1
|
Men J, Wang X, Zhou Y, Huang Y, Zheng Y, Wang Y, Yang S, Chen N, Yan N, Duan X. Neurodegenerative diseases: Epigenetic regulatory mechanisms and therapeutic potential. Cell Signal 2025; 131:111715. [PMID: 40089090 DOI: 10.1016/j.cellsig.2025.111715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/17/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
Neurodegenerative diseases (NDDs) are a class of diseases in which the progressive loss of subtype-specific neurons leads to dysfunction. NDDs include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), among others. Previous studies have demonstrated that the pathogenesis of NDDs involves various mechanisms, including genetic factors, oxidative stress, apoptosis, and the immune response. Recent studies have shown that epigenetic regulation mediates the interactions between DNA methylation, chromatin remodeling, histone modification, and non-coding RNAs, thus affecting gene transcription. A growing body of research links epigenetic modifications to crucial pathways involved in the occurrence and development of NDDs. Epigenetics has also been found to regulate and maintain nervous system function, and its imbalance is closely related to the occurrence and development of NDDs. The present review summarizes focuses on the role of epigenetic modifications in the pathogenesis of NDDs and provides an overview of the key genes regulated by DNA methylation, histone modification, and non-coding RNAs in NDDs. Further, the current research status of epigenetics in NDDs is summarized and the potential application of epigenetics in the clinical diagnosis and treatment of NDDs is discussed.
Collapse
Affiliation(s)
- Jianbing Men
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang 110034, PR China
| | - Xinyue Wang
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang 110034, PR China
| | - Yunnuo Zhou
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang 110034, PR China
| | - Yumeng Huang
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang 110034, PR China
| | - Yue Zheng
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang 110034, PR China
| | - Yingze Wang
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang 110034, PR China
| | - Shuang Yang
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang 110034, PR China
| | - Nan Chen
- Liaoning Provincial Health Service Center,Shenyang 110034, PR China
| | - Nan Yan
- Department of Medical Applied Technology, Shenyang Medical College, Shenyang 110034, PR China.
| | - Xiaoxu Duan
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang 110034, PR China.
| |
Collapse
|
2
|
Chong ZZ, Souayah N. Targeting Gene C9orf72 Pathogenesis for Amyotrophic Lateral Sclerosis. Int J Mol Sci 2025; 26:4276. [PMID: 40362512 PMCID: PMC12072292 DOI: 10.3390/ijms26094276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/23/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal adult neurodegenerative disorder. Since no cure has been found, finding effective therapeutic targets for ALS remains a major challenge. Gene C9orf72 mutations with the formation of hexanucleotide repeat (GGGGCC) expansion (HRE) have been considered the most common genetic pathogenesis of ALS. The literature review indicates that the C9orf72 HRE causes both the gain-of-function toxicity and loss of function of C9ORF72. The formation of RNA foci and dipeptide repeats (DPRs) resulting from HRE is responsible for toxic function gain. The RNA foci can interfere with RNA processing, while DPRs directly bind to and sequester associated proteins to disrupt processes of rRNA synthesis, mRNA translation, autophagy, and nucleocytoplasmic transport. The mutations of C9orf72 and HRE result in the loss of functional C9ORF72. Under physiological conditions, C9ORF72 binds to Smith-Magenis chromosome region 8 and WD repeat-containing protein and forms a protein complex. Loss of C9ORF72 leads to autophagic impairment, increased oxidative stress, nucleocytoplasmic transport impairment, and inflammatory response. The attempted treatments for ALS have been tried by targeting C9orf72 HRE; however, the outcomes are far from satisfactory yet. More studies should be performed on pharmacological and molecular modulators against C9orf72 HRE to evaluate their efficacy by targeting HRE.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Department of Neurology, New Jersey Medical School, Rutgers University, 185 S Orange, Newark, NJ 07103, USA
| | - Nizar Souayah
- Department of Neurology, New Jersey Medical School, Rutgers University, 90 Bergen Street DOC 8100, Newark, NJ 07101, USA
| |
Collapse
|
3
|
Pagano L, Lagrotteria D, Facconi A, Saraceno C, Longobardi A, Bellini S, Ingannato A, Bagnoli S, Ducci T, Mingrino A, Laganà V, Paparazzo E, Borroni B, Maletta R, Nacmias B, Montesanto A, Ghidoni R. Evaluation of Illumina and Oxford Nanopore Sequencing for the Study of DNA Methylation in Alzheimer's Disease and Frontotemporal Dementia. Int J Mol Sci 2025; 26:4198. [PMID: 40362435 PMCID: PMC12071509 DOI: 10.3390/ijms26094198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
DNA methylation is a critical epigenetic mechanism involved in numerous physiological processes. Alterations in DNA methylation patterns are associated with various brain disorders, including dementias such as Alzheimer's disease (AD) and frontotemporal dementia (FTD). Investigating these alterations is essential for understanding the pathogenesis and progression of these disorders. Among the various methods for detecting DNA methylation, DNA sequencing is one of the most widely employed. Specifically, two main sequencing approaches are commonly used for DNA methylation analysis: bisulfite sequencing and single-molecule long-read sequencing. In this review, we compared the performances of CpG methylation detection obtained using two popular sequencing platforms, Illumina for bisulfite sequencing and Oxford Nanopore (ON) for long-read sequencing. Our comparison considers several factors, including accuracy, efficiency, genomic regions, costs, wet-lab protocols, and bioinformatics pipelines. We provide insights into the strengths and limitations of both methods with a particular focus on their application in research on AD and FTD.
Collapse
Affiliation(s)
- Lorenzo Pagano
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (L.P.); (A.F.); (C.S.); (A.L.); (S.B.); (B.B.)
| | - Davide Lagrotteria
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (D.L.); (E.P.); (A.M.)
| | - Alessandro Facconi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (L.P.); (A.F.); (C.S.); (A.L.); (S.B.); (B.B.)
| | - Claudia Saraceno
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (L.P.); (A.F.); (C.S.); (A.L.); (S.B.); (B.B.)
| | - Antonio Longobardi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (L.P.); (A.F.); (C.S.); (A.L.); (S.B.); (B.B.)
| | - Sonia Bellini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (L.P.); (A.F.); (C.S.); (A.L.); (S.B.); (B.B.)
| | - Assunta Ingannato
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, 50139 Florence, Italy; (A.I.); (S.B.); (B.N.)
- IRCCS Fondazione Don Carlo Gnocchi, 50143 Florence, Italy
| | - Silvia Bagnoli
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, 50139 Florence, Italy; (A.I.); (S.B.); (B.N.)
- IRCCS Fondazione Don Carlo Gnocchi, 50143 Florence, Italy
| | - Tommaso Ducci
- Azienda Ospedaliero-Universitaria Careggi SOD Neurologia 1, 50100 Florence, Italy; (T.D.); (A.M.)
| | - Alessandra Mingrino
- Azienda Ospedaliero-Universitaria Careggi SOD Neurologia 1, 50100 Florence, Italy; (T.D.); (A.M.)
| | - Valentina Laganà
- Regional Neurogenetic Centre (CRN), Department of Primary Care, ASP Catanzaro, 88046 Lamezia Terme, Italy; (V.L.); (R.M.)
| | - Ersilia Paparazzo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (D.L.); (E.P.); (A.M.)
| | - Barbara Borroni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (L.P.); (A.F.); (C.S.); (A.L.); (S.B.); (B.B.)
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Raffaele Maletta
- Regional Neurogenetic Centre (CRN), Department of Primary Care, ASP Catanzaro, 88046 Lamezia Terme, Italy; (V.L.); (R.M.)
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, 50139 Florence, Italy; (A.I.); (S.B.); (B.N.)
- IRCCS Fondazione Don Carlo Gnocchi, 50143 Florence, Italy
| | - Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (D.L.); (E.P.); (A.M.)
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (L.P.); (A.F.); (C.S.); (A.L.); (S.B.); (B.B.)
| |
Collapse
|
4
|
Ramesh N, Evans A, Wojta K, Yang Z, Boks MM, Kahn RS, de Boer SCM, van der Lee SJ, Pijnenburg YAL, Reus LM, Ophoff RA. Accurate DNA Methylation Predictor for C9orf72 Repeat Expansion Alleles in the Pathogenic Range. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.643775. [PMID: 40196659 PMCID: PMC11974722 DOI: 10.1101/2025.03.20.643775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The hexanucleotide (G 4 C 2 ) repeat expansion in the promoter region of C9orf72 is the most frequent genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). In this study, we conducted a genome-wide DNA methylation (DNAm) analysis using EPIC version 2 (EPICv2) arrays on an FTD cohort comprising 27 carriers and 250 non-carriers of the pathogenic C9orf72 repeat expansion from the Amsterdam Dementia Cohort. We identified differentially methylated CpGs probes associated with the pathogenic C9orf72 expansion and used these findings to create a DNAm Least Absolute Shrinkage and Selection Operator (LASSO) predictor to identify repeat expansion carriers. Eight CpG sites at the C9orf72 locus were significantly differentially hypermethylated in repeat expansion carriers compared to non-carriers. The LASSO model predicted repeat expansion status with an average accuracy of 98.6%. The LASSO predictor was further validated in an independent cohort of 2,548 subjects with available EPICv2 data, identifying four C9orf72 repeat expansion carriers, subsequently confirmed by repeat-primed PCR. This result not only illustrates the accuracy of the DNAm predictor of C9orf72 repeat expansion carriers but also suggests that repeat expansion carriers may be more prevalent than expected. The identification of a highly accurate DNAm biomarker for a repeat expansion locus associated with neurodegenerative disorders may provide great value for studying this locus. The approach holds significant promise for investigating this and other repeat expansion loci, particularly given the growing interest in epigenetic epidemiological studies involving large cohorts with available DNAm data. Graphical abstract optional
Collapse
|
5
|
Al-Abri R, Gürsoy G. ScatTR: Estimating the Size of Long Tandem Repeat Expansions from Short-Reads. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.15.638440. [PMID: 40027646 PMCID: PMC11870476 DOI: 10.1101/2025.02.15.638440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Tandem repeats (TRs) are sequences of DNA where two or more base pairs are repeated back-to-back at specific locations in the genome. The expansions of TRs are implicated in over 50 conditions, including Friedreich's ataxia, autism, and cancer. However, accurately measuring the copy number of TRs is challenging, especially when their expansions are larger than the fragment sizes used in standard short-read genome sequencing. Here we introduce ScatTR, a novel computational method that leverages a maximum likelihood framework to estimate the copy number of large TR expansions from short-read sequencing data. ScatTR calculates the likelihood of different alignments between sequencing reads and reference sequences that represent various TR lengths and employs a Monte Carlo technique to find the best match. In simulated data, ScatTR outperforms state-of-the-art methods, particularly for TRs with longer motifs and those with lengths that greatly exceed typical sequencing fragment sizes. When applied to data from the 1000 Genomes Project, ScatTR detected potential large TR expansions that other methods missed, highlighting its ability to better identify genome-wide characterization of TR variation. ScatTR can be accessed via: https://github.com/g2lab/scattr .
Collapse
|
6
|
Udine E, Finch NA, DeJesus-Hernandez M, Jackson JL, Baker MC, Saravanaperumal SA, Wieben E, Ebbert MTW, Shah J, Petrucelli L, Rademakers R, Oskarsson B, van Blitterswijk M. Targeted long-read sequencing to quantify methylation of the C9orf72 repeat expansion. Mol Neurodegener 2024; 19:99. [PMID: 39709476 DOI: 10.1186/s13024-024-00790-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND The gene C9orf72 harbors a non-coding hexanucleotide repeat expansion known to cause amyotrophic lateral sclerosis and frontotemporal dementia. While previous studies have estimated the length of this repeat expansion in multiple tissues, technological limitations have impeded researchers from exploring additional features, such as methylation levels. METHODS We aimed to characterize C9orf72 repeat expansions using a targeted, amplification-free long-read sequencing method. Our primary goal was to determine the presence and subsequent quantification of observed methylation in the C9orf72 repeat expansion. In addition, we measured the repeat length and purity of the expansion. To do this, we sequenced DNA extracted from blood for 27 individuals with an expanded C9orf72 repeat. RESULTS For these individuals, we obtained a total of 7,765 on-target reads, including 1,612 fully covering the expanded allele. Our in-depth analysis revealed that the expansion itself is methylated, with great variability in total methylation levels observed, as represented by the proportion of methylated CpGs (13 to 66%). Interestingly, we demonstrated that the expanded allele is more highly methylated than the wild-type allele (P-Value = 2.76E-05) and that increased methylation levels are observed in longer repeat expansions (P-Value = 1.18E-04). Furthermore, methylation levels correlate with age at collection (P-Value = 3.25E-04) as well as age at disease onset (P-Value = 0.020). Additionally, we detected repeat lengths up to 4,088 repeats (~ 25 kb) and found that the expansion contains few interruptions in the blood. CONCLUSIONS Taken together, our study demonstrates robust ability to quantify methylation of the expanded C9orf72 repeat, capturing differences between individuals harboring this expansion and revealing clinical associations.
