1
|
Owen MJ, Bray NJ, Walters JTR, O'Donovan MC. Genomics of schizophrenia, bipolar disorder and major depressive disorder. Nat Rev Genet 2025:10.1038/s41576-025-00843-0. [PMID: 40355602 DOI: 10.1038/s41576-025-00843-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2025] [Indexed: 05/14/2025]
Abstract
Schizophrenia, bipolar disorder and major depressive disorder - which are the most common adult disorders requiring psychiatric care - contribute substantially to premature mortality and morbidity globally. Treatments for these disorders are suboptimal, there are no diagnostic pathologies or biomarkers and their pathophysiologies are poorly understood. Novel therapeutic and diagnostic approaches are thus badly needed. Given the high heritability of psychiatric disorders, psychiatry has potentially much to gain from the application of genomics to identify molecular risk mechanisms and to improve diagnosis. Recent large-scale, genome-wide association studies and sequencing studies, together with advances in functional genomics, have begun to illuminate the genetic architectures of schizophrenia, bipolar disorder and major depressive disorder and to identify potential biological mechanisms. Genomic findings also point to the aetiological relationships between different diagnoses and to the relationships between adult psychiatric disorders and childhood neurodevelopmental conditions.
Collapse
Affiliation(s)
- Michael J Owen
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK.
| | - Nicholas J Bray
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - James T R Walters
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Michael C O'Donovan
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
2
|
Reid MJ, Rogdaki M, Dutan L, Hanger B, Sabad K, Nagy R, Adhya D, Baron-Cohen S, McAlonan G, Price J, Vernon AC, Howes OD, Srivastava DP. Cell line specific alterations in genes associated with dopamine metabolism and signaling in midbrain dopaminergic neurons derived from 22q11.2 deletion carriers with elevated dopamine synthesis capacity. Schizophr Res 2024; 273:98-106. [PMID: 35701280 PMCID: PMC11586776 DOI: 10.1016/j.schres.2022.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 11/20/2022]
Abstract
Microdeletions at the 22q11.2 locus are associated with increased risk for schizophrenia. Recent work has demonstrated that antipsychotic naïve 22q11.2 carriers display elevated levels of dopamine synthesis capacity (DSC) as assessed by 18F-DOPA PET imaging. While this is consistent with a role for abnormal dopamine function in schizophrenia, it is unclear what molecular changes may be associated with this neuro-imaging endophenotype, and moreover, if these alterations occur independently of clinical presentation. We therefore conducted a pilot study in which we generated human induced pluripotent stem cells (hiPSCs) from two 22q11.2 deletion carriers with elevated DSC in vivo, but distinct clinical presentations. From these and neurotypical control lines we were able to robustly generate midbrain dopaminergic neurons (mDA-neurons). We then assessed whether genes associated with dopamine synthesis, metabolism or signaling show altered expression between genotypes and further between the 22q11.2 deletion lines. Our data showed alterations in expression of genes associated with dopamine metabolism and signaling that differed between the two 22q11.2 hiPSC lines with distinct clinical presentations. This reinforces the importance of considering clinical, genetic and molecular information, when possible, when choosing which donors to generate hiPSCs from, to carry out mechanistic studies.
Collapse
Affiliation(s)
- Matthew J Reid
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Maria Rogdaki
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK; Department of Child and Adolescent Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK; Department of Psychosis Studies, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Lucia Dutan
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Bjørn Hanger
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Kaarin Sabad
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Roland Nagy
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Dwaipayan Adhya
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Grainne McAlonan
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Jack Price
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Oliver D Howes
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK; Department of Psychosis Studies, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
| |
Collapse
|
3
|
O'Hora KP, Amir CM, Chiem E, Schleifer CH, Grigoryan V, Kushan-Wells L, Chiang JJ, Cole S, Irwin MR, Bearden CE. Differential inflammatory profiles in carriers of reciprocal 22q11.2 copy number variants. Psychoneuroendocrinology 2024; 169:107135. [PMID: 39116521 DOI: 10.1016/j.psyneuen.2024.107135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Genetic copy number variants (CNVs; i.e., a deletion or duplication) at the 22q11.2 locus confer increased risk of neuropsychiatric disorders and immune dysfunction. Inflammatory profiles of 22q11.2 CNV carriers can shed light on gene-immune relationships that may be related to neuropsychiatric symptoms. However, little is known about inflammation and its relationship to clinical phenotypes in 22q11.2 CNV carriers. Here, we investigate differences in peripheral inflammatory markers in 22q11.2 CNV carriers and explore their relationship with psychosis risk symptoms and sleep disturbance. METHODS Blood samples and clinical assessments were collected from 22q11.2 deletion (22qDel) carriers (n=45), 22q11.2 duplication (22qDup) carriers (n=29), and typically developing (TD) control participants (n=92). Blood plasma levels of pro-inflammatory cytokines, including interleukin-6 (IL-6), interleukin-8 (IL-8), tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ), and anti-inflammatory cytokine interleukin-10 (IL-10) were measured using a MesoScale Discovery multiplex immunoassay. Plasma levels of C-reactive protein (CRP) were measured using Enzyme-linked Immunosorbent Assay (ELISA). Linear mixed effects models controlling for age, sex, and body mass index were used to: a) examine group differences in inflammatory markers between 22qDel, 22qDup, and TD controls, b) test differences in inflammatory markers between 22qDel carriers with psychosis risk symptoms (22qDelPS+) and those without (22qDelPS-), and c) conduct an exploratory analysis testing the effect of sleep disturbance on inflammation in 22qDel and 22qDup carriers. A false discovery rate correction was used to correct for multiple comparisons. RESULTS 22qDup carriers exhibited significantly elevated levels of IL-8 relative to TD controls (q<0.001) and marginally elevated IL-8 levels relative to 22qDel carriers (q=0.08). There were no other significant differences in inflammatory markers between the three groups (q>0.13). 22qDelPS+ exhibited increased levels of IL-8 relative to both 22qDelPS- (q=0.02) and TD controls (p=0.002). There were no relationships between sleep and inflammatory markers that survived FDR correction (q>0.14). CONCLUSION Our results suggest that CNVs at the 22q11.2 locus may have differential effects on inflammatory processes related to IL-8, a key mediator of inflammation produced by macrophages and microglia. Further, these IL-8-mediated inflammatory processes may be related to psychosis risk symptoms in 22qDel carriers. Additional research is required to understand the mechanisms contributing to these differential levels of IL-8 between 22q11.2 CNV carriers and IL-8's association with psychosis risk.
Collapse
Affiliation(s)
- Kathleen P O'Hora
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA; Neuroscience Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Carolyn M Amir
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Emily Chiem
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA; Molecular, Cellular, and Integrative Physiology Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Charles H Schleifer
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA; Neuroscience Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Vardui Grigoryan
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Leila Kushan-Wells
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | | | - Steven Cole
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA; Norman Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Michael R Irwin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA; Norman Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA; Department of Psychology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Schleifer CH, O'Hora KP, Fung H, Xu J, Robinson TA, Wu AS, Kushan-Wells L, Lin A, Ching CRK, Bearden CE. Effects of gene dosage and development on subcortical nuclei volumes in individuals with 22q11.2 copy number variations. Neuropsychopharmacology 2024; 49:1024-1032. [PMID: 38431758 PMCID: PMC11039652 DOI: 10.1038/s41386-024-01832-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/16/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024]
Abstract
The 22q11.2 locus contains genes critical for brain development. Reciprocal Copy Number Variations (CNVs) at this locus impact risk for neurodevelopmental and psychiatric disorders. Both 22q11.2 deletions (22qDel) and duplications (22qDup) are associated with autism, but 22qDel uniquely elevates schizophrenia risk. Understanding brain phenotypes associated with these highly penetrant CNVs can provide insights into genetic pathways underlying neuropsychiatric disorders. Human neuroimaging and animal models indicate subcortical brain alterations in 22qDel, yet little is known about developmental differences across specific nuclei between reciprocal 22q11.2 CNV carriers and typically developing (TD) controls. We conducted a longitudinal MRI study in a total of 385 scans from 22qDel (n = 96, scans = 191, 53.1% female), 22qDup (n = 37, scans = 64, 45.9% female), and TD controls (n = 80, scans = 130, 51.2% female), across a wide age range (5.5-49.5 years). Volumes of the thalamus, hippocampus, amygdala, and anatomical subregions were estimated using FreeSurfer, and the linear effects of 22q11.2 gene dosage and non-linear effects of age were characterized with generalized additive mixed models (GAMMs). Positive gene dosage effects (volume increasing with copy number) were observed for total intracranial and whole hippocampus volumes, but not whole thalamus or amygdala volumes. Several amygdala subregions exhibited similar positive effects, with bi-directional effects found across thalamic nuclei. Distinct age-related trajectories were observed across the three groups. Notably, both 22qDel and 22qDup carriers exhibited flattened development of hippocampal CA2/3 subfields relative to TD controls. This study provides novel insights into the impact of 22q11.2 CNVs on subcortical brain structures and their developmental trajectories.
Collapse
Affiliation(s)
- Charles H Schleifer
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA.
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Kathleen P O'Hora
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Hoki Fung
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Jennifer Xu
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Taylor-Ann Robinson
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Angela S Wu
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Leila Kushan-Wells
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Amy Lin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA.
- Department of Psychology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
5
|
O’Hora KP, Kushan-Wells L, Schleifer CH, Cruz S, Hoftman GD, Jalbrzikowski M, Gur RE, Gur RC, Bearden CE. Distinct neurocognitive profiles and clinical phenotypes associated with copy number variation at the 22q11.2 locus. Autism Res 2023; 16:2247-2262. [PMID: 37997544 PMCID: PMC10872774 DOI: 10.1002/aur.3049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023]
Abstract
Rare genetic variants that confer large effects on neurodevelopment and behavioral phenotypes can reveal novel gene-brain-behavior relationships relevant to autism. Copy number variation at the 22q11.2 locus offer one compelling example, as both the 22q11.2 deletion (22qDel) and duplication (22qDup) confer increased likelihood of autism spectrum disorders (ASD) and cognitive deficits, but only 22qDel confers increased psychosis risk. Here, we used the Penn Computerized Neurocognitive Battery (Penn-CNB) to characterized neurocognitive profiles of 126 individuals: 55 22qDel carriers (MAge = 19.2 years, 49.1% male), 30 22qDup carriers (MAge = 17.3 years, 53.3% male), and 41 typically developing (TD) subjects (MAge = 17.3 years, 39.0% male). We performed linear mixed models to assess group differences in overall neurocognitive profiles, domain scores, and individual test scores. We found all three groups exhibited distinct overall neurocognitive profiles. 22qDel and 22qDup carriers showed significant accuracy deficits across all domains relative to controls (episodic memory, executive function, complex cognition, social cognition, and sensorimotor speed), with 22qDel carriers exhibiting more severe accuracy deficits, particularly in episodic memory. However, 22qDup carriers generally showed greater slowing than 22qDel carriers. Notably, slower social cognition speed was uniquely associated with increased global psychopathology and poorer psychosocial functioning in 22qDup. Compared to TD, 22q11.2 copy number variants (CNV) carriers failed to show age-associated improvements in multiple cognitive domains. Exploratory analyses revealed 22q11.2 CNV carriers with ASD exhibited differential neurocognitive profiles, based on 22q11.2 copy number. These results suggest that there are distinct neurocognitive profiles associated with either a loss or gain of genomic material at the 22q11.2 locus.
Collapse
Affiliation(s)
- Kathleen P. O’Hora
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Neuroscience Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Leila Kushan-Wells
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Charles H. Schleifer
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Neuroscience Interdepartmental Program, University of California, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Shayne Cruz
- College of Natural and Agricultural Science, University of California, Riverside, CA, USA
| | - Gil D. Hoftman
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Maria Jalbrzikowski
- Department of Psychiatry and Behavioral Sciences, Boston Children’s Hospital, Boston, MA, USA
| | - Raquel E. Gur
- Department of Psychiatry, University of Pennsylvania and the Penn-CHOP Lifespan and Brain Institute, Philadelphia, PA, USA
| | - Ruben C. Gur
- Department of Psychiatry, University of Pennsylvania and the Penn-CHOP Lifespan and Brain Institute, Philadelphia, PA, USA
| | - Carrie E. Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Department of Psychology, University of California, Los Angeles, CA, USA
| |
Collapse
|
6
|
Modasi J, Khachadourian V, O'Hora K, Kushan L, Slavich GM, Shields GS, Velthorst E, Bearden CE. Associations between acute and chronic lifetime stressors and psychosis-risk symptoms in individuals with 22q11.2 copy number variants. Psychol Med 2023; 53:7222-7231. [PMID: 37078394 PMCID: PMC10719673 DOI: 10.1017/s0033291723000740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND The 22q11.2 deletion (22q11Del) is among the strongest known genetic risk factors for psychosis. Stress, a known risk factor for psychosis in the general population, has seldom been studied in 22q11Del. We investigated how lifetime stressors related to symptomatic outcomes in patients with 22q11Del. We also explored this association in individuals with 22q11.2 duplications (22q11Dup), which may be potentially protective against psychosis. METHOD One hundred individuals (46 with 22q11Del, 30 with 22q11Dup, and 24 healthy controls; Mage = 17.30 years±10.15) were included. Logistic models were used to examine cross-sectional associations between lifetime acute and chronic stressors (severity and count) and the presence (score ⩾3) of positive, negative, and general symptoms, assessed via the Structured Interview for Psychosis-risk Syndromes (SIPS). RESULTS The 22q11Dup group reported the greatest number and severity of acute lifetime stressors, but did not differ from 22q11Del in chronic stressor count or severity. Lifetime chronic and acute stressors were uniquely associated with positive symptoms in 22q11Del (chronic count: odds ratio [OR] = 2.35, p = 0.02; chronic severity: OR = 1.88, p = 0.03; acute count: OR = 1.78, p = 0.03), but not with negative or general symptoms (ps > 0.05). CONCLUSION Findings suggest that stress may play a role in psychotic symptoms in 22q1Del, while the 22q11Dup CNV appears protective against psychotic symptoms despite higher rates of stressors. Interventions that mitigate effects of stressors in 22qDel may reduce the odds of psychosis in this group. Prospective longitudinal research is needed to replicate these findings.
Collapse
Affiliation(s)
- Jasmine Modasi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vahe Khachadourian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kathleen O'Hora
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
- Interdepartmental Program for Neuroscience, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Leila Kushan
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - George M. Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Grant S. Shields
- Department of Psychological Science, University of Arkansas, Fayetteville, AR, USA
| | - Eva Velthorst
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carrie E. Bearden
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Department of Psychology, University of California, Los Angeles, CA, USA
| |
Collapse
|
7
|
Schleifer CH, O’Hora KP, Fung H, Xu J, Robinson TA, Wu AS, Kushan-Wells L, Lin A, Ching CRK, Bearden CE. Effects of Gene Dosage and Development on Subcortical Nuclei Volumes in Individuals with 22q11.2 Copy Number Variations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.564553. [PMID: 37961662 PMCID: PMC10635019 DOI: 10.1101/2023.10.31.564553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The 22q11.2 locus contains genes critical for brain development. Reciprocal Copy Number Variations (CNVs) at this locus impact risk for neurodevelopmental and psychiatric disorders. Both 22q11.2 deletions (22qDel) and duplications (22qDup) are associated with autism, but 22qDel uniquely elevates schizophrenia risk. Understanding brain phenotypes associated with these highly penetrant CNVs can provide insights into genetic pathways underlying neuropsychiatric disorders. Human neuroimaging and animal models indicate subcortical brain alterations in 22qDel, yet little is known about developmental differences across specific nuclei between reciprocal 22q11.2 CNV carriers and typically developing (TD) controls. We conducted a longitudinal MRI study in 22qDel (n=96, 53.1% female), 22qDup (n=37, 45.9% female), and TD controls (n=80, 51.2% female), across a wide age range (5.5-49.5 years). Volumes of the thalamus, hippocampus, amygdala, and anatomical subregions were estimated using FreeSurfer, and the effect of 22q11.2 gene dosage was examined using linear mixed models. Age-related changes were characterized with general additive mixed models (GAMMs). Positive gene dosage effects (22qDel < TD < 22qDup) were observed for total intracranial and whole hippocampus volumes, but not whole thalamus or amygdala volumes. Several amygdala subregions exhibited similar positive effects, with bi-directional effects found across thalamic nuclei. Distinct age-related trajectories were observed across the three groups. Notably, both 22qDel and 22qDup carriers exhibited flattened development of hippocampal CA2/3 subfields relative to TD controls. This study provides novel insights into the impact of 22q11.2 CNVs on subcortical brain structures and their developmental trajectories.
Collapse
Affiliation(s)
- Charles H. Schleifer
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Kathleen P. O’Hora
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Hoki Fung
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Jennifer Xu
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Taylor-Ann Robinson
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Angela S. Wu
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Leila Kushan-Wells
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Amy Lin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Christopher R. K. Ching
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Carrie E. Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Department of Psychology, University of California, Los Angeles, CA, USA
| |
Collapse
|
8
|
Büki G, Hadzsiev K, Bene J. Copy Number Variations in Neuropsychiatric Disorders. Int J Mol Sci 2023; 24:13671. [PMID: 37761973 PMCID: PMC10530736 DOI: 10.3390/ijms241813671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Neuropsychiatric disorders are complex conditions that represent a significant global health burden with complex and multifactorial etiologies. Technological advances in recent years have improved our understanding of the genetic architecture of the major neuropsychiatric disorders and the genetic loci involved. Previous studies mainly investigated genome-wide significant SNPs to elucidate the cross-disorder and disorder-specific genetic basis of neuropsychiatric disorders. Although copy number variations represent a major source of genetic variations, they are known risk factors in developing a variety of human disorders, including certain neuropsychiatric diseases. In this review, we demonstrate the current understanding of CNVs contributing to liability for schizophrenia, bipolar disorder, and major depressive disorder.
