1
|
Szymoński K, Janiszewska N, Sofińska K, Skirlińska-Nosek K, Lupa D, Czaja M, Urbańska M, Jurkowska K, Konik K, Olszewska M, Adamek D, Awsiuk K, Lipiec E. Spatial recognition and semi-quantification of epigenetic events in pancreatic cancer subtypes with multiplexed molecular imaging and machine learning. Sci Rep 2025; 15:6518. [PMID: 39987295 PMCID: PMC11846859 DOI: 10.1038/s41598-025-90087-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 02/10/2025] [Indexed: 02/24/2025] Open
Abstract
Genomic alterations are the driving force behind pancreatic cancer (PC) tumorigenesis, but they do not fully account for its diverse phenotypes. Investigating the epigenetic landscapes of PC offers a more comprehensive understanding and could identify targeted therapies that enhance patient survival. In this study, we have developed a new promising methodology of spatial epigenomics that integrates multiplexed molecular imaging with convolutional neural networks. Then, we used it to map epigenetic modification levels in the six most prevalent PC subtypes. We analyzed and semi-quantified the resulting molecular data, revealing significant variability in their epigenomes. DNA and histone modifications, specifically methylation and acetylation, were investigated. Using the same technique, we examined DNA conformational changes to further elucidate the transcriptional regulatory mechanisms involved in PC differentiation. Our results revealed that the foamy-gland and squamous-differentiated subtypes exhibited significantly increased global levels of epigenetic modifications and elevated Z-DNA ratios. Overall, our findings may suggest a potentially reduced efficacy of therapeutics targeting epigenetic regulators for these subtypes. Conversely, the conventional ductal PC subtype has emerged as a promising candidate for treatment with epigenetic modulators.
Collapse
Affiliation(s)
- Krzysztof Szymoński
- Department of Pathomorphology, Jagiellonian University Medical College, Grzegórzecka 16, Cracow, 33-332, Poland.
- Diagnostyka Consilio Sp. z o.o, Cracow, Poland.
| | - Natalia Janiszewska
- M. Smoluchowski Institute of Physics, Jagiellonian University, Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Cracow, Poland
| | - Kamila Sofińska
- M. Smoluchowski Institute of Physics, Jagiellonian University, Cracow, Poland
| | - Katarzyna Skirlińska-Nosek
- M. Smoluchowski Institute of Physics, Jagiellonian University, Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Cracow, Poland
| | - Dawid Lupa
- M. Smoluchowski Institute of Physics, Jagiellonian University, Cracow, Poland
| | - Michał Czaja
- M. Smoluchowski Institute of Physics, Jagiellonian University, Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Cracow, Poland
| | - Marta Urbańska
- M. Smoluchowski Institute of Physics, Jagiellonian University, Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Cracow, Poland
| | - Katarzyna Jurkowska
- M. Smoluchowski Institute of Physics, Jagiellonian University, Cracow, Poland
| | - Kamila Konik
- Department of Pathomorphology, University Hospital in Cracow, Cracow, Poland
| | - Marta Olszewska
- Department of Pediatrics, Jagiellonian University Medical College, Cracow, Poland
| | - Dariusz Adamek
- Department of Pathomorphology, Jagiellonian University Medical College, Grzegórzecka 16, Cracow, 33-332, Poland
- Diagnostyka Consilio Sp. z o.o, Cracow, Poland
| | - Kamil Awsiuk
- M. Smoluchowski Institute of Physics, Jagiellonian University, Cracow, Poland
| | - Ewelina Lipiec
- M. Smoluchowski Institute of Physics, Jagiellonian University, Cracow, Poland
| |
Collapse
|
2
|
McMurry HS, Rivero JD, Chen EY, Kardosh A, Lopez CD, Pegna GJ. Gastroenteropancreatic neuroendocrine tumors: Epigenetic landscape and clinical implications. Curr Probl Cancer 2024; 52:101131. [PMID: 39173542 DOI: 10.1016/j.currproblcancer.2024.101131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/22/2024] [Indexed: 08/24/2024]
Abstract
Neuroendocrine tumors (NETs) are a rare, heterogenous group of neoplasms arising from cells of the neuroendocrine system. Amongst solid tumor malignancies, NETs are notable for overall genetic stability and recent data supports the notion that epigenetic changes may drive NET pathogenesis. In this review, major epigenetic mechanisms of NET pathogenesis are reviewed, including changes in DNA methylation, histone modification, chromatin remodeling, and microRNA. Prognostic implications of the above are discussed, as well as the expanding diagnostic utility of epigenetic markers in NETs. Lastly, preclinical and clinical evaluations of epigenetically targeted therapies in NETs and are reviewed, with a focus on future directions in therapeutic advancement.
Collapse
Affiliation(s)
- Hannah S McMurry
- Department of Medicine, Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, United States
| | - Jaydira Del Rivero
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emerson Y Chen
- Department of Medicine, Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, United States
| | - Adel Kardosh
- Department of Medicine, Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, United States
| | - Charles D Lopez
- Department of Medicine, Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, United States
| | - Guillaume J Pegna
- Department of Medicine, Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
3
|
Douville C, Lahouel K, Kuo A, Grant H, Avigdor BE, Curtis SD, Summers M, Cohen JD, Wang Y, Mattox A, Dudley J, Dobbyn L, Popoli M, Ptak J, Nehme N, Silliman N, Blair C, Romans K, Thoburn C, Gizzi J, Schoen RE, Tie J, Gibbs P, Ho-Pham LT, Tran BNH, Tran TS, Nguyen TV, Goggins M, Wolfgang CL, Wang TL, Shih IM, Lennon AM, Hruban RH, Bettegowda C, Kinzler KW, Papadopoulos N, Vogelstein B, Tomasetti C. Machine learning to detect the SINEs of cancer. Sci Transl Med 2024; 16:eadi3883. [PMID: 38266106 PMCID: PMC11210392 DOI: 10.1126/scitranslmed.adi3883] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
We previously described an approach called RealSeqS to evaluate aneuploidy in plasma cell-free DNA through the amplification of ~350,000 repeated elements with a single primer. We hypothesized that an unbiased evaluation of the large amount of sequencing data obtained with RealSeqS might reveal other differences between plasma samples from patients with and without cancer. This hypothesis was tested through the development of a machine learning approach called Alu Profile Learning Using Sequencing (A-PLUS) and its application to 7615 samples from 5178 individuals, 2073 with solid cancer and the remainder without cancer. Samples from patients with cancer and controls were prespecified into four cohorts used for model training, analyte integration, and threshold determination, validation, and reproducibility. A-PLUS alone provided a sensitivity of 40.5% across 11 different cancer types in the validation cohort, at a specificity of 98.5%. Combining A-PLUS with aneuploidy and eight common protein biomarkers detected 51% of the cancers at 98.9% specificity. We found that part of the power of A-PLUS could be ascribed to a single feature-the global reduction of AluS subfamily elements in the circulating DNA of patients with solid cancer. We confirmed this reduction through the analysis of another independent dataset obtained with a different approach (whole-genome sequencing). The evaluation of Alu elements may therefore have the potential to enhance the performance of several methods designed for the earlier detection of cancer.
Collapse
Affiliation(s)
- Christopher Douville
- Division of Quantitative Sciences, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kamel Lahouel
- Center for Cancer Prevention and Early Detection, City of Hope, Duarte, CA 91010, USA
- Center for Cancer Prevention and Early Detection, City of Hope, Division of Mathematics for Cancer Evolution and Early Detection, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
- Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, MD 21205, USA
| | - Albert Kuo
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, MD 21205, USA
| | - Haley Grant
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, MD 21205, USA
| | - Bracha Erlanger Avigdor
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Samuel D. Curtis
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mahmoud Summers
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Joshua D. Cohen
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yuxuan Wang
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Austin Mattox
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jonathan Dudley
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pathology, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Lisa Dobbyn
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Maria Popoli
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Janine Ptak
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Nadine Nehme
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Natalie Silliman
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Cherie Blair
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Katharine Romans
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Christopher Thoburn
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Jennifer Gizzi
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Robert E. Schoen
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Jeanne Tie
- Division of Personalized Oncology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Oncology, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3011, Australia
| | - Peter Gibbs
- Division of Personalized Oncology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Oncology, Melbourne, VIC 3000, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Lan T. Ho-Pham
- BioMedical Research Center, Pham Ngoc Thach University of Medicine, Ho Chi Minh City 72510, Vietnam
- Clinical Genetics Research Group, Saigon Precision Medicine Research Center, Ho Chi Minh City 72512, Vietnam
| | - Bich N. H. Tran
- Saigon Precision Medicine Research Center, Ho Chi Minh City 72512, Vietnam
| | - Thach S. Tran
- Saigon Precision Medicine Research Center, Ho Chi Minh City 72512, Vietnam
- School of Biomedical Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Tuan V. Nguyen
- Saigon Precision Medicine Research Center, Ho Chi Minh City 72512, Vietnam
- School of Biomedical Engineering, University of Technology Sydney, NSW 2007, Australia
- Tâm Anh Research Institute, Ho Chi Minh City, Vietnam
- Centre for Health Technologies, University of Technology, NSW 2007, Australia
- School of Population Health, University of New South Wales, NSW 2003, Australia
| | - Michael Goggins
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Department of Pathology, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins Medical Institutes, 733 N. Broadway, Baltimore, MD 21205, USA
| | | | - Tian-Li Wang
- Department of Pathology, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - Ie-Ming Shih
- Department of Pathology, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - Anne Marie Lennon
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Medicine, Johns Hopkins Medical Institutes, 733 N. Broadway, Baltimore, MD 21205, USA
- Department of Surgery, Johns Hopkins Medical Institutes, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Ralph H. Hruban
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Department of Pathology, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Chetan Bettegowda
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Kenneth W. Kinzler
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Nickolas Papadopoulos
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Bert Vogelstein
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Cristian Tomasetti
- Center for Cancer Prevention and Early Detection, City of Hope, Duarte, CA 91010, USA
- Center for Cancer Prevention and Early Detection, City of Hope, Division of Mathematics for Cancer Evolution and Early Detection, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
- Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
4
|
Modica R, Liccardi A, Minotta R, Cannavale G, Benevento E, Colao A. Current understanding of pathogenetic mechanisms in neuroendocrine neoplasms. Expert Rev Endocrinol Metab 2024; 19:49-61. [PMID: 37936421 DOI: 10.1080/17446651.2023.2279540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
INTRODUCTION Despite the fact that important advances in research on neuroendocrine neoplasms (NENs) have been made, consistent data about their pathogenetic mechanism are still lacking. Furthermore, different primary sites may recognize different pathogenetic mechanisms. AREAS COVERED This review analyzes the possible biological and molecular mechanisms that may lead to NEN onset and progression in different organs. Through extensive research of the literature, risk factors including hypercholesterolemia, inflammatory bowel disease, chronic atrophic gastritis are evaluated as potential pathogenetic mechanisms. Consistent evidence is available regarding sporadic gastric NENs and MEN1 related duodenopancreatic NENs precursor lesions, and genetic-epigenetic mutations may play a pivotal role in tumor development and bone metastases onset. In lung neuroendocrine tumors (NETs), diffuse proliferation of neuroendocrine cells on the bronchial wall (DIPNECH) has been proposed as a premalignant lesion, while in lung neuroendocrine carcinoma nicotine and smoke could be responsible for carcinogenic processes. Also, rare primary NENs such as thymic (T-NENs) and Merkel cell carcinoma (MCC) have been analyzed, finding different possible pathogenetic mechanisms. EXPERT OPINION New technologies in genomics and epigenomics are bringing new light to the pathogenetic landscape of NENs, but further studies are needed to improve both prevention and treatment in these heterogeneous neoplasms.