Collapse
Affiliation(s)
- Evan Udine
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - NiCole A Finch
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Jazmyne L Jackson
- Fels Cancer Institute for Personalized Medicine, Temple University, Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Matthew C Baker
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Eric Wieben
- Genome Analysis Core, Mayo Clinic, Rochester, MN, USA
| | - Mark T W Ebbert
- Department of Neuroscience, University of Kentucky Sanders-Brown Center on Aging, Lexington, KY, USA
| | - Jaimin Shah
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- VIB Center for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Science, University of Antwerp, Antwerp, Belgium
| | | | - Marka van Blitterswijk
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
7
|
Mirceta M, Schmidt MHM, Shum N, Prasolava TK, Meikle B, Lanni S, Mohiuddin M, Mckeever PM, Zhang M, Liang M, van der Werf I, Scheers S, Dion PA, Wang P, Wilson MD, Abell T, Philips EA, Sznajder ŁJ, Swanson MS, Mehkary M, Khan M, Yokoi K, Jung C, de Jong PJ, Freudenreich CH, McGoldrick P, Yuen RKC, Abrahão A, Keith J, Zinman L, Robertson J, Rogaeva E, Rouleau GA, Kooy RF, Pearson CE. C9orf72 expansion creates the unstable folate-sensitive fragile site FRA9A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.26.620312. [PMID: 39569145 PMCID: PMC11577248 DOI: 10.1101/2024.10.26.620312] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The hyper-unstable Chr9p21 locus, harbouring the interferon gene cluster, oncogenes and C9orf72, is linked to multiple diseases. C9orf72 (GGGGCC)n expansions ( C9orf72 Exp) are associated with incompletely penetrant amyotrophic lateral sclerosis, frontotemporal dementia and autoimmune disorders. C9orf72 Exp patients display hyperactive cGAS-STING-linked interferon immune and DNA damage responses, but the source of immuno-stimulatory or damaged DNA is unknown. Here, we show C9orf72 Exp in pre-symptomatic and ALS-FTD patient cells and brains cause the folate-sensitive chromosomal fragile site, FRA9A. FRA9A centers on >33kb of C9orf72 as highly-compacted chromatin embedded in an 8.2Mb fragility zone spanning 9p21, encompassing 46 genes, making FRA9A one of the largest fragile sites. C9orf72 Exp cells show chromosomal instability, heightened global- and Chr9p-enriched sister-chromatid exchanges, truncated-Chr9s, acentric-Chr9s and Chr9-containing micronuclei, providing endogenous sources of damaged and immunostimulatory DNA. Cells from one C9orf72 Exp patient contained highly-rearranged FRA9A-expressing Chr9 with Chr9-wide dysregulated gene expression. Somatic C9orf72 Exp repeat instability and chromosomal fragility are sensitive to folate-deficiency. Age-dependent repeat instability, chromosomal fragility, and chromosomal instability can be transferred to CNS and peripheral tissues of transgenic C9orf72 Exp mice, implicating C9orf72 Exp as the source. Our results highlight unappreciated effects of C9orf72 expansions that trigger vitamin-sensitive chromosome fragility, adding structural variations to the disease-enriched 9p21 locus, and likely elsewhere.
Collapse
|
8
|
de Calbiac H, Renault S, Haouy G, Jung V, Roger K, Zhou Q, Campanari ML, Chentout L, Demy DL, Marian A, Goudin N, Edbauer D, Guerrera C, Ciura S, Kabashi E. Poly-GP accumulation due to C9orf72 loss of function induces motor neuron apoptosis through autophagy and mitophagy defects. Autophagy 2024; 20:2164-2185. [PMID: 39316747 PMCID: PMC11423671 DOI: 10.1080/15548627.2024.2358736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 09/26/2024] Open
Abstract
The GGGGCC hexanucleotide repeat expansion (HRE) of the C9orf72 gene is the most frequent cause of amyotrophic lateral sclerosis (ALS), a devastative neurodegenerative disease characterized by motor neuron degeneration. C9orf72 HRE is associated with lowered levels of C9orf72 expression and its translation results in the production of dipeptide-repeats (DPRs). To recapitulate C9orf72-related ALS disease in vivo, we developed a zebrafish model where we expressed glycine-proline (GP) DPR in a c9orf72 knockdown context. We report that C9orf72 gain- and loss-of-function properties act synergistically to induce motor neuron degeneration and paralysis with poly(GP) accumulating preferentially within motor neurons along with Sqstm1/p62 aggregation indicating macroautophagy/autophagy deficits. Poly(GP) levels were shown to accumulate upon c9orf72 downregulation and were comparable to levels assessed in autopsy samples of patients carrying C9orf72 HRE. Chemical boosting of autophagy using rapamycin or apilimod, is able to rescue motor deficits. Proteomics analysis of zebrafish-purified motor neurons unravels mitochondria dysfunction confirmed through a comparative analysis of previously published C9orf72 iPSC-derived motor neurons. Consistently, 3D-reconstructions of motor neuron demonstrate that poly(GP) aggregates colocalize to mitochondria, thus inducing their elongation and swelling and the failure of their processing by mitophagy, with mitophagy activation through urolithin A preventing locomotor deficits. Finally, we report apoptotic-related increased amounts of cleaved Casp3 (caspase 3, apoptosis-related cysteine peptidase) and rescue of motor neuron degeneration by constitutive inhibition of Casp9 or treatment with decylubiquinone. Here we provide evidence of key pathogenic steps in C9ALS-FTD that can be targeted through pharmacological avenues, thus raising new therapeutic perspectives for ALS patients.
Collapse
Affiliation(s)
- Hortense de Calbiac
- Imagine Institute, INSERM UMR 1163, Team Translational Research for Neurological Diseases, Paris Descartes University, Paris, France
| | - Solène Renault
- Imagine Institute, INSERM UMR 1163, Team Translational Research for Neurological Diseases, Paris Descartes University, Paris, France
| | - Grégoire Haouy
- Imagine Institute, INSERM UMR 1163, Team Translational Research for Neurological Diseases, Paris Descartes University, Paris, France
| | - Vincent Jung
- Proteomics Platform 3P5Necker, INSERM US24/CNRS UMS, Paris Descartes University, Structure Fédérative de Recherche Necker, Paris, France
| | - Kevin Roger
- Proteomics Platform 3P5Necker, INSERM US24/CNRS UMS, Paris Descartes University, Structure Fédérative de Recherche Necker, Paris, France
| | - Qihui Zhou
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (Synergy), Munich, Germany
| | - Maria-Letizia Campanari
- Imagine Institute, INSERM UMR 1163, Team Translational Research for Neurological Diseases, Paris Descartes University, Paris, France
| | - Loïc Chentout
- Imagine Institute, INSERM UMR 1163, Team Translational Research for Neurological Diseases, Paris Descartes University, Paris, France
| | - Doris Lou Demy
- Imagine Institute, INSERM UMR 1163, Team Translational Research for Neurological Diseases, Paris Descartes University, Paris, France
| | - Anca Marian
- Imagine Institute, INSERM UMR 1163, Team Translational Research for Neurological Diseases, Paris Descartes University, Paris, France
| | - Nicolas Goudin
- Imaging Core Facility, INSERM US24/CNRS UMS3633, Paris, France
| | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (Synergy), Munich, Germany
- Ludwig-Maximilians-Universität (LMU) Munich, Graduate School of Systemic Neurosciences (GSN), Munich, Germany
| | - Chiara Guerrera
- Proteomics Platform 3P5Necker, INSERM US24/CNRS UMS, Paris Descartes University, Structure Fédérative de Recherche Necker, Paris, France
| | - Sorana Ciura
- Imagine Institute, INSERM UMR 1163, Team Translational Research for Neurological Diseases, Paris Descartes University, Paris, France
| | - Edor Kabashi
- Imagine Institute, INSERM UMR 1163, Team Translational Research for Neurological Diseases, Paris Descartes University, Paris, France
| |
Collapse
|
9
|
Mirceta M, Schmidt MM, Shum N, Prasolava T, Meikle B, Lanni S, Mohiuddin M, McKeever P, Zhang M, Liang M, van der Werf I, Scheers S, Dion P, Wang P, Wilson M, Abell T, Philips E, Sznajder Ł, Swanson M, Mehkary M, Khan M, Yokoi K, Jung C, de Jong P, Freudenreich C, McGoldrick P, Yuen RC, Abrahão A, Keith J, Zinman L, Robertson J, Rogaeva E, Rouleau G, Kooy R, Pearson C. C9orf72 repeat expansion creates the unstable folate-sensitive fragile site FRA9A. NAR MOLECULAR MEDICINE 2024; 1:ugae019. [PMID: 39669124 PMCID: PMC11632612 DOI: 10.1093/narmme/ugae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024]
Abstract
The hyper-unstable Chr9p21 locus, harbouring the interferon gene cluster, oncogenes and C9orf72, is linked to multiple diseases. C9orf72 (GGGGCC)n expansions (C9orf72Exp) are associated with incompletely penetrant amyotrophic lateral sclerosis, frontotemporal dementia and autoimmune disorders. C9orf72Exp patients display hyperactive cGAS-STING-linked interferon immune and DNA damage responses, but the source of immunostimulatory or damaged DNA is unknown. Here, we show C9orf72Exp in pre-symptomatic and amyotrophic lateral sclerosis-frontotemporal dementia patient cells and brains cause the folate-sensitive chromosomal fragile site, FRA9A. FRA9A centers on >33 kb of C9orf72 as highly compacted chromatin embedded in an 8.2 Mb fragility zone spanning 9p21, encompassing 46 genes, making FRA9A one of the largest fragile sites. C9orf72Exp cells show chromosomal instability, heightened global- and Chr9p-enriched sister-chromatid exchanges, truncated-Chr9s, acentric-Chr9s and Chr9-containing micronuclei, providing endogenous sources of damaged and immunostimulatory DNA. Cells from one C9orf72Exp patient contained a highly rearranged FRA9A-expressing Chr9 with Chr9-wide dysregulated gene expression. Somatic C9orf72Exp repeat instability and chromosomal fragility are sensitive to folate deficiency. Age-dependent repeat instability, chromosomal fragility and chromosomal instability can be transferred to CNS and peripheral tissues of transgenic C9orf72Exp mice, implicating C9orf72Exp as the source. Our results highlight unappreciated effects of C9orf72 expansions that trigger vitamin-sensitive chromosome fragility, adding structural variations to the disease-enriched 9p21 locus, and likely elsewhere.
Collapse
Affiliation(s)
- Mila Mirceta
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Monika H M Schmidt
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Natalie Shum
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Tanya K Prasolava
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
| | - Bryanna Meikle
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Stella Lanni
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
| | - Mohiuddin Mohiuddin
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
| | - Paul M McKeever
- Tanz Centre for Research of Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, M5T 2S8, Canada
| | - Ming Zhang
- Tanz Centre for Research of Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, M5T 2S8, Canada
- The First Rehabilitation Hospital of Shanghai, Department of Medical Genetics, School of Medicine, Tongji University, Shanghai, 200090, China
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Advanced Study, Tongji University, Shanghai, 200092, China
| | - Minggao Liang
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | | | - Stefaan Scheers
- Department of Medical Genetics, University of Antwerp, Belgium
| | - Patrick A Dion
- Montreal Neurological Institute-Hospital, McGill University, 3801 University Avenue, Montreal, Quebec, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, 3801 University Avenue, Montreal, Quebec, H3A 2B4, Canada
| | - Peixiang Wang
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
| | - Michael D Wilson
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Theresa Abell
- Department of Biology, Tufts University, 200 Boston Avenue, Medford, MA 02155, USA
| | - Elliot A Philips
- Department of Biology, Tufts University, 200 Boston Avenue, Medford, MA 02155, USA
| | - Łukasz J Sznajder
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, College of Medicine, University of Florida, 2033 Mowry Road, Gainesville, FL 32610-3610, USA
- Department of Chemistry and Biochemistry, University of Nevada, 4003-4505 South Maryland Parkway, Las Vegas, NV 89154, USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, College of Medicine, University of Florida, 2033 Mowry Road, Gainesville, FL 32610-3610, USA
| | - Mustafa Mehkary
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Mahreen Khan
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Katsuyuki Yokoi
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
| | - Christine Jung
- BACPAC Resource Center, Children’s Hospital Oakland Research Institute, 25129 NE 42nd Pl, Redmond, WA 98053, USA
| | - Pieter J de Jong
- BACPAC Resource Center, Children’s Hospital Oakland Research Institute, 25129 NE 42nd Pl, Redmond, WA 98053, USA
| | | | - Philip McGoldrick
- Tanz Centre for Research of Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, M5T 2S8, Canada
| | - Ryan K C Yuen
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Agessandro Abrahão
- Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, North York, Toronto, ON, M4N 3M5, Canada
| | - Julia Keith
- Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, North York, Toronto, ON, M4N 3M5, Canada
| | - Lorne Zinman
- Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, North York, Toronto, ON, M4N 3M5, Canada
| | - Janice Robertson
- Tanz Centre for Research of Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, M5T 2S8, Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research of Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, M5T 2S8, Canada
| | - Guy A Rouleau
- Montreal Neurological Institute-Hospital, McGill University, 3801 University Avenue, Montreal, Quebec, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, 3801 University Avenue, Montreal, Quebec, H3A 2B4, Canada
- Department of Human Genetics, McGill University, 3801 University Avenue, Montreal, Quebec, H3A 2B4, Canada
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Belgium
| | - Christopher E Pearson
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| |
Collapse
|
10
|
Coppedè F. DNA methylation in amyotrophic lateral sclerosis: where do we stand and what is next? Epigenomics 2024; 16:1185-1196. [PMID: 39258797 PMCID: PMC11457677 DOI: 10.1080/17501911.2024.2394380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/16/2024] [Indexed: 09/12/2024] Open
Abstract
Genes involved in immune response, inflammation and metabolism are among those most likely affected by changes in DNA methylation (DNAm) and expression levels in amyotrophic lateral sclerosis (ALS) tissues. Unfortunately, it is still largely unclear whether any of these changes precede the onset of disease symptoms or whether most of them are the result of the muscular and metabolic changes that follow symptoms onset. In this article the author discusses the strengths and limitations of the available studies of DNAm in ALS and provides some suggestions on what, in his opinion, could be done in the near future for a better understanding of the DNAm changes occurring in ALS, their link with environmental exposures and their potential clinical utility.
