1
|
Zimmerman AJ, Serrano-Rodriguez A, Sun M, Wilson SJ, Linsenbardt DN, Brigman JL, Weick JP. Knockout of AMPA receptor binding protein Neuron-specific gene 2 (NSG2) enhances associative learning and cognitive flexibility. Mol Brain 2024; 17:95. [PMID: 39695712 DOI: 10.1186/s13041-024-01158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024] Open
Abstract
The vast majority of gene mutations and/or gene knockouts result in either no observable changes, or significant deficits in molecular, cellular, or organismal function. However, in a small number of cases, mutant animal models display enhancements in specific behaviors such as learning and memory. To date, most gene deletions shown to enhance cognitive ability generally affect a limited number of pathways such as NMDA receptor- and translation-dependent plasticity, or GABA receptor- and potassium channel-mediated inhibition. While endolysosomal trafficking of AMPA receptors is a critical mediator of synaptic plasticity, mutations in genes that affect AMPAR trafficking either have no effect or are deleterious for synaptic plasticity, learning and memory. NSG2 is one of the three-member family of Neuron-specific genes (NSG1-3), which have been shown to regulate endolysosomal trafficking of a number of proteins critical for neuronal function, including AMPAR subunits (GluA1-2). Based on these findings and the largely universal expression throughout mammalian brain, we predicted that genetic knockout of NSG2 would result in significant impairments across multiple behavioral modalities including motor, affective, and learning/memory paradigms. However, in the current study we show that loss of NSG2 had highly selective effects on associative learning and memory, leaving motor and affective behaviors intact. For instance, NSG2 KO animals performed equivalent to wild-type C57Bl/6n mice on rotarod and Catwalk motor tasks, and did not display alterations in anxiety-like behavior on open field and elevated zero maze tasks. However, NSG2 KO animals demonstrated enhanced recall in the Morris water maze, accelerated reversal learning in a touch-screen task, and accelerated acquisition and enhanced recall on a Trace Fear Conditioning task. Together, these data point to a specific involvement of NSG2 on multiple types of associative learning, and expand the repertoire of pathways that can be targeted for cognitive enhancement.
Collapse
Affiliation(s)
- Amber J Zimmerman
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Fitz Hall 145, Albuquerque, NM, 87131, USA
- Present Address: Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, 19104, USA
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Antonio Serrano-Rodriguez
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Fitz Hall 145, Albuquerque, NM, 87131, USA
| | - Melody Sun
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Fitz Hall 145, Albuquerque, NM, 87131, USA
| | - Sandy J Wilson
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Fitz Hall 145, Albuquerque, NM, 87131, USA
| | - David N Linsenbardt
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Fitz Hall 145, Albuquerque, NM, 87131, USA
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Fitz Hall 145, Albuquerque, NM, 87131, USA
| | - Jason P Weick
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Fitz Hall 145, Albuquerque, NM, 87131, USA.
| |
Collapse
|
2
|
Zimmerman AJ, Serrano-Rodriguez A, Wilson SJ, Linsenbardt DN, Brigman JL, Weick J. Knockout of AMPA receptor binding protein Neuron-Specific Gene 2 (NSG2) enhances associative learning and cognitive flexibility. RESEARCH SQUARE 2024:rs.3.rs-4790348. [PMID: 39257983 PMCID: PMC11384823 DOI: 10.21203/rs.3.rs-4790348/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The vast majority of gene mutations and/or gene knockouts result in either no observable changes, or significant deficits in molecular, cellular, or organismal function. However, in a small number of cases, mutant animal models display enhancements in specific behaviors such as learning and memory. To date, most gene deletions shown to enhance cognitive ability generally affect a limited number of pathways such as NMDA receptor- and translation-dependent plasticity, or GABA receptor- and potassium channel-mediated inhibition. While endolysosomal trafficking of AMPA receptors is a critical mediator of synaptic plasticity, mutations in genes that affect AMPAR trafficking either have no effect or are deleterious for synaptic plasticity, learning and memory. NSG2 is one of the three-member family of Neuron-specific genes (NSG1-3), which have been shown to regulate endolysosomal trafficking of a number of proteins critical for neuronal function, including AMPAR subunits (GluA1-2). Based on these findings and the largely universal expression throughout mammalian brain, we predicted that genetic knockout of NSG2 would result in significant impairments across multiple behavioral modalities including motor, affective, and learning/memory paradigms. However, in the current study we show that loss of NSG2 had highly selective effects on associative learning and memory, leaving motor and affective behaviors intact. For instance, NSG2 KO animals performed equivalent to wild-type C57Bl/6n mice on rotarod and Catwalk motor tasks, and did not display alterations in anxiety-like behavior on open field and elevated zero maze tasks. However, NSG2 KO animals demonstrated enhanced recall in the Morris water maze, accelerated reversal learning in a touch-screen task, and accelerated acquisition and enhanced recall on a Trace Fear Conditioning task. Together, these data point to a specific involvement of NSG2 on multiple types of associative learning, and expand the repertoire of pathways that can be targeted for cognitive enhancement.