Collapse
Affiliation(s)
| | | | - Judit Bene
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary; (G.B.); (K.H.)
| |
Collapse
|
9
|
Owen MJ, Legge SE, Rees E, Walters JTR, O'Donovan MC. Genomic findings in schizophrenia and their implications. Mol Psychiatry 2023; 28:3638-3647. [PMID: 37853064 PMCID: PMC10730422 DOI: 10.1038/s41380-023-02293-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/20/2023]
Abstract
There has been substantial progress in understanding the genetics of schizophrenia over the past 15 years. This has revealed a highly polygenic condition with the majority of the currently explained heritability coming from common alleles of small effect but with additional contributions from rare copy number and coding variants. Many specific genes and loci have been implicated that provide a firm basis upon which mechanistic research can proceed. These point to disturbances in neuronal, and particularly synaptic, functions that are not confined to a small number of brain regions and circuits. Genetic findings have also revealed the nature of schizophrenia's close relationship to other conditions, particularly bipolar disorder and childhood neurodevelopmental disorders, and provided an explanation for how common risk alleles persist in the population in the face of reduced fecundity. Current genomic approaches only potentially explain around 40% of heritability, but only a small proportion of this is attributable to robustly identified loci. The extreme polygenicity poses challenges for understanding biological mechanisms. The high degree of pleiotropy points to the need for more transdiagnostic research and the shortcomings of current diagnostic criteria as means of delineating biologically distinct strata. It also poses challenges for inferring causality in observational and experimental studies in both humans and model systems. Finally, the Eurocentric bias of genomic studies needs to be rectified to maximise benefits and ensure these are felt across diverse communities. Further advances are likely to come through the application of new and emerging technologies, such as whole-genome and long-read sequencing, to large and diverse samples. Substantive progress in biological understanding will require parallel advances in functional genomics and proteomics applied to the brain across developmental stages. For these efforts to succeed in identifying disease mechanisms and defining novel strata they will need to be combined with sufficiently granular phenotypic data.
Collapse
Affiliation(s)
- Michael J Owen
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK.
| | - Sophie E Legge
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Elliott Rees
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - James T R Walters
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Michael C O'Donovan
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
10
|
O’Hora KP, Kushan-Wells L, Hoftman GD, Jalbrzikowski M, Gur RC, Gur R, Bearden CE. Distinct Neurocognitive Profiles and Clinical Phenotypes Associated with Copy Number Variation at the 22q11.2 Locus. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.12.23289905. [PMID: 37292882 PMCID: PMC10246073 DOI: 10.1101/2023.05.12.23289905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rare genetic variants that confer large effects on neurodevelopment and behavioral phenotypes can reveal novel gene-brain-behavior relationships relevant to autism. Copy number variation at the 22q11.2 locus offer one compelling example, as both the 22q11.2 deletion (22qDel) and duplication (22qDup) confer increased likelihood of autism spectrum disorders (ASD) and cognitive deficits, but only 22qDel confers increased psychosis risk. Here, we used the Penn Computerized Neurocognitive Battery (Penn-CNB) to characterized neurocognitive profiles of 126 individuals: 55 22qDel carriers (MAge=19.2 years, 49.1% male), 30 22qDup carriers (MAge=17.3 years, 53.3 % male), and 41 typically developing (TD) subjects (MAge=17.3 years, 39.0 % male). We performed linear mixed models to assess group differences in overall neurocognitive profiles, domain scores, and individual test scores. We found all three groups exhibited distinct overall neurocognitive profiles. 22qDel and 22qDup carriers showed significant accuracy deficits across all domains relative to controls (Episodic Memory, Executive Function, Complex Cognition, Social Cognition, and Sensorimotor Speed), with 22qDel carriers exhibiting more severe accuracy deficits, particularly in Episodic Memory. However, 22qDup carriers generally showed greater slowing than 22qDel carriers. Notably, slower social cognition speed was uniquely associated with increased global psychopathology and poorer psychosocial functioning in 22qDup. Compared to TD, 22q11.2 CNV carriers failed to show age-associated improvements in multiple cognitive domains. Exploratory analyses revealed 22q11.2 CNV carriers with ASD exhibited differential neurocognitive profiles, based on 22q11.2 copy number. These results suggest that there are distinct neurocognitive profiles associated with either a loss or gain of genomic material at the 22q11.2 locus.
Collapse
Affiliation(s)
- Kathleen P. O’Hora
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Neuroscience Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Leila Kushan-Wells
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Gil D. Hoftman
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Maria Jalbrzikowski
- Department of Psychiatry and Behavioral Sciences, Boston Children’s Hospital, Boston, MA, USA
| | - Raquel C. Gur
- Department of Psychiatry, University of Pennsylvania and the Penn-CHOP Lifespan and Brain Institute, Philadelphia, PA, USA
| | - Ruben Gur
- Department of Psychiatry, University of Pennsylvania and the Penn-CHOP Lifespan and Brain Institute, Philadelphia, PA, USA
| | - Carrie E. Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Department of Psychology, University of California, Los Angeles, CA, USA
| |
Collapse
|
11
|
Rogdaki M, Devroye C, Ciampoli M, Veronese M, Ashok AH, McCutcheon RA, Jauhar S, Bonoldi I, Gudbrandsen M, Daly E, van Amelsvoort T, Van Den Bree M, Owen MJ, Turkheimer F, Papaleo F, Howes OD. Striatal dopaminergic alterations in individuals with copy number variants at the 22q11.2 genetic locus and their implications for psychosis risk: a [18F]-DOPA PET study. Mol Psychiatry 2023; 28:1995-2006. [PMID: 33981004 PMCID: PMC10575769 DOI: 10.1038/s41380-021-01108-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/10/2021] [Accepted: 04/08/2021] [Indexed: 12/31/2022]
Abstract
Dopaminergic dysregulation is one of the leading hypotheses for the pathoetiology underlying psychotic disorders such as schizophrenia. Molecular imaging studies have shown increased striatal dopamine synthesis capacity (DSC) in schizophrenia and people in the prodrome of psychosis. However, it is unclear if genetic risk for psychosis is associated with altered DSC. To investigate this, we recruited healthy controls and two antipsychotic naive groups of individuals with copy number variants, one with a genetic deletion at chromosome 22q11.2, and the other with a duplication at the same locus, who are at increased and decreased risk for psychosis, respectively. Fifty-nine individuals (21 with 22q11.2 deletion, 12 with the reciprocal duplication and 26 healthy controls) received clinical measures and [18F]-DOPA PET imaging to index striatal Kicer. There was an inverse linear effect of copy number variant number on striatal Kicer value (B = -1.2 × 10-3, SE = 2 × 10-4, p < 0.001), with controls showing levels intermediate between the two variant groups. Striatal Kicer was significantly higher in the 22q11.2 deletion group compared to the healthy control (p < 0.001, Cohen's d = 1.44) and 22q11.2 duplication (p < 0.001, Cohen's d = 2) groups. Moreover, Kicer was positively correlated with the severity of psychosis-risk symptoms (B = 730.5, SE = 310.2, p < 0.05) and increased over time in the subject who went on to develop psychosis, but was not associated with anxiety or depressive symptoms. Our findings suggest that genetic risk for psychosis is associated with dopaminergic dysfunction and identify dopamine synthesis as a potential target for treatment or prevention of psychosis in 22q11.2 deletion carriers.
Collapse
Affiliation(s)
- Maria Rogdaki
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK.
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College, London, UK.
| | - Céline Devroye
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Mariasole Ciampoli
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Mattia Veronese
- Centre for Neuroimaging Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Abhishekh H Ashok
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College, London, UK
- Department of Radiology, University of Cambridge, Cambridge, UK
- Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Robert A McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College, London, UK
| | - Sameer Jauhar
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Ilaria Bonoldi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Maria Gudbrandsen
- Department of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Eileen Daly
- Department of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Therese van Amelsvoort
- Department of Psychiatry and Psychology, Maastricht University, Maastricht, The Netherlands
| | - Marianne Van Den Bree
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Michael J Owen
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Federico Turkheimer
- Centre for Neuroimaging Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College, London, UK
| |
Collapse
|
12
|
Moreau CA, Kumar K, Harvey A, Huguet G, Urchs SGW, Schultz LM, Sharmarke H, Jizi K, Martin CO, Younis N, Tamer P, Martineau JL, Orban P, Silva AI, Hall J, van den Bree MBM, Owen MJ, Linden DEJ, Lippé S, Bearden CE, Almasy L, Glahn DC, Thompson PM, Bourgeron T, Bellec P, Jacquemont S. Brain functional connectivity mirrors genetic pleiotropy in psychiatric conditions. Brain 2023; 146:1686-1696. [PMID: 36059063 PMCID: PMC10319760 DOI: 10.1093/brain/awac315] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/13/2022] [Accepted: 08/11/2022] [Indexed: 02/03/2023] Open
Abstract
Pleiotropy occurs when a genetic variant influences more than one trait. This is a key property of the genomic architecture of psychiatric disorders and has been observed for rare and common genomic variants. It is reasonable to hypothesize that the microscale genetic overlap (pleiotropy) across psychiatric conditions and cognitive traits may lead to similar overlaps at the macroscale brain level such as large-scale brain functional networks. We took advantage of brain connectivity, measured by resting-state functional MRI to measure the effects of pleiotropy on large-scale brain networks, a putative step from genes to behaviour. We processed nine resting-state functional MRI datasets including 32 726 individuals and computed connectome-wide profiles of seven neuropsychiatric copy-number-variants, five polygenic scores, neuroticism and fluid intelligence as well as four idiopathic psychiatric conditions. Nine out of 19 pairs of conditions and traits showed significant functional connectivity correlations (rFunctional connectivity), which could be explained by previously published levels of genomic (rGenetic) and transcriptomic (rTranscriptomic) correlations with moderate to high concordance: rGenetic-rFunctional connectivity = 0.71 [0.40-0.87] and rTranscriptomic-rFunctional connectivity = 0.83 [0.52; 0.94]. Extending this analysis to functional connectivity profiles associated with rare and common genetic risk showed that 30 out of 136 pairs of connectivity profiles were correlated above chance. These similarities between genetic risks and psychiatric disorders at the connectivity level were mainly driven by the overconnectivity of the thalamus and the somatomotor networks. Our findings suggest a substantial genetic component for shared connectivity profiles across conditions and traits, opening avenues to delineate general mechanisms-amenable to intervention-across psychiatric conditions and genetic risks.
Collapse
Affiliation(s)
- Clara A Moreau
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, Université Paris Cité, Paris, France
- Sainte Justine Research Center, University of Montréal, Montréal, QC H3T 1C5, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, UdeM, Montreal, QC H3W 1W5, Canada
| | - Kuldeep Kumar
- Sainte Justine Research Center, University of Montréal, Montréal, QC H3T 1C5, Canada
| | - Annabelle Harvey
- Sainte Justine Research Center, University of Montréal, Montréal, QC H3T 1C5, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, UdeM, Montreal, QC H3W 1W5, Canada
| | - Guillaume Huguet
- Sainte Justine Research Center, University of Montréal, Montréal, QC H3T 1C5, Canada
| | - Sebastian G W Urchs
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, UdeM, Montreal, QC H3W 1W5, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Laura M Schultz
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hanad Sharmarke
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, UdeM, Montreal, QC H3W 1W5, Canada
| | - Khadije Jizi
- Sainte Justine Research Center, University of Montréal, Montréal, QC H3T 1C5, Canada
| | | | - Nadine Younis
- Sainte Justine Research Center, University of Montréal, Montréal, QC H3T 1C5, Canada
| | - Petra Tamer
- Sainte Justine Research Center, University of Montréal, Montréal, QC H3T 1C5, Canada
| | - Jean-Louis Martineau
- Sainte Justine Research Center, University of Montréal, Montréal, QC H3T 1C5, Canada
| | - Pierre Orban
- Centre de Recherche de l’Institut Universitaire en Santé Mentale de Montréal, UdeM, Montréal, QC H1N 3V2, Canada
- Département de Psychiatrie et d’Addictologie, Université de Montréal, Pavillon Roger-Gaudry, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Ana Isabel Silva
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Marianne B M van den Bree
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Michael J Owen
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - David E J Linden
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Sarah Lippé
- Sainte Justine Research Center, University of Montréal, Montréal, QC H3T 1C5, Canada
| | - Carrie E Bearden
- Integrative Center for Neurogenetics, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA 90095, USA
- Department of Psychiatry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Biobehavioral Sciences and Psychology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Laura Almasy
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - David C Glahn
- Department of Psychiatry, Harvard Medical School, Cambridge, MA 02115, USA
- Boston Children’s Hospital, Tommy Fuss Center for Neuropsychiatric Disease Research, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Institute for Neuroimaging and Informatics, Keck USC School of Medicine, Marina del Rey, CA, USA
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, Université Paris Cité, Paris, France
| | - Pierre Bellec
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, UdeM, Montreal, QC H3W 1W5, Canada
| | - Sebastien Jacquemont
- Sainte Justine Research Center, University of Montréal, Montréal, QC H3T 1C5, Canada
| |
Collapse
|
13
|
Mendelian randomization investigation highlights different roles of selenium status in mental disorders. Prog Neuropsychopharmacol Biol Psychiatry 2023; 122:110694. [PMID: 36521586 DOI: 10.1016/j.pnpbp.2022.110694] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Observational studies have suggested a relationship between selenium status and mental disorders (MDs). However, it remains unclear whether selenium status was causally associated with MDs. Thus, we performed a two-sample Mendelian randomization analysis using genome-wide association studies (GWAS) summary statistics to investigate the causal effects of selenium levels on seven MDs, including schizophrenia, major depressive disorder (MDD), autism spectrum disorder (ASD), bipolar disorder (BD), anorexia nervosa (AN), attention-deficit/hyperactivity disorder (ADHD), and panic disorder (PD). Strong genetic instruments of blood selenium (n = 9) and blood-toenail selenium (n = 12) were applied to the above seven MDs GWAS datasets from Psychiatric Genomics Consortium, which were further replicated in the FinnGen Biobank. The inverse-variance weighted method was employed to calculate the causal effects. The results showed that genetically predicted blood selenium levels were associated with a decreased risk of schizophrenia (odds ratio [OR] = 0.90, 95% CI: 0.87-0.95) and AN (OR = 0.87, 95% CI: 0.77-0.97). However, both blood and blood-toenail selenium levels were linked to an increased risk of MDD (blood: OR = 1.08, 95% CI: 1.05-1.12; blood-toenail: OR = 1.08, 95% CI: 1.04-1.13) and ASD (blood: OR = 1.11, 95% CI: 1.05-1.17; blood-toenail: OR = 1.13, 95% CI: 1.05-1.21), respectively. No obvious associations were found between selenium levels and BD as well as ADHD. Our findings highlighted a protective role of selenium in SZ and AN, while a risk effect in MDD and ASD. Further studies are required to verify the underlying mechanism mediating the unequal effects of Se on different MDs, which will pave a new path for the intervention of MDs.
Collapse
|
14
|
Abumadini MS, Al Ghamdi KS, Alqahtani AH, Almedallah DK, Callans L, Jarad JA, Cyrus C, Koeleman BPC, Keating BJ, Pankratz N, Al-Ali AK. Genome-wide copy number variant screening of Saudi schizophrenia patients reveals larger deletions in cases versus controls. Front Mol Neurosci 2023; 16:1069375. [PMID: 36846569 PMCID: PMC9950097 DOI: 10.3389/fnmol.2023.1069375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/20/2023] [Indexed: 02/12/2023] Open
Abstract
Introduction Genome-wide association studies have discovered common polymorphisms in regions associated with schizophrenia. No genome-wide analyses have been performed in Saudi schizophrenia subjects. Methods Genome-wide genotyping data from 136 Saudi schizophrenia cases and 97 Saudi controls in addition to 4,625 American were examined for copy number variants (CNVs). A hidden Markov model approach was used to call CNVs. Results CNVs in schizophrenia cases were twice as large on average than CNVs in controls (p = 0.04). The analyses focused on extremely large >250 kilobases CNVs or homozygous deletions of any size. One extremely large deletion was noted in a single case (16.5 megabases on chromosome 10). Two cases had an 814 kb duplication of chromosome 7 spanning a cluster of genes, including circadian-related loci, and two other cases had 277 kb deletions of chromosome 9 encompassing an olfactory receptors gene family. CNVs were also seen in loci previously associated with schizophrenia, namely a 16p11 proximal duplication and two 22q11.2 deletions. Discussion Runs of homozygosity (ROHs) were analyzed across the genome to investigate correlation with schizophrenia risk. While rates and sizes of these ROHs were similar in cases and controls, we identified 10 regions where multiple cases had ROHs and controls did not.
Collapse
Affiliation(s)
- Mahdi S. Abumadini
- Department of Psychiatry, King Fahd Hospital of the University, Al-Khobar and College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Kholoud S. Al Ghamdi
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Abdullah H. Alqahtani
- Department of Psychiatry, King Fahd Hospital of the University, Al-Khobar and College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Dana K. Almedallah
- Department of Psychiatry, King Fahd Hospital of the University, Al-Khobar and College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Lauren Callans
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| | - Jumanah A. Jarad
- Department of Psychiatry, King Fahd Hospital of the University, Al-Khobar and College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Cyril Cyrus
- Department of Clinical Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Bobby P. C. Koeleman
- Department of Genetics, Division Lab, University Medical Center Utrecht, Utrecht, Netherlands
| | - Brendan J. Keating
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, United States
| | - Amein K. Al-Ali
- Department of Clinical Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia,*Correspondence: Amein K. Al-Ali, ✉
| |
Collapse
|
15
|
Moreau CA, Harvey A, Kumar K, Huguet G, Urchs SGW, Douard EA, Schultz LM, Sharmarke H, Jizi K, Martin CO, Younis N, Tamer P, Rolland T, Martineau JL, Orban P, Silva AI, Hall J, van den Bree MBM, Owen MJ, Linden DEJ, Labbe A, Lippé S, Bearden CE, Almasy L, Glahn DC, Thompson PM, Bourgeron T, Bellec P, Jacquemont S. Genetic Heterogeneity Shapes Brain Connectivity in Psychiatry. Biol Psychiatry 2023; 93:45-58. [PMID: 36372570 PMCID: PMC10936195 DOI: 10.1016/j.biopsych.2022.08.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Polygenicity and genetic heterogeneity pose great challenges for studying psychiatric conditions. Genetically informed approaches have been implemented in neuroimaging studies to address this issue. However, the effects on functional connectivity of rare and common genetic risks for psychiatric disorders are largely unknown. Our objectives were to estimate and compare the effect sizes on brain connectivity of psychiatric genomic risk factors with various levels of complexity: oligogenic copy number variants (CNVs), multigenic CNVs, and polygenic risk scores (PRSs) as well as idiopathic psychiatric conditions and traits. METHODS Resting-state functional magnetic resonance imaging data were processed using the same pipeline across 9 datasets. Twenty-nine connectome-wide association studies were performed to characterize the effects of 15 CNVs (1003 carriers), 7 PRSs, 4 idiopathic psychiatric conditions (1022 individuals with autism, schizophrenia, bipolar conditions, or attention-deficit/hyperactivity disorder), and 2 traits (31,424 unaffected control subjects). RESULTS Effect sizes on connectivity were largest for psychiatric CNVs (estimates: 0.2-0.65 z score), followed by psychiatric conditions (0.15-0.42), neuroticism and fluid intelligence (0.02-0.03), and PRSs (0.01-0.02). Effect sizes of CNVs on connectivity were correlated to their effects on cognition and risk for disease (r = 0.9, p = 5.93 × 10-6). However, effect sizes of CNVs adjusted for the number of genes significantly decreased from small oligogenic to large multigenic CNVs (r = -0.88, p = 8.78 × 10-6). PRSs had disproportionately low effect sizes on connectivity compared with CNVs conferring similar risk for disease. CONCLUSIONS Heterogeneity and polygenicity affect our ability to detect brain connectivity alterations underlying psychiatric manifestations.