Collapse
Affiliation(s)
- Fabio Coppedè
- Department of Translational Research & of New Surgical & Medical Technologies, University of Pisa, Pisa, 56126, Italy
- Interdepartmental Research Center of Biology & Pathology of Aging, University of Pisa, Pisa, 56126, Italy
| |
Collapse
|
11
|
Steffke C, Agarwal S, Kabashi E, Catanese A. Overexpression of Toxic Poly(Glycine-Alanine) Aggregates in Primary Neuronal Cultures Induces Time-Dependent Autophagic and Synaptic Alterations but Subtle Activity Impairments. Cells 2024; 13:1300. [PMID: 39120329 PMCID: PMC11311834 DOI: 10.3390/cells13151300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
The pathogenic expansion of the intronic GGGGCC hexanucleotide located in the non-coding region of the C9orf72 gene represents the most frequent genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). This mutation leads to the accumulation of toxic RNA foci and dipeptide repeats (DPRs), as well as reduced levels of the C9orf72 protein. Thus, both gain and loss of function are coexisting pathogenic aspects linked to C9orf72-ALS/FTD. Synaptic alterations have been largely described in C9orf72 models, but it is still not clear which aspect of the pathology mostly contributes to these impairments. To address this question, we investigated the dynamic changes occurring over time at the synapse upon accumulation of poly(GA), the most abundant DPR. Overexpression of this toxic form induced a drastic loss of synaptic proteins in primary neuron cultures, anticipating autophagic defects. Surprisingly, the dramatic impairment characterizing the synaptic proteome was not fully matched by changes in network properties. In fact, high-density multi-electrode array analysis highlighted only minor reductions in the spike number and firing rate of poly(GA) neurons. Our data show that the toxic gain of function linked to C9orf72 affects the synaptic proteome but exerts only minor effects on the network activity.
Collapse
Affiliation(s)
- Christina Steffke
- Institute of Anatomy and Cell Biology, University of Ulm, 89069 Ulm, Germany; (C.S.); (S.A.)
- Department of Neurology, University of Ulm, 89069 Ulm, Germany
- International Graduate School in Molecular Medicine of Ulm (IGraDU), University of Ulm, 89069 Ulm, Germany
| | - Shreya Agarwal
- Institute of Anatomy and Cell Biology, University of Ulm, 89069 Ulm, Germany; (C.S.); (S.A.)
| | - Edor Kabashi
- Institute Imagine, Necker-Enfants Malades Hospital, University Paris Descartes, 75015 Paris, France;
| | - Alberto Catanese
- Institute of Anatomy and Cell Biology, University of Ulm, 89069 Ulm, Germany; (C.S.); (S.A.)
- Institute Imagine, Necker-Enfants Malades Hospital, University Paris Descartes, 75015 Paris, France;
| |
Collapse
|
12
|
R K Roy A, Noohi F, Morris NA, Ljubenkov P, Heuer H, Fong J, Hall M, Lario Lago A, Rankin KP, Miller BL, Boxer AL, Rosen HJ, Seeley WW, Perry DC, Yokoyama JS, Lee SE, Sturm VE. Basal parasympathetic deficits in C9orf72 hexanucleotide repeat expansion carriers relate to smaller frontoinsula and thalamus volume and lower empathy. Neuroimage Clin 2024; 43:103649. [PMID: 39098187 PMCID: PMC11342757 DOI: 10.1016/j.nicl.2024.103649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
Diminished basal parasympathetic nervous system activity is a feature of frontotemporal dementia that relates to left frontoinsula dysfunction and empathy impairment. Individuals with a pathogenic expansion of the hexanucleotide repeat in chromosome 9 open reading frame 72 (C9orf72), the most common genetic cause of frontotemporal dementia and amyotrophic lateral sclerosis, provide a unique opportunity to examine whether parasympathetic activity is disrupted in genetic forms of frontotemporal dementia and to investigate when parasympathetic deficits manifest in the pathophysiological cascade. We measured baseline respiratory sinus arrhythmia, a parasympathetic measure of heart rate variability, over two minutes in a sample of 102 participants that included 19 asymptomatic expansion carriers (C9+ asymp), 14 expansion carriers with mild cognitive impairment (C9+ MCI), 16 symptomatic expansion carriers with frontotemporal dementia (C9+ FTD), and 53 expansion-negative healthy controls (C9- HC) who also underwent structural magnetic resonance imaging. In follow-up analyses, we compared baseline respiratory sinus arrhythmia in the C9+ FTD group with an independent age-, sex-, and clinical severity-matched group of 26 people with sporadic behavioral variant frontotemporal dementia. The Frontotemporal Lobar Degeneration-modified Clinical Dementia Rating-Sum of Boxes score was used to quantify behavioral symptom severity, and informant ratings on the Interpersonal Reactivity Index provided measures of participants' current emotional (empathic concern) and cognitive (perspective-taking) empathy. Results indicated that the C9+ FTD group had lower baseline respiratory sinus arrhythmia than the C9+ MCI, C9+ asymp, and C9- HC groups, a deficit that was comparable to that of sporadic behavioral variant frontotemporal dementia. Linear regression analyses indicated that lower baseline respiratory sinus arrhythmia was associated with worse behavioral symptom severity and lower empathic concern and perspective-taking across the C9orf72 expansion carrier clinical spectrum. Whole-brain voxel-based morphometry analyses in participants with C9orf72 pathogenic expansions found that lower baseline respiratory sinus arrhythmia correlated with smaller gray matter volume in the left frontoinsula and bilateral thalamus, key structures that support parasympathetic function, and in the bilateral parietal lobes, occipital lobes, and cerebellum, regions that are also vulnerable in individuals with C9orf72 expansions. This study provides novel evidence that basal parasympathetic functioning is diminished in FTD due to C9orf72 expansions and suggests that baseline respiratory sinus arrhythmia may be a potential non-invasive biomarker that is sensitive to behavioral symptoms in the early stages of disease.
Collapse
Affiliation(s)
- Ashlin R K Roy
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Fate Noohi
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Nathaniel A Morris
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Peter Ljubenkov
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Hilary Heuer
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Jamie Fong
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Matthew Hall
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | | | - Katherine P Rankin
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Bruce L Miller
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Adam L Boxer
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Howard J Rosen
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - William W Seeley
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - David C Perry
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Jennifer S Yokoyama
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Suzee E Lee
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Virginia E Sturm
- Department of Neurology, University of California, San Francisco, CA 94158, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
13
|
Kojak N, Kuno J, Fittipaldi KE, Khan A, Wenger D, Glasser M, Donnianni RA, Tang Y, Zhang J, Huling K, Ally R, Mujica AO, Turner T, Magardino G, Huang PY, Kerk SY, Droguett G, Prissette M, Rojas J, Gomez T, Gagliardi A, Hunt C, Rabinowitz JS, Gong G, Poueymirou W, Chiao E, Zambrowicz B, Siao CJ, Kajimura D. Somatic and intergenerational G4C2 hexanucleotide repeat instability in a human C9orf72 knock-in mouse model. Nucleic Acids Res 2024; 52:5732-5755. [PMID: 38597682 PMCID: PMC11162798 DOI: 10.1093/nar/gkae250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
Expansion of a G4C2 repeat in the C9orf72 gene is associated with familial Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD). To investigate the underlying mechanisms of repeat instability, which occurs both somatically and intergenerationally, we created a novel mouse model of familial ALS/FTD that harbors 96 copies of G4C2 repeats at a humanized C9orf72 locus. In mouse embryonic stem cells, we observed two modes of repeat expansion. First, we noted minor increases in repeat length per expansion event, which was dependent on a mismatch repair pathway protein Msh2. Second, we found major increases in repeat length per event when a DNA double- or single-strand break (DSB/SSB) was artificially introduced proximal to the repeats, and which was dependent on the homology-directed repair (HDR) pathway. In mice, the first mode primarily drove somatic repeat expansion. Major changes in repeat length, including expansion, were observed when SSB was introduced in one-cell embryos, or intergenerationally without DSB/SSB introduction if G4C2 repeats exceeded 400 copies, although spontaneous HDR-mediated expansion has yet to be identified. These findings provide a novel strategy to model repeat expansion in a non-human genome and offer insights into the mechanism behind C9orf72 G4C2 repeat instability.
Collapse
Affiliation(s)
- Nada Kojak
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Junko Kuno
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | | | - David Wenger
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | | | - Yajun Tang
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Jade Zhang
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Katie Huling
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Roxanne Ally
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | | | | | - Pei Yi Huang
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Sze Yen Kerk
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | | | - Jose Rojas
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | | | | | | | - Guochun Gong
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | - Eric Chiao
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | | | | |
Collapse
|
14
|
Sellier C, Corcia P, Vourc'h P, Dupuis L. C9ORF72 hexanucleotide repeat expansion: From ALS and FTD to a broader pathogenic role? Rev Neurol (Paris) 2024; 180:417-428. [PMID: 38609750 DOI: 10.1016/j.neurol.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024]
Abstract
The major gene underlying monogenic forms of amyotrophic lateral sclerosis (ALS) and fronto-temporal dementia (FTD) is C9ORF72. The causative mutation in C9ORF72 is an abnormal hexanucleotide (G4C2) repeat expansion (HRE) located in the first intron of the gene. The aim of this review is to propose a comprehensive update on recent developments on clinical, biological and therapeutics aspects related to C9ORF72 in order to highlight the current understanding of genotype-phenotype correlations, and also on biological machinery leading to neuronal death. We will particularly focus on the broad phenotypic presentation of C9ORF72-related diseases, that goes well beyond the classical phenotypes observed in ALS and FTD patients. Last, we will comment the possible therapeutical hopes for patients carrying a C9ORF72 HRE.
Collapse
Affiliation(s)
- C Sellier
- Centre de recherches en biomédecine de Strasbourg, UMR-S1329, Inserm, université de Strasbourg, Strasbourg, France
| | - P Corcia
- UMR 1253 iBrain, Inserm, université de Tours, Tours, France; Centre constitutif de coordination SLA, CHU de Bretonneau, 2, boulevard Tonnelle, 37044 Tours cedex 1, France
| | - P Vourc'h
- UMR 1253 iBrain, Inserm, université de Tours, Tours, France; Service de biochimie et biologie moléculaire, CHU de Tours, Tours, France
| | - L Dupuis
- Centre de recherches en biomédecine de Strasbourg, UMR-S1329, Inserm, université de Strasbourg, Strasbourg, France.
| |
Collapse
|
15
|
Jagaraj CJ, Shadfar S, Kashani SA, Saravanabavan S, Farzana F, Atkin JD. Molecular hallmarks of ageing in amyotrophic lateral sclerosis. Cell Mol Life Sci 2024; 81:111. [PMID: 38430277 PMCID: PMC10908642 DOI: 10.1007/s00018-024-05164-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/21/2024] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal, severely debilitating and rapidly progressing disorder affecting motor neurons in the brain, brainstem, and spinal cord. Unfortunately, there are few effective treatments, thus there remains a critical need to find novel interventions that can mitigate against its effects. Whilst the aetiology of ALS remains unclear, ageing is the major risk factor. Ageing is a slowly progressive process marked by functional decline of an organism over its lifespan. However, it remains unclear how ageing promotes the risk of ALS. At the molecular and cellular level there are specific hallmarks characteristic of normal ageing. These hallmarks are highly inter-related and overlap significantly with each other. Moreover, whilst ageing is a normal process, there are striking similarities at the molecular level between these factors and neurodegeneration in ALS. Nine ageing hallmarks were originally proposed: genomic instability, loss of telomeres, senescence, epigenetic modifications, dysregulated nutrient sensing, loss of proteostasis, mitochondrial dysfunction, stem cell exhaustion, and altered inter-cellular communication. However, these were recently (2023) expanded to include dysregulation of autophagy, inflammation and dysbiosis. Hence, given the latest updates to these hallmarks, and their close association to disease processes in ALS, a new examination of their relationship to pathophysiology is warranted. In this review, we describe possible mechanisms by which normal ageing impacts on neurodegenerative mechanisms implicated in ALS, and new therapeutic interventions that may arise from this.
Collapse
Affiliation(s)
- Cyril Jones Jagaraj
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Sina Shadfar
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Sara Assar Kashani
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Sayanthooran Saravanabavan
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Fabiha Farzana
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Julie D Atkin
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia.
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
16
|
Giannini LAA, Boers RG, van der Ende EL, Poos JM, Jiskoot LC, Boers JB, van IJcken WFJ, Dopper EG, Pijnenburg YAL, Seelaar H, Meeter LH, van Rooij JGJ, Scheper W, Gribnau J, van Swieten JC. Distinctive cell-free DNA methylation characterizes presymptomatic genetic frontotemporal dementia. Ann Clin Transl Neurol 2024; 11:744-756. [PMID: 38481040 DOI: 10.1002/acn3.51997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/01/2023] [Accepted: 12/27/2023] [Indexed: 03/27/2024] Open
Abstract
OBJECTIVE Methylation of plasma cell-free DNA (cfDNA) has potential as a marker of brain damage in neurodegenerative diseases such as frontotemporal dementia (FTD). Here, we study methylation of cfDNA in presymptomatic and symptomatic carriers of genetic FTD pathogenic variants, next to healthy controls. METHODS cfDNA was isolated from cross-sectional plasma of 10 presymptomatic carriers (4 C9orf72, 4 GRN, and 2 MAPT), 10 symptomatic carriers (4 C9orf72, 4 GRN, and 2 MAPT), and 9 healthy controls. Genome-wide methylation of cfDNA was determined using a high-resolution sequencing technique (MeD-seq). Cumulative scores based on the identified differentially methylated regions (DMRs) were estimated for presymptomatic carriers (vs. controls and symptomatic carriers), and reevaluated in a validation cohort (8 presymptomatic: 3 C9orf72, 3 GRN, and 2 MAPT; 26 symptomatic: 7 C9orf72, 6 GRN, 12 MAPT, and 1 TARDBP; 13 noncarriers from genetic FTD families). RESULTS Presymptomatic carriers showed a distinctive methylation profile compared to healthy controls and symptomatic carriers. Cumulative DMR scores in presymptomatic carriers enabled to significantly differentiate presymptomatic carriers from healthy controls (p < 0.001) and symptomatic carriers (p < 0.001). In the validation cohort, these scores differentiated presymptomatic carriers from symptomatic carriers (p ≤ 0.007) only. Transcription-start-site methylation in presymptomatic carriers, generally associated with gene downregulation, was enriched for genes involved in ubiquitin-dependent processes, while gene body methylation, generally associated with gene upregulation, was enriched for genes involved in neuronal cell processes. INTERPRETATION A distinctive methylation profile of cfDNA characterizes the presymptomatic stage of genetic FTD, and could reflect neuronal death in this stage.