Collapse
Affiliation(s)
- Roberta Modica
- Endocrinology Unit, Department of Clinical Medicine and Surgery, Federico II University, Naples, Napoli, Italy
| | - Alessia Liccardi
- Endocrinology Unit, Department of Clinical Medicine and Surgery, Federico II University, Naples, Napoli, Italy
| | - Roberto Minotta
- Endocrinology Unit, Department of Clinical Medicine and Surgery, Federico II University, Naples, Napoli, Italy
| | - Giuseppe Cannavale
- Endocrinology Unit, Department of Clinical Medicine and Surgery, Federico II University, Naples, Napoli, Italy
| | - Elio Benevento
- Endocrinology Unit, Department of Clinical Medicine and Surgery, Federico II University, Naples, Napoli, Italy
| | - Annamaria Colao
- Endocrinology Unit, Department of Clinical Medicine and Surgery, Federico II University, Naples, Napoli, Italy
- UNESCO Chair "Education for Health and Sustainable Development, " Federico II University, Naples, Italy
| |
Collapse
|
5
|
Klomp MJ, Refardt J, van Koetsveld PM, Campana C, Dalm SU, Dogan F, van Velthuysen MLF, Feelders RA, de Herder WW, Hofland J, Hofland LJ. Epigenetic regulation of SST 2 expression in small intestinal neuroendocrine tumors. Front Endocrinol (Lausanne) 2023; 14:1184436. [PMID: 37223009 PMCID: PMC10200989 DOI: 10.3389/fendo.2023.1184436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/11/2023] [Indexed: 05/25/2023] Open
Abstract
Background Somatostatin receptor type 2 (SST2) expression is critical for the diagnosis and treatment of neuroendocrine tumors and is associated with improved patient survival. Recent data suggest that epigenetic changes such as DNA methylation and histone modifications play an important role in regulating SST2 expression and tumorigenesis of NETs. However, there are limited data on the association between epigenetic marks and SST2 expression in small intestinal neuroendocrine tumors (SI-NETs). Methods Tissue samples from 16 patients diagnosed with SI-NETs and undergoing surgical resection of the primary tumor at Erasmus MC Rotterdam were analysed for SST2 expression levels and epigenetic marks surrounding the SST2 promoter region, i.e. DNA methylation and histone modifications H3K27me3 and H3K9ac. As a control, 13 normal SI-tissue samples were included. Results The SI-NET samples had high SST2 protein and mRNA expression levels; a median (IQR) of 80% (70-95) SST2-positive cells and 8.2 times elevated SST2 mRNA expression level compared to normal SI-tissue (p=0.0042). In comparison to normal SI-tissue, DNA methylation levels and H3K27me3 levels were significantly lower at five out of the eight targeted CpG positions and at two out of the three examined locations within the SST2 gene promoter region of the SI-NET samples, respectively. No differences in the level of activating histone mark H3K9ac were observed between matched samples. While no correlation was found between histone modification marks and SST2 expression, SST2 mRNA expression levels correlated negatively with DNA methylation within the SST2 promoter region in both normal SI-tissue and SI-NETs (p=0.006 and p=0.04, respectively). Conclusion SI-NETs have lower SST2 promoter methylation levels and lower H3K27me3 methylation levels compared to normal SI-tissue. Moreover, in contrast to the absence of a correlation with SST2 protein expression levels, significant negative correlations were found between SST2 mRNA expression level and the mean level of DNA methylation within the SST2 promoter region in both normal SI-tissue and SI-NET tissue. These results indicate that DNA methylation might be involved in regulating SST2 expression. However, the role of histone modifications in SI-NETs remains elusive.
Collapse
Affiliation(s)
- Maria J. Klomp
- ENETS Center of Excellence, Department of Internal Medicine, Section of Endocrinology, Erasmus Medical Center (MC) Cancer Institute, Rotterdam, Netherlands
- ENETS Center of Excellence, Department of Radiology & Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - Julie Refardt
- ENETS Center of Excellence, Department of Internal Medicine, Section of Endocrinology, Erasmus Medical Center (MC) Cancer Institute, Rotterdam, Netherlands
- ENETS Center of Excellence, Department of Endocrinology, University Hospital Basel, Basel, Switzerland
| | - Peter M. van Koetsveld
- ENETS Center of Excellence, Department of Internal Medicine, Section of Endocrinology, Erasmus Medical Center (MC) Cancer Institute, Rotterdam, Netherlands
| | - Claudia Campana
- ENETS Center of Excellence, Department of Internal Medicine, Section of Endocrinology, Erasmus Medical Center (MC) Cancer Institute, Rotterdam, Netherlands
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties, School of Medical and Pharmaceutical Sciences, University of Genova, Genova, Italy
| | - Simone U. Dalm
- ENETS Center of Excellence, Department of Radiology & Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - Fadime Dogan
- ENETS Center of Excellence, Department of Internal Medicine, Section of Endocrinology, Erasmus Medical Center (MC) Cancer Institute, Rotterdam, Netherlands
| | | | - Richard A. Feelders
- ENETS Center of Excellence, Department of Internal Medicine, Section of Endocrinology, Erasmus Medical Center (MC) Cancer Institute, Rotterdam, Netherlands
| | - Wouter W. de Herder
- ENETS Center of Excellence, Department of Internal Medicine, Section of Endocrinology, Erasmus Medical Center (MC) Cancer Institute, Rotterdam, Netherlands
| | - Johannes Hofland
- ENETS Center of Excellence, Department of Internal Medicine, Section of Endocrinology, Erasmus Medical Center (MC) Cancer Institute, Rotterdam, Netherlands
| | - Leo J. Hofland
- ENETS Center of Excellence, Department of Internal Medicine, Section of Endocrinology, Erasmus Medical Center (MC) Cancer Institute, Rotterdam, Netherlands
| |
Collapse
|
6
|
Smith J, Barnett E, Rodger EJ, Chatterjee A, Subramaniam RM. Neuroendocrine Neoplasms: Genetics and Epigenetics. PET Clin 2023; 18:169-187. [PMID: 36858744 DOI: 10.1016/j.cpet.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Neuroendocrine neoplasms (NENs) are a group of rare, heterogeneous tumors of neuroendocrine cell origin, affecting a range of different organs. The clinical management of NENs poses significant challenges, as tumors are often diagnosed at an advanced stage where overall survival remains poor with current treatment regimens. In addition, a host of complex and often unique molecular changes underpin the pathobiology of each NEN subtype. Exploitation of the unique genetic and epigenetic signatures driving each NEN subtype provides an opportunity to enhance the diagnosis, treatment, and monitoring of NEN in an emerging era of individualized medicine.
Collapse
Affiliation(s)
- Jim Smith
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Te Whatu Ora - Southern, Dunedin Public Hospital, 270 Great King Street, PO Box 913, Dunedin, New Zealand.
| | - Edward Barnett
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Euan J Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Rathan M Subramaniam
- Department of Medicine, Otago Medical School, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Department of Radiology, Duke University, 2301 Erwin Rd, BOX 3808, Durham, NC 27705, USA
| |
Collapse
|
7
|
Angelousi A, Koumarianou A, Chatzellis E, Kaltsas G. Resistance of neuroendocrine tumours to somatostatin analogs. Expert Rev Endocrinol Metab 2023; 18:33-52. [PMID: 36651768 DOI: 10.1080/17446651.2023.2166488] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
INTRODUCTION A common feature shared by most neuroendocrine tumors (NETs) is the expression on their surface of somatostatin receptors (SSTRs) that are essential for their pathophysiological regulation, diagnosis, and management. The first-generation synthetic somatostatin analogs (SSAs), octreotide and lanreotide, constitute the cornerstone of treatment for growth hormone secreting pituitary adenomas and functioning, progressive functioning, and non-functioning gastro-entero-pancreatic (GEP-NETs). SSAs exert their mechanism of action through binding to the SSTRs; however, their therapeutic response is frequently attenuated or diminished by the development of resistance. The phenomenon of resistance is complex implicating the presence of additional epigenetic and genetic mechanisms. AREAS COVERED We aim to analyze the molecular, genetic, and epigenetic mechanisms of resistance to SSA treatment. We also summarize recent clinical data related to the development of resistance on conventional and non-conventional modes of administration of the first-generation SSAs and the second-generation SSA pasireotide. We explore mechanisms used to counteract the resistance to SSAs using higher doses or more frequent mode of administration of SSAs and/or combination treatments. EXPERT OPINION There is considerable heterogeneity in the development of resistance to SSAs that is tumor-specific necessitating the delineation of the underlying pathophysiological processes to further expand their therapeutic applications.
Collapse
Affiliation(s)
- Anna Angelousi
- First Department of Internal Medicine, Unit of Endocrinology, Laikon General hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna Koumarianou
- Hematology Oncology Unit, Fourth Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleftherios Chatzellis
- Endocrinology Diabetes and Metabolism Department, 251 Hellenic Air Force and VA General Hospital, Athens, Greece
| | - Gregory Kaltsas
- First Propaedeutic Department of Internal Medicine, Endocrine Unit, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
8
|
Choi JH, Paik WH. Risk Stratification of Pancreatic Neuroendocrine Neoplasms Based on Clinical, Pathological, and Molecular Characteristics. J Clin Med 2022; 11:7456. [PMID: 36556070 PMCID: PMC9786745 DOI: 10.3390/jcm11247456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Pancreatic neuroendocrine neoplasms consist of heterogeneous diseases. Depending on the novel features detected by various modern technologies, their classification and related prognosis predictions continue to change and develop. The role of traditional clinicopathological prognostic factors, including classification systems, is also being refined, and several attempts have been made to predict a more accurate prognosis through novel serum biomarkers, genetic factors, and epigenetic factors that have been identified through various state-of-the-art molecular techniques with multiomics sequencing. In this review article, the latest research results including the traditional approach to prognostic factors and recent advanced strategies for risk stratification of pancreatic neuroendocrine neoplasms based on clinical, pathological, and molecular characteristics are summarized. Predicting prognosis through multi-factorial assessments seems to be more efficacious, and prognostic factors through noninvasive methods are expected to develop further advances in liquid biopsy in the future.
Collapse
Affiliation(s)
| | - Woo Hyun Paik
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| |
Collapse
|
9
|
Shen X, Wang X, Lu X, Zhao Y, Guan W. Molecular biology of pancreatic neuroendocrine tumors: From mechanism to translation. Front Oncol 2022; 12:967071. [PMID: 36248960 PMCID: PMC9554633 DOI: 10.3389/fonc.2022.967071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Pancreatic neuroendocrine tumors (pNETs) are a group of heterogeneous tumors originated from progenitor cells. As these tumors are predominantly non-functional, most of them display asymptomatic characteristics, making it difficult to be realized from early onset. Therefore, patients with pNETs are usually diagnosed with metastatic disease or at a late disease stage. The relatively low incidence also limits our understanding of the biological background of pNETs, which largely impair the development of new effective drugs. The fact that up to 10% of pNETs develop in patients with genetic syndromes have promoted researchers to focus on the gene mutations and driver mutations in MEN1, DAXX/ATRX and mTOR signaling pathway genes have been implicated in disease development and progression. Recent advances in sequencing technologies have further enriched our knowledge of the complex molecular landscape of pNETs, pointing out crucial roles of genes in DNA damage pathways, chromosomal and telomere alterations and epigenetic dysregulation. These novel findings may not only benefit early diagnosis of pNETs, but also help to uncover tumor heterogeneity and shape the future of translational medical treatment. In this review, we focus on the current molecular biology of pNETs and decipher how these findings may translate into future development of targeted therapy.
Collapse
Affiliation(s)
- Xiaofei Shen
- Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Xingzhou Wang
- Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Xiaofeng Lu
- Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Yang Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Wenxian Guan, ; Yang Zhao,
| | - Wenxian Guan
- Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- *Correspondence: Wenxian Guan, ; Yang Zhao,
| |
Collapse
|
10
|
Komarnicki P, Musiałkiewicz J, Stańska A, Maciejewski A, Gut P, Mastorakos G, Ruchała M. Circulating Neuroendocrine Tumor Biomarkers: Past, Present and Future. J Clin Med 2022; 11:5542. [PMID: 36233409 PMCID: PMC9570647 DOI: 10.3390/jcm11195542] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Neuroendocrine tumors are a heterogeneous group of neoplasms originating from the diffuse endocrine system. Depending on primary location and hormonal status, they range in terms of clinical presentation, prognosis and treatment. Functional tumors often develop symptoms indicating an excess of hormones produced by the neoplasm (exempli gratia insulinoma, glucagonoma and VIPoma) and can be diagnosed using monoanalytes. For non-functional tumors (inactive or producing insignificant amounts of hormones), universal biomarkers have not been established. The matter remains an important unmet need in the field of neuroendocrine tumors. Substances researched over the years, such as chromogranin A and neuron-specific enolase, lack the desired sensitivity and specificity. In recent years, the potential use of Circulating Tumor Cells or multianalytes such as a circulating microRNA and NETest have been widely discussed. They offer superior diagnostic parameters in comparison to traditional biomarkers and depict disease status in a more comprehensive way. Despite a lot of promise, no international standards have yet been developed regarding their routine use and clinical application. In this literature review, we describe the analytes used over the years and cover novel biomarkers that could find a use in the future. We discuss their pros and cons while showcasing recent advances in the field of neuroendocrine tumor biomarkers.
Collapse
Affiliation(s)
- Paweł Komarnicki
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznań, Poland
| | - Jan Musiałkiewicz
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznań, Poland
| | - Alicja Stańska
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznań, Poland
| | - Adam Maciejewski
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznań, Poland
| | - Paweł Gut
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznań, Poland
| | - George Mastorakos
- Unit of Endocrinology, Diabetes Mellitus and Metabolism, Aretaieion University Hospital, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznań, Poland
| |
Collapse
|
11
|
Crabtree JS. Epigenetic Regulation in Gastroenteropancreatic Neuroendocrine Tumors. Front Oncol 2022; 12:901435. [PMID: 35747820 PMCID: PMC9209739 DOI: 10.3389/fonc.2022.901435] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/09/2022] [Indexed: 12/11/2022] Open
Abstract
Gastroenteropancreatic neuroendocrine neoplasms are a rare, diverse group of neuroendocrine tumors that form in the pancreatic and gastrointestinal tract, and often present with side effects due to hormone hypersecretion. The pathogenesis of these tumors is known to be linked to several genetic disorders, but sporadic tumors occur due to dysregulation of additional genes that regulate proliferation and metastasis, but also the epigenome. Epigenetic regulation in these tumors includes DNA methylation, chromatin remodeling and regulation by noncoding RNAs. Several large studies demonstrate the identification of epigenetic signatures that may serve as biomarkers, and others identify innovative, epigenetics-based targets that utilize both pharmacological and theranostic approaches towards the development of new treatment approaches.
