
- Department of Dermatology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, 110001, Liaoning Province, China
| | - Xiuni Qin
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xing-Hua Gao
- Department of Dermatology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
6
|
Luo D, Zhang C, Fu L, Zhang Y, Hu YQ. A novel similarity score based on gene ranks to reveal genetic relationships among diseases. PeerJ 2021; 9:e10576. [PMID: 33505797 PMCID: PMC7796663 DOI: 10.7717/peerj.10576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Knowledge of similarities among diseases can contribute to uncovering common genetic mechanisms. Based on ranked gene lists, a couple of similarity measures were proposed in the literature. Notice that they may suffer from the determination of cutoff or heavy computational load, we propose a novel similarity score SimSIP among diseases based on gene ranks. Simulation studies under various scenarios demonstrate that SimSIP has better performance than existing rank-based similarity measures. Application of SimSIP in gene expression data of 18 cancer types from The Cancer Genome Atlas shows that SimSIP is superior in clarifying the genetic relationships among diseases and demonstrates the tendency to cluster the histologically or anatomically related cancers together, which is analogous to the pan-cancer studies. Moreover, SimSIP with simpler form and faster computation is more robust for higher levels of noise than existing methods and provides a basis for future studies on genetic relationships among diseases. In addition, a measure MAG is developed to gauge the magnitude of association of anindividual gene with diseases. By using MAG the genes and biological processes significantly associated with colorectal cancer are detected.
Collapse
Affiliation(s)
- Dongmei Luo
- State Key Laboratory of Genetic Engineering, Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai, China
- Department of Information and Computing Science, School of Mathematics and Physics, Anhui University of Technology, Ma’anshan, Anhui Province, China
| | - Chengdong Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Liwan Fu
- State Key Laboratory of Genetic Engineering, Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuening Zhang
- SJTU-Yale Joint Center for Biostatistics, Shanghai Jiao Tong University, Shanghai, China
| | - Yue-Qing Hu
- State Key Laboratory of Genetic Engineering, Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Tan W, Xie X, Huang Z, Chen L, Tang W, Zhu R, Ye X, Zhang X, Pan L, Gao J, Tang H, Zheng W. Construction of an immune-related genes nomogram for the preoperative prediction of axillary lymph node metastasis in triple-negative breast cancer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:288-297. [PMID: 31858816 DOI: 10.1080/21691401.2019.1703731] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Immune system disorder is associated with metastasis of triple-negative breast cancers (TNBCs). A robust, individualized immune-related genes (IRGs)-based classifier was aimed to develop and validate in our study to precisely estimate the axillary lymph node (ALN) status preoperatively in patients with early-stage TNBC. We first analyzed RNA sequencing profiles in TNBC patients from The Cancer Genome Atlas database by using bioinformatics approaches, and screened 23 differentially expressed IRGs. A 9-gene panel was generated with an area under the curve (AUC) of 0.77 [95% confidence interval (95% CI), 0.68-0.87]. We detected the 9 ALN-status-related IRGs in the training set (n = 133) and developed a reduced and optimized five-IRGs signature, which effectively distinguished TNBC patients with ALN metastasis (AUC, 0.80; 95% CI, 0.65-0.86), and was superior to preoperative ultrasound-based ALN status (AUC, 0.73; 95% CI, 0.53-0.93). Predictive efficiency (AUC, 0.77; 95% CI 0.61-0.93) of this five-IRGs signature was validated in the validation set (n = 81). Furthermore, IRGs nomogram incorporated IRGs signature with US-based ALN status showed higher ALN status prediction efficacy than US-based ALN status and five-IRGs signature alone in both training and validation sets. IRGs nomogram may aid in identifying patients who can be exempted from axillary surgery.Novelty and impact: An immune-related genes (IRGs) nomogram was first developed and externally validated in our study, which incorporated the IRGs signature with ultrasound (US)-based axillary lymph nodes (ALN) status. IRGs nomogram is superior to IRGs signature alone for preoperative estimation of ALN metastasis in patients with triple-negative breast cancer (TNBC). It is a favourable biomarker for preoperatively predicting ALN metastasis risk and may aid in clinical decision-making in early-stage TNBCs.