Collapse
Affiliation(s)
- Lucia A A Giannini
- Department of Neurology, Alzheimer Center Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ruben G Boers
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Emma L van der Ende
- Department of Neurology, Alzheimer Center Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Jackie M Poos
- Department of Neurology, Alzheimer Center Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Lize C Jiskoot
- Department of Neurology, Alzheimer Center Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Joachim B Boers
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Wilfred F J van IJcken
- Erasmus Center for Biomics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Elise G Dopper
- Department of Neurology, Alzheimer Center Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit, Amsterdam UMC location Vumc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Harro Seelaar
- Department of Neurology, Alzheimer Center Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Lieke H Meeter
- Department of Neurology, Alzheimer Center Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jeroen G J van Rooij
- Department of Neurology, Alzheimer Center Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Wiep Scheper
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Faculty of Science, Vrije Universiteit, Amsterdam, The Netherlands
- Department of Human Genetics, Vrije Universiteit, Amsterdam UMC location Vumc, Amsterdam, The Netherlands
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - John C van Swieten
- Department of Neurology, Alzheimer Center Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
17
|
Peverelli S, Brusati A, Casiraghi V, Sorce MN, Invernizzi S, Santangelo S, Morelli C, Verde F, Silani V, Ticozzi N, Ratti A. Analysis of normal C9orf72 repeat length as possible disease modifier in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:207-210. [PMID: 38099605 DOI: 10.1080/21678421.2023.2273965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/10/2023] [Indexed: 01/24/2024]
Abstract
The C9orf72 hexanucleotide repeat (HR) expansion is the main genetic cause of amyotrophic lateral sclerosis (ALS), with expansion size from 30 to >4000 units. Normal C9orf72 HR length is polymorphic (2-23 repeats) with alleles >8 units showing a low frequency in the general population. This study aimed to investigate if the normal C9orf72 HR length influences C9orf72 gene expression and acts as disease modifier in ALS patients negative for C9orf72 mutation (ALS-C9Neg). We found that the distribution of HR alleles was similar in 325 ALS-C9Neg and 303 healthy controls. Gene expression analysis in blood revealed a significant increase of total C9orf72 and V3 mRNA levels in ALS-C9Neg carrying two long alleles (L/L; ≥8 units) compared to patients homozygous for the 2-unit short allele (S/S). However, HR allele genotypes (L/L, S/L, S/S) correlated with no clinical parameters. Our data suggest that normal C9orf72 HR length does not act as disease modifier in ALS-C9Neg despite increasing gene expression.
Collapse
Affiliation(s)
- Silvia Peverelli
- Department of Neurology-Laboratory of Neuroscience, IRCCS, Istituto Auxologico Italiano, Milan, Italy
| | - Alberto Brusati
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Valeria Casiraghi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy, and
| | - Marta Nice Sorce
- Department of Neurology-Laboratory of Neuroscience, IRCCS, Istituto Auxologico Italiano, Milan, Italy
| | - Sabrina Invernizzi
- Department of Neurology-Laboratory of Neuroscience, IRCCS, Istituto Auxologico Italiano, Milan, Italy
| | - Serena Santangelo
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy, and
| | - Claudia Morelli
- Department of Neurology-Laboratory of Neuroscience, IRCCS, Istituto Auxologico Italiano, Milan, Italy
| | - Federico Verde
- Department of Neurology-Laboratory of Neuroscience, IRCCS, Istituto Auxologico Italiano, Milan, Italy
- "Dino Ferrari" Center, Dept. of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Vincenzo Silani
- Department of Neurology-Laboratory of Neuroscience, IRCCS, Istituto Auxologico Italiano, Milan, Italy
- "Dino Ferrari" Center, Dept. of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Nicola Ticozzi
- Department of Neurology-Laboratory of Neuroscience, IRCCS, Istituto Auxologico Italiano, Milan, Italy
- "Dino Ferrari" Center, Dept. of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Antonia Ratti
- Department of Neurology-Laboratory of Neuroscience, IRCCS, Istituto Auxologico Italiano, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy, and
| |
Collapse
|
18
|
Giardina E, Mandich P, Ghidoni R, Ticozzi N, Rossi G, Fenoglio C, Tiziano FD, Esposito F, Capellari S, Nacmias B, Mineri R, Campopiano R, Di Pilla L, Sammarone F, Zampatti S, Peconi C, De Angelis F, Palmieri I, Galandra C, Nicodemo E, Origone P, Gotta F, Ponti C, Nicsanu R, Benussi L, Peverelli S, Ratti A, Ricci M, Di Fede G, Magri S, Serpente M, Lattante S, Domi T, Carrera P, Saltimbanco E, Bagnoli S, Ingannato A, Albanese A, Tagliavini F, Lodi R, Caltagirone C, Gambardella S, Valente EM, Silani V. Distribution of the C9orf72 hexanucleotide repeat expansion in healthy subjects: a multicenter study promoted by the Italian IRCCS network of neuroscience and neurorehabilitation. Front Neurol 2024; 15:1284459. [PMID: 38356886 PMCID: PMC10865370 DOI: 10.3389/fneur.2024.1284459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/05/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction High repeat expansion (HRE) alleles in C9orf72 have been linked to both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD); ranges for intermediate allelic expansions have not been defined yet, and clinical interpretation of molecular data lacks a defined genotype-phenotype association. In this study, we provide results from a large multicenter epidemiological study reporting the distribution of C9orf72 repeats in healthy elderly from the Italian population. Methods A total of 967 samples were collected from neurologically evaluated healthy individuals over 70 years of age in the 13 institutes participating in the RIN (IRCCS Network of Neuroscience and Neurorehabilitation) based in Italy. All samples were genotyped using the AmplideXPCR/CE C9orf72 Kit (Asuragen, Inc.), using standardized protocols that have been validated through blind proficiency testing. Results All samples carried hexanucleotide G4C2 expansion alleles in the normal range. All samples were characterized by alleles with less than 25 repeats. In particular, 93.7% of samples showed a number of repeats ≤10, 99.9% ≤20 repeats, and 100% ≤25 repeats. Conclusion This study describes the distribution of hexanucleotide G4C2 expansion alleles in an Italian healthy population, providing a definition of alleles associated with the neurological healthy phenotype. Moreover, this study provides an effective model of federation between institutes, highlighting the importance of sharing genomic data and standardizing analysis techniques, promoting translational research. Data derived from the study may improve genetic counseling and future studies on ALS/FTD.
Collapse
Affiliation(s)
- Emiliano Giardina
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Paola Mandich
- IRCCS Ospedale Policlinico San Martino – UOC Genetica Medica, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genova, Genova, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, “Dino Ferrari” Center, Università degli Studi di Milano, Milan, Italy
| | - Giacomina Rossi
- Unit of Neurology V – Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara Fenoglio
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Francesco Danilo Tiziano
- Section of Genomic Medicine, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Unit of Medical Genetics, Department of Laboratory Science and Infectious Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Federica Esposito
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Laboratory of Human Genetics of Neurological Disorders, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sabina Capellari
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- DIBINEM Università di Bologna, Bologna, Italy
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Rossana Mineri
- Laboratory Medicine, Department of Cytogenetics and Molecular Genetics, IRCCS Humanitas Research Hospital, Milan, Italy
| | | | | | | | - Stefania Zampatti
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Cristina Peconi
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Flavio De Angelis
- Department of Mental, Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
- Department of Biology, California State University, Northridge, Northridge, CA, United States
| | | | | | | | - Paola Origone
- IRCCS Ospedale Policlinico San Martino – UOC Genetica Medica, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genova, Genova, Italy
| | - Fabio Gotta
- IRCCS Ospedale Policlinico San Martino – UOC Genetica Medica, Genova, Italy
| | - Clarissa Ponti
- IRCCS Ospedale Policlinico San Martino – UOC Genetica Medica, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genova, Genova, Italy
| | - Roland Nicsanu
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Silvia Peverelli
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Antonia Ratti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Medical Biotechnology and Molecular Medicine, Università degli Studi di Milano, Milan, Italy
| | - Martina Ricci
- Unit of Neurology V – Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giuseppe Di Fede
- Unit of Neurology V – Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Stefania Magri
- Unit of Medical Genetics and Neurogenetics Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maria Serpente
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Serena Lattante
- Section of Genomic Medicine, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Teuta Domi
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Carrera
- Laboratory of Clinical Molecular Biology, Unit of Genomics for Human Disease Diagnosis, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Saltimbanco
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Silvia Bagnoli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Assunta Ingannato
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Alberto Albanese
- Department of Neurology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Raffaele Lodi
- Policlinico S. Orsola-Malpighi, Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy
| | - Carlo Caltagirone
- Department of Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Stefano Gambardella
- IRCCS Neuromed, Pozzilli, Italy
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Enza Maria Valente
- IRCCS Mondino Foundation, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, “Dino Ferrari” Center, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
19
|
Chong ZZ, Menkes DL, Souayah N. Pathogenesis underlying hexanucleotide repeat expansions in C9orf72 gene in amyotrophic lateral sclerosis. Rev Neurosci 2024; 35:85-97. [PMID: 37525497 DOI: 10.1515/revneuro-2023-0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/07/2023] [Indexed: 08/02/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and fatal neurodegenerative disorder. Mutations in C9orf72 and the resulting hexanucleotide repeat (GGGGCC) expansion (HRE) has been identified as a major cause of familial ALS, accounting for about 40 % of familial and 6 % of sporadic cases of ALS in Western patients. The pathological outcomes of HRE expansion in ALS have been recognized as the results of two mechanisms that include both the toxic gain-of-function and loss-of-function of C9ORF72. The gain of toxicity results from RNA and dipeptide repeats (DPRs). The HRE can be bidirectionally transcribed into RNA foci, which can bind to and disrupt RNA splicing, transport, and translation. The DPRs that include poly-glycine-alanine, poly-glycine-proline, poly-glycine- arginine, poly-proline-alanine, and poly-proline-arginine can induce toxicity by direct binding and sequestrating other proteins to interfere rRNA synthesis, ribosome biogenesis, translation, and nucleocytoplasmic transport. The C9ORF72 functions through binding to its partners-Smith-Magenis chromosome regions 8 (SMCR8) and WD repeat-containing protein (WDR41). Loss of C9ORF72 function results in impairment of autophagy, deregulation of autoimmunity, increased stress, and disruption of nucleocytoplasmic transport. Further insight into the mechanism in C9ORF72 HRE pathogenesis will facilitate identifying novel and effective therapeutic targets for ALS.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Department of Neurology, Rutgers University, New Jersey Medical School, 185 S. Orange Ave, Newark, NJ 07103, USA
| | - Daniel L Menkes
- Department of Neurology, Oakland University William Beaumont School of Medicine, 3555 West 13 Mile Road, Suite N120, Royal Oak, MI 48073, USA
| | - Nizar Souayah
- Department of Neurology, Rutgers University, New Jersey Medical School, 90 Bergen Street DOC 8100, Newark, NJ 07101, USA
| |
Collapse
|
20
|
Ortega JA, Sasselli IR, Boccitto M, Fleming AC, Fortuna TR, Li Y, Sato K, Clemons TD, Mckenna ED, Nguyen TP, Anderson EN, Asin J, Ichida JK, Pandey UB, Wolin SL, Stupp SI, Kiskinis E. CLIP-Seq analysis enables the design of protective ribosomal RNA bait oligonucleotides against C9ORF72 ALS/FTD poly-GR pathophysiology. SCIENCE ADVANCES 2023; 9:eadf7997. [PMID: 37948524 PMCID: PMC10637751 DOI: 10.1126/sciadv.adf7997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
Amyotrophic lateral sclerosis and frontotemporal dementia patients with a hexanucleotide repeat expansion in C9ORF72 (C9-HRE) accumulate poly-GR and poly-PR aggregates. The pathogenicity of these arginine-rich dipeptide repeats (R-DPRs) is thought to be driven by their propensity to bind low-complexity domains of multivalent proteins. However, the ability of R-DPRs to bind native RNA and the significance of this interaction remain unclear. Here, we used computational and experimental approaches to characterize the physicochemical properties of R-DPRs and their interaction with RNA. We find that poly-GR predominantly binds ribosomal RNA (rRNA) in cells and exhibits an interaction that is predicted to be energetically stronger than that for associated ribosomal proteins. Critically, modified rRNA "bait" oligonucleotides restore poly-GR-associated ribosomal deficits and ameliorate poly-GR toxicity in patient neurons and Drosophila models. Our work strengthens the hypothesis that ribosomal function is impaired by R-DPRs, highlights a role for direct rRNA binding in mediating ribosomal dysfunction, and presents a strategy for protecting against C9-HRE pathophysiological mechanisms.