Collapse
|
12
|
Mettler E, Fottner C, Bakhshandeh N, Trenkler A, Kuchen R, Weber MM. Quantitative Analysis of Plasma Cell-Free DNA and Its DNA Integrity and Hypomethylation Status as Biomarkers for Tumor Burden and Disease Progression in Patients with Metastatic Neuroendocrine Neoplasias. Cancers (Basel) 2022; 14:cancers14041025. [PMID: 35205773 PMCID: PMC8870292 DOI: 10.3390/cancers14041025] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Neuroendocrine neoplasias (NEN) are a heterogeneous group of frequent slow-progressing malignant tumors for which a reliable marker for tumor relapse and progression is still lacking. Previously, circulating cell-free DNA and its global methylation status and fragmentation rate have been proposed to be valuable prognostic tumor markers in a variety of malignancies. In the current study, we compared plasma cell-free DNA (cfDNA) properties of NEN patients with a healthy control group and a group of surgically cured patients. Our results revealed significantly higher plasma cfDNA concentrations with increased fragmentation and hypomethylation in patients with advanced metastatic NEN, which was strongly associated with tumor load and could help to differentiate between metastasized disease and presumably cured patients. This suggests that the combined analysis of plasma cfDNA characteristics is a potent and sensitive prognostic and therapeutic biomarker for tumor burden and disease progression in patients with neuroendocrine neoplasias. Abstract Background: Neuroendocrine neoplasia (NEN) encompasses a diverse group of malignancies marked by histological heterogeneity and highly variable clinical outcomes. Apart from Chromogranin A, specific biomarkers predicting residual tumor disease, tumor burden, and disease progression in NEN are scant. Thus, there is a strong clinical need for new and minimally invasive biomarkers that allow for an evaluation of the prognosis, clinical course, and response to treatment of NEN patients, thereby helping implement individualized treatment decisions in this heterogeneous group of patients. In the current prospective study, we evaluated the role of plasma cell-free DNA concentration and its global hypomethylation and fragmentation as possible diagnostic and prognostic biomarkers in patients with neuroendocrine neoplasias. Methods: The plasma cfDNA concentration, cfDNA Alu hypomethylation, and LINE-1 cfDNA integrity were evaluated prospectively in 63 NEN patients with presumably cured or advanced metastatic disease. The cfDNA characteristics in NEN patients were compared to the results of a group of 29 healthy controls and correlated with clinical and histopathological data of the patients. Results: Patients with advanced NEN showed a significantly higher cfDNA concentration and percentage of Alu hypomethylation and a reduced LINE-1 cfDNA integrity as compared to the surgically cured NET patients and the healthy control group. The increased hypomethylation and concentration of cfDNA and the reduced cfDNA integrity in NEN patients were strongly associated with tumor burden and poor prognosis, while no correlation with tumor grading, differentiation, localization, or hormonal activity could be found. Multiparametric ROC analysis of plasma cfDNA characteristics was able to distinguish NEN patients with metastatic disease from the control group and the cured NEN patients with AUC values of 0.694 and 0.908, respectively. This was significant even for the group with only a low tumor burden. Conclusions: The present study, for the first time, demonstrates that the combination of plasma cfDNA concentration, global hypomethylation, and fragment length pattern has the potential to serve as a potent and sensitive prognostic and therapeutic “liquid biopsy” biomarker for tumor burden and disease progression in patients with neuroendocrine neoplasias.
Collapse
Affiliation(s)
- Esther Mettler
- Department of Endocrinology and Metabolism, I Medical Clinic, University Hospital, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany; (C.F.); (N.B.); (A.T.); (M.M.W.)
- Correspondence:
| | - Christian Fottner
- Department of Endocrinology and Metabolism, I Medical Clinic, University Hospital, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany; (C.F.); (N.B.); (A.T.); (M.M.W.)
| | - Neda Bakhshandeh
- Department of Endocrinology and Metabolism, I Medical Clinic, University Hospital, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany; (C.F.); (N.B.); (A.T.); (M.M.W.)
| | - Anja Trenkler
- Department of Endocrinology and Metabolism, I Medical Clinic, University Hospital, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany; (C.F.); (N.B.); (A.T.); (M.M.W.)
| | - Robert Kuchen
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany;
| | - Matthias M. Weber
- Department of Endocrinology and Metabolism, I Medical Clinic, University Hospital, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany; (C.F.); (N.B.); (A.T.); (M.M.W.)
| |
Collapse
|
13
|
Sharma AE, Olivas A, Parilla M, Yassan L, Wang H, Zhang SS, Weber C, Keutgen XM, Hart J, Krausz T, Setia N. Epigenetic Dysregulation of 5-hydroxymethylcytosine in Well-Differentiated Pancreatic Neuroendocrine Tumors. Appl Immunohistochem Mol Morphol 2022; 30:e11-e15. [PMID: 34711739 DOI: 10.1097/pai.0000000000000982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Dysregulation of epigenetic mechanisms, reflected by loss of expression of 5-hydroxymethylcytosine (5-hmC) is being increasingly recognized as a marker of aggressive behavior in several neoplasms; however, the role of such epigenetic modifiers in pancreatic neuroendocrine tumors (PanNETs) has not been studied. Annotated cohort of 60 PanNETs was evaluated for 5-hmC expression using immunohistochemistry. Univariable and multivariable analyses were performed. To determine intratumor heterogeneity of 5-hmC expression, 26 additional synchronous metastatic deposits of PanNETs from 8 patients were evaluated for 5-hmC expression. 5-hmC level showed significant association with the presence of distant metastases (P=0.02), female sex (P=0.04), and Ki-67 proliferation index (P=0.002). A multivariate model created using the stepwise logistic regression analysis showed the presence of nodal metastases (odds ratio=6.15), lymphovascular invasion (odds ratio=4.07) and lack of 5-hmC expression (odds ratio=5.34) were predictive of the risk of distant metastasis in PanNETs with a c-statistic of 0.845. Epigenetic intratumoral heterogeneity of 5-hmC expression was seen in 37.5% cases (3/8). Our work provides evidence that epigenetic regulators are involved in the pathobiology of PanNETs and immunohistochemical analysis of 5-hmC may be able to refine prognostic evaluation of these tumors.
Collapse
Affiliation(s)
| | | | - Megan Parilla
- Department of Pathology, Loyola University, Chicago, IL
| | | | - Hanlin Wang
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles
| | | | | | - Xavier M Keutgen
- Division of General Surgery and Surgical Oncology, Endocrine and Neuroendocrine Surgery Research Program, Department of Surgery, University of Chicago Medical Center
| | | | | | | |
Collapse
|
14
|
Marini F, Giusti F, Brandi ML. Epigenetic-based targeted therapies for well-differentiated pancreatic neuroendocrine tumors: recent advances and future perspectives. Expert Rev Endocrinol Metab 2021; 16:295-307. [PMID: 34554891 DOI: 10.1080/17446651.2021.1982382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Well-differentiated pancreatic neuroendocrine tumors (PanNETs) are a heterogeneous group of primary tumors of the endocrine pancreas. Dysregulation of chromatin remodeling, gene expression alteration, global DNA hypomethylation of non-coding regions, DNA hypermethylation and silencing of tumor suppressor gene promoters are frequent epigenetic changes in PanNETs. These changes exert a role in neoplastic transformation and progression. As epigenetic mechanisms, converse to genetic mutations, are potentially reversible, they are an interesting and promising therapeutic target for the treatment of PanNETs. AREAS COVERED We reviewed main epigenetic alterations associated with the development, biological and clinical features and progression of PanNETs, as well as emerging therapies targeting epigenetic changes, which may prove effective for the treatment of human PanNETs. EXPERT OPINION Constant advances in the PanNET medical approach, as reported in the clinical and therapeutic recommendations of ESMO, improved the overall survival of patients over the years. However, over 60% of the patients with metastatic disease still have poor prognosis. Epigenetic regulator drugs, currently approved to treat some human malignancies, that showed anti-tumoral activity also on PanNETs, in pre-clinical and clinical studies, could concur to ameliorate the prognosis and OS of advanced and metastatic PanNET, in combination with surgery and currently employed medical therapies.
Collapse
Affiliation(s)
- Francesca Marini
- Department of Experimental and Clinical Biomedical Sciences, University of refereFlorence, Florence, Italy
- F.I.R.M.O. Italian Foundation for the Research on Bone Diseases, Florence, Italy
| | - Francesca Giusti
- Department of Experimental and Clinical Biomedical Sciences, University of refereFlorence, Florence, Italy
| | - Maria Luisa Brandi
- F.I.R.M.O. Italian Foundation for the Research on Bone Diseases, Florence, Italy
| |
Collapse
|
15
|
Carpizo DR, Harris CR. Genetic Drivers of Ileal Neuroendocrine Tumors. Cancers (Basel) 2021; 13:cancers13205070. [PMID: 34680217 PMCID: PMC8533727 DOI: 10.3390/cancers13205070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Although ileal neuroendocrine tumors are the most common tumors of the small intestine, they are not well-defined at the genetic level. Unlike most cancers, they have an unusually low number of mutations, and also lack recurrently mutated genes. Moreover ileal NETs have been difficult to study in the laboratory because there were no animal models and because cell lines were generally unavailable. But recent advances, including the first ileal NET mouse model as well as methods for culturing patient tumor samples, have been described and have already helped to identify IGF2 and CDK4 as two of the genetic drivers for this tumor type. These advances may help in the development of new treatments for patients. Abstract The genetic causes of ileal neuroendocrine tumors (ileal NETs, or I-NETs) have been a mystery. For most types of tumors, key genes were revealed by large scale genomic sequencing that demonstrated recurrent mutations of specific oncogenes or tumor suppressors. In contrast, genomic sequencing of ileal NETs demonstrated a distinct lack of recurrently mutated genes, suggesting that the mechanisms that drive the formation of I-NETs may be quite different than the cell-intrinsic mutations that drive the formation of other tumor types. However, recent mouse studies have identified the IGF2 and RB1 pathways in the formation of ileal NETs, which is supported by the subsequent analysis of patient samples. Thus, ileal NETs no longer appear to be a cancer without genetic causes.
Collapse
|
16
|
Sharma R, Lythgoe MP, Slaich B, Patel N. Exploring the Epigenome in Gastroenteropancreatic Neuroendocrine Neoplasias. Cancers (Basel) 2021; 13:4181. [PMID: 34439335 PMCID: PMC8394968 DOI: 10.3390/cancers13164181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 11/17/2022] Open
Abstract
Gastroenteropancreatic neuroendocrine neoplasias are a diverse group of neoplasms with different characteristics in terms of site, biological behaviour and metastatic potential. In comparison to other cancers, they are genetically quiet, harbouring relatively few somatic mutations. It is increasingly becoming evident that epigenetic changes are as relevant, if not more so, as somatic mutations in promoting oncogenesis. Despite significant tumour heterogeneity, it is obvious that DNA methylation, histone and chromatin modifications and microRNA expression profiles are distinctive for GEP-NEN subtypes and may correlate with clinical outcome. This review summarises existing knowledge on epigenetic changes, identifying potential contributions to pathogenesis and oncogenesis. In particular, we focus on epigenetic changes pertaining to well-differentiated neuroendocrine tumours, which make up the bulk of NENs. We also highlight both similarities and differences within the subtypes of GEP-NETs and how these relate and compare to other types of cancers. We relate epigenetic understanding to existing treatments and explore how this knowledge may be exploited in the development of novel treatment approaches, such as in theranostics and combining conventional treatment modalities. We consider potential barriers to epigenetic research in GEP-NENs and discuss strategies to optimise research and development of new therapies.
Collapse
Affiliation(s)
- Rohini Sharma
- Department of Surgery and Cancer, Imperial College London, London W12 ONN, UK;
| | - Mark P. Lythgoe
- Department of Surgery and Cancer, Imperial College London, London W12 ONN, UK;
| | - Bhavandeep Slaich
- Department of Medicine, University of Leicester, Leicester LE1 7RH, UK; (B.S.); (N.P.)
| | - Nishil Patel
- Department of Medicine, University of Leicester, Leicester LE1 7RH, UK; (B.S.); (N.P.)
| |
Collapse
|
17
|
Asa SL, La Rosa S, Basturk O, Adsay V, Minnetti M, Grossman AB. Molecular Pathology of Well-Differentiated Gastro-entero-pancreatic Neuroendocrine Tumors. Endocr Pathol 2021; 32:169-191. [PMID: 33459926 DOI: 10.1007/s12022-021-09662-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/03/2021] [Indexed: 12/17/2022]
Abstract
Well differentiated neuroendocrine tumors (NETs) arising in the gastrointestinal and pancreaticobiliary system are the most common neuroendocrine neoplasms. Studies of the molecular basis of these lesions have identified genetic mutations that predispose to familial endocrine neoplasia syndromes and occur both as germline events and in sporadic tumors. The mutations often involve epigenetic regulators rather than the oncogenes and tumor suppressors that are affected in other malignancies. Somatic copy number alterations and miRNAs have also been implicated in the development and progression of some of these tumors. The molecular profiles differ by location, but many are shared by tumors in other sites, including those outside the gastroenteropancreatic system. The approach to therapy relies on both the neuroendocrine nature of these tumors and the identification of specific alterations that can serve as targets for precision oncologic approaches.
