1
|
McGuire JF. Tourette Syndrome. Psychiatr Clin North Am 2025; 48:xv-xvii. [PMID: 39880520 DOI: 10.1016/j.psc.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Affiliation(s)
- Joseph F McGuire
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine; Center for Developmental and Behavioral Health, Kennedy Krieger Institute, 550 North Broadway, Suite 206, Baltimore, MD, 21205, USA.
| |
Collapse
|
2
|
Singer HS, Pellicciotti J. The Pathophysiology of Tics: An Anatomic Review. Psychiatr Clin North Am 2025; 48:15-29. [PMID: 39880509 DOI: 10.1016/j.psc.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
The underlying pathophysiology of tics in Tourette syndrome is a topic of major scientific interest. To date, there is an absence of consensus among researchers regarding the precise anatomic location responsible for tics. The goal of this article is to review the current understanding of these brain circuits and data supporting specific anatomic regions. In summary, current scientific evidence supports the likelihood of multiple areas of abnormality within cortico-basal ganglia-thalamocortical (CBGTC) circuitry or their connected brain regions. A reasonable anatomic hypothesis is that a disruption anywhere within specific circuitry can ultimately lead to the development of a tic disorder.
Collapse
Affiliation(s)
- Harvey S Singer
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Kennedy Krieger Institute, Baltimore, MD, USA.
| | - Justin Pellicciotti
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
3
|
de Barros MC, Duarte KTN, Hsu CJ, Lee WT, Garcia de Carvalho MA. Identifying texture features from structural magnetic resonance imaging scans associated with Tourette's syndrome using machine learning. J Med Imaging (Bellingham) 2025; 12:026001. [PMID: 40028654 PMCID: PMC11866941 DOI: 10.1117/1.jmi.12.2.026001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
Purpose Tourette syndrome (TS) is a neurodevelopmental disorder characterized by neurophysiological and neuroanatomical changes, primarily affecting individuals aged 2 to 18. Involuntary motor and vocal tics are common features of this syndrome. Currently, there is no curative therapy for TS, only psychological treatments or medications that temporarily manage the tics. The absence of a definitive diagnostic tool complicates the differentiation of TS from other neurological and psychological conditions. Approach We aim to enhance the diagnosis of TS through the classification of structural magnetic resonance scans. Our methodology comprises four sequential steps: (1) image acquisition, data were generated for the National Taiwan University, composing images of pediatric magnetic resonance imaging (MRI); (2) pre-processing, involving anatomical structural segmentation using reesurfer software; (3) feature extraction, where texture features in volumetric images are obtained; and (4) image classification, employing support vector machine and naive Bayes classifiers to determine the presence of TS. Results The analysis indicated significant changes in the regions of the limbic system, such as the thalamus and amygdala, and regions outside the limbic system such as medial orbitofrontal cortex and insula, which are strongly associated with TS. Conclusions Our findings suggest that texture features derived from sMRI scans can aid in the diagnosis of TS by highlighting critical brain regions involved in the disorder. The proposed method holds promise for improving diagnostic accuracy and understanding the neuroanatomical underpinnings of TS.