Collapse
Affiliation(s)
- Juan A. Ortega
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Pathology and Experimental Therapy, Institute of Neurosciences, University of Barcelona, Barcelona 08907, Spain
| | - Ivan R. Sasselli
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Centro de Fisica de Materiales (CFM), CSIC-UPV/EHU, 20018 San Sebastián, Spain
| | - Marco Boccitto
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Andrew C. Fleming
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Tyler R. Fortuna
- Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Yichen Li
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kohei Sato
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA
| | - Tristan D. Clemons
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA
| | - Elizabeth D. Mckenna
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Thao P. Nguyen
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Eric N. Anderson
- Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Jesus Asin
- Department of Statistical Methods, School of Engineering, University of Zaragoza, Zaragoza 50018, Spain
| | - Justin K. Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Udai B. Pandey
- Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Sandra L. Wolin
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Samuel I. Stupp
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Evangelos Kiskinis
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
21
|
Li C, Lin J, Jiang Q, Yang T, Xiao Y, Huang J, Hou Y, Wei Q, Cui Y, Wang S, Zheng X, Ou R, Liu K, Chen X, Song W, Zhao B, Shang H. Genetic Modifiers of Age at Onset for Amyotrophic Lateral Sclerosis: A Genome-Wide Association Study. Ann Neurol 2023; 94:933-941. [PMID: 37528491 DOI: 10.1002/ana.26752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 08/03/2023]
Abstract
OBJECTIVE Age at onset (AAO) is an essential clinical feature associated with disease progression and mortality in amyotrophic lateral sclerosis (ALS). Identification of genetic variants and environmental risk factors influencing AAO of ALS could help better understand the disease's biological mechanism and provide clinical guidance. However, most genetic studies focused on the risk of ALS, while the genetic background of AAO is less explored. This study aimed to identify genetic and environmental determinants for AAO of ALS. METHODS We performed a genome-wide association analysis using a Cox proportional hazards model on AAO of ALS in 10,068 patients. We further conducted colocalization analysis and in-vitro functional exploration for the target variants, as well as Mendelian randomization analysis to identify risk factors influencing AAO of ALS. RESULTS The total heritability of AAO of ALS was ~0.16 (standard error [SE] = 0.03). One novel locus rs2046243 (CTIF) was significantly associated with earlier AAO by ~1.29 years (p = 1.68E-08, beta = 0.10, SE = 0.02). Functional exploration suggested this variant was associated with increased expression of CTIF in multiple tissues including the brain. Colocalization analysis detected a colocalization signal at the locus between AAO of ALS and expression of CTIF. Causal inference indicated higher education level was associated with later AAO. INTERPRETATION These findings improve the current knowledge of the genetic and environmental etiology of AAO of ALS, and provide a novel target CTIF for further research on ALS pathogenesis and potential therapeutic options to delay the disease onset. ANN NEUROL 2023;94:933-941.
Collapse
Affiliation(s)
- Chunyu Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Junyu Lin
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Qirui Jiang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Tianmi Yang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Xiao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Jingxuan Huang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Yanbing Hou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Qianqian Wei
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Yiyuan Cui
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Shichan Wang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoting Zheng
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Ruwei Ou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Kuncheng Liu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Xueping Chen
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Song
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Bi Zhao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Roggenbuck J, Eubank BHF, Wright J, Harms MB, Kolb SJ. Evidence-based consensus guidelines for ALS genetic testing and counseling. Ann Clin Transl Neurol 2023; 10:2074-2091. [PMID: 37691292 PMCID: PMC10646996 DOI: 10.1002/acn3.51895] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 08/12/2023] [Indexed: 09/12/2023] Open
Abstract
OBJECTIVE Advances in amyotrophic lateral sclerosis (ALS) gene discovery, ongoing gene therapy trials, and patient demand have driven increased use of ALS genetic testing. Despite this progress, the offer of genetic testing to persons with ALS is not yet "standard of care." Our primary goal is to develop clinical ALS genetic counseling and testing guidelines to improve and standardize genetic counseling and testing practice among neurologists, genetic counselors or any provider caring for persons with ALS. METHODS Core clinical questions were identified and a rapid review performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA-P) 2015 method. Guideline recommendations were drafted and the strength of evidence for each recommendation was assessed by combining two systems: the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) System and the Evaluation of Genomic Applications in Practice and Prevention (EGAPP). A modified Delphi approach was used to reach consensus among a group of content experts for each guideline statement. RESULTS A total of 35 guideline statements were developed. In summary, all persons with ALS should be offered single-step genetic testing, consisting of a C9orf72 assay, along with sequencing of SOD1, FUS, and TARDBP, at a minimum. The key education and genetic risk assessments that should be provided before and after testing are delineated. Specific guidance regarding testing methods and reporting for C9orf72 and other genes is provided for commercial laboratories. INTERPRETATION These evidence-based, consensus guidelines will support all stakeholders in the ALS community in navigating benefits and challenges of genetic testing.
Collapse
Affiliation(s)
- Jennifer Roggenbuck
- Division of Human Genetics, Department of Internal MedicineThe Ohio State University Wexner Medical CenterColumbusOhioUSA
- Department of NeurologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Breda H. F. Eubank
- Health & Physical Education Department, Faculty of Health, Community, & EducationMount Royal University4825 Mount Royal Gate SWCalgaryAlbertaCanada
| | - Joshua Wright
- Department of NeurologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Matthew B. Harms
- Department of NeurologyColumbia University Vagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
| | - Stephen J. Kolb
- Department of NeurologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA
- Department of Biological Chemistry & PharmacologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| |
Collapse
|
23
|
Morón-Oset J, Fischer LK, Carcolé M, Giblin A, Zhang P, Isaacs AM, Grönke S, Partridge L. Toxicity of C9orf72-associated dipeptide repeat peptides is modified by commonly used protein tags. Life Sci Alliance 2023; 6:e202201739. [PMID: 37308278 PMCID: PMC10262077 DOI: 10.26508/lsa.202201739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/14/2023] Open
Abstract
Hexanucleotide repeat expansions in the C9orf72 gene are the most prevalent genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Transcripts of the expansions are translated into toxic dipeptide repeat (DPR) proteins. Most preclinical studies in cell and animal models have used protein-tagged polyDPR constructs to investigate DPR toxicity but the effects of tags on DPR toxicity have not been systematically explored. Here, we used Drosophila to assess the influence of protein tags on DPR toxicity. Tagging of 36 but not 100 arginine-rich DPRs with mCherry increased toxicity, whereas adding mCherry or GFP to GA100 completely abolished toxicity. FLAG tagging also reduced GA100 toxicity but less than the longer fluorescent tags. Expression of untagged but not GFP- or mCherry-tagged GA100 caused DNA damage and increased p62 levels. Fluorescent tags also affected GA100 stability and degradation. In summary, protein tags affect DPR toxicity in a tag- and DPR-dependent manner, and GA toxicity might be underestimated in studies using tagged GA proteins. Thus, including untagged DPRs as controls is important when assessing DPR toxicity in preclinical models.
Collapse
Affiliation(s)
| | | | - Mireia Carcolé
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, UCL Queen Square Institute of Neurology, London, UK
| | - Ashling Giblin
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, UCL Queen Square Institute of Neurology, London, UK
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, UK
| | - Pingze Zhang
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Adrian M Isaacs
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, UCL Queen Square Institute of Neurology, London, UK
| | | | - Linda Partridge
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, UK
| |
Collapse
|
24
|
Akçimen F, Lopez ER, Landers JE, Nath A, Chiò A, Chia R, Traynor BJ. Amyotrophic lateral sclerosis: translating genetic discoveries into therapies. Nat Rev Genet 2023; 24:642-658. [PMID: 37024676 PMCID: PMC10611979 DOI: 10.1038/s41576-023-00592-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2023] [Indexed: 04/08/2023]
Abstract
Recent advances in sequencing technologies and collaborative efforts have led to substantial progress in identifying the genetic causes of amyotrophic lateral sclerosis (ALS). This momentum has, in turn, fostered the development of putative molecular therapies. In this Review, we outline the current genetic knowledge, emphasizing recent discoveries and emerging concepts such as the implication of distinct types of mutation, variability in mutated genes in diverse genetic ancestries and gene-environment interactions. We also propose a high-level model to synthesize the interdependent effects of genetics, environmental and lifestyle factors, and ageing into a unified theory of ALS. Furthermore, we summarize the current status of therapies developed on the basis of genetic knowledge established for ALS over the past 30 years, and we discuss how developing treatments for ALS will advance our understanding of targeting other neurological diseases.
Collapse
Affiliation(s)
- Fulya Akçimen
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
| | - Elia R Lopez
- Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - John E Landers
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute for Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Adriano Chiò
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
- Institute of Cognitive Sciences and Technologies, C.N.R, Rome, Italy
- Azienda Ospedaliero Universitaria Citta' della Salute e della Scienza, Turin, Italy
| | - Ruth Chia
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Bryan J Traynor
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
- Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA.
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA.
| |
Collapse
|
25
|
Morón-Oset J, Fischer LKS, Jauré N, Zhang P, Jahn AJ, Supèr T, Pahl A, Isaacs AM, Grönke S, Partridge L. Repeat length of C9orf72-associated glycine-alanine polypeptides affects their toxicity. Acta Neuropathol Commun 2023; 11:140. [PMID: 37644512 PMCID: PMC10463776 DOI: 10.1186/s40478-023-01634-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/31/2023] Open
Abstract
G4C2 hexanucleotide repeat expansions in a non-coding region of the C9orf72 gene are the most common cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). G4C2 insertion length is variable, and patients can carry up to several thousand repeats. Dipeptide repeat proteins (DPRs) translated from G4C2 transcripts are thought to be a main driver of toxicity. Experiments in model organisms with relatively short DPRs have shown that arginine-rich DPRs are most toxic, while polyGlycine-Alanine (GA) DPRs cause only mild toxicity. However, GA is the most abundant DPR in patient brains, and experimental work in animals has generally relied on the use of low numbers of repeats, with DPRs often tagged for in vivo tracking. Whether repeat length or tagging affect the toxicity of GA has not been systematically assessed. Therefore, we generated Drosophila fly lines expressing GA100, GA200 or GA400 specifically in adult neurons. Consistent with previous studies, expression of GA100 and GA200 caused only mild toxicity. In contrast, neuronal expression of GA400 drastically reduced climbing ability and survival of flies, indicating that long GA DPRs can be highly toxic in vivo. This toxicity could be abolished by tagging GA400. Proteomics analysis of fly brains showed a repeat-length-dependent modulation of the brain proteome, with GA400 causing earlier and stronger changes than shorter GA proteins. PolyGA expression up-regulated proteins involved in ER to Golgi trafficking, and down-regulated proteins involved in insulin signalling. Experimental down-regulation of Tango1, a highly conserved regulator of ER-to Golgi transport, partially rescued GA400 toxicity, suggesting that misregulation of this process contributes to polyGA toxicity. Experimentally increasing insulin signaling also rescued GA toxicity. In summary, our data show that long polyGA proteins can be highly toxic in vivo, and that they may therefore contribute to ALS/FTD pathogenesis in patients.
Collapse
Affiliation(s)
- Javier Morón-Oset
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany
| | | | - Nathalie Jauré
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany
| | - Pingze Zhang
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany
| | - Annika Julia Jahn
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany
| | - Tessa Supèr
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany
| | - André Pahl
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany
| | - Adrian M Isaacs
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Sebastian Grönke
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany.
| | - Linda Partridge
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany.
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
26
|
Seidel M, Rajkumar S, Steffke C, Noeth V, Agarwal S, Roger K, Lipecka J, Ludolph A, Guerrera CI, Boeckers T, Catanese A. Propranolol reduces the accumulation of cytotoxic aggregates in C9orf72-ALS/FTD in vitro models. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100105. [PMID: 37576491 PMCID: PMC10412779 DOI: 10.1016/j.crneur.2023.100105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/23/2023] [Accepted: 07/26/2023] [Indexed: 08/15/2023] Open
Abstract
Mutations in the C9orf72 gene are the most common cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The pathogenetic mechanisms linked to this gene are a direct consequence of an aberrant intronic expansion of a GGGGCC hexanucleotide located between the 1a and 1b non-coding exons, which can be transcribed to form cytotoxic RNA foci or even translated into aggregation-prone dipeptide repeat proteins. Importantly, the abnormal length of these repeats affects also the expression levels of C9orf72 itself, which suggests haploinsufficiency as additional pathomechanism. Thus, it appears that both toxic gain of function and loss of function are distinct but still coexistent features contributing to the insurgence of the disease in case of C9orf72 mutations. In this study, we aimed at identifying a strategy to address both aspects of the C9orf72-related pathobiochemistry and provide proof-of-principle information for a better understanding of the mechanisms leading to neuronal loss. By using primary neurons overexpressing toxic poly(GA), the most abundant protein product of the GGGGCC repeats, we found that the antiarrhythmic drug propranolol could efficiently reduce the accumulation of aberrant aggregates and increase the survival of C9orf72-related cultures. Interestingly, the improved catabolism appeared to not depend on major degradative pathways such as autophagy and the proteasome. By analyzing the proteome of poly(GA)-expressing neurons after exposure to propranolol, we found that the drug increased lysosomal degradation through a mechanism directly involving C9orf72 protein, whose levels were increased after treatment. Further confirmation of the beneficial effect of the beta blocker on aggregates' accumulation and survival of hiPSC-derived C9orf72-mutant motoneurons strengthened the finding that addressing both facets of C9orf72 pathology might represent a valid strategy for the treatment of these ALS/FTD cases.
Collapse
Affiliation(s)
- Mira Seidel
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
| | - Sandeep Rajkumar
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
| | - Christina Steffke
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
| | - Vivien Noeth
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
- International Graduate School in Molecular Medicine, Ulm University, Ulm, Germany
| | - Shreya Agarwal
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
- International Graduate School in Molecular Medicine, Ulm University, Ulm, Germany
| | - Kevin Roger
- Proteomics Platform Necker, Université Paris Cité - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, Paris, France
| | - Joanna Lipecka
- Proteomics Platform Necker, Université Paris Cité - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, Paris, France
| | - Albert Ludolph
- Department of Neurology, Ulm University School of Medicine, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm site, Ulm, Germany
| | - Chiara Ida Guerrera
- Proteomics Platform Necker, Université Paris Cité - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, Paris, France
| | - Tobias Boeckers
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm site, Ulm, Germany
| | - Alberto Catanese
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm site, Ulm, Germany
| |
Collapse
|
27
|
Bagyinszky E, Hulme J, An SSA. Studies of Genetic and Proteomic Risk Factors of Amyotrophic Lateral Sclerosis Inspire Biomarker Development and Gene Therapy. Cells 2023; 12:1948. [PMID: 37566027 PMCID: PMC10417729 DOI: 10.3390/cells12151948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease affecting the upper and lower motor neurons, leading to muscle weakness, motor impairments, disabilities and death. Approximately 5-10% of ALS cases are associated with positive family history (familial ALS or fALS), whilst the remainder are sporadic (sporadic ALS, sALS). At least 50 genes have been identified as causative or risk factors for ALS. Established pathogenic variants include superoxide dismutase type 1 (SOD1), chromosome 9 open reading frame 72 (c9orf72), TAR DNA Binding Protein (TARDBP), and Fused In Sarcoma (FUS); additional ALS-related genes including Charged Multivesicular Body Protein 2B (CHMP2B), Senataxin (SETX), Sequestosome 1 (SQSTM1), TANK Binding Kinase 1 (TBK1) and NIMA Related Kinase 1 (NEK1), have been identified. Mutations in these genes could impair different mechanisms, including vesicle transport, autophagy, and cytoskeletal or mitochondrial functions. So far, there is no effective therapy against ALS. Thus, early diagnosis and disease risk predictions remain one of the best options against ALS symptomologies. Proteomic biomarkers, microRNAs, and extracellular vehicles (EVs) serve as promising tools for disease diagnosis or progression assessment. These markers are relatively easy to obtain from blood or cerebrospinal fluids and can be used to identify potential genetic causative and risk factors even in the preclinical stage before symptoms appear. In addition, antisense oligonucleotides and RNA gene therapies have successfully been employed against other diseases, such as childhood-onset spinal muscular atrophy (SMA), which could also give hope to ALS patients. Therefore, an effective gene and biomarker panel should be generated for potentially "at risk" individuals to provide timely interventions and better treatment outcomes for ALS patients as soon as possible.