Collapse
Affiliation(s)
- Weige Tan
- Department of Breast Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xinhua Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zhongying Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Lun Chen
- Department of Breast Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei Tang
- Department of Breast Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Renjie Zhu
- East Hospital Affiliated to Tongji University, Shanghai, China
| | - Xigang Ye
- Department of Breast Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoshen Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lingxiao Pan
- Department of Breast Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jin Gao
- Department of Breast Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Wenbo Zheng
- Department of Breast Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Sousa B, Pereira J, Marques R, Grilo LF, Pereira SP, Sardão VA, Schmitt F, Oliveira PJ, Paredes J. P-cadherin induces anoikis-resistance of matrix-detached breast cancer cells by promoting pentose phosphate pathway and decreasing oxidative stress. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165964. [PMID: 32920119 DOI: 10.1016/j.bbadis.2020.165964] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 12/27/2022]
Abstract
Successful metastatic spreading relies on cancer cells with stem-like properties, glycolytic metabolism and increased antioxidant protection, allowing them to escape anoikis and to survive in circulation. The expression of P-cadherin, a poor prognostic factor in breast cancer, is associated with hypoxic, glycolytic and acidosis biomarkers. In agreement, P-cadherin-enriched breast cancer cell populations presents a glycolytic and an acid-resistance phenotype. Our aim was to evaluate whether P-cadherin expression controls the glycolytic and oxidative phosphorylation fluxes of matrix-detached breast cancer cells, acting as an antioxidant and enhancing their survival in anchorage-independent conditions. By using matrix-detached breast cancer cells, we concluded that P-cadherin increases glucose-6-phosphate dehydrogenase expression, up-regulating the carbon flux through the pentose phosphate pathway, while inhibiting pyruvate oxidation to acetyl-coA via pyruvate dehydrogenase kinase-4 (PDK-4) activation. Accordingly, P-cadherin expression conferred increased sensitivity to dichloroacetate (DCA), a PDK inhibitor. P-cadherin expression also regulates oxidative stress in matrix-detached breast cancer cells, through the control of antioxidant systems, such as catalase and superoxide dismutases (SOD)1 and 2, providing these cells with an increased resistance to doxorubicin-induced anoikis. Importantly, this association was validated in primary invasive breast carcinomas, where an enrichment of SOD2 was found in P-cadherin-overexpressing breast carcinomas. In conclusion, we propose that P-cadherin up-regulates carbon flux through the pentose phosphate pathway and decreases oxidative stress in matrix-detached breast cancer cells. These metabolic remodeling and antioxidant roles of P-cadherin can promote the survival of breast cancer cells in circulation and in metastatic sites, being a possible player in breast cancer therapeutic resistance to pro-oxidant-based interventions.
Collapse
Affiliation(s)
- Bárbara Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal.
| | - Joana Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal.
| | - Ricardo Marques
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, Portugal
| | - Luís F Grilo
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, Portugal
| | - Susana P Pereira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, Portugal
| | - Vilma A Sardão
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, Portugal.
| | - Fernando Schmitt
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal; Medical Faculty of the University of Porto, Porto, Portugal.
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, Portugal.
| | - Joana Paredes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal; Medical Faculty of the University of Porto, Porto, Portugal.
| |
Collapse
|
9
|
Salama EA, Adbeltawab RE, El Tayebi HM. XIST and TSIX: Novel Cancer Immune Biomarkers in PD-L1-Overexpressing Breast Cancer Patients. Front Oncol 2020; 9:1459. [PMID: 31998636 PMCID: PMC6966712 DOI: 10.3389/fonc.2019.01459] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/05/2019] [Indexed: 12/20/2022] Open
Abstract
Escaping antitumor immunity is a hallmark in cancer progression. Programmed cell death protein 1 (PD-1) is an immune checkpoint receptor responsible for the maintenance of immune tolerance; PD-1 ligand (PD-L1) is overexpressed in tumor cells, simplifying their escape from the immune system through T-cell function suppression. Notwithstanding that cancer antigen (CA)125, carcinoembryonic antigen (CEA), CA15-3, and alpha-fetoprotein (AFP) are among conventional breast cancer diagnostic biomarkers, their lack of sensitivity and specificity resides among their major limitations. Furthermore, human epidermal growth factor receptor (HER)2 and interleukin (IL)-6-demonstrated as breast cancer immune biomarkers-still possess limitations, for instance, technical detection problems and stability problems, which necessitate the discovery of novel, stable non-invasive cancer immune biomarkers. XIST and TSIX are two long non-coding (lnc)RNAs possessing a role in X chromosome inactivation (XCI) as well as in breast cancer (BC). In the present study, they were investigated as stable non-invasive breast cancer immune biomarkers. The study demonstrated that PD-L1 was overexpressed in the different molecular subtypes of breast cancer patients as well as in MDA-MB-231 cells. Furthermore, lncRNAs XIST and TSIX were markedly increased in the tissues, lymph nodes, and different body fluids of breast cancer patients compared to controls. In addition, XIST and TSIX were differentially expressed in subtypes of BC patients, and their levels were correlated to PD-L1 expression level. In conclusion, this correlative study has shed light on the role of both lncRNAs XIST and TSIX as potential non-invasive BC immune biomarkers reflecting the evaded immune system of the patient and overcoming the instability problem of common BC biomarkers.