Collapse
Affiliation(s)
- Clara A Moreau
- Human Genetics and Cognitive Functions, Institut Pasteur, Université Paris Cité, Paris, France; Sainte-Justine Research Center, University of Montréal, Montréal, Canada; Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montreal, Canada.
| | - Annabelle Harvey
- Sainte-Justine Research Center, University of Montréal, Montréal, Canada; Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montreal, Canada
| | - Kuldeep Kumar
- Sainte-Justine Research Center, University of Montréal, Montréal, Canada
| | - Guillaume Huguet
- Sainte-Justine Research Center, University of Montréal, Montréal, Canada
| | - Sebastian G W Urchs
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montreal, Canada; Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Elise A Douard
- Sainte-Justine Research Center, University of Montréal, Montréal, Canada
| | - Laura M Schultz
- Lifespan Brain Institute, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hanad Sharmarke
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montreal, Canada
| | - Khadije Jizi
- Sainte-Justine Research Center, University of Montréal, Montréal, Canada
| | | | - Nadine Younis
- Sainte-Justine Research Center, University of Montréal, Montréal, Canada
| | - Petra Tamer
- Sainte-Justine Research Center, University of Montréal, Montréal, Canada
| | - Thomas Rolland
- Human Genetics and Cognitive Functions, Institut Pasteur, Université Paris Cité, Paris, France
| | | | - Pierre Orban
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montréal, Canada; Département de Psychiatrie et d'Addictologie, Université de Montréal, Montréal, Canada
| | - Ana Isabel Silva
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom; MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom; School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom; MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
| | - Marianne B M van den Bree
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom; MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
| | - Michael J Owen
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom; MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
| | - David E J Linden
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom; School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands
| | - Aurelie Labbe
- Département des Sciences de la Décision, HEC, Québec, Montréal, Canada
| | - Sarah Lippé
- Sainte-Justine Research Center, University of Montréal, Montréal, Canada
| | - Carrie E Bearden
- Integrative Center for Neurogenetics, Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, University of California, Los Angeles, Los Angeles, California
| | - Laura Almasy
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Pennsylvania; Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania; Lifespan Brain Institute, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David C Glahn
- Harvard Medical School, Department of Psychiatry, Boston, Massachusetts; Boston Children's Hospital, Tommy Fuss Center for Neuropsychiatric Disease Research, Boston, Massachusetts
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Institute for Neuroimaging and Informatics, Keck USC School of Medicine, Marina del Rey, California
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions, Institut Pasteur, Université Paris Cité, Paris, France
| | - Pierre Bellec
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montreal, Canada
| | | |
Collapse
|
16
|
Drmic IE, MacKinnon Modi B, McConnell B, Jilderda S, Hoang N, Noor A, Bassett AS, Speevak M, Stavropoulos DJ, Carter MT. Neurodevelopmental functioning in probands and non-proband carriers of 22q11.2 microduplication. Am J Med Genet A 2022; 188:2999-3008. [PMID: 35899837 DOI: 10.1002/ajmg.a.62916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/01/2022] [Accepted: 07/07/2022] [Indexed: 01/31/2023]
Abstract
Microduplication of the LCR22-A to LCR22-D region on chromosome 22q11.2 is a recurrent copy number variant found in clinical populations undergoing chromosomal microarray, and at lower frequency in controls. Often inherited, there is limited data on intellectual (IQ) and psychological functioning, particularly in those individuals ascertained through a family member rather than because of neurodevelopmental disorders. To investigate the range of cognitive-behavioral phenotypes associated with 22q11.2 duplication, we studied both probands and their non-proband carrier relatives. Twenty-two individuals with 22q11.2 duplication (10 probands, 12 non-proband carriers) were prospectively assessed with a battery of neuropsychological tests, physical examination, and medical record review. Assessment measures with standardized norms included IQ, academic, adaptive, psychiatric, behavioral, and social functioning. IQ and academic skills were within the average range, with a trend toward lower scores in probands versus non-probands. Adaptive skills were within age expectations. Prevalence of attention deficits (probands only) and anxiety (both groups) was high compared with norms. The prevalence of autism spectrum disorder was relatively low (5% of total sample). Assessment of both probands and non-probands with 22q11.2 duplication suggests that the phenotypic spectrum with respect to neurodevelopment overlaps significantly with the general population. IQ and academic abilities are in the average range for most of the individuals with 22q11.2 duplication in our study, regardless of ascertainment as a proband or non-proband relative. Symptoms of attention deficit and anxiety were identified, which require further study. Results of this study further clarify the phenotype of individuals with 22q11.2 duplication, and provides important information for genetic counseling regarding this recurrent copy number variant.
Collapse
Affiliation(s)
- Irene E Drmic
- McMaster Children's Hospital Autism Program, Ron Joyce Children's Health Centre, Hamilton Health Sciences, Hamilton, Ontario, Canada
| | | | - Beth McConnell
- Autism Research Unit, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sanne Jilderda
- Autism Research Centre, Glenrose Rehabilitation Hospital, Edmonton, Alberta, Canada
| | - Ny Hoang
- Autism Research Unit, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Genetic Counselling, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Abdul Noor
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | - Marsha Speevak
- Department of Laboratory Medicine and Genetics, Trillium Health Partners, Credit Valley Site, Toronto, Ontario, Canada
| | - Dimitri J Stavropoulos
- Genome Diagnostics, Department of Pathology and Laboratory Medicine, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Melissa T Carter
- Regional Genetics Program, The Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| |
Collapse
|
17
|
Jalbrzikowski M, Lin A, Vajdi A, Grigoryan V, Kushan L, Ching CRK, Schleifer C, Hayes RA, Chu SA, Sugar CA, Forsyth JK, Bearden CE. Longitudinal trajectories of cortical development in 22q11.2 copy number variants and typically developing controls. Mol Psychiatry 2022; 27:4181-4190. [PMID: 35896619 PMCID: PMC9718681 DOI: 10.1038/s41380-022-01681-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023]
Abstract
Probing naturally-occurring, reciprocal genomic copy number variations (CNVs) may help us understand mechanisms that underlie deviations from typical brain development. Cross-sectional studies have identified prominent reductions in cortical surface area (SA) and increased cortical thickness (CT) in 22q11.2 deletion carriers (22qDel), with the opposite pattern in duplication carriers (22qDup), but the longitudinal trajectories of these anomalies-and their relationship to clinical symptomatology-are unknown. Here, we examined neuroanatomic changes within a longitudinal cohort of 261 22q11.2 CNV carriers and demographically-matched typically developing (TD) controls (84 22qDel, 34 22qDup, and 143 TD; mean age 18.35, ±10.67 years; 50.47% female). A total of 431 magnetic resonance imaging scans (164 22qDel, 59 22qDup, and 208 TD control scans; mean interscan interval = 20.27 months) were examined. Longitudinal FreeSurfer analysis pipelines were used to parcellate the cortex and calculate average CT and SA for each region. First, general additive mixed models (GAMMs) were used to identify regions with between-group differences in developmental trajectories. Secondly, we investigated whether these trajectories were associated with clinical outcomes. Developmental trajectories of CT were more protracted in 22qDel relative to TD and 22qDup. 22qDup failed to show normative age-related SA decreases. 22qDel individuals with psychosis spectrum symptoms showed two distinct periods of altered CT trajectories relative to 22qDel without psychotic symptoms. In contrast, 22q11.2 CNV carriers with autism spectrum diagnoses showed early alterations in SA trajectories. Collectively, these results provide new insights into altered neurodevelopment in 22q11.2 CNV carriers, which may shed light on neural mechanisms underlying distinct clinical outcomes.
Collapse
Affiliation(s)
- Maria Jalbrzikowski
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Amy Lin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Neuroscience Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Ariana Vajdi
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Vardui Grigoryan
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Leila Kushan
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Charles Schleifer
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Neuroscience Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Rebecca A Hayes
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stephanie A Chu
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Neuroscience Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Catherine A Sugar
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Department of Biostatistics, University of California, Los Angeles, CA, USA
| | - Jennifer K Forsyth
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA.
- Neuroscience Interdepartmental Program, University of California, Los Angeles, CA, USA.
- Department of Psychology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
18
|
O'Hora KP, Lin A, Kushan-Wells L, Bearden CE. Copy number variation at the 22q11.2 locus influences prevalence, severity, and psychiatric impact of sleep disturbance. J Neurodev Disord 2022; 14:41. [PMID: 35820809 PMCID: PMC9275284 DOI: 10.1186/s11689-022-09450-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Sleep disturbance is common, impairing, and may affect symptomatology in developmental neuropsychiatric disorders. Here, we take a genetics-first approach to study the complex role of sleep in psychopathology. Specifically, we examine severity of sleep disturbance in individuals with a reciprocal copy number variant (CNV) at the 22q11.2 locus and determine sleep's effect on psychiatric symptoms. CNVs (deletion or duplication) at this locus confer some of the greatest known risks of neuropsychiatric disorders; recent studies suggest the 22q11.2 deletion negatively impacts sleep, but sleep disruption associated with 22q11.2 duplication has not been investigated. METHODS We compared subjective sleep disturbance and its relationship to psychiatric symptoms cross-sectionally and longitudinally over 1 year in 107 22q11.2 deletion (22qDel) carriers (14.56±8.0 years; 50% male), 42 22q11.2 duplication (22qDup) carriers (16.26±13.1 years; 54.8% male), and 88 age- and sex-matched controls (14.65±7.4 years; 47.1% male). Linear mixed models were used to compare sleep disturbance, assessed via the Structured Interview for Psychosis-Risk Syndromes (SIPS), across groups. Next, CNV carriers were categorized as good or poor sleepers to investigate sleep effects on multiple neurobehavioral traits: psychosis-risk symptoms (SIPS), autism-related behaviors (Repetitive Behavior Scale (RBS) and Social Responsiveness Scale (SRS)), real-world executive function (Behavior Rating Inventory of Executive Function (BRIEF)), and emotional/behavioral problems (Child Behavior Checklist (CBCL)). Linear mixed models tested the effect of sleep category and a group-by-sleep interaction on each measure, cross-sectionally and longitudinally. RESULTS 22qDel and 22qDup carriers both reported poorer sleep than controls, but did not differ from each other. Cross-sectionally and longitudinally, poor sleepers scored higher on positive symptoms, anxious/depressed, somatic complaints, thought problems, and aggressive behavior, as well as RBS and SRS total scores. There were significant group-by-sleep interactions for positive symptoms and the majority of CBCL subdomains, in which the difference between good and poor sleepers was larger in 22qDel compared to 22qDup. CONCLUSIONS Our findings indicate that CNVs at the 22q11.2 locus impact sleep which, in turn, influences psychopathology. Sleep disturbances can differentially impact psychopathology, depending on 22q11.2 gene dosage. Our findings serve as a starting point for exploring a genetic basis for sleep disturbance in developmental neuropsychiatric disorders.
Collapse
Affiliation(s)
- Kathleen P O'Hora
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, A7-460 Semel Institute, Los Angeles, CA, 90095, USA
- Neuroscience Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Amy Lin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, A7-460 Semel Institute, Los Angeles, CA, 90095, USA
- Neuroscience Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Leila Kushan-Wells
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, A7-460 Semel Institute, Los Angeles, CA, 90095, USA
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, A7-460 Semel Institute, Los Angeles, CA, 90095, USA.
- Department of Psychology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
19
|
Zhang M, Qiao J, Zhang S, Zeng P. Exploring the association between birthweight and breast cancer using summary statistics from a perspective of genetic correlation, mediation, and causality. J Transl Med 2022; 20:227. [PMID: 35568861 PMCID: PMC9107660 DOI: 10.1186/s12967-022-03435-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/04/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Previous studies demonstrated a positive relationship between birthweight and breast cancer; however, inconsistent, sometimes even controversial, observations also emerged, and the nature of such relationship remains unknown. METHODS Using summary statistics of birthweight and breast cancer, we assessed the fetal/maternal-specific genetic correlation between them via LDSC and prioritized fetal/maternal-specific pleiotropic genes through MAIUP. Relying on summary statistics we conducted Mendelian randomization (MR) to evaluate the fetal/maternal-specific origin of causal relationship between birthweight, age of menarche, age at menopause and breast cancer. RESULTS With summary statistics we identified a positive genetic correlation between fetal-specific birthweight and breast cancer (rg = 0.123 and P = 0.013) as well as a negative but insignificant correlation between maternal-specific birthweight and breast cancer (rg = - 0.068, P = 0.206); and detected 84 pleiotropic genes shared by fetal-specific birthweight and breast cancer, 49 shared by maternal-specific birthweight and breast cancer. We also revealed fetal-specific birthweight indirectly influenced breast cancer risk in adulthood via the path of age of menarche or age at menopause in terms of MR-based mediation analysis. CONCLUSION This study reveals that shared genetic foundation and causal mediation commonly drive the connection between the two traits, and that fetal/maternal-specific birthweight plays substantially distinct roles in such relationship. However, our work offers little supportive evidence for the fetal origins hypothesis of breast cancer originating in utero.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Jiahao Qiao
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Shuo Zhang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Ping Zeng
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China. .,Center for Medical Statistics and Data Analysis, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China. .,Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China. .,Key Laboratory of Environment and Health, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
20
|
Pardiñas AF, Smart SE, Willcocks IR, Holmans PA, Dennison CA, Lynham AJ, Legge SE, Baune BT, Bigdeli TB, Cairns MJ, Corvin A, Fanous AH, Frank J, Kelly B, McQuillin A, Melle I, Mortensen PB, Mowry BJ, Pato CN, Periyasamy S, Rietschel M, Rujescu D, Simonsen C, St Clair D, Tooney P, Wu JQ, Andreassen OA, Kowalec K, Sullivan PF, Murray RM, Owen MJ, MacCabe JH, O’Donovan MC, Walters JTR, and the Genetics Workstream of the Schizophrenia Treatment Resistance and Therapeutic Advances (STRATA) Consortium and the Schizophrenia Working Group of the Psychiatric Genomics Consortium (PGC), Ajnakina O, Alameda L, Barnes TRE, Berardi D, Bonora E, Camporesi S, Cleusix M, Conus P, Crespo-Facorro B, D'Andrea G, Demjaha A, Do KQ, Doody GA, Eap CB, Ferchiou A, Di Forti M, Guidi L, Homman L, Jenni R, Joyce EM, Kassoumeri L, Khadimallah I, Lastrina O, Muratori R, Noyan H, O'Neill FA, Pignon B, Restellini R, Richard JR, Schürhoff F, Španiel F, Szöke A, Tarricone I, Tortelli A, Üçok A, Vázquez-Bourgon J. Interaction Testing and Polygenic Risk Scoring to Estimate the Association of Common Genetic Variants With Treatment Resistance in Schizophrenia. JAMA Psychiatry 2022; 79:260-269. [PMID: 35019943 PMCID: PMC8756361 DOI: 10.1001/jamapsychiatry.2021.3799] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
IMPORTANCE About 20% to 30% of people with schizophrenia have psychotic symptoms that do not respond adequately to first-line antipsychotic treatment. This clinical presentation, chronic and highly disabling, is known as treatment-resistant schizophrenia (TRS). The causes of treatment resistance and their relationships with causes underlying schizophrenia are largely unknown. Adequately powered genetic studies of TRS are scarce because of the difficulty in collecting data from well-characterized TRS cohorts. OBJECTIVE To examine the genetic architecture of TRS through the reassessment of genetic data from schizophrenia studies and its validation in carefully ascertained clinical samples. DESIGN, SETTING, AND PARTICIPANTS Two case-control genome-wide association studies (GWASs) of schizophrenia were performed in which the case samples were defined as individuals with TRS (n = 10 501) and individuals with non-TRS (n = 20 325). The differences in effect sizes for allelic associations were then determined between both studies, the reasoning being such differences reflect treatment resistance instead of schizophrenia. Genotype data were retrieved from the CLOZUK and Psychiatric Genomics Consortium (PGC) schizophrenia studies. The output was validated using polygenic risk score (PRS) profiling of 2 independent schizophrenia cohorts with TRS and non-TRS: a prevalence sample with 817 individuals (Cardiff Cognition in Schizophrenia [CardiffCOGS]) and an incidence sample with 563 individuals (Genetics Workstream of the Schizophrenia Treatment Resistance and Therapeutic Advances [STRATA-G]). MAIN OUTCOMES AND MEASURES GWAS of treatment resistance in schizophrenia. The results of the GWAS were compared with complex polygenic traits through a genetic correlation approach and were used for PRS analysis on the independent validation cohorts using the same TRS definition. RESULTS The study included a total of 85 490 participants (48 635 [56.9%] male) in its GWAS stage and 1380 participants (859 [62.2%] male) in its PRS validation stage. Treatment resistance in schizophrenia emerged as a polygenic trait with detectable heritability (1% to 4%), and several traits related to intelligence and cognition were found to be genetically correlated with it (genetic correlation, 0.41-0.69). PRS analysis in the CardiffCOGS prevalence sample showed a positive association between TRS and a history of taking clozapine (r2 = 2.03%; P = .001), which was replicated in the STRATA-G incidence sample (r2 = 1.09%; P = .04). CONCLUSIONS AND RELEVANCE In this GWAS, common genetic variants were differentially associated with TRS, and these associations may have been obscured through the amalgamation of large GWAS samples in previous studies of broadly defined schizophrenia. Findings of this study suggest the validity of meta-analytic approaches for studies on patient outcomes, including treatment resistance.