Collapse
Affiliation(s)
- Eva Bagyinszky
- Graduate School of Environment Department of Industrial and Environmental Engineering, Gachon University, Seongnam-si 13120, Republic of Korea;
| | - John Hulme
- Graduate School of Environment Department of Industrial and Environmental Engineering, Gachon University, Seongnam-si 13120, Republic of Korea;
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon University, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
28
|
König T, Leutmezer F, Berger T, Zimprich A, Schmied C, Stögmann E, Zrzavy T. No Association of Multiple Sclerosis with C9orf72 Hexanucleotide Repeat Size in an Austrian Cohort. Int J Mol Sci 2023; 24:11254. [PMID: 37511014 PMCID: PMC10378763 DOI: 10.3390/ijms241411254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Multiple Sclerosis (MS) is a common immune-mediated disorder of the central nervous system that affects young adults and is characterized by demyelination and neurodegeneration. Recent studies have associated C9orf72 intermediate repeat expansions with MS. The objective of this study was to investigate whether C9orf72 repeat length is associated with MS or with a specific disease course in a monocentric Austrian MS cohort. Genotyping of 382 MS patients and 643 non-neurological controls for C9orf72 repeat expansions was performed. The study did not find a difference in the distribution of repeat numbers between controls and MS cases (median repeat units = 2; p = 0.39). Additionally, sub-analysis did not establish a link between intermediate repeats and MS (p = 0.23) and none of the patients with progressive disease course carried an intermediate allele (20-30 repeat units). Exploratory analysis for different cut-offs (of ≥7, ≥17, and ≥24) did not reveal any significant differences in allele frequencies between MS and controls. However, the study did identify a progressive MS patient with a pathogenic C9orf72 expansion and probable co-existing behavioral variant frontotemporal dementia (bvFTD) in a retrospective chart review. In conclusion, this study did not find evidence supporting an association between C9orf72 repeat length and MS or a specific disease course in the Austrian MS cohort. However, the identification of a progressive MS patient with a pathogenic C9orf72 expansion and probable co-existing with FTD highlights the complexity and challenges involved in recognizing distinct neurodegenerative diseases that may co-occur in MS patients.
Collapse
Affiliation(s)
- Theresa König
- Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Fritz Leutmezer
- Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Alexander Zimprich
- Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Christiane Schmied
- Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Elisabeth Stögmann
- Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Tobias Zrzavy
- Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
29
|
Milicic L, Porter T, Vacher M, Laws SM. Utility of DNA Methylation as a Biomarker in Aging and Alzheimer's Disease. J Alzheimers Dis Rep 2023; 7:475-503. [PMID: 37313495 PMCID: PMC10259073 DOI: 10.3233/adr-220109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/23/2023] [Indexed: 06/15/2023] Open
Abstract
Epigenetic mechanisms such as DNA methylation have been implicated in a number of diseases including cancer, heart disease, autoimmune disorders, and neurodegenerative diseases. While it is recognized that DNA methylation is tissue-specific, a limitation for many studies is the ability to sample the tissue of interest, which is why there is a need for a proxy tissue such as blood, that is reflective of the methylation state of the target tissue. In the last decade, DNA methylation has been utilized in the design of epigenetic clocks, which aim to predict an individual's biological age based on an algorithmically defined set of CpGs. A number of studies have found associations between disease and/or disease risk with increased biological age, adding weight to the theory of increased biological age being linked with disease processes. Hence, this review takes a closer look at the utility of DNA methylation as a biomarker in aging and disease, with a particular focus on Alzheimer's disease.
Collapse
Affiliation(s)
- Lidija Milicic
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- Collaborative Genomics and Translation Group, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Tenielle Porter
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- Collaborative Genomics and Translation Group, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| | - Michael Vacher
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- CSIRO Health and Biosecurity, Australian e-Health Research Centre, Floreat, Western Australia
| | - Simon M. Laws
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- Collaborative Genomics and Translation Group, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
30
|
Pang W, Hu F. C9ORF72 suppresses JAK-STAT mediated inflammation. iScience 2023; 26:106579. [PMID: 37250330 PMCID: PMC10214391 DOI: 10.1016/j.isci.2023.106579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/31/2023] [Accepted: 03/31/2023] [Indexed: 05/31/2023] Open
Abstract
Hexanucleotide repeat expansion in the gene C9ORF72 is a leading cause of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). C9ORF72 deficiency leads to severe inflammatory phenotypes in mice, but exactly how C9ORF72 regulates inflammation remains to be fully elucidated. Here, we report that loss of C9ORF72 leads to the hyperactivation of the JAK-STAT pathway and an increase in the protein levels of STING, a transmembrane adaptor protein involved in immune signaling in response to cytosolic DNA. Treatment with a JAK inhibitor rescues the enhanced inflammatory phenotypes caused by C9ORF72 deficiency in cell culture and mice. Furthermore, we showed that the ablation of C9ORF72 results in compromised lysosome integrity, which could contribute to the activation of the JAK/STAT-dependent inflammatory responses. In summary, our study identifies a mechanism by which C9ORF72 regulates inflammation, which might facilitate therapeutic development for ALS/FTLD with C9ORF72 mutations.
Collapse
Affiliation(s)
- Weilun Pang
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Fenghua Hu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
31
|
Vinceti G, Gallingani C, Zucchi E, Martinelli I, Gianferrari G, Simonini C, Bedin R, Chiari A, Zamboni G, Mandrioli J. Young Onset Alzheimer's Disease Associated with C9ORF72 Hexanucleotide Expansion: Further Evidence for a Still Unsolved Association. Genes (Basel) 2023; 14:genes14040930. [PMID: 37107688 PMCID: PMC10138077 DOI: 10.3390/genes14040930] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are recognized as part of a disease continuum (FTD-ALS spectrum), in which the most common genetic cause is chromosome 9 open reading frame 72 (C9ORF72) gene hexanucleotide repeat expansion. The clinical phenotype of patients carrying this expansion varies widely and includes diseases beyond the FTD-ALS spectrum. Although a few cases of patients with C9ORF72 expansion and a clinical or biomarker-supported diagnosis of Alzheimer's disease (AD) have been described, they have been considered too sparse to establish a definite association between the C9ORF72 expansion and AD pathology. Here, we describe a C9ORF72 family with pleomorphic phenotypical expressions: a 54-year-old woman showing cognitive impairment and behavioral disturbances with both neuroimaging and cerebrospinal fluid (CSF) biomarkers consistent with AD pathology, her 49-year-old brother with typical FTD-ALS, and their 63-year-old mother with the behavioral variant of FTD and CSF biomarkers suggestive of AD pathology. The young onset of disease in all three family members and their different phenotypes and biomarker profiles make the simple co-occurrence of different diseases an extremely unlikely explanation. Our report adds to previous findings and may contribute to further expanding the spectrum of diseases associated with C9ORF72 expansion.
Collapse
Affiliation(s)
- Giulia Vinceti
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy
| | - Chiara Gallingani
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Elisabetta Zucchi
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Ilaria Martinelli
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giulia Gianferrari
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Cecilia Simonini
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Roberta Bedin
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy
| | - Annalisa Chiari
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy
| | - Giovanna Zamboni
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Jessica Mandrioli
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
32
|
Motor, cognitive and behavioural profiles of C9orf72 expansion-related amyotrophic lateral sclerosis. J Neurol 2023; 270:898-908. [PMID: 36308529 PMCID: PMC9886586 DOI: 10.1007/s00415-022-11433-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) individuals carrying the hexanucleotide repeat expansion (HRE) in the C9orf72 gene (C9Pos) have been described as presenting distinct features compared to the general ALS population (C9Neg). We aim to identify the phenotypic traits more closely associated with the HRE and analyse the role of the repeat length as a modifier factor. METHODS We studied a cohort of 960 ALS patients (101 familial and 859 sporadic cases). Motor phenotype was determined using the MRC scale, the lower motor neuron score (LMNS) and the Penn upper motor neuron score (PUMNS). Neuropsychological profile was studied using the Italian version of the Edinburgh Cognitive and Behavioral ALS Screen (ECAS), the Frontal Behavioral Inventory (FBI), the Beck Depression Inventory-II (BDI-II) and the State-Trait Anxiety Inventory (STAI). A two-step PCR protocol and Southern blotting were performed to determine the presence and the size of C9orf72 HRE, respectively. RESULTS C9orf72 HRE was detected in 55/960 ALS patients. C9Pos patients showed a younger onset, higher odds of bulbar onset, increased burden of UMN signs, reduced survival and higher frequency of concurrent dementia. We found an inverse correlation between the HRE length and the performance at ECAS ALS-specific tasks (P = 0.031). Patients also showed higher burden of behavioural disinhibition (P = 1.6 × 10-4), lower degrees of depression (P = 0.015) and anxiety (P = 0.008) compared to C9Neg cases. CONCLUSIONS Our study provides an extensive characterization of motor, cognitive and behavioural features of C9orf72-related ALS, indicating that the C9orf72 HRE size may represent a modifier of the cognitive phenotype.
Collapse
|
33
|
Fan C, Chen K, Wang Y, Ball EV, Stenson PD, Mort M, Bacolla A, Kehrer-Sawatzki H, Tainer JA, Cooper DN, Zhao H. Profiling human pathogenic repeat expansion regions by synergistic and multi-level impacts on molecular connections. Hum Genet 2023; 142:245-274. [PMID: 36344696 PMCID: PMC10290229 DOI: 10.1007/s00439-022-02500-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022]
Abstract
Whilst DNA repeat expansions cause numerous heritable human disorders, their origins and underlying pathological mechanisms are often unclear. We collated a dataset comprising 224 human repeat expansions encompassing 203 different genes, and performed a systematic analysis with respect to key topological features at the DNA, RNA and protein levels. Comparison with controls without known pathogenicity and genomic regions lacking repeats, allowed the construction of the first tool to discriminate repeat regions harboring pathogenic repeat expansions (DPREx). At the DNA level, pathogenic repeat expansions exhibited stronger signals for DNA regulatory factors (e.g. H3K4me3, transcription factor-binding sites) in exons, promoters, 5'UTRs and 5'genes but were not significantly different from controls in introns, 3'UTRs and 3'genes. Additionally, pathogenic repeat expansions were also found to be enriched in non-B DNA structures. At the RNA level, pathogenic repeat expansions were characterized by lower free energy for forming RNA secondary structure and were closer to splice sites in introns, exons, promoters and 5'genes than controls. At the protein level, pathogenic repeat expansions exhibited a preference to form coil rather than other types of secondary structure, and tended to encode surface-located protein domains. Guided by these features, DPREx ( http://biomed.nscc-gz.cn/zhaolab/geneprediction/# ) achieved an Area Under the Curve (AUC) value of 0.88 in a test on an independent dataset. Pathogenic repeat expansions are thus located such that they exert a synergistic influence on the gene expression pathway involving inter-molecular connections at the DNA, RNA and protein levels.
Collapse
Affiliation(s)
- Cong Fan
- Department of Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 500001, People's Republic of China
| | - Ken Chen
- School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou, 500001, China
| | - Yukai Wang
- School of Life Science, Sun Yat-Sen University, Guangzhou, 500001, China
| | - Edward V Ball
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Peter D Stenson
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Matthew Mort
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX, 77030, USA
| | | | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX, 77030, USA
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Huiying Zhao
- Department of Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 500001, People's Republic of China.
| |
Collapse
|
34
|
Teng Y, Zhu M, Qiu Z. G-Quadruplexes in Repeat Expansion Disorders. Int J Mol Sci 2023; 24:ijms24032375. [PMID: 36768697 PMCID: PMC9916761 DOI: 10.3390/ijms24032375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
The repeat expansions are the main genetic cause of various neurodegeneration diseases. More than ten kinds of repeat sequences with different lengths, locations, and structures have been confirmed in the past two decades. G-rich repeat sequences, such as CGG and GGGGCC, are reported to form functional G-quadruplexes, participating in many important bioprocesses. In this review, we conducted an overview concerning the contribution of G-quadruplex in repeat expansion disorders and summarized related mechanisms in current pathological studies, including the increasing genetic instabilities in replication and transcription, the toxic RNA foci formed in neurons, and the loss/gain function of proteins and peptides. Furthermore, novel strategies targeting G-quadruplex repeats were developed based on the understanding of disease mechanism. Small molecules and proteins binding to G-quadruplex in repeat expansions were investigated to protect neurons from dysfunction and delay the progression of neurodegeneration. In addition, the effects of environment on the stability of G-quadruplex were discussed, which might be critical factors in the pathological study of repeat expansion disorders.