Collapse
Affiliation(s)
- Sylvia L Asa
- Department of Pathology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, USA.
| | - Stefano La Rosa
- Institute of Pathology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Olca Basturk
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Volkan Adsay
- Department of Pathology and Research Center for Translational Medicine (KUTTAM), Koç University Hospital, Istanbul, Turkey
| | - Marianna Minnetti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Ashley B Grossman
- Green Templeton College, University of Oxford and ENETS Centre of Excellence, Royal Free Hospital, London, UK
| |
Collapse
|
18
|
Lim JY, Pommier RF. Clinical Features, Management, and Molecular Characteristics of Familial Small Bowel Neuroendocrine Tumors. Front Endocrinol (Lausanne) 2021; 12:622693. [PMID: 33732215 PMCID: PMC7959745 DOI: 10.3389/fendo.2021.622693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
Small bowel neuroendocrine tumors are rare tumors with an increasing incidence over the last several decades. Early detection remains challenging because patients commonly develop symptoms late in the disease course, often after the tumors have metastasized. Although these tumors were thought to arise from sporadic genetic mutations, large epidemiological studies strongly support genetic predisposition and increased risk of disease in affected families. Recent studies of familial small bowel neuroendocrine tumors have identified several novel genetic mutations. Screening for familial small bowel neuroendocrine tumors can lead to earlier diagnosis and improved patient outcomes. This review aims to summarize the current knowledge of molecular changes seen in familial small bowel neuroendocrine tumors, identify clinical features specific to familial disease, and provide strategies for screening and treatment.
Collapse
|
19
|
Jiang R, Hong X, Zhao Y, Wu W. Application of multiomics sequencing and advances in the molecular mechanisms of pancreatic neuroendocrine neoplasms. Cancer Lett 2020; 499:39-48. [PMID: 33246093 DOI: 10.1016/j.canlet.2020.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/10/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022]
Abstract
The incidence of pancreatic neuroendocrine neoplasms (PanNENs) has gradually increased. PanNENs comprise two subtypes with different clinical manifestations and molecular mechanisms: functional PanNENs and nonfunctional PanNENs. Excessive hormones and tumor progression severely affect the quality of life of patients or are even life threatening. However, the molecular mechanisms of hormone secretion and tumor progression in PanNENs have not yet been fully elucidated. At present, advancements in sequencing technologies have led to the exploration of new biological markers and an advanced understanding of molecular mechanisms in PanNENs. Multiomics sequencing could reveal differences and similarities in molecular features in different fields. However, sequencing studies of PanNENs are booming and should be summarized to integrate the current findings. In this review, we summarize the current status of multiomics sequencing in PanNENs to further guide its application. We explore mainly advancements in the genome, transcriptome, and DNA methylation fields. In addition, the cell origin of PanNENs, which has been a hot issue in sequencing research, is described in multiple fields.
Collapse
Affiliation(s)
- Rui Jiang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, China
| | - Xiafei Hong
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, China.
| | - Wenming Wu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, China.
| |
Collapse
|
20
|
DNMT3B Expression Might Contribute to Abnormal Methylation of RASSF1A in Lager Colorectal Adenomatous Polyps. Gastroenterol Res Pract 2020; 2020:1798729. [PMID: 33061956 PMCID: PMC7547352 DOI: 10.1155/2020/1798729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/04/2020] [Accepted: 09/15/2020] [Indexed: 11/17/2022] Open
Abstract
Background It is pretty well known that DNA methyltransferases (DNMTs) are actively involved in abnormal cell growth. The goal of the current study is to explore the correlation between DNMT expression and colorectal adenomatous polyps (CAPs). Method Twenty pairs of CAP samples with a diameter ≥ 10 mm and corresponding normal colorectal mucosa (NCM) tissues from patients were used in the present study. The expression levels and activity of DNA methyltransferases (DNMTs) were measured in the CAP tissues. The global methylation and the promoter methylation level of 3 kinds of tumour suppressor gene were detected. Results mRNA and protein levels of DNMT3B were found to be elevated in the CAP tissues compared with the control tissue. Additionally, the methylation of long interspersed nuclear elements-1 (LINE-1/L1) was decreased in the CAP tissue. Furthermore, methylation of the promoter of a tumour suppressor gene Ras association domain family 1A (RASSF1A) was increased in the CAP tissues, while the mRNA levels of RASSF1A were decreased. Conclusions These results suggest that the overexpression of DNMT3B may contribute to a role in the genesis of CAPs through the hypomethylation of chromosomes in the whole cell and promoter hypermethylation of RASSF1A.
Collapse
|
21
|
Zeggar HR, How-Kit A, Daunay A, Bettaieb I, Sahbatou M, Rahal K, Adouni O, Gammoudi A, Douik H, Deleuze JF, Kharrat M. Tumor DNA hypomethylation of LINE-1 is associated with low tumor grade of breast cancer in Tunisian patients. Oncol Lett 2020; 20:1999-2006. [PMID: 32724446 PMCID: PMC7377197 DOI: 10.3892/ol.2020.11745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 05/19/2020] [Indexed: 12/24/2022] Open
Abstract
DNA hypomethylation of long interspersed repetitive DNA retrotransposon (LINE-1) and Alu repeats elements of short interspersed elements family (SINEs) is an early event in carcinogenesis that causes transcriptional activation and leads to chromosomal instability. In the current study, DNA methylation levels of LINE-1 and Alu repeats were analyzed in tumoral tissues of invasive breast cancer in a Tunisian cohort and its association with the clinicopathological features of patients was defined. DNA methylation of LINE-1 and Alu repeats were analyzed using pyrosequencing in 61 invasive breast cancers. Median values observed for DNA methylation of LINE-1 and Alu repeats were considered as the cut-off (59.81 and 18.49%, respectively). The results of the current study demonstrated a positive correlation between DNA methylation levels of LINE-1 and Alu repeats (rho=0.284; P<0.03). DNA hypomethylation of LINE-1 was also indicated to be associated with low grade (P=0.023). To the best of our knowledge, the current study is the first study regarding DNA methylation of LINE-1 and Alu repeats element in breast cancer of the Tunisian population. The results of the current study suggest that, since hypomethylation of LINE-1 is associated with low grade, it could be used as a biomarker for prognosis for patients with breast cancer.
Collapse
Affiliation(s)
- Hayet Radia Zeggar
- University of Tunis El Manar, Faculty of Medicine of Tunis, LR99ES10 Human Genetics Laboratory, 1007 Tunis, Tunisia
| | - Alexandre How-Kit
- Laboratoire de Génomique, Fondation Jean Dausset-CEPH, Centre d'Etude du Polymorphisme Humain, 75010 Paris, France
| | - Antoine Daunay
- Laboratoire de Génomique, Fondation Jean Dausset-CEPH, Centre d'Etude du Polymorphisme Humain, 75010 Paris, France
| | - Ilhem Bettaieb
- Department of Immunohistocytology, Salah Azaïz Cancer Institute, 1006 Tunis, Tunisia
| | - Mourad Sahbatou
- Laboratoire de Biostatistique, Fondation Jean Dausset-CEPH, Centre d'Etude du Polymorphisme Humain, 75010 Paris, France
| | - Khaled Rahal
- Service de Chirurgie Carcinologique, Institut Salah Azaiz de Tunis, 1006 Tunis, Tunisia
| | - Olfa Adouni
- Department of Immunohistocytology, Salah Azaïz Cancer Institute, 1006 Tunis, Tunisia
| | - Amor Gammoudi
- Department of Immunohistocytology, Salah Azaïz Cancer Institute, 1006 Tunis, Tunisia
| | - Hayet Douik
- University of Tunis El Manar, Faculty of Medicine of Tunis, LR99ES10 Human Genetics Laboratory, 1007 Tunis, Tunisia
| | - Jean-François Deleuze
- Laboratoire de Génomique, Fondation Jean Dausset-CEPH, Centre d'Etude du Polymorphisme Humain, 75010 Paris, France
- Centre National de Recherche en Génomique Humaine, CEA, Le Commissariat à l'énergie atomique et aux énergies alternatives-Institut François Jacob, 92265 Evry, France
| | - Maher Kharrat
- University of Tunis El Manar, Faculty of Medicine of Tunis, LR99ES10 Human Genetics Laboratory, 1007 Tunis, Tunisia
| |
Collapse
|
22
|
Hofland J, Kaltsas G, de Herder WW. Advances in the Diagnosis and Management of Well-Differentiated Neuroendocrine Neoplasms. Endocr Rev 2020; 41:bnz004. [PMID: 31555796 PMCID: PMC7080342 DOI: 10.1210/endrev/bnz004] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Neuroendocrine neoplasms constitute a diverse group of tumors that derive from the sensory and secretory neuroendocrine cells and predominantly arise within the pulmonary and gastrointestinal tracts. The majority of these neoplasms have a well-differentiated grade and are termed neuroendocrine tumors (NETs). This subgroup is characterized by limited proliferation and patients affected by these tumors carry a good to moderate prognosis. A substantial subset of patients presenting with a NET suffer from the consequences of endocrine syndromes as a result of the excessive secretion of amines or peptide hormones, which can impair their quality of life and prognosis. Over the past 15 years, critical developments in tumor grading, diagnostic biomarkers, radionuclide imaging, randomized controlled drug trials, evidence-based guidelines, and superior prognostic outcomes have substantially altered the field of NET care. Here, we review the relevant advances to clinical practice that have significantly upgraded our approach to NET patients, both in diagnostic and in therapeutic options.
Collapse
Affiliation(s)
- Johannes Hofland
- ENETS Center of Excellence, Section of Endocrinology, Department of Internal Medicine, Erasmus MC Cancer Center, Erasmus MC, Rotterdam, The Netherlands
| | - Gregory Kaltsas
- 1st Department of Propaupedic Internal Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Wouter W de Herder
- ENETS Center of Excellence, Section of Endocrinology, Department of Internal Medicine, Erasmus MC Cancer Center, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
23
|
Ye D, Jiang D, Zhang X, Mao Y. Alu Methylation and Risk of Cancer: A Meta-analysis. Am J Med Sci 2020; 359:271-280. [PMID: 32268941 DOI: 10.1016/j.amjms.2020.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/10/2020] [Accepted: 03/03/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND The association between Alu methylation and risk of cancer remains uncertain. This meta-analysis was conducted to elucidate this issue. MATERIALS AND METHODS PubMed and Web of Science up to December 31, 2018, and the reference lists of studies, as well as those presented in relevant meta-analyses and reviews were systematically searched. Standardized mean difference (SMD) in Alu methylation level between cases and controls were pooled using random effects model and assessed heterogeneity between strata by stratified factors using meta-regression model. Sensitivity analysis and publication bias test were also conducted. RESULTS Twenty-five articles, including 2719 cases and 3018 controls were included in the meta-analysis. The significant difference in Alu methylation level between cancer cases and controls was greater in tissue (SMD = -1.89, 95% CI: -2.72, -1.05) than blood (SMD = -0.46, 95% CI: -0.82, -0.09), and heterogeneity was found in materials (P = 0.038). In tissue samples, Alu hypomethylation was found in carcinoma (SMD = -2.50, 95% CI: -3.51, -1.48), while not in non-carcinoma. The inverse associations were consistently found in subgroups stratified by data sources and quality score in tissue samples, and publication year was considered to be the potential source of between-study heterogeneity. Moreover, reduced Alu methylation level was found in the European subgroup, detection method of SIRPH and COBRA, and original data source in blood samples. CONCLUSIONS Alu hypomethylation was associated with increased risk of cancer, which could be a potential biomarker for cancer.