Collapse
Affiliation(s)
- Antonio F. Pardiñas
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Sophie E. Smart
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom,Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Isabella R. Willcocks
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Peter A. Holmans
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Charlotte A. Dennison
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Amy J. Lynham
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Sophie E. Legge
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Bernhard T. Baune
- Department of Psychiatry, University of Münster, Münster, Germany,Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Australia,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Tim B. Bigdeli
- Department of Psychiatry and the Behavioral Sciences, State University of New York Downstate Medical Center, Brooklyn,Institute for Genomic Health, State University of New York Downstate Medical Center, Brooklyn,Department of Psychiatry, Veterans Affairs New York Harbor Healthcare System, Brooklyn
| | - Murray J. Cairns
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia,Centre for Brain and Mental Health Research, University of Newcastle, Newcastle, Australia,Hunter Medical Research Institute, Newcastle, Australia
| | - Aiden Corvin
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Dublin, Ireland
| | - Ayman H. Fanous
- Department of Psychiatry and the Behavioral Sciences, State University of New York Downstate Medical Center, Brooklyn,Institute for Genomic Health, State University of New York Downstate Medical Center, Brooklyn
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Mannheim, Germany
| | - Brian Kelly
- School of Medicine & Public Health, The University of Newcastle, Newcastle, Australia
| | - Andrew McQuillin
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, United Kingdom
| | - Ingrid Melle
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Division of Mental Health and Addiction, Institute of Clinical Medicine, Oslo University Hospital, Oslo, Norway
| | - Preben B. Mortensen
- National Centre for Register-based Research, Aarhus University, Aarhus, Denmark,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
| | - Bryan J. Mowry
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia,Queensland Centre for Mental Health Research, The University of Queensland, Brisbane, Australia
| | - Carlos N. Pato
- Department of Psychiatry and Behavioral Sciences, State University of New York Downstate Medical Center, Brooklyn,Department of Psychiatry and Zilkha Neurogenetics Institute, Keck School of Medicine, University of Southern California, Los Angeles,Institute for Genomic Health, State University of New York Downstate Medical Center, Brooklyn
| | - Sathish Periyasamy
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia,Queensland Centre for Mental Health Research, The University of Queensland, Brisbane, Australia
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Mannheim, Germany
| | - Dan Rujescu
- University Clinic and Outpatient Clinic for Psychiatry, Psychotherapy and Psychosomatics, Martin Luther University of Halle-Wittenberg, Halle, Germany,Division of General Psychiatry, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Carmen Simonsen
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Early Intervention in Psychosis Advisory Unit for South-East Norway, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - David St Clair
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Paul Tooney
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia,Hunter Medical Research Institute, Newcastle, Australia
| | - Jing Qin Wu
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Ole A. Andreassen
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Division of Mental Health and Addiction, Institute of Clinical Medicine, Oslo University Hospital, Oslo, Norway
| | - Kaarina Kowalec
- College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Patrick F. Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden,Department of Psychiatry, Icahn School of Medicine, Mount Sinai Hospital, New York, New York,Department of Genetics, University of North Carolina, Chapel Hill
| | - Robin M. Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Michael J. Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - James H. MacCabe
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Michael C. O’Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - James T. R. Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | - Olesya Ajnakina
- Department of Biostatistics & Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, King's College London, University of London, London, United Kingdom.,Department of Behavioural Science and Health, Institute of Epidemiology and Health Care, University College London, London, United Kingdom
| | - Luis Alameda
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.,Centro de Investigacion Biomedica en Red de Salud Mental, Spanish Network for Research in Mental Health, Sevilla, Spain.,Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocio, Departamento de Psiquiatria, Universidad de Sevilla, Sevilla, Spain.,Treatment and Early Intervention in Psychosis Program, Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Thomas R E Barnes
- Division of Psychiatry, Imperial College London, London, United Kingdom
| | - Domenico Berardi
- Department of Biomedical and Neuro-motor Sciences, Psychiatry Unit, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Elena Bonora
- Department of Medical and Surgical Sciences, Bologna Transcultural Psychosomatic Team, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Sara Camporesi
- Treatment and Early Intervention in Psychosis Program, Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland.,Unit for Research in Schizophrenia, Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Martine Cleusix
- Unit for Research in Schizophrenia, Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Philippe Conus
- Treatment and Early Intervention in Psychosis Program, Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Benedicto Crespo-Facorro
- Centro de Investigacion Biomedica en Red de Salud Mental, Spanish Network for Research in Mental Health, Sevilla, Spain.,Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocio, Departamento de Psiquiatria, Universidad de Sevilla, Sevilla, Spain
| | - Giuseppe D'Andrea
- Department of Biomedical and Neuro-motor Sciences, Psychiatry Unit, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Arsime Demjaha
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Kim Q Do
- Unit for Research in Schizophrenia, Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Gillian A Doody
- Department of Medical Education, University of Nottingham Faculty of Medicine and Health Sciences, Nottingham, United Kingdom
| | - Chin B Eap
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland.,School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Center for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Aziz Ferchiou
- University Paris-Est Créteil, Institut national de la santé et de la recherche médicale, Mondor Institute for Biomedical Research, Translational Neuropsychiatry, Fondation FondaMental, Créteil, France
| | - Marta Di Forti
- Social Genetics and Developmental Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.,South London and Maudsley National Health Service Mental Health Foundation Trust, London, United Kingdom
| | - Lorenzo Guidi
- Department of Medical and Surgical Sciences, Bologna Transcultural Psychosomatic Team, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Lina Homman
- Department of Social and Welfare Studies, Department of Behavioural Sciences and Learning, Linköping University, Linköping, Sweden.,Centre For Public Health, Institute Of Clinical Sciences, Queens University Belfast, Belfast, United Kingdom
| | - Raoul Jenni
- Unit for Research in Schizophrenia, Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Eileen M Joyce
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Laura Kassoumeri
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Inès Khadimallah
- Unit for Research in Schizophrenia, Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Ornella Lastrina
- Department of Biomedical and Neuro-motor Sciences, Psychiatry Unit, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Roberto Muratori
- Department of Medical and Surgical Sciences, Bologna Transcultural Psychosomatic Team, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Handan Noyan
- Faculty of Social Sciences, Department of Psychology, Beykoz University, Istanbul, Turkey
| | - Francis A O'Neill
- Centre For Public Health, Institute Of Clinical Sciences, Queens University Belfast, Belfast, United Kingdom
| | - Baptiste Pignon
- University Paris-Est Créteil, Institut national de la santé et de la recherche médicale, Mondor Institute for Biomedical Research, Translational Neuropsychiatry, Fondation FondaMental, Créteil, France.,Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires HMondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie, Fédération Hospitalo-Universitaire de Médecine de Précision, Créteil, France
| | - Romeo Restellini
- Treatment and Early Intervention in Psychosis Program, Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland.,Unit for Research in Schizophrenia, Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Jean-Romain Richard
- University Paris-Est Créteil, Institut national de la santé et de la recherche médicale, Mondor Institute for Biomedical Research, Translational Neuropsychiatry, Fondation FondaMental, Créteil, France
| | - Franck Schürhoff
- University Paris-Est Créteil, Institut national de la santé et de la recherche médicale, Mondor Institute for Biomedical Research, Translational Neuropsychiatry, Fondation FondaMental, Créteil, France.,Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires HMondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie, Fédération Hospitalo-Universitaire de Médecine de Précision, Créteil, France
| | - Filip Španiel
- Department of Applied Neuroscience and Neuroimaging, National Institute of Mental Health, Klecany, Czechia.,Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Andrei Szöke
- University Paris-Est Créteil, Institut national de la santé et de la recherche médicale, Mondor Institute for Biomedical Research, Translational Neuropsychiatry, Fondation FondaMental, Créteil, France.,Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires HMondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie, Fédération Hospitalo-Universitaire de Médecine de Précision, Créteil, France
| | - Ilaria Tarricone
- Department of Medical and Surgical Sciences, Bologna Transcultural Psychosomatic Team, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Andrea Tortelli
- University Paris-Est Créteil, Institut national de la santé et de la recherche médicale, Mondor Institute for Biomedical Research, Translational Neuropsychiatry, Fondation FondaMental, Créteil, France.,Groupe Hospitalier Universitaire Psychiatrie Neurosciences Paris, Pôle Psychiatrie Précarité, Paris, France
| | - Alp Üçok
- Department of Psychiatry, Istanbul University, Istanbul, Turkey
| | - Javier Vázquez-Bourgon
- Department of Psychiatry, University Hospital Marques de Valdecilla-Instituto de Investigación Marques de Valdecilla, Santander, Spain.,Department of Medicine and Psychiatry, School of Medicine, University of Cantabria, Santander, Spain.,Centro de Investigacion Biomedica en Red de Salud Mental, Spanish Network for Research in Mental Health, Santander, Spain
| |
Collapse
|
21
|
Verbesselt J, Zink I, Breckpot J, Swillen A. Cross-sectional and longitudinal findings in patients with proximal 22q11.2 duplication: A retrospective chart study. Am J Med Genet A 2022; 188:46-57. [PMID: 34491614 PMCID: PMC8830490 DOI: 10.1002/ajmg.a.62487] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/05/2021] [Accepted: 08/10/2021] [Indexed: 01/03/2023]
Abstract
Duplications on Chromosome 22q11.2 (22q11.2 dup) are associated with a wide spectrum of physical and neurodevelopmental features. In this chart review, physical, developmental, and behavioral features of 28 patients with 22q11.2 dup (median age = 17.11 years) are reported, and phenotypes of de novo and inherited duplications are compared. Common medical anomalies include nutritional problems (57%), failure to thrive (33%), transient hearing impairment (52%), and congenital heart defects (33%). Developmental, speech-language, and motor delay are common in infancy, while attention (64%), learning (60%), and motor problems (52%) are typically reported at primary school age. Attention-deficit/hyperactivity disorders are diagnosed in 44%. Median full-scale intelligence quotient is in the borderline range (IQ 76), with one-fifth of patients having mild intellectual disability. Longitudinal data in 11 patients, with the first assessment at a median age of 5.2 years and the second assessment at a median age of 8.8 years, indicate that almost two-third of patients have a relative stable cognitive trajectory, whereas one-third show a growing into deficit profile. In patients with de novo duplications, there is a trend of more failure to thrive, while more patients with inherited duplications follow special education.
Collapse
Affiliation(s)
- Jente Verbesselt
- Department of Human Genetics, Catholic University Leuven, Leuven, Belgium
| | - Inge Zink
- Department of Neurosciences, Research Group Experimental Oto-Rhino-Laryngology (ExpORL), Leuven, Belgium,Department of Oto-Rhino-Laryngology, Head and Neck Surgery, MUCLA, University Hospitals Leuven, Leuven, Belgium
| | - Jeroen Breckpot
- Department of Human Genetics, Catholic University Leuven, Leuven, Belgium,Centre for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Ann Swillen
- Department of Human Genetics, Catholic University Leuven, Leuven, Belgium,Centre for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
22
|
Tepper Á, Cuiza A, Alliende LM, Mena C, Ramirez-Mahaluf JP, Iruretagoyena B, Ornstein C, Fritsch R, Nachar R, González-Valderrama A, Undurraga J, Cruz JP, Tejos C, Fornito A, Repetto G, Crossley N. Functional Dysconnectivity in Ventral Striatocortical Systems in 22q11.2 Deletion Syndrome. Schizophr Bull 2021; 48:485-494. [PMID: 34931688 PMCID: PMC8886597 DOI: 10.1093/schbul/sbab139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
22q11.2 deletion syndrome (22q11.2DS) is a genetic neurodevelopmental disorder that represents one of the greatest known risk factors for psychosis. Previous studies in psychotic subjects without the deletion have identified a dopaminergic dysfunction in striatal regions, and dysconnectivity of striatocortical systems, as an important mechanism in the emergence of psychosis. Here, we used resting-state functional MRI to examine striatocortical functional connectivity in 22q11.2DS patients. We used a 2 × 2 factorial design including 125 subjects (55 healthy controls, 28 22q11.2DS patients without a history of psychosis, 10 22q11.2DS patients with a history of psychosis, and 32 subjects with a history of psychosis without the deletion), allowing us to identify network effects related to the deletion and to the presence of psychosis. In line with previous results from psychotic patients without 22q11.2DS, we found that there was a dorsal to ventral gradient of hypo- to hyperstriatocortical connectivity related to psychosis across both patient groups. The 22q11.2DS was additionally associated with abnormal functional connectivity in ventral striatocortical networks, with no significant differences identified in the dorsal system. Abnormalities in the ventral striatocortical system observed in these individuals with high genetic risk to psychosis may thus reflect a marker of illness risk.
Collapse
Affiliation(s)
- Ángeles Tepper
- Department of Psychiatry, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Analía Cuiza
- Department of Psychiatry, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luz María Alliende
- Department of Psychiatry, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos Mena
- Department of Psychiatry, Pontificia Universidad Católica de Chile, Santiago, Chile,Division of Psychology and Language Sciences, University College London, London, UK
| | | | - Barbara Iruretagoyena
- Department of Psychiatry, Pontificia Universidad Católica de Chile, Santiago, Chile,Department of Neurology and Psychiatry, Faculty of Medicine, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Claudia Ornstein
- Hospital Clínico Universidad de Chile, Departamento de Psiquiatria y Salud Mental, Santiago, Chile
| | - Rosemarie Fritsch
- Hospital Clínico Universidad de Chile, Departamento de Psiquiatria y Salud Mental, Santiago, Chile
| | - Ruben Nachar
- Early Intervention Program, Instituto Psiquiátrico Dr J. Horwitz Barak, Santiago, Chile,School of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Alfonso González-Valderrama
- Early Intervention Program, Instituto Psiquiátrico Dr J. Horwitz Barak, Santiago, Chile,School of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Juan Undurraga
- Department of Neurology and Psychiatry, Faculty of Medicine, Clínica Alemana Universidad del Desarrollo, Santiago, Chile,Early Intervention Program, Instituto Psiquiátrico Dr J. Horwitz Barak, Santiago, Chile
| | - Juan Pablo Cruz
- Department of Radiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristian Tejos
- Department of Electrical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile,Millennium Nucleus for Cardiovascular Magnetic Resonance, Santiago, Chile,Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | - Gabriela Repetto
- Genetic and Genomic Center, Universidad del Desarrollo, Santiago, Chile
| | - Nicolas Crossley
- Department of Psychiatry, Pontificia Universidad Católica de Chile, Santiago, Chile,Millennium Nucleus for Cardiovascular Magnetic Resonance, Santiago, Chile,Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile,To whom correspondence should be addressed; Diagonal Paraguay 362, Santiago, Chile; tel: 56 2 3543028, e-mail:
| |
Collapse
|
23
|
Seitz-Holland J, Lyons M, Kushan L, Lin A, Villalon-Reina JE, Cho KIK, Zhang F, Billah T, Bouix S, Kubicki M, Bearden CE, Pasternak O. Opposing white matter microstructure abnormalities in 22q11.2 deletion and duplication carriers. Transl Psychiatry 2021; 11:580. [PMID: 34759270 PMCID: PMC8581007 DOI: 10.1038/s41398-021-01703-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 09/30/2021] [Accepted: 10/15/2021] [Indexed: 12/20/2022] Open
Abstract
Deletions and duplications at the 22q11.2 locus are associated with significant neurodevelopmental and psychiatric morbidity. Previous diffusion-weighted magnetic resonance imaging (MRI) studies in 22q11.2 deletion carriers (22q-del) found nonspecific white matter (WM) abnormalities, characterized by higher fractional anisotropy. Here, utilizing novel imaging and processing methods that allow separation of signal contribution from different tissue properties, we investigate whether higher anisotropy is driven by (1) extracellular changes, (2) selective degeneration of secondary fibers, or (3) volumetric differences. We further, for the first time, investigate WM microstructure in 22q11.2 duplication carriers (22q-dup). Multi-shell diffusion-weighted images were acquired from 26 22q-del, 19 22q-dup, and 18 healthy individuals (HC). Images were fitted with the free-water model to estimate anisotropy following extracellular free-water elimination and with the novel BedpostX model to estimate fractional volumes of primary and secondary fiber populations. Outcome measures were compared between groups, with and without correction for WM and cerebrospinal fluid (CSF) volumes. In 22q-del, anisotropy following free-water elimination remained significantly higher compared with controls. BedpostX did not identify selective secondary fiber degeneration. Higher anisotropy diminished when correcting for the higher CSF and lower WM volumes. In contrast, 22q-dup had lower anisotropy and greater extracellular space than HC, not influenced by macrostructural volumes. Our findings demonstrate opposing effects of reciprocal 22q11.2 copy-number variation on WM, which may arise from distinct pathologies. In 22q-del, microstructural abnormalities may be secondary to enlarged CSF space and more densely packed WM. In 22q-dup, we see evidence for demyelination similar to what is commonly observed in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Johanna Seitz-Holland
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA.
| | - Monica Lyons
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Leila Kushan
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, 90095, CA, USA
| | - Amy Lin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, 90095, CA, USA
| | - Julio E Villalon-Reina
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, 90095, CA, USA
| | - Kang Ik Kevin Cho
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Fan Zhang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Tashrif Billah
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Sylvain Bouix
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Marek Kubicki
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, 02114, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, 90095, CA, USA
- Department of Psychology, University of California at Los Angeles, Los Angeles, 90095, CA, USA
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| |
Collapse
|
24
|
Vysotskiy M, Zhong X, Miller-Fleming TW, Zhou D, Cox NJ, Weiss LA. Integration of genetic, transcriptomic, and clinical data provides insight into 16p11.2 and 22q11.2 CNV genes. Genome Med 2021; 13:172. [PMID: 34715901 PMCID: PMC8557010 DOI: 10.1186/s13073-021-00972-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 09/16/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Deletions and duplications of the multigenic 16p11.2 and 22q11.2 copy number variant (CNV) regions are associated with brain-related disorders including schizophrenia, intellectual disability, obesity, bipolar disorder, and autism spectrum disorder (ASD). The contribution of individual CNV genes to each of these identified phenotypes is unknown, as well as the contribution of these CNV genes to other potentially subtler health implications for carriers. Hypothesizing that DNA copy number exerts most effects via impacts on RNA expression, we attempted a novel in silico fine-mapping approach in non-CNV carriers using both GWAS and biobank data. METHODS We first asked whether gene expression level in any individual gene in the CNV region alters risk for a known CNV-associated behavioral phenotype(s). Using transcriptomic imputation, we performed association testing for CNV genes within large genotyped cohorts for schizophrenia, IQ, BMI, bipolar disorder, and ASD. Second, we used a biobank containing electronic health data to compare the medical phenome of CNV carriers to controls within 700,000 individuals in order to investigate the full spectrum of health effects of the CNVs. Third, we used genotypes for over 48,000 individuals within the biobank to perform phenome-wide association studies between imputed expressions of individual 16p11.2 and 22q11.2 genes and over 1500 health traits. RESULTS Using large genotyped cohorts, we found individual genes within 16p11.2 associated with schizophrenia (TMEM219, INO80E, YPEL3), BMI (TMEM219, SPN, TAOK2, INO80E), and IQ (SPN), using conditional analysis to identify upregulation of INO80E as the driver of schizophrenia, and downregulation of SPN and INO80E as increasing BMI. We identified both novel and previously observed over-represented traits within the electronic health records of 16p11.2 and 22q11.2 CNV carriers. In the phenome-wide association study, we found seventeen significant gene-trait pairs, including psychosis (NPIPB11, SLX1B) and mood disorders (SCARF2), and overall enrichment of mental traits. CONCLUSIONS Our results demonstrate how integration of genetic and clinical data aids in understanding CNV gene function and implicates pleiotropy and multigenicity in CNV biology.