Collapse
|
35
|
Kaivola K, Pirinen M, Laaksovirta H, Jansson L, Rautila O, Launes J, Hokkanen L, Lahti J, Eriksson JG, Strandberg TE, FinnGen, Tienari PJ. C9orf72 hexanucleotide repeat allele tagging SNPs: Associations with ALS risk and longevity. Front Genet 2023; 14:1087098. [PMID: 36936421 PMCID: PMC10014923 DOI: 10.3389/fgene.2023.1087098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/23/2023] [Indexed: 03/05/2023] Open
Abstract
C9orf72 hexanucleotide repeat expansion is a common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The C9orf72 locus may harbor residual risk outside the hexanucleotide repeat expansion, but the evidence is conflicting. Here, we first compared 683 unrelated amyotrophic lateral sclerosis cases and 3,196 controls with Finnish ancestry to find best single nucleotide polymorphisms that tag the C9orf72 hexanucleotide repeat expansion and intermediate-length alleles. Rs2814707 was the best tagging single nucleotide polymorphisms for intermediate-length alleles with ≥7 repeats (p = 5 × 10-307) and rs139185008 for the hexanucleotide repeat expansion (p = 7 × 10-114) as well as alleles with ≥20 repeats. rs139185008*C associated with amyotrophic lateral sclerosis after removing cases with the hexanucleotide repeat expansion, especially in the subpopulation homozygous for the rs2814707*T (p = 0.0002, OR = 5.06), which supports the concept of residual amyotrophic lateral sclerosis risk at the C9orf72 haplotypes other than the hexanucleotide repeat expansion. We then leveraged Finnish biobank data to test the effects of rs2814707*T and rs139185008*C on longevity after removing individuals with amyotrophic lateral sclerosis / frontotemporal dementia diagnoses. In the discovery cohort (n = 230,006), the frequency of rs139185008*C heterozygotes decreased significantly with age in the comparisons between 50 and 80 years vs. >80 years (p = 0.0005) and <50 years vs. >80 years (p = 0.0001). The findings were similar but less significant in a smaller replication cohort (2-sided p = 0.037 in 50-80 years vs. >80 years and 0.061 in <50 years vs. >80 years). Analysis of the allele frequencies in 5-year bins demonstrated that the decrease of rs139185008*C started after the age of 70 years. The hexanucleotide repeat expansion tagging single nucleotide polymorphisms decreasing frequency with age suggests its' association with age-related diseases probably also outside amyotrophic lateral sclerosis / frontotemporal dementia.
Collapse
Affiliation(s)
- Karri Kaivola
- Translational Immunology, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
- *Correspondence: Karri Kaivola,
| | - Matti Pirinen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Hannu Laaksovirta
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| | - Lilja Jansson
- Translational Immunology, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| | - Osma Rautila
- Translational Immunology, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| | - Jyrki Launes
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Laura Hokkanen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Jari Lahti
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Johan G. Eriksson
- Folkhälsan Research Center, Helsinki, Finland
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore, Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of General Practice and Primary Healthcare, University of Helsinki, Helsinki, Finland
| | - Timo E. Strandberg
- University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- University of Oulu, Center for Life Course Health Research, Oulu, Finland
| | | | - Pentti J. Tienari
- Translational Immunology, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
36
|
Wei C, Zhu Y, Li S, Chen W, Li C, Jiang S, Xu R. Identification of an immune-related gene prognostic index for predicting prognosis, immunotherapeutic efficacy, and candidate drugs in amyotrophic lateral sclerosis. Front Cell Neurosci 2022; 16:993424. [PMID: 36589282 PMCID: PMC9798295 DOI: 10.3389/fncel.2022.993424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Rationale and objectives Considering the great insufficiency in the survival prediction and therapy of amyotrophic lateral sclerosis (ALS), it is fundamental to determine an accurate survival prediction for both the clinical practices and the design of treatment trials. Therefore, there is a need for more accurate biomarkers that can be used to identify the subtype of ALS which carries a high risk of progression to guide further treatment. Methods The transcriptome profiles and clinical parameters of a total of 561 ALS patients in this study were analyzed retrospectively by analysis of four public microarray datasets. Based on the results from a series of analyses using bioinformatics and machine learning, immune signatures are able to be used to predict overall survival (OS) and immunotherapeutic response in ALS patients. Apart from other comprehensive analyses, the decision tree and the nomogram, based on the immune signatures, were applied to guide individual risk stratification. In addition, molecular docking methodology was employed to screen potential small molecular to which the immune signatures might response. Results Immune was determined as a major risk factor contributing to OS among various biomarkers of ALS patients. As compared with traditional clinical features, the immune-related gene prognostic index (IRGPI) had a significantly higher capacity for survival prediction. The determination of risk stratification and assessment was optimized by integrating the decision tree and the nomogram. Moreover, the IRGPI may be used to guide preventative immunotherapy for patients at high risks for mortality. The administration of 2MIU IL2 injection in the short-term was likely to be beneficial for the prolongment of survival time, whose dosage should be reduced to 1MIU if the long-term therapy was required. Besides, a useful clinical application for the IRGPI was to screen potential compounds by the structure-based molecular docking methodology. Conclusion Ultimately, the immune-derived signatures in ALS patients were favorable biomarkers for the prediction of survival probabilities and immunotherapeutic responses, and the promotion of drug development.
Collapse
Affiliation(s)
- Caihui Wei
- Department of Neurology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Yu Zhu
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shu Li
- Department of Neurology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Wenzhi Chen
- Department of Neurology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Cheng Li
- Department of Neurology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, Jiangxi, China,Department of Neurology, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Shishi Jiang
- Department of Neurology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, Jiangxi, China,Department of Neurology, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China,*Correspondence: Renshi Xu, ;
| |
Collapse
|
37
|
Zecca C, Tortelli R, Carrera P, Dell'Abate MT, Logroscino G, Ferrari M. Genotype-phenotype correlation in the spectrum of frontotemporal dementia-parkinsonian syndromes and advanced diagnostic approaches. Crit Rev Clin Lab Sci 2022; 60:171-188. [PMID: 36510705 DOI: 10.1080/10408363.2022.2150833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The term frontotemporal dementia (FTD) refers to a group of progressive neurodegenerative disorders characterized mainly by atrophy of the frontal and anterior temporal lobes. Based on clinical presentation, three main clinical syndromes have traditionally been described: behavioral variant frontotemporal dementia (bvFTD), non-fluent/agrammatic primary progressive aphasia (nfPPA), and semantic variant PPA (svPPA). However, over the last 20 years, it has been recognized that cognitive phenotypes often overlap with motor phenotypes, either motor neuron diseases or parkinsonian signs and/or syndromes like progressive supranuclear palsy (PSP) and cortico-basal syndrome (CBS). Furthermore, FTD-related genes are characterized by genetic pleiotropy and can cause, even in the same family, pure motor phenotypes, findings that underlie the clinical continuum of the spectrum, which has pure cognitive and pure motor phenotypes as the extremes. The genotype-phenotype correlation of the spectrum, FTD-motor neuron disease, has been well defined and extensively investigated, while the continuum, FTD-parkinsonism, lacks a comprehensive review. In this narrative review, we describe the current knowledge about the genotype-phenotype correlation of the spectrum, FTD-parkinsonism, focusing on the phenotypes that are less frequent than bvFTD, namely nfPPA, svPPA, PSP, CBS, and cognitive-motor overlapping phenotypes (i.e. PPA + PSP). From a pathological point of view, they are characterized mainly by the presence of phosphorylated-tau inclusions, either 4 R or 3 R. The genetic correlate of the spectrum can be heterogeneous, although some variants seem to lead preferentially to specific clinical syndromes. Furthermore, we critically review the contribution of genome-wide association studies (GWAS) and next-generation sequencing (NGS) in disentangling the complex heritability of the FTD-parkinsonism spectrum and in defining the genotype-phenotype correlation of the entire clinical scenario, owing to the ability of these techniques to test multiple genes, and so to allow detailed investigations of the overlapping phenotypes. Finally, we conclude with the importance of a detailed genetic characterization and we offer to patients and families the chance to be included in future randomized clinical trials focused on autosomal dominant forms of FTLD.
Collapse
Affiliation(s)
- Chiara Zecca
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro", Pia Fondazione Card G. Panico Hospital, Tricase, Italy
| | - Rosanna Tortelli
- Neuroscience and Rare Diseases Discovery and Translational Area, Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Paola Carrera
- Unit of Genomics for Human Disease Diagnosis and Clinical Molecular Biology Laboratory, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Teresa Dell'Abate
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro", Pia Fondazione Card G. Panico Hospital, Tricase, Italy
| | - Giancarlo Logroscino
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro", Pia Fondazione Card G. Panico Hospital, Tricase, Italy.,Department of Basic Medicine Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | | |
Collapse
|
38
|
The Role of Epigenetics in Neuroinflammatory-Driven Diseases. Int J Mol Sci 2022; 23:ijms232315218. [PMID: 36499544 PMCID: PMC9740629 DOI: 10.3390/ijms232315218] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative disorders are characterized by the progressive loss of central and/or peripheral nervous system neurons. Within this context, neuroinflammation comes up as one of the main factors linked to neurodegeneration progression. In fact, neuroinflammation has been recognized as an outstanding factor for Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and multiple sclerosis (MS). Interestingly, neuroinflammatory diseases are characterized by dramatic changes in the epigenetic profile, which might provide novel prognostic and therapeutic factors towards neuroinflammatory treatment. Deep changes in DNA and histone methylation, along with histone acetylation and altered non-coding RNA expression, have been reported at the onset of inflammatory diseases. The aim of this work is to review the current knowledge on this field.
Collapse
|
39
|
Kaivola K, Tienari PJ. Response to the letter by de Boer et al. (2022). Acta Neuropathol Commun 2022; 10:173. [PMID: 36447292 PMCID: PMC9710074 DOI: 10.1186/s40478-022-01474-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/08/2022] [Indexed: 12/02/2022] Open
Affiliation(s)
- Karri Kaivola
- grid.7737.40000 0004 0410 2071Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Pentti J. Tienari
- grid.7737.40000 0004 0410 2071Translational Immunology Research Program, University of Helsinki, Helsinki, Finland ,grid.15485.3d0000 0000 9950 5666Neurocenter, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
40
|
Kartanou C, Kontogeorgiou Z, Rentzos M, Potagas C, Aristeidou S, Kapaki E, Paraskevas GP, Constantinides VC, Stefanis L, Papageorgiou SG, Houlden H, Panas M, Koutsis G, Karadima G. Expanding the spectrum of C9ORF72-related neurodegenerative disorders in the Greek population. J Neurol Sci 2022; 442:120450. [PMID: 36252286 DOI: 10.1016/j.jns.2022.120450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 10/31/2022]
Abstract
The C9ORF72 hexanucleotide repeat expansion is an established cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) and has also been associated with Huntington disease (HD)-like syndromes and rarely with Parkinson's disease (PD) and Alzheimer's disease (AD). In the present study we aimed to investigate the genotypic and phenotypic profile of C9ORF72-related disorders in Greece. For this reason, 957 patients (467 with ALS, 53 with HD-like syndromes, 247 with dementia, 175 with PD and 15 with hereditary spastic paraplegia, HSP) and 321 controls were tested for the C9ORF72 repeat expansion. Forty-nine patients with ALS (10.5%), 2 with HD-like syndromes (3.8%), 13 with FTD (11.5%), 1 with AD (1.6%), and 2 with PD (1.1%) were expansion-positive. The expansion was not detected in the HSP or control groups. The results of this study provide an update on the spectrum of C9ORF72-related neurodegenerative diseases, emphasizing the importance of C9ORF72 genetic testing in Greek patients with familial and sporadic ALS and/or FTD and HD-like syndromes.
Collapse
Affiliation(s)
- Chrisoula Kartanou
- Neurogenetics Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece.