Collapse
Affiliation(s)
- Murilo Costa de Barros
- University of Campinas, School of Technology, Computing Visual Laboratory, Limeira, Brazil
| | | | - Chia-Jui Hsu
- National Taiwan University Hospital, Department of Pediatrics, Hsinchu, Taiwan
| | - Wang-Tso Lee
- National Taiwan University Children’s Hospital, Department of Pediatrics, Taipei, Taiwan
| | | |
Collapse
|
4
|
Wang J, Yue J, Wang Y, Li X, Deng X, Lou Y, Gao L, Chen X, Su Q, Zang Y, Feng J. Function-Specific Localization in the Supplementary Motor Area: A Potential Effective Target for Tourette Syndrome. CNS Neurosci Ther 2025; 31:e70280. [PMID: 39981770 PMCID: PMC11843473 DOI: 10.1111/cns.70280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 01/07/2025] [Accepted: 02/03/2025] [Indexed: 02/22/2025] Open
Abstract
AIMS Repetitive transcranial magnetic stimulation (rTMS) targeting the supplementary motor area (SMA) may treat Tourette's syndrome (TS) by modulating the function of the globus pallidus internus (GPi) via the cortico-striato-thalamo-cortical circuit. METHODS We conducted a randomized longitudinal study to examine circuit functionality and clinical efficacy. The GPi was identified as an "effective region" for TS treatment. Using functional MRI, individualized targets within the SMA were identified. Function-specific targets [left SMA (n = 19), right SMA (n = 16)] were compared with conventional scalp-localized SMA targets (n = 19). Age- and gender-matched typical developmental children (TDC) served as controls (n = 48). TS patients received 50 Hz continuous theta burst stimulation (cTBS) at 70% RMT over five consecutive days (1800 pulses/day). Clinical efficacy was assessed using the Yale Global Tic Severity Scale (YGTSS) at one and two weeks post-cTBS. Functional connectivity (FC) analyses of the GPi evaluated the impact on brain function. RESULTS There was an approximately 3 cm Y-axis distance between the function-specific and conventional targets. TS patients exhibited significantly reduced GPi-base FC in bilateral motor areas at baseline compared to TDC. Following cTBS, 4 out of 19 patients in the left SMA group achieved a ≥ 30% reduction in YGTSS scores. cTBS modulated brain function in the left inferior orbital frontal cortex and right Lingual/cerebellum, primarily influenced by the right SMA target, whereas the conventional target showed no effect on YGTSS scores. Changes in GPi-target FC were significantly correlated with reduction in YGTSS total scores (r = 0.638, p = 0.026). CONCLUSION These findings suggest that function-specific SMA targets may yield more pronounced modulatory effects, with the left SMA target achieving "Effectiveness" after just one week of cTBS. Combining function-specific SMA-targeted cTBS with standard treatment shows promise in accelerating clinical efficacy for TS treatment, warranting further investigation.
Collapse
Affiliation(s)
- Jue Wang
- Institute of Sports Medicine and HealthChengdu Sport UniversityChengduChina
| | - Juan Yue
- TMS CenterHangzhou Normal University Affiliated Deqing HospitalHuzhouChina
| | - Ye Wang
- Department of Pediatrics, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiao‐Long Li
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouChina
| | - Xin‐Ping Deng
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouChina
| | - Yu‐Ting Lou
- Department of Pediatrics, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Liu‐Yan Gao
- Department of Pediatrics, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiao‐Quan Chen
- Department of Pediatrics, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Qun‐Yan Su
- Department of PediatricsTaizhou Woman and Children's HospitalTaizhouChina
| | - Yu‐Feng Zang
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouChina
| | - Jian‐Hua Feng
- Department of Pediatrics, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
5
|
Yang Y, Zhou J, Yang H, Wang A, Tian Y, Luo R. Structural and functional alterations in the brain gray matter among Tourette syndrome patients: a multimodal meta-analysis of fMRI and VBM studies. J Neurol 2025; 272:133. [PMID: 39812838 PMCID: PMC11735548 DOI: 10.1007/s00415-024-12852-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Tourette syndrome (TS) is a prevalent neurodevelopmental disorder with an uncertain etiology. Numerous neuroimaging studies have investigated patients with TS, but their conclusions remain inconsistent. The current study attempted to provide an unbiased statistical meta-analysis of published neuroimaging studies of TS. METHODS A comprehensive literature search was conducted to identify voxel-based whole-brain morphology (VBM) and functional magnetic resonance imaging (fMRI) studies related to TS. Two separate meta-analyses of neurofunctional activation and gray matter volume (GMV) were performed using a seed-point-based d-mapping software package, followed by joint and subgroup analyses. RESULTS 11 VBM studies and 18 fMRI studies were included in this study. We found that grey matter volumes were significantly decreased in the right anterior cingulate/paracingulate gyri and the left postcentral gyrus; while the cerebellum, bilateral cortico-spinal projections, and striatum showed increased GMV in patients with TS. In fMRI studies, patients with TS showed overactivation in the right superior frontal gyrus and right superior temporal gyrus, and significant hypoactivation in left SMA. In the multimodal studies, TS patients showed that there was an overlap between decreased GMV and hypoactivation in the right median cingulate/paracingulate gyri. CONCLUSION Abnormal alterations in the structure and function of the brain regions may play a role in the pathogenesis of TS in patients, and may be used as an imaging indicator for patients with TS to be diagnosed.