Collapse
Affiliation(s)
- Mikhail Vysotskiy
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, 513 Parnassus Ave., Health Sciences East 9th floor HSE901E, San Francisco, CA, 94143, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, 94143, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, 94143, USA
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Xue Zhong
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Genetics Institute, Nashville, TN, 37232, USA
| | - Tyne W Miller-Fleming
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Genetics Institute, Nashville, TN, 37232, USA
| | - Dan Zhou
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Genetics Institute, Nashville, TN, 37232, USA
| | - Nancy J Cox
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Genetics Institute, Nashville, TN, 37232, USA
| | - Lauren A Weiss
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, 513 Parnassus Ave., Health Sciences East 9th floor HSE901E, San Francisco, CA, 94143, USA.
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, 94143, USA.
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
25
|
Moreau CA, Raznahan A, Bellec P, Chakravarty M, Thompson PM, Jacquemont S. Dissecting autism and schizophrenia through neuroimaging genomics. Brain 2021; 144:1943-1957. [PMID: 33704401 PMCID: PMC8370419 DOI: 10.1093/brain/awab096] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/24/2020] [Accepted: 01/08/2021] [Indexed: 12/23/2022] Open
Abstract
Neuroimaging genomic studies of autism spectrum disorder and schizophrenia have mainly adopted a 'top-down' approach, beginning with the behavioural diagnosis, and moving down to intermediate brain phenotypes and underlying genetic factors. Advances in imaging and genomics have been successfully applied to increasingly large case-control studies. As opposed to diagnostic-first approaches, the bottom-up strategy begins at the level of molecular factors enabling the study of mechanisms related to biological risk, irrespective of diagnoses or clinical manifestations. The latter strategy has emerged from questions raised by top-down studies: why are mutations and brain phenotypes over-represented in individuals with a psychiatric diagnosis? Are they related to core symptoms of the disease or to comorbidities? Why are mutations and brain phenotypes associated with several psychiatric diagnoses? Do they impact a single dimension contributing to all diagnoses? In this review, we aimed at summarizing imaging genomic findings in autism and schizophrenia as well as neuropsychiatric variants associated with these conditions. Top-down studies of autism and schizophrenia identified patterns of neuroimaging alterations with small effect-sizes and an extreme polygenic architecture. Genomic variants and neuroimaging patterns are shared across diagnostic categories suggesting pleiotropic mechanisms at the molecular and brain network levels. Although the field is gaining traction; characterizing increasingly reproducible results, it is unlikely that top-down approaches alone will be able to disentangle mechanisms involved in autism or schizophrenia. In stark contrast with top-down approaches, bottom-up studies showed that the effect-sizes of high-risk neuropsychiatric mutations are equally large for neuroimaging and behavioural traits. Low specificity has been perplexing with studies showing that broad classes of genomic variants affect a similar range of behavioural and cognitive dimensions, which may be consistent with the highly polygenic architecture of psychiatric conditions. The surprisingly discordant effect sizes observed between genetic and diagnostic first approaches underscore the necessity to decompose the heterogeneity hindering case-control studies in idiopathic conditions. We propose a systematic investigation across a broad spectrum of neuropsychiatric variants to identify putative latent dimensions underlying idiopathic conditions. Gene expression data on temporal, spatial and cell type organization in the brain have also considerable potential for parsing the mechanisms contributing to these dimensions' phenotypes. While large neuroimaging genomic datasets are now available in unselected populations, there is an urgent need for data on individuals with a range of psychiatric symptoms and high-risk genomic variants. Such efforts together with more standardized methods will improve mechanistically informed predictive modelling for diagnosis and clinical outcomes.
Collapse
Affiliation(s)
- Clara A Moreau
- Sainte Justine Research Center, University of Montréal, Montréal, Québec H3T 1C5, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montreal, Québec H3W 1W5, Canada
- Human Genetics and Cognitive Functions, CNRS UMR 3571, Université de Paris, Institut Pasteur, Paris, France
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD 20892, USA
| | - Pierre Bellec
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montreal, Québec H3W 1W5, Canada
| | - Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Hospital Mental Health University Institute, Verdun, Québec H4H 1R3, Canada
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Institute for Neuroimaging and Informatics, USC Keck School of Medicine, Marina del Rey, CA 90033, USA
| | - Sebastien Jacquemont
- Sainte Justine Research Center, University of Montréal, Montréal, Québec H3T 1C5, Canada
| |
Collapse
|
26
|
Chawner SJ, Watson CJ, Owen MJ. Clinical evaluation of patients with a neuropsychiatric risk copy number variant. Curr Opin Genet Dev 2021; 68:26-34. [PMID: 33461126 PMCID: PMC8219523 DOI: 10.1016/j.gde.2020.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/21/2022]
Abstract
Several copy number variants (CNVs) have been identified to confer high risk for a range of neuropsychiatric conditions. Because of advances in genetic testing within clinical settings, patients are increasingly receiving diagnoses of copy number variant genomic disorders. However, clinical guidelines surrounding assessment and management are limited. This review synthesises recent research and makes preliminary recommendations regarding the clinical evaluation of patients with neuropsychiatric risk CNVs. We recommend multi-system assessment beyond the initial referral reason, recognition of the potential need for co-ordinated multidisciplinary care, and that interventions take account of relevant multimorbidity. The frequently complex needs of patients with CNVs across the life-course pose challenges for many health care systems and may be best provided for by the establishment of specialist clinics.
Collapse
Affiliation(s)
- Samuel Jra Chawner
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, UK; Cardiff University Centre for Human Developmental Science, School of Psychology, Cardiff, UK
| | - Cameron J Watson
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, UK; Barts Health NHS Trust, London, UK
| | - Michael J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, UK.
| |
Collapse
|
27
|
Rees E, Kirov G. Copy number variation and neuropsychiatric illness. Curr Opin Genet Dev 2021; 68:57-63. [PMID: 33752146 PMCID: PMC8219524 DOI: 10.1016/j.gde.2021.02.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 12/15/2022]
Abstract
Copy number variants (CNVs) at specific loci have been identified as important risk factors for several neuropsychiatric disorders, such as schizophrenia, autism spectrum disorder, intellectual disability (ID) and depression. These CNVs are individually rare (<0.5% frequency), have high effect sizes, and show pleiotropic effects for multiple neuropsychiatric disorders, which implies a shared aetiology. Neuropsychiatric CNVs are also associated with cognitive impairment and other medical morbidities, such as heart defects and obesity. As most neuropsychiatric CNVs are multigenic, it has been challenging to map their effects onto specific biological processes, although gene-set analyses have implicated genes related to the synapse and chromatin regulation. However, future whole-genome sequencing studies have potential for identifying novel single-gene CNV associations, which could provide insights into the pathophysiology underlying neuropsychiatric disorders.
Collapse
Affiliation(s)
- Elliott Rees
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| | - George Kirov
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
28
|
Bechi M, Abu-Akel A, Agostoni G, Bosia M, Cocchi F, Spangaro M, Cavallaro R. Functional benefits of co-occurring autistic symptoms in schizophrenia is delimited by symptom severity. J Psychiatr Res 2021; 137:48-54. [PMID: 33652326 DOI: 10.1016/j.jpsychires.2021.02.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/27/2021] [Accepted: 02/18/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND Impairments in daily functioning characterize both autism spectrum disorder and schizophrenia. Research has shown that a subsample of schizophrenia patients presents autistic symptoms, leading to the hypothesis that their co-occurrence would be associated with a 'double dose' of deficit. A growing body of research examined this hypothesis by looking at the joint effect of autistic and positive psychotic symptoms, and yielded contrasting results, ranging from benefits to adverse effects. We hypothesized that the interactive effect of autistic and positive symptoms on functioning in schizophrenia might depend on the patients' symptom severity. METHOD In 170 schizophrenia patients, a two-step cluster analysis identified two groups of patients with different levels of autistic and positive symptom severity. Using general linear models, we examined the interactions of groups, autistic and positive symptoms on functioning. RESULTS Autistic and positive symptoms were interactively associated with better functioning, but only in the symptomatically less severe patients. In contrast, autistic and positive symptoms were independently associated with worse functioning in the symptomatically more severe patients. These associations were observed above and beyond the effects of I.Q. and illness duration. CONCLUSIONS The findings highlight the complex role played by co-occurring autistic symptoms in schizophrenia, whose beneficial effects on functioning appear to depend on patients' psychopathological severity. Our findings may help to reconcile the seemingly contrasting results from previous studies, and to understand the heterogeneity of behavior and functional outcomes in schizophrenia. This study underscores the potential utility of routinely assessing autism in schizophrenia, in order to better formulate individualized rehabilitative programs.
Collapse
Affiliation(s)
- Margherita Bechi
- Schizophrenia Research and Clinical Unit, Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ahmad Abu-Akel
- Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| | - Giulia Agostoni
- Schizophrenia Research and Clinical Unit, Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy; School of Psychology, Vita-Salute San Raffaele University, Milan, Italy.
| | - Marta Bosia
- Schizophrenia Research and Clinical Unit, Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy; School of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Cocchi
- Schizophrenia Research and Clinical Unit, Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Spangaro
- Schizophrenia Research and Clinical Unit, Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy; School of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Roberto Cavallaro
- Schizophrenia Research and Clinical Unit, Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy; School of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
29
|
Nenadić I, Meller T, Evermann U, Schmitt S, Pfarr JK, Abu-Akel A, Grezellschak S. Subclinical schizotypal vs. autistic traits show overlapping and diametrically opposed facets in a non-clinical population. Schizophr Res 2021; 231:32-41. [PMID: 33744683 DOI: 10.1016/j.schres.2021.02.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 02/03/2021] [Accepted: 02/27/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND The overlap of autism spectrum disorder (ASD) and psychosis or schizophrenia spectrum disorders (SSD) has exposed problems central to conceptualising and understanding co-morbidity in psychiatric disorders. METHODS In the present study, we demonstrate that a deep phenotyping approach aids clarification of both overlapping and diametrically opposed features of ASD and SSD on the level of trait facets. RESULTS We first show overlap of negative and disorganised (but not positive) features of schizotypy with autistic traits in a sample of n = 376 German non-clinical subjects using multiple psychometric measures of schizotypy (MSS multidimensional schizotypy scale, OLIFE Oxford-Liverpool Inventory of Feelings and Experiences, and SPQ-B schizotypal personality questionnaire - brief) and the AQ autism spectrum quotient, with control measures for affective spectrum pathology (BDI). Findings were then replicated in a French-Swiss sample (n = 264) using MSS, OLIFE, AQ, and in addition the Community Assessment of Psychic Experiences (CAPE). Additional principal component analysis confirmed our finding of the co-existence of both overlapping (loss of function, social communication deficit, and negative schizotypy) as well as diametrically opposed features (AQ attention to detail, positive schizotypy) across the two spectra. Results were validated with Horn's parallel analyses, affirming two component solutions, and PCA using sample-specific, factor-analysis-derived schizotypy scores. CONCLUSIONS Providing a framework for multi-dimensional transdiagnostic characterisation of ASD vs. SSD phenotypes we point out overlapping vs. discriminating facets. In addition to the use of novel multidimensional schizotypy scales, it also shows transcultural consistency of findings, and highlights a particular role for the attention to detail AQ subscale.
Collapse
Affiliation(s)
- Igor Nenadić
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany; Center for Mind, Brain, and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany; Marburg University Hospital - UKGM, Marburg, Germany.
| | - Tina Meller
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany; Center for Mind, Brain, and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Ulrika Evermann
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany; Center for Mind, Brain, and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Simon Schmitt
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany; Center for Mind, Brain, and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Julia-Katharina Pfarr
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany; Center for Mind, Brain, and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Ahmad Abu-Akel
- Institute of Psychology, University of Lausanne, Quartier UNIL-Mouline, Géopolis, Lausanne, Switzerland
| | - Sarah Grezellschak
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany; Center for Mind, Brain, and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany; Marburg University Hospital - UKGM, Marburg, Germany
| |
Collapse
|
30
|
Linden SC, Watson CJ, Smith J, Chawner SJRA, Lancaster TM, Evans F, Williams N, Skuse D, Raymond FL, Hall J, Owen MJ, Linden DEJ, Green-Snyder L, Chung WK, Maillard AM, Jacquemont S, van den Bree MBM. The psychiatric phenotypes of 1q21 distal deletion and duplication. Transl Psychiatry 2021; 11:105. [PMID: 33542195 PMCID: PMC7862693 DOI: 10.1038/s41398-021-01226-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/07/2021] [Accepted: 01/14/2021] [Indexed: 01/06/2023] Open
Abstract
Copy number variants are amongst the most highly penetrant risk factors for psychopathology and neurodevelopmental deficits, but little information about the detailed clinical phenotype associated with particular variants is available. We present the largest study of the microdeletion and -duplication at the distal 1q21 locus, which has been associated with schizophrenia and intellectual disability, in order to investigate the range of psychiatric phenotypes. Clinical and cognitive data from 68 deletion and 55 duplication carriers were analysed with logistic regression analysis to compare frequencies of mental disorders between carrier groups and controls, and linear mixed models to compare quantitative phenotypes. Both children and adults with copy number variants at 1q21 had high frequencies of psychopathology. In the children, neurodevelopmental disorders were most prominent (56% for deletion, 68% for duplication carriers). Adults had increased prevalence of mood (35% for deletion [OR = 6.6 (95% CI: 1.4-40.1)], 55% for duplication carriers [8.3 (1.4-55.5)]) and anxiety disorders (24% [1.8 (0.4-8.4)] and 55% [10.0 (1.9-71.2)]). The adult group, which included mainly genetically affected parents of probands, had an IQ in the normal range. These results confirm high prevalence of neurodevelopmental disorders associated with CNVs at 1q21 but also reveal high prevalence of mood and anxiety disorders in a high-functioning adult group with these CNVs. Because carriers of neurodevelopmental CNVs who show relevant psychopathology but no major cognitive impairment are not currently routinely receiving clinical genetic services widening of genetic testing in psychiatry may be considered.
Collapse
Affiliation(s)
- Stefanie C Linden
- Department of Health, Ethics and Society, Care and Public Health Research Institute (CAPHRI), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Division of Psychological Medicine and Clinical Neurosciences, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Cameron J Watson
- Division of Psychological Medicine and Clinical Neurosciences, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK
| | - Jacqueline Smith
- Division of Psychological Medicine and Clinical Neurosciences, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Samuel J R A Chawner
- Division of Psychological Medicine and Clinical Neurosciences, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Thomas M Lancaster
- Division of Psychological Medicine and Clinical Neurosciences, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- School of Psychology, University of Bath, Bath, UK
| | - Ffion Evans
- Division of Psychological Medicine and Clinical Neurosciences, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Nigel Williams
- Division of Psychological Medicine and Clinical Neurosciences, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - David Skuse
- Behavioural and Brain Sciences Unit Institute of Child Health, University College London, London, UK
| | - F Lucy Raymond
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Jeremy Hall
- Division of Psychological Medicine and Clinical Neurosciences, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Michael J Owen
- Division of Psychological Medicine and Clinical Neurosciences, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - David E J Linden
- Division of Psychological Medicine and Clinical Neurosciences, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Live Sciences, Maastricht University, Maastricht, The Netherlands
| | | | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University, New York, NY, USA
| | - Anne M Maillard
- Service des Troubles du Spectre de l'Autisme et apparentés, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Sébastien Jacquemont
- Service de Génétique Médicale, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Marianne B M van den Bree
- Division of Psychological Medicine and Clinical Neurosciences, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK.
| |
Collapse
|
31
|
Thygesen JH, Presman A, Harju-Seppänen J, Irizar H, Jones R, Kuchenbaecker K, Lin K, Alizadeh BZ, Austin-Zimmerman I, Bartels-Velthuis A, Bhat A, Bruggeman R, Cahn W, Calafato S, Crespo-Facorro B, de Haan L, de Zwarte SMC, Di Forti M, Díez-Revuelta Á, Hall J, Hall MH, Iyegbe C, Jablensky A, Kahn R, Kalaydjieva L, Kravariti E, Lawrie S, Luykx JJ, Mata I, McDonald C, McIntosh AM, McQuillin A, Muir R, Ophoff R, Picchioni M, Prata DP, Ranlund S, Rujescu D, Rutten BPF, Schulze K, Shaikh M, Schirmbeck F, Simons CJP, Toulopoulou T, van Amelsvoort T, van Haren N, van Os J, van Winkel R, Vassos E, Walshe M, Weisbrod M, Zartaloudi E, Bell V, Powell J, Lewis CM, Murray RM, Bramon E. Genetic copy number variants, cognition and psychosis: a meta-analysis and a family study. Mol Psychiatry 2021; 26:5307-5319. [PMID: 32719466 PMCID: PMC8589646 DOI: 10.1038/s41380-020-0820-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023]
Abstract
The burden of large and rare copy number genetic variants (CNVs) as well as certain specific CNVs increase the risk of developing schizophrenia. Several cognitive measures are purported schizophrenia endophenotypes and may represent an intermediate point between genetics and the illness. This paper investigates the influence of CNVs on cognition. We conducted a systematic review and meta-analysis of the literature exploring the effect of CNV burden on general intelligence. We included ten primary studies with a total of 18,847 participants and found no evidence of association. In a new psychosis family study, we investigated the effects of CNVs on specific cognitive abilities. We examined the burden of large and rare CNVs (>200 kb, <1% MAF) as well as known schizophrenia-associated CNVs in patients with psychotic disorders, their unaffected relatives and controls (N = 3428) from the Psychosis Endophenotypes International Consortium (PEIC). The carriers of specific schizophrenia-associated CNVs showed poorer performance than non-carriers in immediate (P = 0.0036) and delayed (P = 0.0115) verbal recall. We found suggestive evidence that carriers of schizophrenia-associated CNVs had poorer block design performance (P = 0.0307). We do not find any association between CNV burden and cognition. Our findings show that the known high-risk CNVs are not only associated with schizophrenia and other neurodevelopmental disorders, but are also a contributing factor to impairment in cognitive domains such as memory and perceptual reasoning, and act as intermediate biomarkers of disease risk.