Collapse
Affiliation(s)
- Ding Ye
- Department of Epidemiology and Biostatistics, Zhejiang Chinese Medical University, Hangzhou, China
| | - Danjie Jiang
- Ningbo Municipal Center for Disease Control and Prevention, Ningbo, China
| | - Xinhan Zhang
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou, China
| | - Yingying Mao
- Department of Epidemiology and Biostatistics, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
24
|
Martín B, Pappa S, Díez-Villanueva A, Mallona I, Custodio J, Barrero MJ, Peinado MA, Jordà M. Tissue and cancer-specific expression of DIEXF is epigenetically mediated by an Alu repeat. Epigenetics 2020; 15:765-779. [PMID: 32041475 DOI: 10.1080/15592294.2020.1722398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Alu repeats constitute a major fraction of human genome and for a small subset of them a role in gene regulation has been described. The number of studies focused on the functional characterization of particular Alu elements is very limited. Most Alu elements are DNA methylated and then assumed to lie in repressed chromatin domains. We hypothesize that Alu elements with low or variable DNA methylation are candidates for a functional role. In a genome-wide study in normal and cancer tissues, we pinpointed an Alu repeat (AluSq2) with differential methylation located upstream of the promoter region of the DIEXF gene. DIEXF encodes a highly conserved factor essential for the development of zebrafish digestive tract. To characterize the contribution of the Alu element to the regulation of DIEXF we analysed the epigenetic landscapes of the gene promoter and flanking regions in different cell types and cancers. Alternate epigenetic profiles (DNA methylation and histone modifications) of the AluSq2 element were associated with DIEXF transcript diversity as well as protein levels, while the epigenetic profile of the CpG island associated with the DIEXF promoter remained unchanged. These results suggest that AluSq2 might directly contribute to the regulation of DIEXF transcription and protein expression. Moreover, AluSq2 was DNA hypomethylated in different cancer types, pointing out its putative contribution to DIEXF alteration in cancer and its potential as tumoural biomarker.
Collapse
Affiliation(s)
- Berta Martín
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP) , Barcelona, Spain
| | - Stella Pappa
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP) , Barcelona, Spain
| | - Anna Díez-Villanueva
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP) , Barcelona, Spain
| | - Izaskun Mallona
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP) , Barcelona, Spain
| | - Joaquín Custodio
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP) , Barcelona, Spain
| | - María José Barrero
- Center for Regenerative Medicine in Barcelona (CMRB), Avinguda de la Granvia de l'Hospitalet , Barcelona, Spain
| | - Miguel A Peinado
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP) , Barcelona, Spain
| | - Mireia Jordà
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP) , Barcelona, Spain
| |
Collapse
|
25
|
Colao A, de Nigris F, Modica R, Napoli C. Clinical Epigenetics of Neuroendocrine Tumors: The Road Ahead. Front Endocrinol (Lausanne) 2020; 11:604341. [PMID: 33384663 PMCID: PMC7770585 DOI: 10.3389/fendo.2020.604341] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/12/2020] [Indexed: 12/16/2022] Open
Abstract
Neuroendocrine tumors, or NETs, are cancer originating in neuroendocrine cells. They are mostly found in the gastrointestinal tract or lungs. Functional NETs are characterized by signs and symptoms caused by the oversecretion of hormones and other substances, but most NETs are non-functioning and diagnosis in advanced stages is common. Thus, novel diagnostic and therapeutic strategies are warranted. Epigenetics may contribute to refining the diagnosis, as well as to identify targeted therapy interfering with epigenetic-sensitive pathways. The goal of this review was to discuss the recent advancement in the epigenetic characterization of NETs highlighting their role in clinical findings.
Collapse
Affiliation(s)
- Annamaria Colao
- Department of Clinical Medicine and Surgery, Unesco Chair Health Education and Sustainable Development, Federico II University of Naples, Naples, Italy
| | - Filomena de Nigris
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Roberta Modica
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
- *Correspondence: Roberta Modica,
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
26
|
Boons G, Vandamme T, Peeters M, Van Camp G, Op de Beeck K. Clinical applications of (epi)genetics in gastroenteropancreatic neuroendocrine neoplasms: Moving towards liquid biopsies. Rev Endocr Metab Disord 2019; 20:333-351. [PMID: 31368038 DOI: 10.1007/s11154-019-09508-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
High-throughput analysis, including next-generation sequencing and microarrays, have strongly improved our understanding of cancer biology. However, genomic data on rare cancer types, such as neuroendocrine neoplasms, has been lagging behind. Neuroendocrine neoplasms (NENs) develop from endocrine cells spread throughout the body and are highly heterogeneous in biological behavior. In this challenging disease, there is an urgent need for new therapies and new diagnostic, prognostic, follow-up and predictive biomarkers to aid patient management. The last decade, molecular data on neuroendocrine neoplasms of the gastrointestinal tract and pancreas, termed gastroenteropancreatic NENs (GEP-NENs), has strongly expanded. The aim of this review is to give an overview of the recent advances on (epi)genetic level and highlight their clinical applications to address the current needs in GEP-NENs. We illustrate how molecular alterations can be and are being used as therapeutic targets, how mutations in DAXX/ATRX and copy number variations could be used as prognostic biomarkers, how far we are in identifying predictive biomarkers and how genetics can contribute to GEP-NEN classification. Finally, we discuss recent studies on liquid biopsies in the field of GEP-NENs and illustrate how liquid biopsies can play a role in patient management. In conclusion, molecular studies have suggested multiple potential biomarkers, but further validation is ongoing.
Collapse
Affiliation(s)
- Gitta Boons
- Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610, Wilrijk, Belgium
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650, Edegem, Belgium
| | - Timon Vandamme
- Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610, Wilrijk, Belgium
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650, Edegem, Belgium
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Dr. Molewaterplein 50, 3015GE, Rotterdam, The Netherlands
| | - Marc Peeters
- Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Guy Van Camp
- Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610, Wilrijk, Belgium.
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650, Edegem, Belgium.
| | - Ken Op de Beeck
- Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610, Wilrijk, Belgium
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650, Edegem, Belgium
| |
Collapse
|
27
|
Sansone A, Lauretta R, Vottari S, Chiefari A, Barnabei A, Romanelli F, Appetecchia M. Specific and Non-Specific Biomarkers in Neuroendocrine Gastroenteropancreatic Tumors. Cancers (Basel) 2019; 11:E1113. [PMID: 31382663 PMCID: PMC6721814 DOI: 10.3390/cancers11081113] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022] Open
Abstract
The diagnosis of neuroendocrine tumors (NETs) is a challenging task: Symptoms are rarely specific, and clinical manifestations are often evident only when metastases are already present. However, several bioactive substances secreted by NETs can be included for diagnostic, prognostic, and predictive purposes. Expression of these substances differs between different NETs according to the tumor hormone production. Gastroenteropancreatic (GEP) NETs originate from the diffuse neuroendocrine system of the gastrointestinal tract and pancreatic islets cells: These tumors may produce many non-specific and specific substances, such as chromogranin A, insulin, gastrin, glucagon, and serotonin, which shape the clinical manifestations of the NETs. To provide an up-to-date reference concerning the different biomarkers, as well as their main limitations, we reviewed and summarized existing literature.
Collapse
Affiliation(s)
- Andrea Sansone
- Section of Medical Pathophysiology, Food Science and Endocrinology, Dept. of Experimental Medicine, Sapienza University of Rome, 00165 Rome, Italy
| | - Rosa Lauretta
- Internal Medicine, Angioloni Hospital, San Piero in Bagno, 47026 Forlì-Cesena, Italy
| | - Sebastiano Vottari
- Endocrinology Unit, Regina Elena National Cancer Institute IRCCS, Rome 00144, Italy
| | - Alfonsina Chiefari
- Endocrinology Unit, Regina Elena National Cancer Institute IRCCS, Rome 00144, Italy
| | - Agnese Barnabei
- Endocrinology Unit, Regina Elena National Cancer Institute IRCCS, Rome 00144, Italy
| | - Francesco Romanelli
- Section of Medical Pathophysiology, Food Science and Endocrinology, Dept. of Experimental Medicine, Sapienza University of Rome, 00165 Rome, Italy
| | | |
Collapse
|
28
|
Samsom KG, van Veenendaal LM, Valk GD, Vriens MR, Tesselaar MET, van den Berg JG. Molecular prognostic factors in small-intestinal neuroendocrine tumours. Endocr Connect 2019; 8:906-922. [PMID: 31189127 PMCID: PMC6599083 DOI: 10.1530/ec-19-0206] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/10/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Small-intestinal neuroendocrine tumours (SI-NETs) represent a heterogeneous group of rare tumours. In recent years, basic research in SI-NETs has attempted to unravel the molecular events underlying SI-NET tumorigenesis. AIM We aim to provide an overview of the current literature regarding prognostic and predictive molecular factors in patients with SI-NETs. METHOD A PubMed search was conducted on (epi)genetic prognostic factors in SI-NETs from 2000 until 2019. RESULTS The search yielded 1522 articles of which 20 reviews and 35 original studies were selected for further evaluation. SI-NETs are mutationally quiet tumours with a different genetic make-up compared to pancreatic NETs. Loss of heterozygosity at chromosome 18 is the most frequent genomic aberration (44-100%) followed by mutations of CDKN1B in 8%. Prognostic analyses were performed in 16 studies, of which 8 found a significant (epi)genetic association for survival or progression. Loss of heterozygosity at chromosome 18, gains of chromosome 4, 5, 7, 14 and 20p, copy gain of the SRC gene and low expression of RASSF1A and P16 were associated with poorer survival. In comparison with genetic mutations, epigenetic alterations are significantly more common in SI-NETs and may represent more promising targets in the treatment of SI-NETs. CONCLUSION SI-NETs are mutationally silent tumours. No biomarkers have been identified yet that can easily be adopted into current clinical decision making. SI-NETs may represent a heterogeneous disease and larger international studies are warranted to translate molecular findings into precision oncology.
Collapse
Affiliation(s)
- K G Samsom
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - L M van Veenendaal
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - G D Valk
- Department of Endocrine Oncology, University Medical Centre Utrecht, Utrecht, The Netherlands
- Correspondence should be addressed to G D Valk:
| | - M R Vriens
- Department of Surgical Oncology and Endocrine Surgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - M E T Tesselaar
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - J G van den Berg
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Scarpa A. The landscape of molecular alterations in pancreatic and small intestinal neuroendocrine tumours. ANNALES D'ENDOCRINOLOGIE 2019; 80:153-158. [PMID: 31072588 DOI: 10.1016/j.ando.2019.04.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastroenteropancreatic Neuroendocrine Neoplasms (GEP-NENs) arise throughout the gut and feature varying biological behaviour and malignant potential. GEP-NENs include two genetically different entities, well-differentiated neuroendocrine tumours (NETs) and poorly differentiated neuroendocrine carcinomas (NEC). NECs are characterized by a dismal prognosis and by distinctive TP53 and RB1 inactivation which sets them apart from NETs. The latter, conversely, have a wide spectrum of aggressiveness and molecular alterations. Knowledge on their biology has recently expanded thanks to high-throughput studies focused on two important groups of well-differentiated neuroendocrine neoplasms: pancreatic (PanNETs) and small intestinal (SiNETs) tumours. PanNETs have been among the most studied also due to genetic syndromes featuring their onset. Research stemming from this observation has uncovered the inactivation of MEN1, VHL, TSC1/2, and the hyperactivation of the PI3K/mTOR pathway as distinctive biological features of these neoplasms. Next-Generation Sequencing added information on the role of telomere lengthening via ATRX/DAXX inactivation in a fraction of PanNETs, while other display shortened telomeres and recurrent chromosomal alterations. The data so far disclosed a heterogeneous combination of driver events, yet converging into four pathways including DNA damage repair, cell cycle regulation, PI3K/mTOR signalling and telomere maintenance. SiNETs showed a lesser relationship with mutational driver events, even in the case of familial cases. High throughput studies identified putative driver mutations in CDKN1 and APC which, however, were reported in a minor fraction (∼10%) of cases. Tumorigenesis of SiNETs seems to depend more on chromosomal alterations (loss of chromosome 8, gains at 4, 5 and 20) and epigenetic events, which converge to hyperactivate the PI3K/mTOR, MAPK and Wnt pathways. While calling for further integrative studies, these data lay previous and recent findings in a more defined frame and provide clinical research with several candidate markers for patient stratification and companion diagnostics.
Collapse
Affiliation(s)
- Aldo Scarpa
- RC-Net Centre for applied research on cancer, University and Hospital Trust of Verona, 37134 Verona, Italy; Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy.
| |
Collapse
|
30
|
Sharma A, Jamil MA, Nuesgen N, Dauksa A, Gulbinas A, Schulz WA, Oldenburg J, El-Maarri O. Detailed methylation map of LINE-1 5'-promoter region reveals hypomethylated CpG hotspots associated with tumor tissue specificity. Mol Genet Genomic Med 2019; 7:e601. [PMID: 30955237 PMCID: PMC6503062 DOI: 10.1002/mgg3.601] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 12/30/2018] [Accepted: 01/09/2019] [Indexed: 11/25/2022] Open
Abstract
Background Long interspersed nuclear elements (LINE‐1) sequences constitute a substantial portion of the human genome, and their methylation often correlating with global genomic methylation. Previous studies have highlighted the feasibility of using LINE‐1 methylation to discriminate tumors from healthy tissues. However, most studies are based on only a few specific LINE‐1 CpG sites. Methods Herein, we have performed a systematic fine‐scale analysis of methylation at 14 CpGs located in the 5′‐region of consensus LINE‐1, in bladder, colon, prostate, and gastric tumor tissues using a global degenerate approach. Results Our results reveal variable methylation levels between different CpGs, as well as some tissue‐specific differences. Trends toward hypomethylation were observed in all tumors types to certain degrees, showing statistically significance in bladder and prostate tumors. Our data points toward the presence of unique LINE‐1 DNA methylation patterns for each tumor type and tissue, indicating that not the same CpGs will be informative for testing in all tumor types. Conclusion This study provides an accurate guide that will help to design further assays that could avoid artifacts and explain the variability of obtained LINE‐1 methylation values between different studies.