Collapse
Affiliation(s)
- Yue Yang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, 610041, China
| | - Jielan Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, 610041, China
| | - Hua Yang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, 610041, China
| | - Anqi Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, 610041, China
| | - Yu Tian
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, 610041, China.
| | - Rong Luo
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Frick LR. Neuroglia in Tourette syndrome and obsessive-compulsive disorder. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:325-334. [PMID: 40148053 DOI: 10.1016/b978-0-443-19102-2.00005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
In recent years, neuroglia have drawn the attention of researchers in the fields of neurology and psychiatry. Besides their well-known functions providing support to neurons, myelinating axons, and clearing up debris, a constantly growing of evidence indicates that glial cells are key contributors to the pathophysiology of neuropsychiatric disorders. Alterations in microglia, astrocytes, and oligodendrocytes have been described in Tourette syndrome (TS) and obsessive-compulsive disorder (OCD). The sudden onset of tics and OCD-like symptoms after infection in children (Pediatric Autoimmune Neuropsychiatric Disorder Associated with Streptococcal Infections) suggests a connection with the immune system; in fact, neuroinflammation has been reported. Many imaging studies revealed abnormal myelination in the brain of TS and OCD patients, highlighting the implication of oligodendroglia in the connectivity alterations. Moreover, animal models have unveiled a cell-autonomous role of microglia and astrocytes in the etiology of pathologic grooming, which links these glial cells to the related disorder trichotillomania. This chapter reviews the state of the art and current gaps in the literature, proposing possible pathomechanisms and future research directions.
Collapse
Affiliation(s)
- Luciana R Frick
- Departments of Neurology and Medicine, Neuroscience Graduate Program, Jacobs School of Medicine & Biomedical Sciences, State University of New York at Buffalo, Clinical and Translational Research Center, Buffalo, NY, United States.
| |
Collapse
|
7
|
Che T, Kim S, Greene DJ, Heywood A, Ding J, Hershey T, Schlaggar BL, Black KJ, Wang L. Correlating clinical course with baseline subcortical shape in provisional tic disorder. CNS Spectr 2024; 29:652-664. [PMID: 39604269 PMCID: PMC11839322 DOI: 10.1017/s1092852924002190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
OBJECTIVE This study examined children at the onset of tic disorder (tics for less than 9 months: NT group), a population on which little research exists. Here, we investigate relationships between the baseline shape and volume of subcortical nuclei, diagnosis, and tic symptom outcomes. METHODS 187 children were assessed at baseline and a 12-month follow-up: 88 with NT, 60 tic-free healthy controls (HC), and 39 with chronic tic disorder/Tourette syndrome (TS), using T1-weighted MRI and total tic scores (TTS) from the Yale Global Tic Severity Scale to evaluate symptom change. Subcortical surface maps were generated using FreeSurfer-initialized large deformation diffeomorphic metric mapping. Linear regression models correlated baseline structural shapes with follow-up TTS while accounting for covariates, with relationships mapped onto structure surfaces. RESULTS We found that the NT group had a larger right hippocampus compared to HC. Surface maps illustrate distinct patterns of inward deformation in the putamen and outward deformation in the thalamus for NT compared to controls. We also found patterns of outward deformation in almost all studied structures when comparing the TS group to controls. The NT group also showed consistent outward deformation compared to TS in the caudate, accumbens, putamen, and thalamus. Subsequent analyses including clinical symptoms revealed that a larger pallidum and thalamus at baseline correlated with less improvement of tic symptoms at follow-up. CONCLUSION These observations constitute some of the first prognostic biomarkers for tic disorders and suggest that these subregional shape and volume differences may be associated with the outcome of tic disorders.