Collapse
Affiliation(s)
- Johan H. Thygesen
- grid.83440.3b0000000121901201Division of Psychiatry, University College London, London, UK
| | - Amelia Presman
- grid.83440.3b0000000121901201Division of Psychiatry, University College London, London, UK
| | - Jasmine Harju-Seppänen
- grid.83440.3b0000000121901201Division of Psychiatry, University College London, London, UK
| | - Haritz Irizar
- grid.83440.3b0000000121901201Division of Psychiatry, University College London, London, UK
| | - Rebecca Jones
- grid.83440.3b0000000121901201Division of Psychiatry, University College London, London, UK
| | - Karoline Kuchenbaecker
- grid.83440.3b0000000121901201Division of Psychiatry, University College London, London, UK ,grid.83440.3b0000000121901201UCL Genetics Institute, University College London, London, UK
| | - Kuang Lin
- grid.13097.3c0000 0001 2322 6764Institute of Psychiatry, Psychology & Neuroscience at King’s College London, London, UK ,grid.4991.50000 0004 1936 8948Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Behrooz Z. Alizadeh
- grid.4494.d0000 0000 9558 4598University of Groningen, University Medical Center Groningen, University Center for Psychiatry, Rob Giel Research Center, Groningen, The Netherlands ,grid.4494.d0000 0000 9558 4598Department of Epidemiology, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Agna Bartels-Velthuis
- grid.4494.d0000 0000 9558 4598University of Groningen, University Medical Center Groningen, University Center for Psychiatry, Rob Giel Research Center, Groningen, The Netherlands
| | - Anjali Bhat
- grid.83440.3b0000000121901201Division of Psychiatry, University College London, London, UK
| | - Richard Bruggeman
- grid.4494.d0000 0000 9558 4598University of Groningen, University Medical Center Groningen, University Center for Psychiatry, Rob Giel Research Center, Groningen, The Netherlands ,grid.4830.f0000 0004 0407 1981Department of Clinical and Developmental Neuropsychology, University of Groningen, Groningen, The Netherlands
| | - Wiepke Cahn
- grid.5477.10000000120346234University Medical Center Utrecht, Department of Psychiatry, Brain Centre Rudolf Magnus, Utrecht University, Utrecht, The Netherlands ,grid.413664.2Altrecht, General Mental Health Care, Utrecht, The Netherlands
| | - Stella Calafato
- grid.83440.3b0000000121901201Division of Psychiatry, University College London, London, UK
| | - Benedicto Crespo-Facorro
- grid.469673.90000 0004 5901 7501CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Sevilla, Spain ,grid.7821.c0000 0004 1770 272XUniversity Hospital Marqués de Valdecilla, University of Cantabria–IDIVAL, Santander, Spain ,grid.9224.d0000 0001 2168 1229Hospital Universitario Virgen del Rocío, IBiS, Department of Psychiatry, School of Medicine, University of Sevilla, Sevilla, Spain
| | - Liewe de Haan
- grid.7177.60000000084992262Amsterdam UMC, Department of Psychiatry, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands ,grid.491093.60000 0004 0378 2028Arkin, Institute for Mental Health, Amsterdam, The Netherlands
| | - Sonja M. C. de Zwarte
- grid.5477.10000000120346234University Medical Center Utrecht, Department of Psychiatry, Brain Centre Rudolf Magnus, Utrecht University, Utrecht, The Netherlands
| | - Marta Di Forti
- grid.13097.3c0000 0001 2322 6764Institute of Psychiatry, Psychology & Neuroscience at King’s College London, London, UK
| | - Álvaro Díez-Revuelta
- grid.83440.3b0000000121901201Division of Psychiatry, University College London, London, UK ,grid.5690.a0000 0001 2151 2978Laboratory of Cognitive and Computational Neuroscience—Centre for Biomedical Technology (CTB), Complutense University and Technical University of Madrid, Madrid, Spain
| | - Jeremy Hall
- grid.5600.30000 0001 0807 5670School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, UK
| | - Mei-Hua Hall
- grid.38142.3c000000041936754XPsychosis Neurobiology Laboratory, Harvard Medical School, McLean Hospital, Belmont, MA USA
| | - Conrad Iyegbe
- grid.13097.3c0000 0001 2322 6764Institute of Psychiatry, Psychology & Neuroscience at King’s College London, London, UK
| | - Assen Jablensky
- grid.1012.20000 0004 1936 7910Centre for Clinical Research in Neuropsychiatry, The University of Western Australia, Perth, WA Australia
| | - Rene Kahn
- grid.5477.10000000120346234University Medical Center Utrecht, Department of Psychiatry, Brain Centre Rudolf Magnus, Utrecht University, Utrecht, The Netherlands ,grid.59734.3c0000 0001 0670 2351Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Luba Kalaydjieva
- grid.1012.20000 0004 1936 7910Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA Australia
| | - Eugenia Kravariti
- grid.13097.3c0000 0001 2322 6764Institute of Psychiatry, Psychology & Neuroscience at King’s College London, London, UK
| | - Stephen Lawrie
- grid.4305.20000 0004 1936 7988Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, Scotland UK
| | - Jurjen J. Luykx
- grid.5477.10000000120346234University Medical Center Utrecht, Department of Psychiatry, Brain Centre Rudolf Magnus, Utrecht University, Utrecht, The Netherlands ,grid.7692.a0000000090126352Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.491146.f0000 0004 0478 3153Second opinion outpatient clinic, GGNet Mental Health, Warsnveld, The Netherlands
| | - Igancio Mata
- grid.469673.90000 0004 5901 7501CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Sevilla, Spain ,Fundación Argibide, Pamplona, Spain
| | - Colm McDonald
- grid.6142.10000 0004 0488 0789The Centre for Neuroimaging & Cognitive Genomics (NICOG) and NCBES Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland
| | - Andrew M. McIntosh
- grid.4305.20000 0004 1936 7988Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, Scotland UK ,grid.4305.20000 0004 1936 7988Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Andrew McQuillin
- grid.83440.3b0000000121901201Division of Psychiatry, University College London, London, UK
| | - Rebecca Muir
- grid.83440.3b0000000121901201Division of Psychiatry, University College London, London, UK
| | - Roel Ophoff
- grid.19006.3e0000 0000 9632 6718Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA USA ,grid.5645.2000000040459992XDepartment of Psychiatry, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marco Picchioni
- grid.13097.3c0000 0001 2322 6764Institute of Psychiatry, Psychology & Neuroscience at King’s College London, London, UK
| | - Diana P. Prata
- grid.13097.3c0000 0001 2322 6764Institute of Psychiatry, Psychology & Neuroscience at King’s College London, London, UK ,grid.9983.b0000 0001 2181 4263Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciencias da Universidade de Lisboa, Lisboa, Portugal ,grid.45349.3f0000 0001 2220 8863Centre for Psychological Research and Social Intervention, ISCTE-IUL, Lisboa, Portugal
| | - Siri Ranlund
- grid.83440.3b0000000121901201Division of Psychiatry, University College London, London, UK ,grid.13097.3c0000 0001 2322 6764Institute of Psychiatry, Psychology & Neuroscience at King’s College London, London, UK
| | - Dan Rujescu
- grid.5252.00000 0004 1936 973XDepartment of Psychiatry, Ludwig-Maximilians University of Munich, Munich, Germany ,grid.9018.00000 0001 0679 2801Department of Psychiatry, Psychotherapy and Psychosomatics, University of Halle Wittenberg, Halle, Germany
| | - Bart P. F. Rutten
- grid.412966.e0000 0004 0480 1382Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, The Netherlands ,grid.412966.e0000 0004 0480 1382The Brain+Nerve Centre, Maastricht University Medical Centre+ (MUMC+), Maastricht, The Netherlands
| | - Katja Schulze
- grid.13097.3c0000 0001 2322 6764Institute of Psychiatry, Psychology & Neuroscience at King’s College London, London, UK ,grid.37640.360000 0000 9439 0839South London and Maudsley NHS Foundation Trust, London, UK
| | - Madiha Shaikh
- grid.451079.e0000 0004 0428 0265North East London Foundation Trust, London, UK ,grid.83440.3b0000000121901201Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | - Frederike Schirmbeck
- grid.7177.60000000084992262Amsterdam UMC, Department of Psychiatry, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands ,grid.491093.60000 0004 0378 2028Arkin, Institute for Mental Health, Amsterdam, The Netherlands
| | - Claudia J. P. Simons
- grid.412966.e0000 0004 0480 1382Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, The Netherlands ,grid.491104.9GGzE Institute for Mental Health Care, Eindhoven, The Netherlands
| | - Timothea Toulopoulou
- grid.13097.3c0000 0001 2322 6764Institute of Psychiatry, Psychology & Neuroscience at King’s College London, London, UK ,grid.18376.3b0000 0001 0723 2427Department of Psychology, Bilkent University, Main Campus, Bilkent, Ankara Turkey
| | - Therese van Amelsvoort
- grid.412966.e0000 0004 0480 1382Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Neeltje van Haren
- grid.5477.10000000120346234University Medical Center Utrecht, Department of Psychiatry, Brain Centre Rudolf Magnus, Utrecht University, Utrecht, The Netherlands ,grid.5645.2000000040459992XDepartment of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Sophia’s Children Hospital, Rotterdam, The Netherlands
| | - Jim van Os
- grid.13097.3c0000 0001 2322 6764Institute of Psychiatry, Psychology & Neuroscience at King’s College London, London, UK ,grid.412966.e0000 0004 0480 1382Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, The Netherlands ,grid.7692.a0000000090126352Department of Psychiatry, UMC Utrecht Brain Center, Utrecht, The Netherlands
| | - Ruud van Winkel
- grid.5596.f0000 0001 0668 7884KU Leuven, Department of Neuroscience, Research Group Psychiatry, Leuven, Belgium
| | - Evangelos Vassos
- grid.13097.3c0000 0001 2322 6764Institute of Psychiatry, Psychology & Neuroscience at King’s College London, London, UK
| | - Muriel Walshe
- grid.83440.3b0000000121901201Division of Psychiatry, University College London, London, UK
| | - Matthias Weisbrod
- grid.7700.00000 0001 2190 4373Department of General Psychiatry, Center of Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany ,grid.490718.30000000406368535SRH Klinikum, Karlsbad-Langensteinbach, Germany
| | - Eirini Zartaloudi
- grid.83440.3b0000000121901201Division of Psychiatry, University College London, London, UK
| | - Vaughan Bell
- grid.83440.3b0000000121901201Division of Psychiatry, University College London, London, UK
| | - John Powell
- grid.13097.3c0000 0001 2322 6764Institute of Psychiatry, Psychology & Neuroscience at King’s College London, London, UK
| | - Cathryn M. Lewis
- grid.13097.3c0000 0001 2322 6764Institute of Psychiatry, Psychology & Neuroscience at King’s College London, London, UK
| | - Robin M. Murray
- grid.13097.3c0000 0001 2322 6764Institute of Psychiatry, Psychology & Neuroscience at King’s College London, London, UK ,grid.37640.360000 0000 9439 0839South London and Maudsley NHS Foundation Trust, London, UK
| | - Elvira Bramon
- Division of Psychiatry, University College London, London, UK. .,Institute of Psychiatry, Psychology & Neuroscience at King's College London, London, UK. .,Institute of Cognitive Neuroscience, University College London, London, UK.
| |
Collapse
|
32
|
Qin X, Chen J, Zhou T. 22q11.2 deletion syndrome and schizophrenia. Acta Biochim Biophys Sin (Shanghai) 2020; 52:1181-1190. [PMID: 33098288 DOI: 10.1093/abbs/gmaa113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 12/22/2022] Open
Abstract
22q11.2 deletion is a common microdeletion that causes an array of developmental defects including 22q11.2 deletion syndrome (22q11DS) or DiGeorge syndrome and velocardiofacial syndrome. About 30% of patients with 22q11.2 deletion develop schizophrenia. Mice with deletion of the ortholog region in mouse chromosome 16qA13 exhibit schizophrenia-like abnormal behaviors. It is suggested that the genes deleted in 22q11DS are involved in the pathogenesis of schizophrenia. Among these genes, COMT, ZDHHC8, DGCR8, and PRODH have been identified as schizophrenia susceptibility genes. And DGCR2 is also found to be associated with schizophrenia. In this review, we focused on these five genes and reviewed their functions in the brain and the potential pathophysiological mechanisms in schizophrenia, which will give us a deeper understanding of the pathology of schizophrenia.
Collapse
Affiliation(s)
- Xianzheng Qin
- Queen Mary School of Nanchang University, Nanchang University, Nanchang 330031, China
| | - Jiang Chen
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang 330031, China
| | - Tian Zhou
- School of Basic Medical Sciences, Nanchang University, Nanchang 330031, China
| |
Collapse
|
33
|
Widespread transcriptional disruption of the microRNA biogenesis machinery in brain and peripheral tissues of individuals with schizophrenia. Transl Psychiatry 2020; 10:376. [PMID: 33149139 PMCID: PMC7642431 DOI: 10.1038/s41398-020-01052-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 09/16/2020] [Accepted: 10/01/2020] [Indexed: 12/17/2022] Open
Abstract
In schizophrenia, altered transcription in brain and peripheral tissues may be due to altered expression of the microRNA biogenesis machinery genes. In this study, we explore the expression of these genes both at the cerebral and peripheral levels. We used shinyGEO application to analyze gene expression from ten Gene Expression Omnibus datasets, in order to perform differential expression analyses for eight genes encoding the microRNA biogenesis machinery. First, we compared expression of the candidate genes between control subjects and individuals with schizophrenia in postmortem cerebral samples from seven different brain regions. Then, we compared the expression of the candidate genes between control subjects and individuals with schizophrenia in three peripheral tissues. In brain and peripheral tissues of individuals with schizophrenia, we report distinct altered expression patterns of the microRNA biogenesis machinery genes. In the dorsolateral prefrontal cortex, associative striatum and cerebellum of individuals with schizophrenia, we observed an overexpression pattern of some candidate genes suggesting a heightened miRNA production in these brain regions. Additionally, mixed transcriptional abnormalities were identified in the hippocampus. Moreover, in the blood and olfactory epithelium of individuals with schizophrenia, we observed distinct aberrant transcription patterns of the candidate genes. Remarkably, in individuals with schizophrenia, we report DICER1 overexpression in the dorsolateral prefrontal cortex, hippocampus and cerebellum as well as a congruent DICER1 upregulation in the blood compartment suggesting that it may represent a peripheral marker. Transcriptional disruption of the miRNA biogenesis machinery may contribute to schizophrenia pathogenesis both in brain and peripheral tissues.
Collapse
|
34
|
Jalbrzikowski M. Neuroimaging Phenotypes Associated With Risk and Resilience for Psychosis and Autism Spectrum Disorders in 22q11.2 Microdeletion Syndrome. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 6:211-224. [PMID: 33218931 DOI: 10.1016/j.bpsc.2020.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 01/17/2023]
Abstract
Identification of biological risk factors that contribute to the development of complex neuropsychiatric disorders such as psychosis and autism spectrum disorder (ASD) is key for early intervention and detection. Furthermore, parsing the biological heterogeneity associated with these neuropsychiatric syndromes will help us understand the neural mechanisms underlying psychiatric symptom development. The 22q11.2 microdeletion syndrome (22q11DS) is caused by a recurrent genetic mutation that carries significantly increased risk for developing psychosis and/or ASD. In this review, I provide an brief introduction to 22q11DS and discuss common phenotyping strategies that are used to assess psychosis and ASD in this population. I then summarize neuroimaging phenotypes associated with psychosis and ASD in 22q11.DS. Next, I discuss challenges within the field and provide practical suggestions to overcome these obstacles. Finally, I discuss future directions for moving 22q11DS risk and resilience research forward.
Collapse
Affiliation(s)
- Maria Jalbrzikowski
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
35
|
Lin A, Vajdi A, Kushan-Wells L, Helleman G, Hansen LP, Jonas RK, Jalbrzikowski M, Kingsbury L, Raznahan A, Bearden CE. Reciprocal Copy Number Variations at 22q11.2 Produce Distinct and Convergent Neurobehavioral Impairments Relevant for Schizophrenia and Autism Spectrum Disorder. Biol Psychiatry 2020; 88:260-272. [PMID: 32143830 PMCID: PMC7354903 DOI: 10.1016/j.biopsych.2019.12.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 12/12/2019] [Accepted: 12/30/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND 22q11.2 deletions and duplications are copy number variations (CNVs) that predispose to developmental neuropsychiatric disorders. Both CNVs are associated with autism spectrum disorder (ASD), while the deletion confers disproportionate risk for schizophrenia. Neurobehavioral profiles associated with these reciprocal CNVs in conjunction with brain imaging measures have not been reported. METHODS We profiled the impact of 22q11.2 CNVs on neurobehavioral measures relevant to ASD and psychosis in 106 22q11.2 deletion carriers, 38 22q11.2 duplication carriers, and 82 demographically matched healthy control subjects. To determine whether brain-behavior relationships were altered in CNV carriers, we further tested for interactions between group and regional brain structure on neurobehavioral domains. RESULTS Cognitive deficits were observed in both CNV groups, with the lowest IQs in deletion carriers. ASD and dimensionally measured ASD traits were elevated in both CNV groups; however, duplication carriers exhibited increased stereotypies compared to deletion carriers. Moreover, discriminant analysis using ASD subdomains distinguished between CNV cases with 76% accuracy. Both psychotic disorder diagnosis and dimensionally measured positive and negative symptoms were elevated in deletion carriers. Finally, healthy control subjects showed an inverse relationship between processing speed and cortical thickness in heteromodal association areas, which was absent in both CNV groups. CONCLUSIONS 22q11.2 CNVs differentially modulate intellectual functioning and psychosis-related symptomatology but converge on broad ASD-related symptomatology. However, subtle differences in ASD profiles distinguish CNV groups. Processing speed impairments, coupled with the lack of normative relationship between processing speed and cortical thickness in CNV carriers, implicate aberrant development of the cortical mantle in the pathology underlying impaired processing speed ability.
Collapse
Affiliation(s)
- Amy Lin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Ariana Vajdi
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Leila Kushan-Wells
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Gerhard Helleman
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Laura Pacheco Hansen
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Rachel K Jonas
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Maria Jalbrzikowski
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lyle Kingsbury
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, California; Department of Neurobiology, University of California, Los Angeles, Los Angeles, California
| | - Armin Raznahan
- Developmental Neurogenomics Unit, Human Genetics Branch, National Institute of Mental Health, Bethesda, Maryland
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California; Department of Psychology, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
36
|
Modeling Brain Disorders Using Induced Pluripotent Stem Cells. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035659. [PMID: 31767646 DOI: 10.1101/cshperspect.a035659] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Brain disorders, from neurodegenerative to psychiatric disorders, are among the most challenging conditions to study because of the intricate nature of the human brain and the limitations of existing model systems in recapitulating all these intricacies. However, innovations in stem cell technologies now allow us to reprogram patient somatic cells to induced pluripotent stem cells (iPSCs), which can then be differentiated to disease-relevant neural and glial cells. iPSCs are a valuable tool to model brain disorders, as they can be derived from patients with known symptom histories, genetics, and drug-response profiles. Here, we discuss the premise and validity of the iPSC-based in vitro model system and highlight key findings from the most commonly studied neurodegenerative and psychiatric disorders.