Collapse
Affiliation(s)
- Amit Sharma
- Institute of Experimental Hematology and Transfusion Medicine, Bonn, Germany.,Department of Neurology, University Clinic Bonn, Bonn, Germany
| | - Muhammad A Jamil
- Institute of Experimental Hematology and Transfusion Medicine, Bonn, Germany
| | - Nicole Nuesgen
- Institute of Experimental Hematology and Transfusion Medicine, Bonn, Germany
| | - Albertas Dauksa
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Antanas Gulbinas
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Wolfgang A Schulz
- Department of Urology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Johannes Oldenburg
- Institute of Experimental Hematology and Transfusion Medicine, Bonn, Germany
| | - Osman El-Maarri
- Institute of Experimental Hematology and Transfusion Medicine, Bonn, Germany.,Department of Natural Sciences, Lebanese American University, Beirut, Lebanon
| |
Collapse
|
31
|
Mafficini A, Scarpa A. Genetics and Epigenetics of Gastroenteropancreatic Neuroendocrine Neoplasms. Endocr Rev 2019; 40:506-536. [PMID: 30657883 PMCID: PMC6534496 DOI: 10.1210/er.2018-00160] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 12/27/2018] [Indexed: 12/11/2022]
Abstract
Gastroenteropancreatic (GEP) neuroendocrine neoplasms (NENs) are heterogeneous regarding site of origin, biological behavior, and malignant potential. There has been a rapid increase in data publication during the last 10 years, mainly driven by high-throughput studies on pancreatic and small intestinal neuroendocrine tumors (NETs). This review summarizes the present knowledge on genetic and epigenetic alterations. We integrated the available information from each compartment to give a pathway-based overview. This provided a summary of the critical alterations sustaining neoplastic cells. It also highlighted similarities and differences across anatomical locations and points that need further investigation. GEP-NENs include well-differentiated NETs and poorly differentiated neuroendocrine carcinomas (NECs). NENs are graded as G1, G2, or G3 based on mitotic count and/or Ki-67 labeling index, NECs are G3 by definition. The distinction between NETs and NECs is also linked to their genetic background, as TP53 and RB1 inactivation in NECs set them apart from NETs. A large number of genetic and epigenetic alterations have been reported. Recurrent changes have been traced back to a reduced number of core pathways, including DNA damage repair, cell cycle regulation, and phosphatidylinositol 3-kinase/mammalian target of rapamycin signaling. In pancreatic tumors, chromatin remodeling/histone methylation and telomere alteration are also affected. However, also owing to the paucity of disease models, further research is necessary to fully integrate and functionalize data on deregulated pathways to recapitulate the large heterogeneity of behaviors displayed by these tumors. This is expected to impact diagnostics, prognostic stratification, and planning of personalized therapy.
Collapse
Affiliation(s)
- Andrea Mafficini
- ARC-Net Center for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy.,Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Aldo Scarpa
- ARC-Net Center for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy.,Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| |
Collapse
|
32
|
Gundara JS, Jamal K, Kurzawinski T. Dictating genomic destiny: Epigenetic regulation of pancreatic neuroendocrine tumours. Mol Cell Endocrinol 2018; 469:85-91. [PMID: 28385665 DOI: 10.1016/j.mce.2017.03.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/30/2017] [Accepted: 03/30/2017] [Indexed: 12/21/2022]
Abstract
Pancreatic neuroendocrine tumours are a diverse group of neoplasms with an increasingly well-defined genomic basis. Despite this, much of what drives this disease is still unknown and epigenetic influences represent the next tier of gene, and hence disease modifiers that are of unquestionable importance. Moreover, they are of arguably more significance than the genes themselves given their malleable nature and potential to be exploited for not only diagnosis and prognosis, but also therapy. This review summarises what is known regarding the key epigenetic modifiers of disease through the domains of diagnosis, prognosis and treatment.
Collapse
Affiliation(s)
- Justin S Gundara
- Centre for Endocrine Surgery, University College London Hospital, London, United Kingdom.
| | - Karim Jamal
- Centre for Endocrine Surgery, University College London Hospital, London, United Kingdom
| | - Tom Kurzawinski
- Centre for Endocrine Surgery, University College London Hospital, London, United Kingdom
| |
Collapse
|
33
|
Cai J, Zhao Y, Liu P, Xia B, Zhu Q, Wang X, Song Q, Kan H, Zhang Y. Exposure to particulate air pollution during early pregnancy is associated with placental DNA methylation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 607-608:1103-1108. [PMID: 28724248 DOI: 10.1016/j.scitotenv.2017.07.029] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/02/2017] [Accepted: 07/03/2017] [Indexed: 05/06/2023]
Abstract
Maternal exposure to particulate matter with aerodynamic diameter <10μm (PM10) during pregnancy results in adverse birth outcomes. Changes in placental DNA methylation might mediate those adverse effects. In this study, we examined the associations between prenatal PM10 exposure and DNA methylation of LINE1, HSD11B2 and NR3C1 in human placenta. One hundred and eighty-one mother newborn pairs (80 fetal growth restriction newborns, 101 normal newborns) participated in this study. The average PM10 exposure of each trimester and of the whole pregnancy was calculated using daily air pollution concentration data. Placental DNA methylation was measured by quantitative polymerase chain reaction-pyrosequencing. Placental LINE-1 DNA methylation was reversely associated with first trimester PM10 exposure 1.78% (-β=1.78, 95% CI: -3.35, -0.22%), while placental HSD11B2 DNA methylation was associated with both first and second trimester PM10 exposure, and relatively increased by 1.03% (95% CI: 0.07, 1.98%) and 2.33% (95% CI: 0.69, 3.76%) for each 10μg/m3 increase in exposure to PM10. Those associations were much more evident in fetal growth restriction newborns than those in normal newborns. In summary, early pregnancy PM10 exposure was associated with placental DNA methylation of LINE1 and HSD11B2, suggesting that such methylation alterations might mediate PM-induced reproductive and developmental toxicity.
Collapse
Affiliation(s)
- Jing Cai
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | - Yan Zhao
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | | | - Bin Xia
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | - Qingyang Zhu
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | - Xiu Wang
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | - Qi Song
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | - Haidong Kan
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, China.
| | - Yunhui Zhang
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, China.
| |
Collapse
|
34
|
Finnerty BM, Gray KD, Moore MD, Zarnegar R, Fahey III TJ. Epigenetics of gastroenteropancreatic neuroendocrine tumors: A clinicopathologic perspective. World J Gastrointest Oncol 2017; 9:341-353. [PMID: 28979716 PMCID: PMC5605334 DOI: 10.4251/wjgo.v9.i9.341] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 06/27/2017] [Accepted: 08/04/2017] [Indexed: 02/05/2023] Open
Abstract
Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are a heterogeneous group of rare tumors whose site-specific tumor incidence and clinical behavior vary widely. Genetic alterations associated with familial inherited syndromes have been well defined; however, the genetic profile of sporadic tumors is less clear as their tumorigenesis does not appear to be controlled by classic oncogenes such as P53, RB, or KRAS. Even within GEP-NETs, there are no common oncogenic drivers; for example, DAXX/ATRX mutations are strongly implicated in the tumorigenesis of pancreatic but not small bowel NETs. Accordingly, the dysregulation of epigenetic mechanisms has been hypothesized as a potential regulator of GEP-NET tumorigenesis and has become a major focus of recent studies. Despite the heterogeneity of tumor cohorts evaluated in these studies, it is obvious that there are methylation patterns, chromatin remodeling alterations, and microRNA and long non-coding RNA (lncRNA) differential expression profiles that are distinctive of GEP-NETs, some of which are correlated with significant differences in clinical outcomes. Several translational studies have provided convincing data identifying potential prognostic biomarkers, and some of these have demonstrated preliminary success as serum biomarkers that can be used clinically. Nevertheless, there are many opportunities to further define the mechanisms by which these epigenetic modifications influence tumorigenesis, and this will provide better insight into their prognostic and therapeutic utility. Furthermore, these findings form the foundation for future studies evaluating the clinical efficacy of epigenetic modifications as prognostic biomarkers, as well as potential therapeutic targets.
Collapse
Affiliation(s)
- Brendan M Finnerty
- Department of Surgery, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, United States
| | - Katherine D Gray
- Department of Surgery, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, United States
| | - Maureen D Moore
- Department of Surgery, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, United States
| | - Rasa Zarnegar
- Department of Surgery, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, United States
| | - Thomas J Fahey III
- Department of Surgery, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, United States
| |
Collapse
|
35
|
Di Domenico A, Wiedmer T, Marinoni I, Perren A. Genetic and epigenetic drivers of neuroendocrine tumours (NET). Endocr Relat Cancer 2017; 24:R315-R334. [PMID: 28710117 DOI: 10.1530/erc-17-0012] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 07/14/2017] [Indexed: 12/13/2022]
Abstract
Neuroendocrine tumours (NET) of the gastrointestinal tract and the lung are a rare and heterogeneous group of tumours. The molecular characterization and the clinical classification of these tumours have been evolving slowly and show differences according to organs of origin. Novel technologies such as next-generation sequencing revealed new molecular aspects of NET over the last years. Notably, whole-exome/genome sequencing (WES/WGS) approaches underlined the very low mutation rate of well-differentiated NET of all organs compared to other malignancies, while the engagement of epigenetic changes in driving NET evolution is emerging. Indeed, mutations in genes encoding for proteins directly involved in chromatin remodelling, such as DAXX and ATRX are a frequent event in NET. Epigenetic changes are reversible and targetable; therefore, an attractive target for treatment. The discovery of the mechanisms underlying the epigenetic changes and the implication on gene and miRNA expression in the different subgroups of NET may represent a crucial change in the diagnosis of this disease, reveal new therapy targets and identify predictive markers. Molecular profiles derived from omics data including DNA mutation, methylation, gene and miRNA expression have already shown promising results in distinguishing clinically and molecularly different subtypes of NET. In this review, we recapitulate the major genetic and epigenetic characteristics of pancreatic, lung and small intestinal NET and the affected pathways. We also discuss potential epigenetic mechanisms leading to NET development.
Collapse
Affiliation(s)
- Annunziata Di Domenico
- Institute of PathologyUniversity of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical SciencesUniversity of Bern, Bern, Switzerland
| | - Tabea Wiedmer
- Institute of PathologyUniversity of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical SciencesUniversity of Bern, Bern, Switzerland
| | | | - Aurel Perren
- Institute of PathologyUniversity of Bern, Bern, Switzerland
| |
Collapse
|
36
|
Marinoni I, Wiederkeher A, Wiedmer T, Pantasis S, Di Domenico A, Frank R, Vassella E, Schmitt A, Perren A. Hypo-methylation mediates chromosomal instability in pancreatic NET. Endocr Relat Cancer 2017; 24:137-146. [PMID: 28115389 DOI: 10.1530/erc-16-0554] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 01/23/2017] [Indexed: 12/22/2022]
Abstract
DAXX and or ATRX loss occur in 40% of pancreatic neuroendocrine tumors (PanNETs). PanNETs negative for DAXX or ATRX show an increased risk of relapse. The tumor-associated pathways activated upon DAXX or ATRX loss and how this event may induce chromosomal instability (CIN) and alternative lengthening telomeres (ALT) are still unknown. Both DAXX and ATRX are involved in DNA methylation regulation. DNA methylation of heterochromatin and of non-coding sequences is extremely important for the maintenance of genomic stability. We analyzed the association of DAXX and/or ATRX loss and CIN with global DNA methylation in human PanNET samples and the effect of DAXX knock-down on methylation and cell proliferation. We assessed LINE1 as well as global DNA methylation in 167 PanNETs, and we found that DAXX and or ATRX-negative tumors and tumors with CIN were hypomethylated. DAXX knock-down in PanNET cell lines blocked cells in G1/G0 phase and seemed to increase CIN in QGP-1 cells. However, no direct changes in DNA methylation were observed after DAXX knock-down in vitro In conclusion, our data indicate that epigenetic changes are crucial steps in the progression of PanNETs loss and suggest that DNA methylation is the mechanism via which CIN is induced, allowing clonal expansion and selection.