Collapse
Affiliation(s)
- Tiffanie Che
- Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Soyoung Kim
- Departments of Psychiatry and Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Deanna J. Greene
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, USA
| | - Ashley Heywood
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jimin Ding
- Department of Mathematics and Statistics; Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Tamara Hershey
- Departments of Psychiatry, Neurology, Psychological and Brain Sciences and Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Bradley L. Schlaggar
- Kennedy Krieger Institute, Baltimore, MD, USA
- Departments of Neurology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kevin J. Black
- Departments of Psychiatry, Neurology, Radiology and Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Lei Wang
- Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
8
|
Li HH, Wang XF, Wang B, Jia FY. Vitamin D3 improves iminodipropionitrile-induced tic-like behavior in rats through regulation of GDNF/c-Ret signaling activity. Eur Child Adolesc Psychiatry 2024; 33:3189-3201. [PMID: 38396228 DOI: 10.1007/s00787-024-02376-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/08/2024] [Indexed: 02/25/2024]
Abstract
Children with chronic tic disorders (CTD), including Tourette syndrome (TS), have significantly reduced serum 25-hydroxyvitamin D [25(OH)D]. While vitamin D3 supplementation (VDS) may reduce tic symptoms in these children, its mechanism is unclear. The study aim was to investigate the effects and mechanisms of vitamin D deficiency (VDD) and VDS on TS model behavior. Forty 5-week-old male Sprague-Dawley rats were randomly divided into (n = 10 each): control, TS model, TS model with VDD (TS + VDD), or TS model with VDS (TS + VDS; two intramuscular injections of 20,000 IU/200 g) groups. The VDD model was diet-induced (0 IU vitamin D/kg); the TS model was iminodipropionitrile (IDPN)-induced. All groups were tested for behavior, serum and striatal 25(OH)D and dopamine (DA), mRNA expressions of vitamin D receptor (VDR), glial cell line-derived neurotrophic factor (GDNF), protooncogene tyrosine-protein kinase receptor Ret (c-Ret), and DA D1 (DRD1) and D2 (DRD2) receptor genes in the striatum. TS + VDD had higher behavior activity scores throughout, and higher total behavior score at day 21 compared with TS model. In contrast, day 21 TS + VDS stereotyped behavior scores and total scores were lower than TS model. The serum 25(OH)D in TS + VDD was < 20 ng/mL, and lower than control. Striatal DA of TS was lower than control. Compared with TS model, striatal DA of TS + VDD was lower, while in TS + VDS it was higher than TS model. Furthermore, mRNA expression of VDR, GDNF, and c-Ret genes decreased in TS model, and GDNF expression decreased more in TS + VDD, while TS + VDS had higher GDNF and c-Ret expressions. VDD aggravates, and VDS ameliorates tic-like behavior in an IDPN-induced model. VDS may upregulate GDNF/c-Ret signaling activity through VDR, reversing the striatal DA decrease and alleviating tic-like behavior.
Collapse
Affiliation(s)
- Hong-Hua Li
- Department of Developmental and Behavioral Pediatrics, Children's Hospital, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
- School of Public Health, Jilin University, Changchun, Jilin Province, China
- The Child Health Clinical Research Center of Jilin Province, Changchun, China
| | - Xi-Fei Wang
- Department of Developmental and Behavioral Pediatrics, Children's Hospital, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
- The Child Health Clinical Research Center of Jilin Province, Changchun, China
| | - Bing Wang
- Department of Developmental and Behavioral Pediatrics, Children's Hospital, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
- The Child Health Clinical Research Center of Jilin Province, Changchun, China
| | - Fei-Yong Jia
- Department of Developmental and Behavioral Pediatrics, Children's Hospital, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
- The Child Health Clinical Research Center of Jilin Province, Changchun, China.