Collapse
|
3
|
Predicting Key Genes and Therapeutic Molecular Modelling to Explain the Association between Porphyromonas gingivalis (P. gingivalis) and Alzheimer’s Disease (AD). Int J Mol Sci 2023; 24:ijms24065432. [PMID: 36982508 PMCID: PMC10049565 DOI: 10.3390/ijms24065432] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023] Open
Abstract
The association between Porphyromonas gingivalis (P. gingivalis) and Alzheimer’s disease (AD) remains unclear. The major aim of this study was to elucidate the role of genes and molecular targets in P. gingivalis-associated AD. Two Gene Expression Omnibus (GEO) datasets, GSE5281 for AD (n = 84 Alzheimer’s, n = 74 control) and GSE9723 (n = 4 P. gingivalis, n = 4 control), were downloaded from the GEO database. Differentially expressed genes (DEGs) were obtained, and genes common to both diseases were drawn. Additionally, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis was performed from the top 100 genes (50 upregulated and 50 downregulated genes). We then proceeded with CMap analysis to screen for possible small drug molecules targeting these genes. Subsequently, we performed molecular dynamics simulations. A total of 10 common genes (CALD1, HES1, ID3, PLK2, PPP2R2D, RASGRF1, SUN1, VPS33B, WTH3DI/RAB6A, and ZFP36L1) were identified with a p-value < 0.05. The PPI network of the top 100 genes showed UCHL1, SST, CHGB, CALY, and INA to be common in the MCC, DMNC, and MNC domains. Out of the 10 common genes identified, only 1 was mapped in CMap. We found three candidate small drug molecules to be a fit for PLK2, namely PubChem ID: 24971422, 11364421, and 49792852. We then performed molecular docking of PLK2 with PubChem ID: 24971422, 11364421, and 49792852. The best target, 11364421, was used to conduct the molecular dynamics simulations. The results of this study unravel novel genes to P. gingivalis-associated AD that warrant further validation.
Collapse
|
4
|
Hampel H, Caruso G, Nisticò R, Piccioni G, Mercuri NB, Giorgi FS, Ferrarelli F, Lemercier P, Caraci F, Lista S, Vergallo A. Biological Mechanism-based Neurology and Psychiatry: A BACE1/2 and Downstream Pathway Model. Curr Neuropharmacol 2023; 21:31-53. [PMID: 34852743 PMCID: PMC10193755 DOI: 10.2174/1570159x19666211201095701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 02/04/2023] Open
Abstract
In oncology, comprehensive omics and functional enrichment studies have led to an extensive profiling of (epi)genetic and neurobiological alterations that can be mapped onto a single tumor's clinical phenotype and divergent clinical phenotypes expressing common pathophysiological pathways. Consequently, molecular pathway-based therapeutic interventions for different cancer typologies, namely tumor type- and site-agnostic treatments, have been developed, encouraging the real-world implementation of a paradigm shift in medicine. Given the breakthrough nature of the new-generation translational research and drug development in oncology, there is an increasing rationale to transfertilize this blueprint to other medical fields, including psychiatry and neurology. In order to illustrate the emerging paradigm shift in neuroscience, we provide a state-of-the-art review of translational studies on the β-site amyloid precursor protein cleaving enzyme (BACE) and its most studied downstream effector, neuregulin, which are molecular orchestrators of distinct biological pathways involved in several neurological and psychiatric diseases. This body of data aligns with the evidence of a shared genetic/biological architecture among Alzheimer's disease, schizoaffective disorder, and autism spectrum disorders. To facilitate a forward-looking discussion about a potential first step towards the adoption of biological pathway-based, clinical symptom-agnostic, categorization models in clinical neurology and psychiatry for precision medicine solutions, we engage in a speculative intellectual exercise gravitating around BACE-related science, which is used as a paradigmatic case here. We draw a perspective whereby pathway-based therapeutic strategies could be catalyzed by highthroughput techniques embedded in systems-scaled biology, neuroscience, and pharmacology approaches that will help overcome the constraints of traditional descriptive clinical symptom and syndrome-focused constructs in neurology and psychiatry.