| | - Zoi Kontogeorgiou
- Neurogenetics Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Michail Rentzos
- 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantin Potagas
- Neuropsychology and Speech Pathology Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Stavroula Aristeidou
- Neurogenetics Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elisabeth Kapaki
- Unit of Neurochemistry and Biological Markers, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - George P Paraskevas
- Unit of Neurochemistry and Biological Markers, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasilios C Constantinides
- Unit of Neurochemistry and Biological Markers, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Leonidas Stefanis
- 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece; Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Greece
| | - Sokratis G Papageorgiou
- 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Henry Houlden
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Marios Panas
- Neurogenetics Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Koutsis
- Neurogenetics Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgia Karadima
- Neurogenetics Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
41
|
König T, Wurm R, Parvizi T, Silvaieh S, Hotzy C, Cetin H, Klotz S, Gelpi E, Bancher C, Benke T, Dal-Bianco P, Defrancesco M, Fischer P, Marksteiner J, Sutterlüty H, Ransmayr G, Schmidt R, Zimprich A, Stögmann E. C9orf72 repeat length might influence clinical sub-phenotypes in dementia patients. Neurobiol Dis 2022; 175:105927. [DOI: 10.1016/j.nbd.2022.105927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/27/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022] Open
|
42
|
Letter to the editor on a paper by Kaivola et al. (2020): carriership of two copies of C9orf72 hexanucleotide repeat intermediate-length alleles is not associated with amyotrophic lateral sclerosis or frontotemporal dementia. Acta Neuropathol Commun 2022; 10:141. [PMID: 36131298 PMCID: PMC9494883 DOI: 10.1186/s40478-022-01438-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/29/2022] [Indexed: 11/10/2022] Open
|
43
|
Kurosaki T, Ashizawa T. The genetic and molecular features of the intronic pentanucleotide repeat expansion in spinocerebellar ataxia type 10. Front Genet 2022; 13:936869. [PMID: 36199580 PMCID: PMC9528567 DOI: 10.3389/fgene.2022.936869] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Spinocerebellar ataxia type 10 (SCA10) is characterized by progressive cerebellar neurodegeneration and, in many patients, epilepsy. This disease mainly occurs in individuals with Indigenous American or East Asian ancestry, with strong evidence supporting a founder effect. The mutation causing SCA10 is a large expansion in an ATTCT pentanucleotide repeat in intron 9 of the ATXN10 gene. The ATTCT repeat is highly unstable, expanding to 280-4,500 repeats in affected patients compared with the 9-32 repeats in normal individuals, one of the largest repeat expansions causing neurological disorders identified to date. However, the underlying molecular basis of how this huge repeat expansion evolves and contributes to the SCA10 phenotype remains largely unknown. Recent progress in next-generation DNA sequencing technologies has established that the SCA10 repeat sequence has a highly heterogeneous structure. Here we summarize what is known about the structure and origin of SCA10 repeats, discuss the potential contribution of variant repeats to the SCA10 disease phenotype, and explore how this information can be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- Tatsuaki Kurosaki
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
- Center for RNA Biology, University of Rochester, Rochester, NY, United States
| | - Tetsuo Ashizawa
- Stanley H. Appel Department of Neurology, Houston Methodist Research Institute and Weil Cornell Medical College at Houston Methodist Houston, TX, United States
| |
Collapse
|
44
|
Pu M, Tai Y, Yuan L, Zhang Y, Guo H, Hao Z, Chen J, Qi X, Wang G, Tao Z, Ren J. The contribution of proteasomal impairment to autophagy activation by C9orf72 poly-GA aggregates. Cell Mol Life Sci 2022; 79:501. [PMID: 36036324 PMCID: PMC11803000 DOI: 10.1007/s00018-022-04518-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/18/2022] [Accepted: 08/08/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Poly-GA, a dipeptide repeat protein unconventionally translated from GGGGCC (G4C2) repeat expansions in C9orf72, is abundant in C9orf72-related amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9orf72-ALS/FTD). Although the poly-GA aggregates have been identified in C9orf72-ALS/FTD neurons, the effects on UPS (ubiquitin-proteasome system) and autophagy and their exact molecular mechanisms have not been fully elucidated. RESULTS Herein, our in vivo experiments indicate that the mice expressing ploy-GA with 150 repeats instead of 30 repeats exhibit significant aggregates in cells. Mice expressing 150 repeats ploy-GA shows behavioral deficits and activates autophagy in the brain. In vitro findings suggest that the poly-GA aggregates influence proteasomal by directly binding proteasome subunit PSMD2. Subsequently, the poly-GA aggregates activate phosphorylation and ubiquitination of p62 to recruit autophagosomes. Ultimately, the poly-GA aggregates lead to compensatory activation of autophagy. In vivo studies further reveal that rapamycin (autophagy activator) treatment significantly improves the degenerative symptoms and alleviates neuronal injury in mice expressing 150 repeats poly-GA. Meanwhile, rapamycin administration to mice expressing 150 repeats poly-GA reduces neuroinflammation and aggregates in the brain. CONCLUSION In summary, we elucidate the relationship between poly-GA in the proteasome and autophagy: when poly-GA forms complexes with the proteasome, it recruits autophagosomes and affects proteasome function. Our study provides support for further promoting the comprehension of the pathogenesis of C9orf72, which may bring a hint for the exploration of rapamycin for the treatment of ALS/FTD.
Collapse
Affiliation(s)
- Mei Pu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yusi Tai
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Luyang Yuan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Zhang
- Key Laboratory of Receptor Research, Department of Neuropharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Huijie Guo
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zongbing Hao
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Jing Chen
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, China
| | - Xinming Qi
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, China
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.
| | - Zhouteng Tao
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, China.
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, China.
| | - Jin Ren
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
45
|
Tang L, Chen L, Liu X, He J, Ma Y, Zhang N, Fan D. The repeat length of C9orf72 is associated with the survival of amyotrophic lateral sclerosis patients without C9orf72 pathological expansions. Front Neurol 2022; 13:939775. [PMID: 35989899 PMCID: PMC9381700 DOI: 10.3389/fneur.2022.939775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTo explore whether the repeat lengths of the chromosome 9 open reading frame 72 (C9orf72) gene and the ataxin-2 (ATXN2) gene in amyotrophic lateral sclerosis (ALS) patients without C9orf72 repeat expansions confer a risk of ALS or survival disadvantages in ALS.MethodsWe screened a hospital-based cohort of Chinese patients with sporadic ALS without C9orf72 repeat expansions and neurologically healthy controls for C9orf72 GGGGCC and AXTN2 CAG repeat length to compare the frequency of possible detrimental length alleles using several thresholds. Furthermore, the clinical features of ALS were compared between patients with ALS subgroups using different length thresholds of maximum C9orf72 and ATXN2 repeat alleles, such as sex, age of onset, diagnostic delay, and survival.ResultsOverall, 879 sporadic patients with ALS and 535 controls were included and the repeat lengths of the C9orf72 and ATXN2 were both detected. We found significant survival differences in patients using a series of C9orf72 repeat length thresholds from 2 to 5, among which the most significant difference was at the cutoff value of 2 (repeats 2 vs. >2: median survival 67 vs. 55 months, log-rank p = 0.032). Furthermore, Cox regression analysis revealed the role of age of onset [hazard ratio (HR) 1.04, 95% CI 1.03–1.05, p < 0.001], diagnostic delay (0.95, 0.94–0.96, p < 0.001), and carrying C9orf72 repeat length of 2 (0.72, 0.59–0.89, p = 0.002) in the survival of patients without C9orf72 repeat expansions. In addition, bulbar onset was associated with poorer survival when the patients carried the maximum C9orf72 repeat allele over 2 (1.81, 1.32–2.48, p < 0.001). However, no survival difference was found when applying a series of continuous cutoff values of ATXN2 or stratified by C9orf72 repeats of 2.ConclusionThe length of 2 in the maximum C9orf72 repeat allele was identified to be associated with favorable survival in ALS patients without C9orf72 repeat expansions. Our findings from the clinical setting implicated the possible cutoff definition of detrimental C9orf72 repeats, which should be helpful in the understanding of genetics in ALS and in clinical genetic counseling.
Collapse
Affiliation(s)
- Lu Tang
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Peking University Third Hospital, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Lu Chen
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Peking University Third Hospital, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Xiaolu Liu
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Peking University Third Hospital, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Ji He
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Peking University Third Hospital, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Yan Ma
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Peking University Third Hospital, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Nan Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Peking University Third Hospital, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Peking University Third Hospital, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
- *Correspondence: Dongsheng Fan
| |
Collapse
|
46
|
Legault EM, Bouquety J, Drouin-Ouellet J. Disease Modeling of Neurodegenerative Disorders Using Direct Neural Reprogramming. Cell Reprogram 2022; 24:228-251. [PMID: 35749150 DOI: 10.1089/cell.2021.0172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Understanding the pathophysiology of CNS-associated neurological diseases has been hampered by the inaccessibility of patient brain tissue to perform live analyses at the molecular level. To this end, neural cells obtained by differentiation of patient-derived induced pluripotent stem cells (iPSCs) are considerably helpful, especially in the context of monogenic-based disorders. More recently, the use of direct reprogramming to convert somatic cells to neural cells has emerged as an alternative to iPSCs to generate neurons, astrocytes, and oligodendrocytes. This review focuses on the different studies that used direct neural reprogramming to study disease-associated phenotypes in the context of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
| | - Julie Bouquety
- Faculty of Pharmacy, Université de Montréal, Montreal, Canada
| | | |
Collapse
|
47
|
Cozzi M, Ferrari V. Autophagy Dysfunction in ALS: from Transport to Protein Degradation. J Mol Neurosci 2022; 72:1456-1481. [PMID: 35708843 PMCID: PMC9293831 DOI: 10.1007/s12031-022-02029-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/17/2022] [Indexed: 01/18/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting upper and lower motor neurons (MNs). Since the identification of the first ALS mutation in 1993, more than 40 genes have been associated with the disorder. The most frequent genetic causes of ALS are represented by mutated genes whose products challenge proteostasis, becoming unable to properly fold and consequently aggregating into inclusions that impose proteotoxic stress on affected cells. In this context, increasing evidence supports the central role played by autophagy dysfunctions in the pathogenesis of ALS. Indeed, in early stages of disease, high levels of proteins involved in autophagy are present in ALS MNs; but at the same time, with neurodegeneration progression, autophagy-mediated degradation decreases, often as a result of the accumulation of toxic protein aggregates in affected cells. Autophagy is a complex multistep pathway that has a central role in maintaining cellular homeostasis. Several proteins are involved in its tight regulation, and importantly a relevant fraction of ALS-related genes encodes products that directly take part in autophagy, further underlining the relevance of this key protein degradation system in disease onset and progression. In this review, we report the most relevant findings concerning ALS genes whose products are involved in the several steps of the autophagic pathway, from phagophore formation to autophagosome maturation and transport and finally to substrate degradation.
Collapse
Affiliation(s)
- Marta Cozzi
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, Università Degli Studi Di Milano, 20133, Milan, Italy.
| | - Veronica Ferrari
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, Università Degli Studi Di Milano, 20133, Milan, Italy.
| |
Collapse
|
48
|
Breevoort S, Gibson S, Figueroa K, Bromberg M, Pulst S. Expanding Clinical Spectrum of C9ORF72-Related Disorders and Promising Therapeutic Strategies: A Review. Neurol Genet 2022; 8:e670. [PMID: 35620137 PMCID: PMC9128039 DOI: 10.1212/nxg.0000000000000670] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/18/2022] [Indexed: 11/15/2022]
Abstract
In 2011, a pathogenic hexanucleotide repeat expansion in the C9ORF72 gene was discovered to be the leading genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Before this, the C9ORF72 gene and its protein were unknown. The repeat expansion was found to cause both haploinsufficiency and gain of toxicity through aggregating RNA products and dipeptide repeat proteins. A worldwide effort was then initiated to define C9ORF72 ALS/FTD and unravel the pathogenic mechanism for the development of therapeutic options. A decade later, C9ORF72 genetic testing is readily available. There is now an increasing appreciation that C9ORF72 not only is the leading genetic cause of ALS/FTD but may contribute to a spectrum of disorders. This article reviews what is currently known about the C9ORF72 expansion and how C9ORF72 expansion manifests in ALS, FTD, psychiatric disorders, and movement disorders. With therapeutic strategies fast approaching the clinic, earlier recognition of possible C9ORF72 expansion related disorders is even more paramount to improve patient care.
Collapse
Affiliation(s)
| | - Summer Gibson
- Department of Neurology, University of Utah, Salt Lake City
| | - Karla Figueroa
- Department of Neurology, University of Utah, Salt Lake City
| | - Mark Bromberg
- Department of Neurology, University of Utah, Salt Lake City
| | - Stefan Pulst
- Department of Neurology, University of Utah, Salt Lake City
| |
Collapse
|
49
|
Barbé L, Finkbeiner S. Genetic and Epigenetic Interplay Define Disease Onset and Severity in Repeat Diseases. Front Aging Neurosci 2022; 14:750629. [PMID: 35592702 PMCID: PMC9110800 DOI: 10.3389/fnagi.2022.750629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Repeat diseases, such as fragile X syndrome, myotonic dystrophy, Friedreich ataxia, Huntington disease, spinocerebellar ataxias, and some forms of amyotrophic lateral sclerosis, are caused by repetitive DNA sequences that are expanded in affected individuals. The age at which an individual begins to experience symptoms, and the severity of disease, are partially determined by the size of the repeat. However, the epigenetic state of the area in and around the repeat also plays an important role in determining the age of disease onset and the rate of disease progression. Many repeat diseases share a common epigenetic pattern of increased methylation at CpG islands near the repeat region. CpG islands are CG-rich sequences that are tightly regulated by methylation and are often found at gene enhancer or insulator elements in the genome. Methylation of CpG islands can inhibit binding of the transcriptional regulator CTCF, resulting in a closed chromatin state and gene down regulation. The downregulation of these genes leads to some disease-specific symptoms. Additionally, a genetic and epigenetic interplay is suggested by an effect of methylation on repeat instability, a hallmark of large repeat expansions that leads to increasing disease severity in successive generations. In this review, we will discuss the common epigenetic patterns shared across repeat diseases, how the genetics and epigenetics interact, and how this could be involved in disease manifestation. We also discuss the currently available stem cell and mouse models, which frequently do not recapitulate epigenetic patterns observed in human disease, and propose alternative strategies to study the role of epigenetics in repeat diseases.
Collapse
Affiliation(s)
- Lise Barbé
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, United States
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
- Department of Physiology, University of California, San Francisco, San Francisco, CA, United States
| | - Steve Finkbeiner
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, United States
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
- Department of Physiology, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Steve Finkbeiner,
| |
Collapse
|
50
|
Fang L, Liu Q, Monteys AM, Gonzalez-Alegre P, Davidson BL, Wang K. DeepRepeat: direct quantification of short tandem repeats on signal data from nanopore sequencing. Genome Biol 2022; 23:108. [PMID: 35484600 PMCID: PMC9052667 DOI: 10.1186/s13059-022-02670-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/08/2022] [Indexed: 12/12/2022] Open
Abstract
Despite recent improvements in basecalling accuracy, nanopore sequencing still has higher error rates on short-tandem repeats (STRs). Instead of using basecalled reads, we developed DeepRepeat which converts ionic current signals into red-green-blue channels, thus transforming the repeat detection problem into an image recognition problem. DeepRepeat identifies and accurately quantifies telomeric repeats in the CHM13 cell line and achieves higher accuracy in quantifying repeats in long STRs than competing methods. We also evaluate DeepRepeat on genome-wide or candidate region datasets from seven different sources. In summary, DeepRepeat enables accurate quantification of long STRs and complements existing methods relying on basecalled reads.
Collapse
Affiliation(s)
- Li Fang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Qian Liu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA. .,School of Life Sciences, College of Science, University of Nevada, Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV, 89154, USA. .,Nevada Institute of Personalized Medicine, College of Science, University of Nevada, Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV, 89154, USA.
| | - Alex Mas Monteys
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Pedro Gonzalez-Alegre
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Beverly L Davidson
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA. .,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|