Collapse
|
37
|
Forsyth JK, Nachun D, Gandal MJ, Geschwind DH, Anderson AE, Coppola G, Bearden CE. Synaptic and Gene Regulatory Mechanisms in Schizophrenia, Autism, and 22q11.2 Copy Number Variant-Mediated Risk for Neuropsychiatric Disorders. Biol Psychiatry 2020; 87:150-163. [PMID: 31500805 PMCID: PMC6925326 DOI: 10.1016/j.biopsych.2019.06.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/10/2019] [Accepted: 06/27/2019] [Indexed: 01/28/2023]
Abstract
BACKGROUND 22q11.2 copy number variants are among the most highly penetrant genetic risk variants for developmental neuropsychiatric disorders such as schizophrenia (SCZ) and autism spectrum disorder (ASD). However, the specific mechanisms through which they confer risk remain unclear. METHODS Using a functional genomics approach, we integrated transcriptomic data from the developing human brain, genome-wide association findings for SCZ and ASD, protein interaction data, and gene expression signatures from SCZ and ASD postmortem cortex to 1) organize genes into the developmental cellular and molecular systems within which they operate, 2) identify neurodevelopmental processes associated with polygenic risk for SCZ and ASD across the allelic frequency spectrum, and 3) elucidate pathways and individual genes through which 22q11.2 copy number variants may confer risk for each disorder. RESULTS Polygenic risk for SCZ and ASD converged on partially overlapping neurodevelopmental modules involved in synaptic function and transcriptional regulation, with ASD risk variants additionally enriched for modules involved in neuronal differentiation during fetal development. The 22q11.2 locus formed a large protein network during development that disproportionately affected SCZ-associated and ASD-associated neurodevelopmental modules, including loading highly onto synaptic and gene regulatory pathways. SEPT5, PI4KA, and SNAP29 genes are candidate drivers of 22q11.2 synaptic pathology relevant to SCZ and ASD, and DGCR8 and HIRA are candidate drivers of disease-relevant alterations in gene regulation. CONCLUSIONS This approach offers a powerful framework to identify neurodevelopmental processes affected by diverse risk variants for SCZ and ASD and elucidate mechanisms through which highly penetrant, multigene copy number variants contribute to disease risk.
Collapse
Affiliation(s)
- Jennifer K Forsyth
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California.
| | - Daniel Nachun
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California
| | - Michael J Gandal
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California; Brain Research Institute, University of California, Los Angeles, Los Angeles, California
| | - Daniel H Geschwind
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California; Department of Neurology, University of California, Los Angeles, Los Angeles, California; Brain Research Institute, University of California, Los Angeles, Los Angeles, California
| | - Ariana E Anderson
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California
| | - Giovanni Coppola
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California; Department of Neurology, University of California, Los Angeles, Los Angeles, California; Brain Research Institute, University of California, Los Angeles, Los Angeles, California
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California; Department of Psychology, University of California, Los Angeles, Los Angeles, California; Brain Research Institute, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
38
|
Kushima I, Aleksic B, Nakatochi M, Shimamura T, Okada T, Uno Y, Morikawa M, Ishizuka K, Shiino T, Kimura H, Arioka Y, Yoshimi A, Takasaki Y, Yu Y, Nakamura Y, Yamamoto M, Iidaka T, Iritani S, Inada T, Ogawa N, Shishido E, Torii Y, Kawano N, Omura Y, Yoshikawa T, Uchiyama T, Yamamoto T, Ikeda M, Hashimoto R, Yamamori H, Yasuda Y, Someya T, Watanabe Y, Egawa J, Nunokawa A, Itokawa M, Arai M, Miyashita M, Kobori A, Suzuki M, Takahashi T, Usami M, Kodaira M, Watanabe K, Sasaki T, Kuwabara H, Tochigi M, Nishimura F, Yamasue H, Eriguchi Y, Benner S, Kojima M, Yassin W, Munesue T, Yokoyama S, Kimura R, Funabiki Y, Kosaka H, Ishitobi M, Ohmori T, Numata S, Yoshikawa T, Toyota T, Yamakawa K, Suzuki T, Inoue Y, Nakaoka K, Goto YI, Inagaki M, Hashimoto N, Kusumi I, Son S, Murai T, Ikegame T, Okada N, Kasai K, Kunimoto S, Mori D, Iwata N, Ozaki N. Comparative Analyses of Copy-Number Variation in Autism Spectrum Disorder and Schizophrenia Reveal Etiological Overlap and Biological Insights. Cell Rep 2019; 24:2838-2856. [PMID: 30208311 DOI: 10.1016/j.celrep.2018.08.022] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/24/2018] [Accepted: 08/08/2018] [Indexed: 01/06/2023] Open
Abstract
Compelling evidence in Caucasian populations suggests a role for copy-number variations (CNVs) in autism spectrum disorder (ASD) and schizophrenia (SCZ). We analyzed 1,108 ASD cases, 2,458 SCZ cases, and 2,095 controls in a Japanese population and confirmed an increased burden of rare exonic CNVs in both disorders. Clinically significant (or pathogenic) CNVs, including those at 29 loci common to both disorders, were found in about 8% of ASD and SCZ cases, which was significantly higher than in controls. Phenotypic analysis revealed an association between clinically significant CNVs and intellectual disability. Gene set analysis showed significant overlap of biological pathways in both disorders including oxidative stress response, lipid metabolism/modification, and genomic integrity. Finally, based on bioinformatics analysis, we identified multiple disease-relevant genes in eight well-known ASD/SCZ-associated CNV loci (e.g., 22q11.2, 3q29). Our findings suggest an etiological overlap of ASD and SCZ and provide biological insights into these disorders.
Collapse
Affiliation(s)
- Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; Institute for Advanced Research, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Masahiro Nakatochi
- Division of Data Science, Data Coordinating Center, Department of Advanced Medicine, Nagoya University Hospital, Nagoya, Aichi 466-8560, Japan
| | - Teppei Shimamura
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Takashi Okada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Yota Uno
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; Laboratory for Psychiatric and Molecular Neuroscience, McLean Hospital, Belmont, MA 02478, USA
| | - Mako Morikawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Kanako Ishizuka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Tomoko Shiino
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8553, Japan
| | - Hiroki Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Yuko Arioka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; Institute for Advanced Research, Nagoya University, Nagoya, Aichi 464-8601, Japan; Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Aichi 466-8560, Japan
| | - Akira Yoshimi
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, Nagoya, Aichi 468-8503, Japan
| | - Yuto Takasaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Yanjie Yu
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Yukako Nakamura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Maeri Yamamoto
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Tetsuya Iidaka
- Department of Physical and Occupational Therapy, Nagoya University Graduate School of Medicine, Nagoya, Aichi 461-8673, Japan
| | - Shuji Iritani
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Toshiya Inada
- Department of Psychiatry and Psychobiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Nanayo Ogawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Emiko Shishido
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Youta Torii
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; Center for Postgraduate Clinical Training and Career Development, Nagoya University Hospital, Nagoya, Aichi 466-8560, Japan
| | - Naoko Kawano
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; Institutes of Innovation for Future Society, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Yutaka Omura
- Aichi Psychiatric Medical Center, Nagoya, Aichi 464-0031, Japan
| | - Toru Yoshikawa
- Department of Child Psychiatry, Aichi Prefectural Colony Central Hospital, Kasugai, Aichi 480-0392, Japan
| | - Tokio Uchiyama
- Department of Clinical Psychology, Taisho University, Tokyo 170-8470, Japan
| | - Toshimichi Yamamoto
- Department of Legal Medicine and Bioethics, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Masashi Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Ryota Hashimoto
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Suita, Osaka 565-0871, Japan; Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8553, Japan
| | - Hidenaga Yamamori
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yuka Yasuda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Yuichiro Watanabe
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Jun Egawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Ayako Nunokawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Masanari Itokawa
- Center for Medical Cooperation, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Makoto Arai
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Mitsuhiro Miyashita
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Akiko Kobori
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama 930-0194, Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama 930-0194, Japan
| | - Masahide Usami
- Department of Child and Adolescent Psychiatry, Kohnodai Hospital, National Center for Global Health and Medicine, Ichikawa, Chiba 272-8516, Japan
| | - Masaki Kodaira
- Department of Child and Adolescent Psychiatry, Kohnodai Hospital, National Center for Global Health and Medicine, Ichikawa, Chiba 272-8516, Japan
| | - Kyota Watanabe
- Department of Child and Adolescent Psychiatry, Kohnodai Hospital, National Center for Global Health and Medicine, Ichikawa, Chiba 272-8516, Japan
| | - Tsukasa Sasaki
- Department of Physical and Health Education, Graduate School of Education, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hitoshi Kuwabara
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Mamoru Tochigi
- Department of Neuropsychiatry, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| | - Fumichika Nishimura
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Hidenori Yamasue
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Yosuke Eriguchi
- Department of Child Neuropsychiatry, School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Seico Benner
- Department of Child Neuropsychiatry, School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Masaki Kojima
- Department of Child Neuropsychiatry, School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Walid Yassin
- Department of Child Neuropsychiatry, School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Toshio Munesue
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Shigeru Yokoyama
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Ryo Kimura
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yasuko Funabiki
- Department of Cognitive and Behavioral Science, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Hirotaka Kosaka
- Research Center for Child Mental Development University of Fukui, Eiheiji, Fukui 910-1193, Japan; Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui 910-1193, Japan
| | - Makoto Ishitobi
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui 910-1193, Japan; Department of Child and Adolescent Mental Health, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan
| | - Tetsuro Ohmori
- Department of Psychiatry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Shusuke Numata
- Department of Psychiatry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Tomoko Toyota
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Kazuhiro Yamakawa
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Toshimitsu Suzuki
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Yushi Inoue
- National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorder, Shizuoka 420-8688, Japan
| | - Kentaro Nakaoka
- Aichi Psychiatric Medical Center, Nagoya, Aichi 464-0031, Japan
| | - Yu-Ichi Goto
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Masumi Inagaki
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8553, Japan
| | - Naoki Hashimoto
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Hokkaido, Sapporo 060-8638, Japan
| | - Ichiro Kusumi
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Hokkaido, Sapporo 060-8638, Japan
| | - Shuraku Son
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Toshiya Murai
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Tempei Ikegame
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Naohiro Okada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; The International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo 113-0033, Japan
| | - Shohko Kunimoto
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Daisuke Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; Brain and Mind Research Center, Nagoya University, Nagoya, Aichi 466-8550, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan.
| |
Collapse
|
39
|
Systematic review and multi-modal meta-analysis of magnetic resonance imaging findings in 22q11.2 deletion syndrome: Is more evidence needed? Neurosci Biobehav Rev 2019; 107:143-153. [DOI: 10.1016/j.neubiorev.2019.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 08/07/2019] [Accepted: 09/02/2019] [Indexed: 11/20/2022]
|
40
|
Gudmundsson OO, Walters GB, Ingason A, Johansson S, Zayats T, Athanasiu L, Sonderby IE, Gustafsson O, Nawaz MS, Jonsson GF, Jonsson L, Knappskog PM, Ingvarsdottir E, Davidsdottir K, Djurovic S, Knudsen GPS, Askeland RB, Haraldsdottir GS, Baldursson G, Magnusson P, Sigurdsson E, Gudbjartsson DF, Stefansson H, Andreassen OA, Haavik J, Reichborn-Kjennerud T, Stefansson K. Attention-deficit hyperactivity disorder shares copy number variant risk with schizophrenia and autism spectrum disorder. Transl Psychiatry 2019; 9:258. [PMID: 31624239 PMCID: PMC6797719 DOI: 10.1038/s41398-019-0599-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 07/12/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly heritable common childhood-onset neurodevelopmental disorder. Some rare copy number variations (CNVs) affect multiple neurodevelopmental disorders such as intellectual disability, autism spectrum disorders (ASD), schizophrenia and ADHD. The aim of this study is to determine to what extent ADHD shares high risk CNV alleles with schizophrenia and ASD. We compiled 19 neuropsychiatric CNVs and test 14, with sufficient power, for association with ADHD in Icelandic and Norwegian samples. Eight associate with ADHD; deletions at 2p16.3 (NRXN1), 15q11.2, 15q13.3 (BP4 & BP4.5-BP5) and 22q11.21, and duplications at 1q21.1 distal, 16p11.2 proximal, 16p13.11 and 22q11.21. Six of the CNVs have not been associated with ADHD before. As a group, the 19 CNVs associate with ADHD (OR = 2.43, P = 1.6 × 10-21), even when comorbid ASD and schizophrenia are excluded from the sample. These results highlight the pleiotropic effect of the neuropsychiatric CNVs and add evidence for ADHD, ASD and schizophrenia being related neurodevelopmental disorders rather than distinct entities.
Collapse
Affiliation(s)
- Olafur O Gudmundsson
- deCODE genetics/Amgen, Reykjavík, Iceland
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- Department of Child and Adolescent Psychiatry, National University Hospital, Reykjavik, Iceland
| | - G Bragi Walters
- deCODE genetics/Amgen, Reykjavík, Iceland
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | | | - Stefan Johansson
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Tetyana Zayats
- K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Lavinia Athanasiu
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ida Elken Sonderby
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | | | - Muhammad S Nawaz
- deCODE genetics/Amgen, Reykjavík, Iceland
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | | | - Lina Jonsson
- deCODE genetics/Amgen, Reykjavík, Iceland
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Per-Morten Knappskog
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Ester Ingvarsdottir
- The Centre for Child Development and Behaviour, Capital Area Primary Health Care, Reykjavik, Iceland
| | - Katrin Davidsdottir
- The Centre for Child Development and Behaviour, Capital Area Primary Health Care, Reykjavik, Iceland
| | - Srdjan Djurovic
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Kirkeveien 166, 424, Oslo, Norway
| | - Gun Peggy Strømstad Knudsen
- Department of Mental Disorders, Norwegian Institute of Public Health, P. O. Box 4404 Nydalen, 0403, Oslo, Norway
| | - Ragna Bugge Askeland
- Department of Mental Disorders, Norwegian Institute of Public Health, P. O. Box 4404 Nydalen, 0403, Oslo, Norway
| | - Gyda S Haraldsdottir
- The Centre for Child Development and Behaviour, Capital Area Primary Health Care, Reykjavik, Iceland
| | - Gisli Baldursson
- Department of Child and Adolescent Psychiatry, National University Hospital, Reykjavik, Iceland
| | - Pall Magnusson
- Department of Child and Adolescent Psychiatry, National University Hospital, Reykjavik, Iceland
- Department of Psychiatry, National University Hospital, Reykjavík, Iceland
| | - Engilbert Sigurdsson
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- Department of Psychiatry, National University Hospital, Reykjavík, Iceland
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen, Reykjavík, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Ole A Andreassen
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Jan Haavik
- K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Ted Reichborn-Kjennerud
- Department of Mental Disorders, Norwegian Institute of Public Health, P. O. Box 4404 Nydalen, 0403, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kari Stefansson
- deCODE genetics/Amgen, Reykjavík, Iceland.
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland.
| |
Collapse
|
41
|
Sanders SJ, Sahin M, Hostyk J, Thurm A, Jacquemont S, Avillach P, Douard E, Martin CL, Modi ME, Moreno-De-Luca A, Raznahan A, Anticevic A, Dolmetsch R, Feng G, Geschwind DH, Glahn DC, Goldstein DB, Ledbetter DH, Mulle JG, Pasca SP, Samaco R, Sebat J, Pariser A, Lehner T, Gur RE, Bearden CE. A framework for the investigation of rare genetic disorders in neuropsychiatry. Nat Med 2019; 25:1477-1487. [PMID: 31548702 PMCID: PMC8656349 DOI: 10.1038/s41591-019-0581-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 07/31/2019] [Indexed: 02/07/2023]
Abstract
De novo and inherited rare genetic disorders (RGDs) are a major cause of human morbidity, frequently involving neuropsychiatric symptoms. Recent advances in genomic technologies and data sharing have revolutionized the identification and diagnosis of RGDs, presenting an opportunity to elucidate the mechanisms underlying neuropsychiatric disorders by investigating the pathophysiology of high-penetrance genetic risk factors. Here we seek out the best path forward for achieving these goals. We think future research will require consistent approaches across multiple RGDs and developmental stages, involving both the characterization of shared neuropsychiatric dimensions in humans and the identification of neurobiological commonalities in model systems. A coordinated and concerted effort across patients, families, researchers, clinicians and institutions, including rapid and broad sharing of data, is now needed to translate these discoveries into urgently needed therapies.