Collapse
Affiliation(s)
- Esraa A. Salama
- Molecular Pharmacology Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Reda E. Adbeltawab
- Department of Surgery, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hend M. El Tayebi
- Molecular Pharmacology Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| |
Collapse
|
10
|
Sridhar S, Rajesh C, Jishnu PV, Jayaram P, Kabekkodu SP. Increased expression of P-cadherin is an indicator of poor prognosis in breast cancer: a systematic review and meta-analysis. Breast Cancer Res Treat 2020; 179:301-313. [PMID: 31664550 DOI: 10.1007/s10549-019-05477-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/12/2019] [Indexed: 12/24/2022]
Abstract
PURPOSE P-cadherin (CDH3), located at 16q22.1 belonging to classical cadherin family, is a calcium-dependent glycoprotein associated with cell to cell adhesion, migration, and invasion in cancer. This meta-analysis was conducted to examine the prognostic utility of P-cadherin expression in breast cancer (BC). METHODS A comprehensive literature search was carried out using the available databases to obtain relevant research articles to test the relationship between P-cadherin and BC. Correlation of P-cadherin expression and disease-free survival (DFS) or overall survival (OS) was tested using hazard ratio (HR), relative risk (RR) at 95% confidence interval (CI) by univariate and/or multivariate analysis. A total of 11 studies from 7 countries were found to be relevant and were further subjected to statistical analysis to find an association between the P-cadherin expression with BC. Additionally, we have also performed a co-relation analysis of P-cadherin expression with GOBO and Cancertool in breast cancer using publicly available breast cancer datasets. RESULTS Our study shows that P-cadherin expression is significantly linked with poor prognosis in the various subtypes of BC. The HR for OS and DFS was 1.87 (95% CI = 1.48-2.36) and 1.64 (95% CI = 1.18-2.27) respectively. CONCLUSIONS In this meta-analysis, we identified a positive correlation between the overexpression of P-cadherin and BC. Our study demonstrates that P-cadherin overexpression can be used as a prognostic indicator in BC.
Collapse
Affiliation(s)
- Sriya Sridhar
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Christabelle Rajesh
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Padacherri Vethil Jishnu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Pradyumna Jayaram
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
| |
Collapse
|
11
|
Timmermans-Sprang E, Collin R, Henkes A, Philipsen M, Mol JA. P-cadherin mutations are associated with high basal Wnt activity and stemness in canine mammary tumor cell lines. Oncotarget 2019; 10:2930-2946. [PMID: 31105876 PMCID: PMC6508207 DOI: 10.18632/oncotarget.26873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 04/04/2019] [Indexed: 01/16/2023] Open
Abstract
Purpose: To find underlying mutations causing highly-activated Wnt activity in mammary tumor cell lines associated with rounded morphology indicative of stemness/EMT. Methods: Stemness of high Wnt cell lines was confirmed using qPCR on selected genes and microRNA profiling, followed by whole-exome sequencing of 3 high Wnt canine mammary tumor cell lines and 5 low/absent Wnt cell lines. Candidate genes were identified and their involvement in Wnt activity investigated using siRNA silencing. Results: The high Wnt cell lines had morphological and gene expression characteristics reminiscent of stemness. All individual cell lines had about 4000 mutations in the exome in comparison to the reference canine genome. The three high basal Wnt cell lines had 167 unique exome mutations. Seven of these mutations resulted in a SIFT score <0.2 of proteins related to Wnt signaling. However, gene silencing did not change the Wnt pathway activation. Renewed analysis with respect to putative relations to Wnt signaling revealed that P-cadherin (CDH3) had three mutations in the coding region of the extracellular domain and was associated with high Wnt signaling. Silencing by siRNA not only in lowered Wnt activity, but also decreased levels of phosphorylated cSRC and sP-cad, and changed cell morphology towards spindle cell appearance. Conclusion: It is concluded that expression of mutated CDH3 is associated with activation of cSRC, stabilization of ß-catenin and a rounded morphology related to a stemness/EMT phenotype. A decreased Wnt activity can be found also by cSRC inhibition, but CDH3 silencing has an additional effect on morphology indicating reversal of EMT.