Collapse
Affiliation(s)
- Harald Hampel
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| | | | - Robert Nisticò
- Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, Rome, Italy
- School of Pharmacy, University of Rome “Tor Vergata”, Rome, Italy
| | - Gaia Piccioni
- Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, Rome, Italy
- Department of Physiology and Pharmacology “V.Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Nicola B. Mercuri
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
- IRCCS Santa Lucia Foundation, Rome, Italy
| | - Filippo Sean Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Pablo Lemercier
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| | - Filippo Caraci
- Oasi Research Institute-IRCCS, Troina, Italy
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Simone Lista
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
- Memory Resources and Research Center (CMRR), Neurology Department, Gui de Chauliac University Hospital, Montpellier, France
| | - Andrea Vergallo
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| |
Collapse
|
5
|
Austin R, Chander P, Zimmerman AJ, Overby M, Digilio L, Yap CC, Linsenbardt DN, Müller HK, Weick JP. Global loss of Neuron-specific gene 1 causes alterations in motor coordination, increased anxiety, and diurnal hyperactivity in male mice. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12816. [PMID: 35577358 PMCID: PMC9262855 DOI: 10.1111/gbb.12816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 11/26/2022]
Abstract
The Neuron-specific gene family (NSG1-3) consists of small endolysosomal proteins that are critical for trafficking multiple receptors and signaling molecules in neurons. NSG1 has been shown to play a critical role in AMPAR recycling from endosomes to plasma membrane during synaptic plasticity. However, to date nothing is known about whether NSG1 is required for normal behavior at an organismal level. Here we performed a battery of behavioral tests to determine whether loss of NSG1 would affect motor, cognitive, and/or affective behaviors, as well as circadian-related activity. Consistent with unique cerebellar expression of NSG1 among family members, we found that NSG1 was obligatory for motor coordination but not for gross motor function or learning. NSG1 knockout (KO) also altered performance across other behavioral modalities including anxiety-related and diurnal activity paradigms. Surprisingly, NSG1 KO did not cause significant impairments across all tasks within a given modality, but had specific effects within each modality. For instance, we found increases in anxiety-related behaviors in tasks with multiple stressors (e.g., elevation and exposure), but not those with a single main stressor (e.g., exposure). Interestingly, NSG1 KO animals displayed a significant increase in locomotor activity during subjective daytime, suggesting a possible impact on diurnal activity rhythms or vigilance. Surprisingly, loss of NSG1 had no effect on hippocampal-dependent learning despite previous studies showing deficits in CA1 long-term potentiation. Together, these findings do not support a role of NSG1 in hippocampal-dependent learning, but support a role in mediating proper neuronal function across amygdalar and cerebellar circuits.
Collapse
Affiliation(s)
- Roman Austin
- Department of NeurosciencesUniversity of New Mexico School of MedicineAlbuquerqueNew MexicoUSA
| | - Praveen Chander
- Department of NeurosciencesUniversity of New Mexico School of MedicineAlbuquerqueNew MexicoUSA
| | - Amber J. Zimmerman
- Department of NeurosciencesUniversity of New Mexico School of MedicineAlbuquerqueNew MexicoUSA
| | - Malene Overby
- Department of Clinical Medicine, Translational Neuropsychiatry UnitAarhus UniversityAarhus CDenmark
| | - Laura Digilio
- Department of Cell BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Chan Choo Yap
- Department of Cell BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - David N. Linsenbardt
- Department of NeurosciencesUniversity of New Mexico School of MedicineAlbuquerqueNew MexicoUSA
| | - Heidi Kaastrup Müller
- Department of Clinical Medicine, Translational Neuropsychiatry UnitAarhus UniversityAarhus CDenmark
| | - Jason P. Weick
- Department of NeurosciencesUniversity of New Mexico School of MedicineAlbuquerqueNew MexicoUSA
| |
Collapse
|
6
|
Elmarakby A, Faulkner J, Pati P, Rudic RD, Bergson C. Increased arterial pressure in mice with overexpression of the ADHD candidate gene calcyon in forebrain. PLoS One 2019; 14:e0211903. [PMID: 30753204 PMCID: PMC6372185 DOI: 10.1371/journal.pone.0211903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/22/2019] [Indexed: 11/19/2022] Open
Abstract
The link between blood pressure (BP) and cerebral function is well established. However, it is not clear whether a common mechanism could underlie the relationship between elevated BP and cognitive deficits. The expression of calcyon, a gene abundant in catecholaminergic and hypothalamic nuclei along with other forebrain regions, is increased in the brain of the spontaneously hypertensive rat (SHR) which is a widely accepted animal model of essential hypertension and attention deficit hyperactivity disorder (ADHD). Previous studies demonstrated that mice with up-regulation of calcyon in forebrain (CalOE) exhibit deficits in working memory. To date, there is no evidence directly connecting calcyon to BP regulation. Here, we investigated whether forebrain up-regulation of calcyon alters BP using radiotelemetry. We found that CalOE mice exhibited higher mean arterial pressure (MAP) compared to tTA controls. Plasma norepinephrine levels were significantly higher in CalOE mice compared to tTA controls. Silencing the transgene with doxycycline normalized BP in CalOE mice, whereas challenging the mice with 4% high salt diet for 12 days exacerbated the MAP differences between CalOE and tTA mice. High salt diet challenge also increased proteinuria and urinary thiobarbituric acid reactive substances (TBARs) in tTA and CalOE; and the increases were more prominent in CalOE mice. Taken together, our data suggest that upregulation of calcyon in forebrain could increase BP via alterations in noradrenergic transmission and increased oxidative stress during high salt challenge. Overall, this study reveals that calcyon could be a novel neural regulator of BP raising the possibility that it could play a role in the development of vascular abnormalities.