Collapse
Affiliation(s)
- Stephan J Sanders
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Mustafa Sahin
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Joseph Hostyk
- Institute for Genomic Medicine, Columbia University Medical Center, Hammer Health Sciences, New York, NY, USA
| | - Audrey Thurm
- National Institute of Mental Health, Bethesda, MD, USA
| | - Sebastien Jacquemont
- CHU Sainte-Justine Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Paul Avillach
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Elise Douard
- CHU Sainte-Justine Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Christa L Martin
- Geisinger Autism & Developmental Medicine Institute, Danville, PA, USA
| | - Meera E Modi
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | - Alan Anticevic
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Ricardo Dolmetsch
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Guoping Feng
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel H Geschwind
- Center for Autism Research and Treatment, Semel Institute for Neuroscience and Human Behavior and Departments of Neurology and Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - David C Glahn
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, MA, USA
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Medical Center, Hammer Health Sciences, New York, NY, USA
| | - David H Ledbetter
- Geisinger Autism & Developmental Medicine Institute, Danville, PA, USA
| | - Jennifer G Mulle
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sergiu P Pasca
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA
| | - Rodney Samaco
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jonathan Sebat
- Beyster Center for Genomics of Psychiatric Diseases, University of California, San Diego, La Jolla, CA, USA
| | - Anne Pariser
- National Center for Advancing Translational Sciences, Bethesda, MD, USA
| | - Thomas Lehner
- National Institute of Mental Health, Bethesda, MD, USA
| | - Raquel E Gur
- Department of Psychiatry, Neuropsychiatry Section, and the Lifespan Brain Institute, Perelman School of Medicine and Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA.
| | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
42
|
Crespi BJ. Comparative psychopharmacology of autism and psychotic-affective disorders suggests new targets for treatment. Evol Med Public Health 2019; 2019:149-168. [PMID: 31548888 PMCID: PMC6748779 DOI: 10.1093/emph/eoz022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/07/2019] [Indexed: 12/13/2022] Open
Abstract
The first treatments showing effectiveness for some psychiatric disorders, such as lithium for bipolar disorder and chlorpromazine for schizophrenia, were discovered by accident. Currently, psychiatric drug design is seen as a scientific enterprise, limited though it remains by the complexity of brain development and function. Relatively few novel and effective drugs have, however, been developed for many years. The purpose of this article is to demonstrate how evolutionary biology can provide a useful framework for psychiatric drug development. The framework is based on a diametrical nature of autism, compared with psychotic-affective disorders (mainly schizophrenia, bipolar disorder and depression). This paradigm follows from two inferences: (i) risks and phenotypes of human psychiatric disorders derive from phenotypes that have evolved along the human lineage and (ii) biological variation is bidirectional (e.g. higher vs lower, faster vs slower, etc.), such that dysregulation of psychological traits varies in two opposite ways. In this context, the author review the evidence salient to the hypothesis that autism and psychotic-affective disorders represent diametrical disorders in terms of current, proposed and potential psychopharmacological treatments. Studies of brain-derived neurotrophic factor, the PI3K pathway, the NMDA receptor, kynurenic acid metabolism, agmatine metabolism, levels of the endocannabinoid anandamide, antidepressants, anticonvulsants, antipsychotics, and other treatments, demonstrate evidence of diametric effects in autism spectrum disorders and phenotypes compared with psychotic-affective disorders and phenotypes. These findings yield insights into treatment mechanisms and the development of new pharmacological therapies, as well as providing an explanation for the longstanding puzzle of antagonism between epilepsy and psychosis. Lay Summary: Consideration of autism and schizophrenia as caused by opposite alterations to brain development and function leads to novel suggestions for pharmacological treatments.
Collapse
Affiliation(s)
- Bernard J Crespi
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
43
|
Temporal dynamics of miRNAs in human DLPFC and its association with miRNA dysregulation in schizophrenia. Transl Psychiatry 2019; 9:196. [PMID: 31431609 PMCID: PMC6702224 DOI: 10.1038/s41398-019-0538-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/13/2019] [Accepted: 06/20/2019] [Indexed: 02/07/2023] Open
Abstract
Brain development is dependent on programmed gene expression, which is both genetically and epigenetically regulated. Post-transcriptional regulation of gene expression by microRNAs (miRNAs) is essential for brain development. As abnormal brain development is hypothesized to be associated with schizophrenia, miRNAs are an intriguing target for this disorder. The aims of this study were to determine the temporal dynamics of miRNA expression in the human dorsolateral prefrontal cortex (DLPFC), and the relationship between miRNA's temporal expression pattern and dysregulation in schizophrenia. This study used next-generation sequencing to characterize the temporal dynamics of miRNA expression in the DLPFC of 109 normal subjects (second trimester-74 years of age) and miRNA expression changes in 34 schizophrenia patients. Unlike mRNAs, the majority of which exhibits a wave of change in fetuses, most miRNAs are preferentially expressed during a certain period before puberty. It is noted that in schizophrenia patients, miRNAs normally enriched in infants tend to be upregulated, while those normally enriched in prepuberty tend to be downregulated, and the targets of these miRNAs are enriched for genes encoding synaptic proteins and those associated with schizophrenia. In addition, miR-936 and miR-3162 were found to be increased in the DLPFC of patients with schizophrenia. These findings reveal the temporal dynamics of miRNAs in the human DLPFC, implicate the importance of miRNAs in DLPFC development, and suggest a possible link between schizophrenia and dysregulation of miRNAs enriched in infancy and prepuberty.
Collapse
|
44
|
Hiroi N, Yamauchi T. Modeling and Predicting Developmental Trajectories of Neuropsychiatric Dimensions Associated With Copy Number Variations. Int J Neuropsychopharmacol 2019; 22:488-500. [PMID: 31135887 PMCID: PMC6672556 DOI: 10.1093/ijnp/pyz026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 01/23/2023] Open
Abstract
Copy number variants, such as duplications and hemizygous deletions at chromosomal loci of up to a few million base pairs, are highly associated with psychiatric disorders. Hemizygous deletions at human chromosome 22q11.2 were found to be associated with elevated instances of schizophrenia and autism spectrum disorder in 1992 and 2002, respectively. Following these discoveries, many mouse models have been developed and tested to analyze the effects of gene dose alterations in small chromosomal segments and single genes of 22q11.2. Despite several limitations to modeling mental illness in mice, mouse models have identified several genes on 22q11.2-Tbx1, Dgcr8, Comt, Sept5, and Prodh-that contribute to dimensions of autism spectrum disorder and schizophrenia, including working memory, social communication and interaction, and sensorimotor gating. Mouse studies have identified that heterozygous deletion of Tbx1 results in defective social communication during the neonatal period and social interaction deficits during adolescence/adulthood. Overexpression of Tbx1 or Comt in adult neural progenitor cells in the hippocampus delays the developmental maturation of working memory capacity. Collectively, mouse models of variants of these 4 genes have revealed several potential neuronal mechanisms underlying various aspects of psychiatric disorders, including adult neurogenesis, microRNA processing, catecholamine metabolism, and synaptic transmission. The validity of the mouse data would be ultimately tested when therapies or drugs based on such potential mechanisms are applied to humans.
Collapse
Affiliation(s)
- Noboru Hiroi
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Takahira Yamauchi
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
45
|
Zhang X, Zhang Y, Zhu X, Purmann C, Haney MS, Ward T, Khechaduri A, Yao J, Weissman SM, Urban AE. Local and global chromatin interactions are altered by large genomic deletions associated with human brain development. Nat Commun 2018; 9:5356. [PMID: 30559385 PMCID: PMC6297223 DOI: 10.1038/s41467-018-07766-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 11/09/2018] [Indexed: 01/18/2023] Open
Abstract
Large copy number variants (CNVs) in the human genome are strongly associated with common neurodevelopmental, neuropsychiatric disorders such as schizophrenia and autism. Here we report on the epigenomic effects of the prominent large deletion CNVs on chromosome 22q11.2 and on chromosome 1q21.1. We use Hi-C analysis of long-range chromosome interactions, including haplotype-specific Hi-C analysis, ChIP-Seq analysis of regulatory histone marks, and RNA-Seq analysis of gene expression patterns. We observe changes on all the levels of analysis, within the deletion boundaries, in the deletion flanking regions, along chromosome 22q, and genome wide. We detect gene expression changes as well as pronounced and multilayered effects on chromatin states, chromosome folding and on the topological domains of the chromatin, that emanate from the large CNV locus. These findings suggest basic principles of how such large genomic deletions can alter nuclear organization and affect genomic molecular activity. Copy number variants in the human genome (CNVs) are associated with neurodevelopmental and psychiatric disorders such as schizophrenia and autism. Here the authors investigate how the large deletion CNV on chromosome 22q11.2 alters chromatin organization.
Collapse
Affiliation(s)
- Xianglong Zhang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, 94304, CA, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, 94304, CA, USA
| | - Ying Zhang
- Department of Genetics, Yale University, New Haven, 06520, CT, USA.,Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai & Sema4 NYC Laboratory, New York, 10029, NY, USA
| | - Xiaowei Zhu
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, 94304, CA, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, 94304, CA, USA
| | - Carolin Purmann
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, 94304, CA, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, 94304, CA, USA
| | - Michael S Haney
- Department of Genetics, Stanford University School of Medicine, Stanford, 94304, CA, USA
| | - Thomas Ward
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, 94304, CA, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, 94304, CA, USA
| | - Arineh Khechaduri
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, 94304, CA, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, 94304, CA, USA.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, 98109, WA, USA
| | - Jie Yao
- Department of Cell Biology, Yale University School of Medicine, New Haven, 06520, CT, USA.,Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | | | - Alexander E Urban
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, 94304, CA, USA. .,Department of Genetics, Stanford University School of Medicine, Stanford, 94304, CA, USA.
| |
Collapse
|
46
|
Thomas KT, Gross C, Bassell GJ. microRNAs Sculpt Neuronal Communication in a Tight Balance That Is Lost in Neurological Disease. Front Mol Neurosci 2018; 11:455. [PMID: 30618607 PMCID: PMC6299112 DOI: 10.3389/fnmol.2018.00455] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 11/26/2018] [Indexed: 12/13/2022] Open
Abstract
Since the discovery of the first microRNA 25 years ago, microRNAs (miRNAs) have emerged as critical regulators of gene expression within the mammalian brain. miRNAs are small non-coding RNAs that direct the RNA induced silencing complex to complementary sites on mRNA targets, leading to translational repression and/or mRNA degradation. Within the brain, intra- and extracellular signaling events tune the levels and activities of miRNAs to suit the needs of individual neurons under changing cellular contexts. Conversely, miRNAs shape neuronal communication by regulating the synthesis of proteins that mediate synaptic transmission and other forms of neuronal signaling. Several miRNAs have been shown to be critical for brain function regulating, for example, enduring forms of synaptic plasticity and dendritic morphology. Deficits in miRNA biogenesis have been linked to neurological deficits in humans, and widespread changes in miRNA levels occur in epilepsy, traumatic brain injury, and in response to less dramatic brain insults in rodent models. Manipulation of certain miRNAs can also alter the representation and progression of some of these disorders in rodent models. Recently, microdeletions encompassing MIR137HG, the host gene which encodes the miRNA miR-137, have been linked to autism and intellectual disability, and genome wide association studies have linked this locus to schizophrenia. Recent studies have demonstrated that miR-137 regulates several forms of synaptic plasticity as well as signaling cascades thought to be aberrant in schizophrenia. Together, these studies suggest a mechanism by which miRNA dysregulation might contribute to psychiatric disease and highlight the power of miRNAs to influence the human brain by sculpting communication between neurons.
Collapse
Affiliation(s)
- Kristen T. Thomas
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Christina Gross
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Gary J. Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
47
|
Bahji A, Khalid-Khan S. Episodic Behavioural Regression in an 8-Year-Old Female: Sequelae of 22q11.2 Duplication Syndrome. Case Rep Psychiatry 2018; 2018:1394356. [PMID: 30174976 PMCID: PMC6106909 DOI: 10.1155/2018/1394356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/18/2018] [Accepted: 08/01/2018] [Indexed: 11/20/2022] Open
Abstract
22q11.2 duplication syndrome is a recently discovered genetic syndrome with unclear neuropsychiatric sequelae. While its connection to 22q11.2 deletion syndrome is actively investigated, case reports on the neuropsychiatric sequelae of affected individuals have been previously described, largely focusing on comorbid autism spectrum disorder. Here, we present the case of an 8-year-old female experiencing episodes of severe behavioural regression following medical illness. We analyze the case and relate it to the available literature and identify potential risk factors.
Collapse
Affiliation(s)
- A. Bahji
- Division of Child & Youth Psychiatry, Queen's University, Canada
| | - S. Khalid-Khan
- Division of Child & Youth Psychiatry, Queen's University, Canada
| |
Collapse
|
48
|
Olsen L, Sparsø T, Weinsheimer SM, Dos Santos MBQ, Mazin W, Rosengren A, Sanchez XC, Hoeffding LK, Schmock H, Baekvad-Hansen M, Bybjerg-Grauholm J, Daly MJ, Neale BM, Pedersen MG, Agerbo E, Mors O, Børglum A, Nordentoft M, Hougaard DM, Mortensen PB, Geschwind DH, Pedersen C, Thompson WK, Werge T. Prevalence of rearrangements in the 22q11.2 region and population-based risk of neuropsychiatric and developmental disorders in a Danish population: a case-cohort study. Lancet Psychiatry 2018; 5:573-580. [PMID: 29886042 PMCID: PMC6560180 DOI: 10.1016/s2215-0366(18)30168-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Although the pathogenic nature of copy number variants (CNVs) on chromosome 22q11.2 has been recognised for decades, unbiased estimates of their population prevalence, mortality, disease risks, and diagnostic trajectories are absent. We aimed to provide the true population prevalence of 22q11.2 CNVs and associated trajectory of disease risk and mortality by use of the unbiased, representative Danish iPSYCH population case cohort. METHODS This case-cohort study was done on a population of 86 189 individuals selected from the iPSYCH case cohort of 1 472 762 singletons born in Denmark between May 1, 1981, and Dec 31, 2005, who have a known mother from the Danish Civil Registration System, were residents in Denmark at 1 year of age, and enrolled in the iPSYCH Initiative. We used epidemiological methods in conjunction with nationwide hospital registers to analyse the iPSYCH case cohort of individuals with attention-deficit hyperactivity disorder (ADHD), major depressive disorder, schizophrenia, autism, or bipolar disorder and a random population-based sample. The main outcomes assessed were the population prevalence of 22q11.2 rearrangements, and associated unbiased, population-adjusted estimates and 31-year disease risk trajectories for major neuropsychiatric disorders. FINDINGS Population prevalence in the Danish population was one in 3672 (seven of 25 704 [0·027%; 95% CI 0·012-0·057]) for deletions and one in 1606 (17 of 25 704 [0·066%; 0·040-0·107]) for duplications. Mortality after the age of 1 year among carriers was zero, and hazard ratios for neuropsychiatric disorders ranged from 2·60 to 82·44 for both rearrangements. By the age of 32 years, about 10% of individuals with deletions or duplications had developed ADHD, autism, or intellectual disability, and deletion carriers had higher probability than duplication carriers of co-occurring intellectual disability or epilepsy. INTERPRETATION The significantly different prevalence of 22q11.2 duplications and deletions indicates distinct selective pressures on these rearrangements. Although risk of congenital abnormalities, developmental delay, and intellectual disability is elevated in deletion carriers, the overall prevalence of neuropsychiatric disorders is higher in duplication carriers, which implies that identification and clinical monitoring should extend beyond congenital traits and into child and adolescent psychiatry. FUNDING Capital Region's Research Foundation for Mental Health Research, The Lundbeck Foundation, and US National Institutes of Health.
Collapse
Affiliation(s)
- Line Olsen
- Institute of Biological Psychiatry, Copenhagen Mental Health Services, Roskilde, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark
| | - Thomas Sparsø
- Institute of Biological Psychiatry, Copenhagen Mental Health Services, Roskilde, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark
| | - Shantel M Weinsheimer
- Institute of Biological Psychiatry, Copenhagen Mental Health Services, Roskilde, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark
| | - Marcelo Bertalan Quintanilha Dos Santos
- Institute of Biological Psychiatry, Copenhagen Mental Health Services, Roskilde, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark
| | - Wiktor Mazin
- Institute of Biological Psychiatry, Copenhagen Mental Health Services, Roskilde, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark
| | - Anders Rosengren
- Institute of Biological Psychiatry, Copenhagen Mental Health Services, Roskilde, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark
| | - Xabier Calle Sanchez
- Institute of Biological Psychiatry, Copenhagen Mental Health Services, Roskilde, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark
| | - Louise K Hoeffding
- Institute of Biological Psychiatry, Copenhagen Mental Health Services, Roskilde, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark
| | - Henriette Schmock
- Institute of Biological Psychiatry, Copenhagen Mental Health Services, Roskilde, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark
| | - Marie Baekvad-Hansen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark; Danish Centre for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institute, Copenhagen, Denmark
| | - Jonas Bybjerg-Grauholm
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark; Danish Centre for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institute, Copenhagen, Denmark
| | - Mark J Daly
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research and Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Benjamin M Neale
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research and Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marianne G Pedersen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark; National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark; Centre for Integrated Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Esben Agerbo
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark; National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark; Centre for Integrated Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Ole Mors
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark; Psychosis Research Unit, Aarhus University Hospital, Risskov, Denmark
| | - Anders Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark; Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
| | - Merete Nordentoft
- Mental Health Center Copenhagen, Copenhagen Mental Health Services, Roskilde, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - David M Hougaard
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark; Danish Centre for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institute, Copenhagen, Denmark
| | - Preben Bo Mortensen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark; National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark; Centre for Integrated Register-Based Research, Aarhus University, Aarhus, Denmark; Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
| | - Daniel H Geschwind
- Department of Human Genetics, Department of Psychiatry, Center for Neurobehavioral Genetics, and Neurogenetics Program, Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Carsten Pedersen
- Mental Health Center Copenhagen, Copenhagen Mental Health Services, Roskilde, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Wesley K Thompson
- Institute of Biological Psychiatry, Copenhagen Mental Health Services, Roskilde, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark; Department of Family Medicine and Public Health, University of California, San Diego, CA, USA
| | - Thomas Werge
- Institute of Biological Psychiatry, Copenhagen Mental Health Services, Roskilde, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
49
|
Fabbri C, Serretti A. 22q11.2 rearrangements: clinical and research implications of population-based risk of neuropsychiatric and developmental disorders. Lancet Psychiatry 2018; 5:531-532. [PMID: 29886043 DOI: 10.1016/s2215-0366(18)30181-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 10/14/2022]
Affiliation(s)
- Chiara Fabbri
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy; Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Alessandro Serretti
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
50
|
Avramopoulos D. Recent Advances in the Genetics of Schizophrenia. MOLECULAR NEUROPSYCHIATRY 2018; 4:35-51. [PMID: 29998117 PMCID: PMC6032037 DOI: 10.1159/000488679] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/21/2018] [Indexed: 12/27/2022]
Abstract
The last decade brought tremendous progress in the field of schizophrenia genetics. As a result of extensive collaborations and multiple technological advances, we now recognize many types of genetic variants that increase the risk. These include large copy number variants, rare coding inherited and de novο variants, and over 100 loci harboring common risk variants. While the type and contribution to the risk vary among genetic variants, there is concordance in the functions of genes they implicate, such as those whose RNA binds the fragile X-related protein FMRP and members of the activity-regulated cytoskeletal complex involved in learning and memory. Gene expression studies add important information on the biology of the disease and recapitulate the same functional gene groups. Studies of alternative phenotypes help us widen our understanding of the genetic architecture of mental function and dysfunction, how diseases overlap not only with each other but also with non-disease phenotypes. The challenge is to apply this new knowledge to prevention and treatment and help patients. The data generated so far and emerging technologies, including new methods in cell engineering, offer significant promise that in the next decade we will unlock the translational potential of these significant discoveries.
Collapse
Affiliation(s)
- Dimitrios Avramopoulos
- Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Psychiatry, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|