Collapse
Affiliation(s)
- I Marinoni
- Institute of PathologyUniversity of Bern, Bern, Switzerland
| | - A Wiederkeher
- Institute of PathologyUniversity of Bern, Bern, Switzerland
| | - T Wiedmer
- Institute of PathologyUniversity of Bern, Bern, Switzerland
- GCB Graduate School BernBern, Switzerland
| | - S Pantasis
- Institute of PathologyUniversity of Bern, Bern, Switzerland
| | - A Di Domenico
- Institute of PathologyUniversity of Bern, Bern, Switzerland
- GCB Graduate School BernBern, Switzerland
| | - R Frank
- Institute of PathologyUniversity of Bern, Bern, Switzerland
| | - E Vassella
- Institute of PathologyUniversity of Bern, Bern, Switzerland
| | - A Schmitt
- Institute of PathologyUniversity of Bern, Bern, Switzerland
| | - A Perren
- Institute of PathologyUniversity of Bern, Bern, Switzerland
| |
Collapse
|
37
|
Vryer R, Saffery R. What's in a name? Context-dependent significance of 'global' methylation measures in human health and disease. Clin Epigenetics 2017; 9:2. [PMID: 28149330 PMCID: PMC5270354 DOI: 10.1186/s13148-017-0311-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/04/2017] [Indexed: 12/20/2022] Open
Abstract
The study of DNA methylation in development and disease has 'exploded' as a field in recent years, with three major classes of measurement now routine. These encompass (i) locus-specific, (ii) genome-scale/wide and (iii) 'global' methylation approaches. Measures of global methylation refer to the level of 5-methylcytosine (5mC) content in a sample relative to total cytosine. Despite this, several other measures are often referred to as 'global', with the underlying assumption that they accurately reflect 5mC content. The two most common surrogate, or proxy, measures include generating a mean or median methylation value from (i) the average measure in thousands of highly repetitive genomic elements and (ii) many thousands to several million primarily unique CpG sites throughout the genome. Numerous lines of evidence suggest the underlying assumption of equivalence of these measures is flawed, with considerable variation in the regulation of different 'flavours' of DNA methylation throughout the genome depending on cell type, differentiation and disease state. As such, the regulation of methylation 'types' is often uncoupled. The emerging picture suggests that no approach can accurately detect all biologically important differences in 5mC variation and distribution in all instances, with this needing to be ascertained on a case-by-case basis. Thus, it is important to clearly elaborate the genomic context and content of DNA methylation being analysed, the sample and developmental stage in which it is being examined and to remember that in most instances, the most common measures are not a true representation of 'global' 5mC content as orginally defined.
Collapse
Affiliation(s)
- Regan Vryer
- Murdoch Childrens Research Institute, 50 Flemington Rd, Parkville, Victoria 3052 Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria Australia
| | - Richard Saffery
- Murdoch Childrens Research Institute, 50 Flemington Rd, Parkville, Victoria 3052 Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria Australia
| |
Collapse
|
38
|
Jordà M, Díez-Villanueva A, Mallona I, Martín B, Lois S, Barrera V, Esteller M, Vavouri T, Peinado MA. The epigenetic landscape of Alu repeats delineates the structural and functional genomic architecture of colon cancer cells. Genome Res 2016; 27:118-132. [PMID: 27999094 PMCID: PMC5204336 DOI: 10.1101/gr.207522.116] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 11/10/2016] [Indexed: 12/16/2022]
Abstract
Cancer cells exhibit multiple epigenetic changes with prominent local DNA hypermethylation and widespread hypomethylation affecting large chromosomal domains. Epigenome studies often disregard the study of repeat elements owing to technical complexity and their undefined role in genome regulation. We have developed NSUMA (Next-generation Sequencing of UnMethylated Alu), a cost-effective approach allowing the unambiguous interrogation of DNA methylation in more than 130,000 individual Alu elements, the most abundant retrotransposon in the human genome. DNA methylation profiles of Alu repeats have been analyzed in colon cancers and normal tissues using NSUMA and whole-genome bisulfite sequencing. Normal cells show a low proportion of unmethylated Alu (1%–4%) that may increase up to 10-fold in cancer cells. In normal cells, unmethylated Alu elements tend to locate in the vicinity of functionally rich regions and display epigenetic features consistent with a direct impact on genome regulation. In cancer cells, Alu repeats are more resistant to hypomethylation than other retroelements. Genome segmentation based on high/low rates of Alu hypomethylation allows the identification of genomic compartments with differential genetic, epigenetic, and transcriptomic features. Alu hypomethylated regions show low transcriptional activity, late DNA replication, and its extent is associated with higher chromosomal instability. Our analysis demonstrates that Alu retroelements contribute to define the epigenetic landscape of normal and cancer cells and provides a unique resource on the epigenetic dynamics of a principal, but largely unexplored, component of the primate genome.
Collapse
Affiliation(s)
- Mireia Jordà
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona 08916, Catalonia, Spain
| | - Anna Díez-Villanueva
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona 08916, Catalonia, Spain
| | - Izaskun Mallona
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona 08916, Catalonia, Spain
| | - Berta Martín
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona 08916, Catalonia, Spain
| | - Sergi Lois
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona 08916, Catalonia, Spain
| | - Víctor Barrera
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona 08916, Catalonia, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona 08908, Catalonia, Spain.,Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona 08907, Catalonia, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Catalonia, Spain
| | - Tanya Vavouri
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Josep Carreras Leukaemia Research Institute (IJC), Badalona 08916, Catalonia, Spain
| | - Miguel A Peinado
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona 08916, Catalonia, Spain
| |
Collapse
|
39
|
Stålberg P, Westin G, Thirlwell C. Genetics and epigenetics in small intestinal neuroendocrine tumours. J Intern Med 2016; 280:584-594. [PMID: 27306880 DOI: 10.1111/joim.12526] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neuroendocrine tumour of the small intestine (SI-NET), formerly known as midgut carcinoid tumour, is the most common small intestinal malignancy. The incidence is rising, with recent reports of 0.67 per 100 000 in the USA and 1.12 per 100 000 in Sweden. SI-NETs often present a challenge in terms of diagnosis and treatment, as patients often have widespread disease and are beyond cure by surgery. Somatostatin analogues provide the mainstay of medical treatment to control hormonal excess and increase the time to progression. Despite overall favourable prognosis (5-year overall survival of 65%), there is a need to find markers to identify both patients with worse outcome and new targets for therapy. Loss on chromosome 18 has been reported in 60-90% of SI-NETs, but mutated genes on this chromosome have failed detection. Recently, a putative tumour suppressor role has been suggested for TCEB3C occurring at 18q21 (encoding elongin A3), which may undergo epigenetic repression. CDKN1B has recently been revealed as the only recurrently mutated gene in SI-NETs but, with a frequency as low as 8%, its role as a driver in SI-NET development may be questioned. Integrated genomewide analysis including exome and whole-genome sequencing, gene expression, DNA methylation and copy number analysis has identified three novel molecular subtypes of SI-NET with differing clinical outcome. DNA methylation analysis has demonstrated that SI-NETs have significant epigenetic dysregulation in 70-80% of tumours. In this review, we focus on understanding of the genetic, epigenetic and molecular events that lead to development and progression of SI-NETs.
Collapse
Affiliation(s)
- P Stålberg
- Department of Surgical Sciences, Uppsala University and University Hospital, Uppsala, Sweden
| | - G Westin
- Department of Surgical Sciences, Uppsala University and University Hospital, Uppsala, Sweden
| | - C Thirlwell
- Cancer Institute, University College London, London, UK
| |
Collapse
|
40
|
Cives M, Simone V, Rizzo FM, Silvestris F. NETs: organ-related epigenetic derangements and potential clinical applications. Oncotarget 2016; 7:57414-57429. [PMID: 27418145 PMCID: PMC5302998 DOI: 10.18632/oncotarget.10598] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/30/2016] [Indexed: 12/15/2022] Open
Abstract
High-throughput next-generation sequencing methods have recently provided a detailed picture of the genetic landscape of neuroendocrine tumors (NETs), revealing recurrent mutations of chromatin-remodeling genes and little-to-no pathogenetic role for oncogenes commonly mutated in cancer. Concurrently, multiple epigenetic modifications have been described across the whole spectrum of NETs, and their putative function as tumorigenic drivers has been envisaged. As result, it is still unclear whether or not NETs are epigenetically-driven, rather than genetically-induced malignancies. Although the NET epigenome profiling has led to the identification of molecularly-distinct tumor subsets, validation studies in larger cohorts of patients are needed to translate the use of NET epitypes in clinical practice. In the precision medicine era, recognition of subpopulations of patients more likely to respond to therapeutic agents is critical, and future studies testing epigenetic biomarkers are therefore awaited. Restoration of the aberrant chromatin remodeling machinery is an attractive approach for future treatment of cancer and in several hematological malignancies a few epigenetic agents have been already approved. Although clinical outcomes of epigenetic therapies in NETs have been disappointing so far, further clinical trials are required to investigate the efficacy of these drugs. In this context, given the immune-stimulating effects of epidrugs, combination therapies with immune checkpoint inhibitors should be tested. In this review, we provide an overview of the epigenetic changes in both hereditary and sporadic NETs of the gastroenteropancreatic and bronchial tract, focusing on their diagnostic, prognostic and therapeutic implications.
Collapse
Affiliation(s)
- Mauro Cives
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari “Aldo Moro”, Bari, Italy
| | - Valeria Simone
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari “Aldo Moro”, Bari, Italy
| | - Francesca Maria Rizzo
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari “Aldo Moro”, Bari, Italy
| | - Franco Silvestris
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
41
|
Genome-wide measures of DNA methylation in peripheral blood and the risk of urothelial cell carcinoma: a prospective nested case-control study. Br J Cancer 2016; 115:664-73. [PMID: 27490804 PMCID: PMC5023776 DOI: 10.1038/bjc.2016.237] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/13/2016] [Accepted: 07/08/2016] [Indexed: 12/23/2022] Open
Abstract
Background: Global DNA methylation has been reported to be associated with urothelial cell carcinoma (UCC) by studies using blood samples collected at diagnosis. Using the Illumina HumanMethylation450 assay, we derived genome-wide measures of blood DNA methylation and assessed them for their prospective association with UCC risk. Methods: We used 439 case–control pairs from the Melbourne Collaborative Cohort Study matched on age, sex, country of birth, DNA sample type, and collection period. Conditional logistic regression was used to compute odds ratios (OR) of UCC risk per s.d. of each genome-wide measure of DNA methylation and 95% confidence intervals (CIs), adjusted for potential confounders. We also investigated associations by disease subtype, sex, smoking, and time since blood collection. Results: The risk of superficial UCC was decreased for individuals with higher levels of our genome-wide DNA methylation measure (OR=0.71, 95% CI: 0.54–0.94; P=0.02). This association was particularly strong for current smokers at sample collection (OR=0.47, 95% CI: 0.27–0.83). Intermediate levels of our genome-wide measure were associated with decreased risk of invasive UCC. Some variation was observed between UCC subtypes and the location and regulatory function of the CpGs included in the genome-wide measures of methylation. Conclusions: Higher levels of our genome-wide DNA methylation measure were associated with decreased risk of superficial UCC and intermediate levels were associated with reduced risk of invasive disease. These findings require replication by other prospective studies.
Collapse
|
42
|
Abstract
Neuroendocrine tumors (NETs) are slow-growing neoplasms capable of storing and secreting different peptides and neuroamines. Some of these substances cause specific symptom complexes, whereas others are silent. They usually have episodic expression, and the diagnosis is often made at a late stage. Although considered rare, the incidence of NETs is increasing. For these reasons, a high index of suspicion is needed. In this article, the different clinical syndromes and the pathophysiology of each tumor as well as the new and emerging biochemical markers and imaging techniques that should be used to facilitate an early diagnosis, follow-up, and prognosis are reviewed.
Collapse
|
43
|
Ghorbani M, Themis M, Payne A. Genome wide classification and characterisation of CpG sites in cancer and normal cells. Comput Biol Med 2015; 68:57-66. [PMID: 26615449 DOI: 10.1016/j.compbiomed.2015.09.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/16/2015] [Accepted: 09/29/2015] [Indexed: 11/30/2022]
Abstract
This study identifies common methylation patterns across different cancer types in an effort to identify common molecular events in diverse types of cancer cells and provides evidence for the sequence surrounding a CpG to influence its susceptibility to aberrant methylation. CpG sites throughout the genome were divided into four classes: sites that either become hypo or hyper-methylated in a variety cancers using all the freely available microarray data (HypoCancer and HyperCancer classes) and those found in a constant hypo (Never methylated class) or hyper-methylated (Always methylated class) state in both normal and cancer cells. Our data shows that most CpG sites included in the HumanMethylation450K microarray remain unmethylated in normal and cancerous cells; however, certain sites in all the cancers investigated become specifically modified. More detailed analysis of the sites revealed that majority of those in the never methylated class were in CpG islands whereas those in the HyperCancer class were mostly associated with miRNA coding regions. The sites in the Hypermethylated class are associated with genes involved in initiating or maintaining the cancerous state, being enriched for processes involved in apoptosis, and with transcription factors predicted to bind to these genes linked to apoptosis and tumourgenesis (notably including E2F). Further we show that more LINE elements are associated with the HypoCancer class and more Alu repeats are associated with the HyperCancer class. Motifs that classify the classes were identified to distinguish them based on the surrounding DNA sequence alone, and for the identification of DNA sequences that could render sites more prone to aberrant methylation in cancer cells. This provides evidence that the sequence surrounding a CpG site has an influence on whether a site is hypo or hyper methylated.