Collapse
Affiliation(s)
- Ahmed Elmarakby
- Department of Oral Biology & Diagnostic Sciences, Augusta University, Augusta, GA, United States of America
- Department of Pharmacology & Toxicology, Augusta University, Augusta, GA, United States of America
- * E-mail:
| | - Jessica Faulkner
- Department of Oral Biology & Diagnostic Sciences, Augusta University, Augusta, GA, United States of America
| | - Paramita Pati
- Department of Pharmacology & Toxicology, Augusta University, Augusta, GA, United States of America
| | - R. Dan Rudic
- Department of Pharmacology & Toxicology, Augusta University, Augusta, GA, United States of America
| | - Clare Bergson
- Department of Pharmacology & Toxicology, Augusta University, Augusta, GA, United States of America
| |
Collapse
|
7
|
Neuron-Specific Gene 2 (NSG2) Encodes an AMPA Receptor Interacting Protein That Modulates Excitatory Neurotransmission. eNeuro 2019; 6:eN-NWR-0292-18. [PMID: 30680309 PMCID: PMC6345199 DOI: 10.1523/eneuro.0292-18.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 01/10/2023] Open
Abstract
Neurons have evolved a number of unique protein-coding genes that regulate trafficking of protein complexes within small organelles throughout dendrites and axons. Neuron-specific gene 2 (NSG2) encodes for one of the most abundant proteins in the nervous system during perinatal development. NSG2 belongs to a family of small neuronal endosomal proteins but its function has remained uncharacterized to date. Here, we show that NSG2 is found in discrete punctae restricted to the somatodendritic arbors of developing mouse and human neurons, and a significant proportion of NSG2 punctae colocalize with postsynaptic HOMER1 and surface-expressed AMPA-type glutamate receptors (AMPARs) at excitatory synapses. Immunoprecipitation revealed that NSG2 physically interacts with both the GluA1 and GluA2 AMPAR subunits in mouse brain. Knock-out of NSG2 in mouse hippocampal neurons selectively impaired the frequency of miniature EPSCs (mEPSCs) and caused alterations in PSD95 expression at postsynaptic densities (PSDs). In contrast, NSG2 overexpression caused a significant increase in the amplitude of mEPSCs as well as GluA2 surface expression. Thus, NSG2 functions as an AMPAR-binding protein that is required for normal synapse formation and/or maintenance, and has unique functions compared with other NSG family members.
Collapse
|
8
|
Angiotensin receptor (AT2R) agonist C21 prevents cognitive decline after permanent stroke in aged animals-A randomized double- blind pre-clinical study. Behav Brain Res 2018; 359:560-569. [PMID: 30296528 DOI: 10.1016/j.bbr.2018.10.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/10/2018] [Accepted: 10/04/2018] [Indexed: 12/20/2022]
Abstract
Post stroke cognitive impairment (PSCI) is an understudied, long-term complication of stroke, impacting nearly 30-40% of all stroke survivors. No cure is available once the cognitive deterioration manifests. To our knowledge, this is the first study to investigate the long-term effects of C21 treatment on the development of PSCI in aged animals. Treatments with C21 or vehicle were administered orally, 24 h post-stroke, and continued for 30 days. Outcome measures for sensorimotor and cognitive function were performed using a sequence of tests, all blindly conducted and assessed at baseline as well as at different time points post-stroke. Our findings demonstrate that the angiotensin receptor (AT2R) agonist C21 effectively prevents the development of PSCI in aged animals.