Collapse
Affiliation(s)
- Elpetra Timmermans-Sprang
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Rob Collin
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arjen Henkes
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Meike Philipsen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jan A. Mol
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
12
|
Sousa B, Pereira J, Paredes J. The Crosstalk Between Cell Adhesion and Cancer Metabolism. Int J Mol Sci 2019; 20:E1933. [PMID: 31010154 PMCID: PMC6515343 DOI: 10.3390/ijms20081933] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 12/19/2022] Open
Abstract
Cancer cells preferentially use aerobic glycolysis over mitochondria oxidative phosphorylation for energy production, and this metabolic reprogramming is currently recognized as a hallmark of cancer. Oncogenic signaling frequently converges with this metabolic shift, increasing cancer cells' ability to produce building blocks and energy, as well as to maintain redox homeostasis. Alterations in cell-cell and cell-extracellular matrix (ECM) adhesion promote cancer cell invasion, intravasation, anchorage-independent survival in circulation, and extravasation, as well as homing in a distant organ. Importantly, during this multi-step metastatic process, cells need to induce metabolic rewiring, in order to produce the energy needed, as well as to impair oxidative stress. Although the individual implications of adhesion molecules and metabolic reprogramming in cancer have been widely explored over the years, the crosstalk between cell adhesion molecular machinery and metabolic pathways is far from being clearly understood, in both normal and cancer contexts. This review summarizes our understanding about the influence of cell-cell and cell-matrix adhesion in the metabolic behavior of cancer cells, with a special focus concerning the role of classical cadherins, such as Epithelial (E)-cadherin and Placental (P)-cadherin.
Collapse
Affiliation(s)
- Bárbara Sousa
- Ipatimup-Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal.
- i3S, Institute of Investigation and Innovation in Health, 4200-135 Porto, Portugal.
| | - Joana Pereira
- Ipatimup-Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal.
- i3S, Institute of Investigation and Innovation in Health, 4200-135 Porto, Portugal.
| | - Joana Paredes
- Ipatimup-Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal.
- i3S, Institute of Investigation and Innovation in Health, 4200-135 Porto, Portugal.
- Medical Faculty of the University of Porto, 4200-135 Porto, Portugal.
| |
Collapse
|
13
|
Sousa B, Ribeiro AS, Paredes J. Heterogeneity and Plasticity of Breast Cancer Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1139:83-103. [PMID: 31134496 DOI: 10.1007/978-3-030-14366-4_5] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the last 20 years, the conventional view of breast cancer as a homogeneous collection of highly proliferating malignant cells was totally replaced by a model of increased complexity, which points out that breast carcinomas are tissues composed of multiple populations of transformed cells. A large diversity of host cells and structural components of the extracellular matrix constitute the mammary tumour microenvironment, which supports its growth and progression, where individual cancer cells evolve with cumulative phenotypic and genetic heterogeneity. Moreover, contributing to this heterogeneity, it has been demonstrated that breast cancers can exhibit a hierarchical organization composed of tumour cells displaying divergent lineage biomarkers and where, at the apex of this hierarchy, some neoplastic cells are able to self-renew and to aberrantly differentiate. Breast cancer stem cells (BCSCs), as they were entitled, not only drive tumourigenesis, but also mediate metastasis and contribute to therapy resistance.Recently, adding more complexity to the system, it has been demonstrated that BCSCs maintain high levels of plasticity, being able to change between mesenchymal-like and epithelial-like states in a process regulated by the tumour microenvironment. These stem cell state transitions play a fundamental role in the process of tumour metastasis, as well as in the resistance to putative therapeutic strategies to target these cells. In this chapter, it will be mainly discussed the emerging knowledge regarding the contribution of BCSCs to tumour heterogeneity, their plasticity, and the role that this plasticity can play in the establishment of distant metastasis. A major focus will also be given to potential clinical implications of these discoveries in breast cancer recurrence and to possible BCSC targeted therapeutics by the use of specific biomarkers.
Collapse
Affiliation(s)
- Bárbara Sousa
- Institute of Pathology and Molecular Immunology of the University of Porto (Ipatimup), Porto, Portugal.,Institute of Investigation and Innovation in Health (i3S), Porto, Portugal
| | - Ana Sofia Ribeiro
- Institute of Pathology and Molecular Immunology of the University of Porto (Ipatimup), Porto, Portugal.,Institute of Investigation and Innovation in Health (i3S), Porto, Portugal
| | - Joana Paredes
- Institute of Pathology and Molecular Immunology of the University of Porto (Ipatimup), Porto, Portugal. .,Institute of Investigation and Innovation in Health (i3S), Porto, Portugal. .,Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal.
| |
Collapse
|