Collapse
Affiliation(s)
- Mohammadmersad Ghorbani
- Department of Computer Science, Brunel University, Uxbridge, Middlesex UB8 3PH, UK; Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute
| | - Michael Themis
- Department of Biosciences, Brunel University, Uxbridge, Middlesex UB8 3PH, UK
| | - Annette Payne
- Department of Computer Science, Brunel University, Uxbridge, Middlesex UB8 3PH, UK.
| |
Collapse
|
44
|
How-Kit A, Dejeux E, Dousset B, Renault V, Baudry M, Terris B, Tost J. DNA methylation profiles distinguish different subtypes of gastroenteropancreatic neuroendocrine tumors. Epigenomics 2015; 7:1245-58. [PMID: 26360914 DOI: 10.2217/epi.15.85] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIM Most studies have considered gastroenteropancreatic neuroendocrine tumors (GEP-NETs) as a homogenous group of samples or distinguish only gastrointestinal from pancreatic endocrine tumors. This article investigates if DNA methylation patterns could distinguish subtypes of GEP-NETs. MATERIALS & METHODS The DNA methylation level of 807 cancer-related genes was investigated in insulinomas, gastrinomas, non-functioning pancreatic endocrine tumors and small intestine endocrine tumors. RESULTS DNA methylation patterns were found to be tumor type specific for each of the pancreatic tumor subtypes and identified two distinct methylation-based groups in small intestine endocrine tumors. Differences of DNA methylation levels were validated by pyrosequencing for 20 candidate genes and correlated with differences at the transcriptional level for four candidate genes. CONCLUSION The heterogeneity of DNA methylation patterns in the different subtypes of gastroenteropancreatic neuroendocrine tumors suggests different underlying pathways and, therefore, these tumors should be considered as distinct entities in molecular and clinical studies.
Collapse
Affiliation(s)
- Alexandre How-Kit
- Laboratory for Epigenetics & Environment, Centre National de Génotypage, CEA-Institut de Génomique, Evry, France.,Laboratory for Functional Genomics, Fondation Jean Dausset - CEPH, Paris, France
| | - Emelyne Dejeux
- Laboratory for Epigenetics & Environment, Centre National de Génotypage, CEA-Institut de Génomique, Evry, France
| | - Bertrand Dousset
- Service de chirurgie digestive, hépatobiliaire et endocrinienne, Hôpital Cochin, AP-HP, Paris, France
| | - Victor Renault
- Laboratory for Bioinformatics, Fondation Jean Dausset - CEPH, Paris, France
| | - Marion Baudry
- Laboratory for Epigenetics & Environment, Centre National de Génotypage, CEA-Institut de Génomique, Evry, France.,Laboratory for Functional Genomics, Fondation Jean Dausset - CEPH, Paris, France
| | - Benoit Terris
- Service d'Anatomie et de Cytologie Pathologique, Hôpital Cochin, AP-HP, Paris, France.,Institut Cochin de Génétique Moléculaire, Université Paris V René Descartes, CNRS (UMR8104), France.,Institut National de la Santé et de la Recherche Médicale U567, Paris, France
| | - Jörg Tost
- Laboratory for Epigenetics & Environment, Centre National de Génotypage, CEA-Institut de Génomique, Evry, France
| |
Collapse
|
45
|
Mapelli P, Aboagye EO, Stebbing J, Sharma R. Epigenetic changes in gastroenteropancreatic neuroendocrine tumours. Oncogene 2015; 34:4439-47. [PMID: 25435371 DOI: 10.1038/onc.2014.379] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/25/2014] [Accepted: 10/10/2014] [Indexed: 02/07/2023]
Abstract
An understanding of epigenetic drivers of tumorigenesis has developed rapidly during the last years. The identification of these changes including DNA methylation and histone modifications in gastroenteropancreatic neuroendocrine tumours (GEP-NETs) is a step forward in trying to define underlying biologic processes in this heterogeneous disease. The reversible nature of these changes represents a potential therapeutic target. We present an overview of the current knowledge of epigenetic alterations related to GEP-NETs, focusing on the influence and impact these changes have on pathogenesis and prognosis. The potential role of demethylating agents in the management of this patient population is discussed.
Collapse
Affiliation(s)
- P Mapelli
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - E O Aboagye
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - J Stebbing
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - R Sharma
- Department of Experimental Medicine, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| |
Collapse
|
46
|
Miller HC, Kidd M, Castellano L, Frilling A. Molecular genetic findings in small bowel neuroendocrine neoplasms: a review of the literature. INTERNATIONAL JOURNAL OF ENDOCRINE ONCOLOGY 2015. [DOI: 10.2217/ije.14.41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Small bowel neuroendocrine neoplasms (SBNEN) are the most common small bowel tumor and have an increasing incidence. Despite many treatment options, therapeutic strategy remains a key clinical challenge due to the paucity of large-scale, randomized controlled trials. The heterogeneity of SBNEN coupled with a lack of detailed information about the tumor biology, impedes patient stratification into groups based on tumor phenotypes or treatment response. More detailed analysis of the genetic and epigenetic characteristics of SBNEN, will allow treatment to move toward a more personalized medicine approach through the identification of novel biomarkers and therapeutic targets, with the aim to increase survival.
Collapse
Affiliation(s)
- Helen C Miller
- Department of Surgery & Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0HS, UK
| | - Mark Kidd
- Department of Surgery, Yale University, School of Medicine, 333 Cedar Street, New Haven, CT 06520–8062, USA
| | - Leandro Castellano
- Department of Surgery & Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0HS, UK
| | - Andrea Frilling
- Department of Surgery & Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0HS, UK
| |
Collapse
|
47
|
Tiwawech D, Srisuttee R, Rattanatanyong P, Puttipanyalears C, Kitkumthorn N, Mutirangura A. Alu Methylation in Serum from Patients with Nasopharyngeal Carcinoma. Asian Pac J Cancer Prev 2014; 15:9797-800. [DOI: 10.7314/apjcp.2014.15.22.9797] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
48
|
Barchitta M, Quattrocchi A, Maugeri A, Vinciguerra M, Agodi A. LINE-1 hypomethylation in blood and tissue samples as an epigenetic marker for cancer risk: a systematic review and meta-analysis. PLoS One 2014; 9:e109478. [PMID: 25275447 PMCID: PMC4183594 DOI: 10.1371/journal.pone.0109478] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/31/2014] [Indexed: 01/07/2023] Open
Abstract
Objective A systematic review and a meta-analysis were carried out in order to summarize the current published studies and to evaluate LINE-1 hypomethylation in blood and other tissues as an epigenetic marker for cancer risk. Methods A systematic literature search in the Medline database, using PubMed, was conducted for epidemiological studies, published before March 2014. The random-effects model was used to estimate weighted mean differences (MDs) with 95% Confidence Intervals (CIs). Furthermore, subgroup analyses were conducted by sample type (tissue or blood samples), cancer types, and by assays used to measure global DNA methylation levels. The Cochrane software package Review Manager 5.2 was used. Results A total of 19 unique articles on 6107 samples (2554 from cancer patients and 3553 control samples) were included in the meta-analysis. LINE-1 methylation levels were significantly lower in cancer patients than in controls (MD: −6.40, 95% CI: −7.71, −5.09; p<0.001). The significant difference in methylation levels was confirmed in tissue samples (MD −7.55; 95% CI: −9.14, −65.95; p<0.001), but not in blood samples (MD: −0.26, 95% CI: −0.69, 0.17; p = 0.23). LINE-1 methylation levels were significantly lower in colorectal and gastric cancer patients than in controls (MD: −8.33; 95% CI: −10.56, −6.10; p<0.001 and MD: −5.75; 95% CI: −7.75, −3.74; p<0.001) whereas, no significant difference was observed for hepatocellular cancer. Conclusions The present meta-analysis adds new evidence to the growing literature on the role of LINE-1 hypomethylation in human cancer and demonstrates that LINE-1 methylation levels were significantly lower in cancer patients than in control samples, especially in certain cancer types. This result was confirmed in tissue samples, both fresh/frozen or FFPE specimens, but not in blood. Further studies are needed to better clarify the role of LINE-1 methylation in specific subgroups, considering both cancer and sample type, and the methods of measurement.
Collapse
Affiliation(s)
| | | | - Andrea Maugeri
- Department GF Ingrassia, University of Catania, Catania, Italy
| | - Manlio Vinciguerra
- University College London, Institute for Liver and Digestive Health, Royal Free Campus, London, United Kingdom
- Gastroenterology Unit, Department of Medical Sciences, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- * E-mail: (AA); (MV)
| | - Antonella Agodi
- Department GF Ingrassia, University of Catania, Catania, Italy
- * E-mail: (AA); (MV)
| |
Collapse
|
49
|
Puttipanyalears C, Subbalekha K, Mutirangura A, Kitkumthorn N. Alu hypomethylation in smoke-exposed epithelia and oral squamous carcinoma. Asian Pac J Cancer Prev 2014; 14:5495-501. [PMID: 24175848 DOI: 10.7314/apjcp.2013.14.9.5495] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alu elements are one of the most common repetitive sequences that now constitute more than 10% of the human genome and potential targets for epigenetic alterations. Correspondingly, methylation of these elements can result in a genome-wide event that may have an impact in cancer. However, studies investigating the genome-wide status of Alu methylation in cancer remain limited. OBJECTIVES Oral squamous cell carcinoma (OSCC) presents with high incidence in South-East Asia and thus the aim of this study was to evaluate the Alu methylation status in OSCCs and explore with the possibility of using this information for diagnostic screening. We evaluated Alu methylation status in a) normal oral mucosa compared to OSCC; b) peripheral blood mononuclear cells (PBMCs) of normal controls comparing to oral cancer patients; c) among oral epithelium of normal controls, smokers and oral cancer patients. MATERIALS AND METHODS Alu methylation was detected by combined bisulfite restriction analysis (COBRA) at 2 CpG sites. The amplified products were classified into three patterns; hypermethylation ((m)C(m)C), partial methylation (uC(m)C+(m)C(u)C), and hypomethylation ((u)C(u)C). RESULTS The results demonstrate that the %(m)C(m)C value is suitable for differentiating normal and cancer in oral tissues (p=0.0002), but is not significantly observe in PBMCs. In addition, a stepwise decrease in this value was observed in the oral epithelium from normal, light smoker, heavy smoker, low stage and high stage OSCC (p=0.0003). Furthermore, receiver operating characteristic (ROC) curve analyses demonstrated the potential of combined %mC or %(m)C(m)C values as markers for oral cancer detection with sensitivity and specificity of 86.7% and 56.7%, respectively. CONCLUSIONS Alu hypomethylation is likely to be associated with multistep oral carcinogenesis, and might be developed as a screening tool for oral cancer detection.
Collapse
|
50
|
Bujko M, Musialik E, Olbromski R, Przestrzelska M, Libura M, Pastwińska A, Juszczyński P, Zwierzchowski L, Baranowski P, Siedlecki JA. Repetitive genomic elements and overall DNA methylation changes in acute myeloid and childhood B-cell lymphoblastic leukemia patients. Int J Hematol 2014; 100:79-87. [PMID: 24841671 DOI: 10.1007/s12185-014-1592-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 12/30/2022]
Abstract
Aberrant epigenetic regulation is a hallmark of neoplastic cells. Increased DNA methylation of individual genes' promoter regions and decreases in overall DNA methylation level are both generally observed in cancer. In solid tumors, this global DNA hypomethylation is related to reduced methylation of repeated DNA elements (REs) and contributes to genome instability. The aim of the present study was to assess methylation level of LINE-1 and ALU REs and total 5-methylcytosine (5metC) content in adult acute myeloid leukemia (AML) (n = 58), childhood B-cell acute lymphoblastic leukemia (ALL) (n = 32), as the most frequent acute leukemias in two age categories and in normal adult bone marrow and children's blood samples. DNA pyrosequencing and ELISA assays were used, respectively. Global DNA hypomethylation was not observed in leukemia patients. Results revealed higher DNA methylation of LINE-1 in AML and ALL samples compared to corresponding normal controls. Elevated methylation of ALU and overall 5metC level were also observed in B-cell ALL patients. Differences of REs and global DNA methylation between AML cytogenetic-risk groups were observed, with the lowest methylation levels in intermediate-risk/cytogenetically normal patients. B-cell ALL is characterized by the highest DNA methylation level compared to AML and controls and overall DNA methylation is correlated with leukocyte count.
Collapse
Affiliation(s)
- Mateusz Bujko
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, W.K. Roentgena 5, 02-781, Warsaw, Poland,
| | | | | | | | | | | | | | | | | | | |
Collapse
|