Collapse
|
9
|
Role of angiotensin system modulation on progression of cognitive impairment and brain MRI changes in aged hypertensive animals - A randomized double- blind pre-clinical study. Behav Brain Res 2017; 346:29-40. [PMID: 29229547 DOI: 10.1016/j.bbr.2017.12.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/05/2017] [Accepted: 12/07/2017] [Indexed: 01/10/2023]
Abstract
Growing evidence suggests that renin angiotensin system (RAS) modulators support cognitive function in various animal models. However, little is known about their long-term effects on the brain structure in aged hypertensive animals with chronic cerebral hypoperfusion as well as which specific domains of cognition are most affected. Therefore, in the current study we examined the effects of Candesartan and Compound 21 (C21) (RAS modulators) on aspects of cognition known to diminish with advanced age and accelerate with hypertension and vascular disease. Outcome measures for sensorimotor and cognitive function were performed using a sequence of tests, all blindly conducted and assessed at baseline and after 4 and 8 weeks of chronic hypoxic hypoperfusion and treatment. Magnetic resonance imaging (MRI) was performed at the end of the 8 week study period followed by animal sacrifice and tissue collection. Both Candesartan and C21 effectively preserved cognitive function and prevented progression of vascular cognitive impairment (VCI) but only candesartan prevented loss of brain volume in aged hypertensive animals. Collectively, our findings demonstrate that delayed administration of RAS modulators effectively preserve cognitive function and prevent the development / progression of VCI in aged hypertensive animals with chronic cerebral hypoperfusion.
Collapse
|
10
|
Shi L, Muthusamy N, Smith D, Bergson C. Dynein binds and stimulates axonal motility of the endosome adaptor and NEEP21 family member, calcyon. Int J Biochem Cell Biol 2017; 90:93-102. [PMID: 28734834 DOI: 10.1016/j.biocel.2017.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 01/31/2023]
Abstract
The neuron-enriched, endosomal protein Calcyon (Caly) regulates endocytosis and vesicle sorting, and is important for synaptic plasticity and brain development. In the current investigation of Caly interacting proteins in brain, the microtubule retrograde motor subunit, cytoplasmic dynein 1 heavy chain (DYNC1H), and microtubule structural proteins, α and β tubulin, were identified as Caly associated proteins by MALDI-ToF/ToF. Direct interaction of the Caly-C terminus with dynein and tubulin was further confirmed in in vitro studies. In Cos-7 cells, mCherry-Caly moved along the microtubule network in organelles largely labeled by the late endosome marker Rab7. Expression of the dynein inhibitor CC1, produced striking alterations in Caly distribution, consistent with retrograde motors playing a prominent role in Caly localization and movement. In axons of cultured adult rat sensory neurons, Caly-positive organelles co-localized with dynein intermediate chain (DYNC1I1-isoform IC-1B) and the dynein regulator, lissencephaly 1 (LIS1), both of which co-precipitated from brain with the Caly C-terminus. Manipulation of dynein function in axons altered the motile properties of Caly indicating that Caly vesicles utilize the retrograde motor. Altogether, the current evidence for association with dynein motors raises the possibility that the endocytic and cargo sorting functions of Caly in neurons could be regulated by interaction with the microtubule transport system.
Collapse
Affiliation(s)
- Liang Shi
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Nagendran Muthusamy
- Department of Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Deanna Smith
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Clare Bergson
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
11
|
Hypervulnerability of the adolescent prefrontal cortex to nutritional stress via reelin deficiency. Mol Psychiatry 2017; 22:961-971. [PMID: 27843148 DOI: 10.1038/mp.2016.193] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/06/2016] [Accepted: 09/22/2016] [Indexed: 12/14/2022]
Abstract
Overconsumption of high-fat diets (HFDs) can critically affect synaptic and cognitive functions within telencephalic structures such as the medial prefrontal cortex (mPFC). The underlying mechanisms, however, remain largely unknown. Here we show that adolescence is a sensitive period for the emergence of prefrontal cognitive deficits in response to HFD. We establish that the synaptic modulator reelin (RELN) is a critical mediator of this vulnerability because (1) periadolescent HFD (pHFD) selectively downregulates prefrontal RELN+ cells and (2) augmenting mPFC RELN levels using transgenesis or prefrontal pharmacology prevents the pHFD-induced prefrontal cognitive deficits. We further identify N-methyl-d-aspartate-dependent long-term depression (NMDA-LTD) at prefrontal excitatory synapses as a synaptic signature of this association because pHFD abolishes NMDA-LTD, a function that is restored by RELN overexpression. We believe this study provides the first mechanistic insight into the vulnerability of the adolescent mPFC towards nutritional stress, such as HFDs. Our findings have primary relevance to obese individuals who are at an increased risk of developing neurological cognitive comorbidities, and may extend to multiple neuropsychiatric and neurological disorders in which RELN deficiency is a common feature.
Collapse
|
12
|
Calcyon stimulates neuregulin 1 maturation and signaling. Mol Psychiatry 2015; 20:1251-60. [PMID: 25349163 DOI: 10.1038/mp.2014.131] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/27/2014] [Accepted: 08/21/2014] [Indexed: 01/02/2023]
Abstract
Neuregulin1 (NRG1) is a single transmembrane protein that plays a critical role in neural development and synaptic plasticity. Both NRG1 and its receptor, ErbB4, are well-established risk genes of schizophrenia. The NRG1 ecto-domain (ED) binds and activates ErbB4 following proteolytic cleavage of pro-NRG1 precursor protein. Although several studies have addressed the function of NRG1 in brain, very little is known about the cleavage and shedding mechanism. Here we show that the neuronal vesicular protein calcyon is a potent activator and key determinant of NRG1 ED cleavage and shedding. Calcyon stimulates clathrin-mediated endocytosis and endosomal targeting; and its levels are elevated in postmortem brains of schizophrenics. Overexpression of calcyon stimulates NRG1 cleavage and signaling in vivo, and as a result, GABA transmission is enhanced in calcyon overexpressing mice. Conversely, NRG1 cleavage, ErbB4 activity and GABA transmission are decreased in calcyon null mice. Moreover, stimulation of NRG1 cleavage by calcyon was recapitulated in HEK 293 cells suggesting the mechanism involved is cell-autonomous. Finally, studies with site-specific mutants in calcyon and inhibitors for the major sheddases indicate that the stimulatory effects of calcyon on NRG1 cleavage and shedding depend on clathrin-mediated endocytosis, β-secretase 1, and interaction with clathrin adaptor proteins. Together these results identify a novel mechanism for NRG1 cleavage and shedding.
Collapse
|
13
|
Muthusamy N, Chen YJ, Yin DM, Mei L, Bergson C. Complementary roles of the neuron-enriched endosomal proteins NEEP21 and calcyon in neuronal vesicle trafficking. J Neurochem 2015; 132:20-31. [PMID: 25376768 DOI: 10.1111/jnc.12989] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/17/2014] [Accepted: 10/23/2014] [Indexed: 01/18/2023]
Abstract
Understanding mechanisms governing the trafficking of transmembrane (TM) cargoes to synapses and other specialized membranes in neurons represents a long-standing challenge in cell biology. Investigation of the neuron-enriched endosomal protein of 21 kDa (NEEP21, or NSG1or P21) and Calcyon (Caly, or NSG3) indicates that the emergence of the NEEP21/Caly/P19 gene family could play a vital role in the success of these mechanisms in vertebrates. The upshot of a sizeable body of work is that the NEEP21 and Caly perform distinct endocytic and recycling functions, which impact (i) α amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor trafficking at excitatory synapses; (ii) transport to/in neuronal axons; as well as (iii) proteolytic processing of amyloid precursor protein and neuregulin 1, suggesting roles in neuron development, synaptic function, and neurodegeneration. We argue that their distinct effects on cargo endocytosis and recycling depend on interactions with vesicle trafficking and synaptic scaffolding proteins. As they play complementary, but opposing roles in cargo endocytosis, recycling, and degradation, balancing NEEP21 and Caly expression levels or activity could be important for homeostasis in a variety of signaling pathways, and also lead to a novel therapeutic strategy for disorders like Alzheimer's disease and schizophrenia. This review focuses on two closely related, neuron-enriched endosomal proteins: NEEP21 and Calcyon which perform distinct roles in regulating receptor endocytosis, recycling, and degradation. Based on an in-depth examination of the literature, we argue that these two proteins carry out complementary yet sometimes opposing vesicle trafficking functions that impact excitatory transmission, transcytosis, axonal transport, and also proteolytic processing by beta-secretase I (BACE1). Finally, we propose that balancing NEEP21 and Calcyon expression and/or activity could be important for homeostasis in a variety of signaling pathways, and also lead to a novel therapeutic strategy for disorders like Alzheimer's disease and schizophrenia. AMPA = α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; NMDA = N-Methyl-D-aspartate.
Collapse
Affiliation(s)
- Nagendran Muthusamy
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | | | | | | | | |
Collapse
|
14
|
Frégeau MO, Carrier M, Guillemette G. Mechanism of dopamine D2 receptor-induced Ca(2+) release in PC-12 cells. Cell Signal 2013; 25:2871-7. [PMID: 24055909 DOI: 10.1016/j.cellsig.2013.08.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 08/23/2013] [Indexed: 01/06/2023]
Abstract
Intracellular Ca(2+) levels are tightly regulated in the neuronal system. The loss of Ca(2+) homeostasis is associated with many neurological diseases and neuropsychiatric disorders such as Parkinson's, Alzheimer's, and schizophrenia. We investigated the mechanisms involved in intracellular Ca(2+) signaling in PC-12 cells. The stimulation of NGF-differentiated PC-12 cells with 3μM ATP caused an early Ca(2+) release followed by a delayed Ca(2+) release. The delayed Ca(2+) release was dependent on prior ATP priming and on dopamine secretion by PC-12 cells. Delayed Ca(2+) release was abolished in the presence of spiperone, suggesting that it is due to the activation of D2 dopamine receptors (D2R) by dopamine secreted by PC-12 cells. This was shown to be independent of PKA activation but dependent on PLC activity. An endocytosis step was required for inducing the delayed Ca(2+) release. Given the importance of calcyon in clathrin-mediated endocytosis, we verified the role of this protein in the delayed Ca(2+) release phenomenon. siRNA targeting of calcyon blocked the delayed Ca(2+) release, decreased ATP-evoked IP3R-mediated Ca(2+) release, and impaired subsequent Ca(2+) oscillations. Our results suggested that calcyon is involved in an unknown mechanism that causes a delayed IP3R-mediated Ca(2+) release in PC-12 cells. In schizophrenia, Ca(2+) dysregulation may depend on the upregulation of calcyon, which maintains elevated Ca(2+) levels as well as dopamine signaling.
Collapse
Affiliation(s)
- Marc-Olivier Frégeau
- Faculty of Medicine and Health sciences, Department of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4 Canada
| | | | | |
Collapse
|
15
|
Abstract
Adolescent brain maturation is characterized by the emergence of executive function mediated by the prefrontal cortex, e.g., goal planning, inhibition of impulsive behavior and set shifting. Synaptic pruning of excitatory contacts is the signature morphologic event of late brain maturation during adolescence. Mounting evidence suggests that glutamate receptor-mediated synaptic plasticity, in particular long-term depression (LTD), is important for elimination of synaptic contacts in brain development. This review examines the possibility (1) that LTD mechanisms are enhanced in the prefrontal cortex during adolescence due to ongoing synaptic pruning in this late developing cortex and (2) that enhanced synaptic plasticity in the prefrontal cortex represents a key molecular substrate underlying the critical period for maturation of executive function. Molecular sites of interaction between environmental factors, such as alcohol and stress, and glutamate receptor mediated plasticity are considered. The accentuated negative impact of these factors during adolescence may be due in part to interference with LTD mechanisms that refine prefrontal cortical circuitry and when disrupted derail normal maturation of executive function. Diminished prefrontal cortical control over risk-taking behavior could further exacerbate negative outcomes associated with these behaviors, as for example addiction and depression. Greater insight into the neurobiology of the adolescent brain is needed to fully understand the molecular basis for heightened vulnerability during adolescence to the injurious effects of substance abuse and stress.
Collapse
Affiliation(s)
- L D Selemon
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06520-8001, USA.
| |
Collapse
|
16
|
Wilson CA, Vazdarjanova A, Terry AV. Exposure to variable prenatal stress in rats: effects on anxiety-related behaviors, innate and contextual fear, and fear extinction. Behav Brain Res 2012; 238:279-88. [PMID: 23072929 DOI: 10.1016/j.bbr.2012.10.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/07/2012] [Accepted: 10/08/2012] [Indexed: 12/21/2022]
Abstract
Rats repeatedly exposed to variable prenatal stress (PNS) exhibit behavioral features often observed in neuropsychiatric disorders including elevated sensitivity to stimulants and impairments of attention, inhibitory control and memory-related task performance. However, to date there have been relatively few studies designed to assess the effects of PNS on anxiety, stress and fear responses, or the function of the hypothalamic-pituitary-adrenal (HPA) axis (a system clearly linked to stress and fear-related responses as well as neuropsychiatric disorders). In the current study, rats exposed to variable PNS were evaluated for anxiety-related behaviors in open field, elevated plus maze, and light/dark preference tasks. Innate fear responses were assessed using a predatory odor task and learned fear and extinction were assessed with a contextual fear conditioning task. As an indicator of HPA axis function, serum corticosterone levels were determined by enzyme immunoassay at various time points. The results indicated that PNS resulted in several behavioral anomalies including decreased innate fear responses to predator odor, impaired fear extinction, increased locomotor activity and stereotypic-like behaviors. Baseline levels of corticosterone in PNS subjects were similar to non-stressed controls; however, when exposed to acute stress, they exhibited an increase in corticosterone that was greater in magnitude. PNS was not associated with increased anxiety-like behaviors or deficits in learning or retention during contextual fear conditioning. Collectivity, these data support the argument that variable PNS in rats is a valid model system for studying some behavioral components of neuropsychiatric disorders as well as the influence of stress hormones.
Collapse
Affiliation(s)
- Christina A Wilson
- Department of Pharmacology and Toxicology, Georgia Health Sciences University, Augusta, GA 30912, United States
| | | | | |
Collapse
|
17
|
Ha CM, Park D, Han JK, Jang JI, Park JY, Hwang EM, Seok H, Chang S. Calcyon forms a novel ternary complex with dopamine D1 receptor through PSD-95 protein and plays a role in dopamine receptor internalization. J Biol Chem 2012; 287:31813-22. [PMID: 22843680 DOI: 10.1074/jbc.m112.370601] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calcyon, once known for interacting directly with the dopamine D(1) receptor (D(1)DR), is implicated in various neuropsychiatric disorders including schizophrenia, bipolar disorder, and attention deficit hyperactivity disorder. Although its direct interaction with D(1)DR has been shown to be misinterpreted, it still plays important roles in D(1)DR signaling. Here, we found that calcyon interacts with the PSD-95 and subsequently forms a ternary complex with D(1)DR through PSD-95. Calcyon is phosphorylated on Ser-169 by the PKC activator phorbol 12-myristate 13-acetate or by the D(1)DR agonist SKF-81297, and its phosphorylation increases its association with PSD-95 and recruitment to the cell surface. Interestingly, the internalization of D(1)DR at the cell surface was enhanced by phorbol 12-myristate 13-acetate and SKF-81297 in the presence of calcyon, but not in the presence of its S169A phospho-deficient mutant, suggesting that the phosphorylation of calcyon and the internalization of the surface D(1)DR are tightly correlated. Our results suggest that calcyon regulates D(1)DR trafficking by forming a ternary complex with D(1)DR through PSD-95 and thus possibly linking glutamatergic and dopamine receptor signalings. This also raises the possibility that a novel ternary complex could represent a potential therapeutic target for the modulation of related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Chang Man Ha
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Chronic adolescent exposure to delta-9-tetrahydrocannabinol in COMT mutant mice: impact on indices of dopaminergic, endocannabinoid and GABAergic pathways. Neuropsychopharmacology 2012; 37:1773-83. [PMID: 22434221 PMCID: PMC3358747 DOI: 10.1038/npp.2012.24] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cannabis use confers a two-fold increase in risk for psychosis, with adolescent use conferring an even greater risk. A high-low activity polymorphism in catechol-O-methyltransferase (COMT), a gene encoding the COMT enzyme involved in dopamine clearance in the brain, may interact with adolescent cannabis exposure to increase risk for schizophrenia. The impact of such an interaction on central neurotransmitter pathways implicated in schizophrenia is unknown. Male mice with knockout of the COMT gene were treated chronically with delta-9-tetrahydrocannabinol (THC) during adolescence (postnatal day 32-52). We measured the size and density of GABAergic cells and the protein expression of cannabinoid receptor 1 (CB1R) in the prefrontal cortex (PFC) and hippocampus (HPC) in knockout mice relative to heterozygous mutants and wild-type controls. Size and density of dopaminergic neurons was also assessed in the ventral tegmental area (VTA) across the genotypes. COMT genotype × THC treatment interactions were observed for: (1) dopaminergic cell size in the VTA, (2) CB1R protein expression in the HPC, and (3) parvalbumin (PV) cell size in the PFC. No effects of adolescent THC treatment were observed for PV and dopaminergic cell density across the COMT genotypes. COMT genotype modulates the effects of chronic THC administration during adolescence on indices of neurotransmitter function in the brain. These findings illuminate how COMT deletion and adolescent cannabis use can interact to modulate the function of neurotransmitters systems implicated in schizophrenia.
Collapse
|
19
|
Sun J, Xu H, Zhao Z. Network-Assisted Investigation of Antipsychotic Drugs and Their Targets. Chem Biodivers 2012; 9:900-10. [DOI: 10.1002/cbdv.201100356] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|