| |
Collapse
|
9
|
Wang CX, Wang B, Sun JJ, Xiao CY, Ma H, Jia FY, Li HH. Circulating retinol and 25(OH)D contents and their association with symptoms in children with chronic tic disorders. Eur Child Adolesc Psychiatry 2024; 33:1017-1028. [PMID: 37166521 PMCID: PMC11032271 DOI: 10.1007/s00787-023-02226-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023]
Abstract
The present study measured serum levels of vitamin A (VA) and vitamin D (VD) in children with chronic tic disorders (CTD) and investigated their potential association with CTD and comorbidity of attention deficit hyperactivity disorder (ADHD) and the association of their co-insufficiencies or deficiencies with CTD symptoms. A total of 176 children (131 boys and 45 girls, median age of 9 years) with CTD were recruited as the CTD group. During the same period, 154 healthy children were selected as the healthy control (HC) cohort. Circulating retinol and 25-hydroxyvitamin D (25[OH]D) levels were measured for all participants using high-performance liquid chromatography (HPLC) and tandem mass spectrometry. The Yale Global Tic Severity Scale (YGTSS) was employed for the assessment of tic status and CTD impairment. The Swanson, Nolan, and Pelham Rating Scale (SNAP-IV) and the Children's Yale-Brown Obsessive-Compulsive Scale (CY-BOCS) were used to evaluate comorbidity symptoms. CTD pediatric participants exhibited markedly diminished circulating retinol and 25(OH)D levels compared to HCs. Moreover, VA and VD deficiencies and their co-insufficiencies/deficiencies were more prevalent in CTD participants than HCs. Circulating 25(OH)D levels were inversely proportional to the YGTSS motor tic scores. YGTSS scores in CTD children with only VA or VD insufficiency or deficiency or with VA and VD co-insufficiency/deficiency did not differ from those in CTD children with normal VA and VD. CTD children with comorbid ADHD displayed reduced circulating retinol and 25(OH)D concentrations and elevated prevalence of VD deficiency compared to CTD participants without comorbid ADHD. Lower serum retinol content was intricately linked to the presence of elevated CTD and comorbid ADHD. VA and VD deficiencies and their co-insufficiencies/deficiencies were markedly enhanced in CTD pediatric participants compared to HCs. Lower VA concentration was linked to the presence of enhanced CTD and comorbid ADHD. Therefore, children with CTD, especially with comorbid ADHD, may be at a higher risk of VA or VD deficiency, which may prompt the clinicians to consider whether blood tests for VA and VD in CTD children would be helpful for clinical care.
Collapse
Affiliation(s)
- Cheng-Xin Wang
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, 130021, China
| | - Bing Wang
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Jian-Jian Sun
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Chun-Ying Xiao
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Huan Ma
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Fei-Yong Jia
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Hong-Hua Li
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
- School of Public Health, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
10
|
Hsu CJ, Wong LC, Wang HP, Chung YC, Kao TW, Weng CH, Wu WC, Peng SF, Tseng WYI, Lee WT. The microstructural change of the brain and its clinical severity association in pediatric Tourette syndrome patients. J Neurodev Disord 2023; 15:34. [PMID: 37880631 PMCID: PMC10598924 DOI: 10.1186/s11689-023-09501-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/20/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Gilles de la Tourette syndrome (GTS) is a prevalent pediatric neurological disorder. Most studies point to abnormalities in the cortico-striato-thalamocortical (CSTC) circuits. Neuroimaging studies have shown GTS's extensive impact on the entire brain. However, due to participant variability and potential drug and comorbidity impact, the results are inconsistent. To mitigate the potential impact of participant heterogeneity, we excluded individuals with comorbidities or those currently undergoing medication treatments. Based on the hypothesis of abnormality within the CSTC circuit, we investigated microstructural changes in white matter using diffusion spectrum imaging (DSI). This study offers the first examination of microstructural changes in treatment-naïve pediatric patients with pure GTS using diffusion spectrum imaging. METHODS This single-center prospective study involved 30 patients and 30 age- and gender-matched healthy volunteers who underwent sagittal T1-weighted MRI and DSI. We analyzed generalized fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity. RESULTS No significant differences were observed in mean diffusivity and axial diffusivity values between the two groups. However, the patient group exhibited significantly higher generalized fractional anisotropy values in the right frontostriatal tract of the dorsolateral prefrontal cortex, the right frontostriatal tract of the precentral gyrus, and bilateral thalamic radiation of the dorsolateral prefrontal cortex. Additionally, the generalized fractional anisotropy value of the right frontostriatal tract of the precentral gyrus is inversely correlated with the total tic severity scores at the most severe condition. CONCLUSION Treatment-naïve pediatric GTS patients demonstrated increased connectivity within the CSTC circuit as per diffusion spectrum imaging, indicating possible CSTC circuit dysregulation. This finding could also suggest a compensatory change. It thus underscores the necessity of further investigation into the fundamental pathological changes in GTS. Nevertheless, the observed altered connectivity in GTS patients might serve as a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Chia-Jui Hsu
- Department of Pediatrics, National Taiwan University Hsin-Chu Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
- Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Lee Chin Wong
- Department of Pediatrics, Cathay General Hospital, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsin-Pei Wang
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Yi-Chun Chung
- Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Te-Wei Kao
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chen-Hsiang Weng
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wen-Chau Wu
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shinn-Forng Peng
- Department of Radiology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Yih Isaac Tseng
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wang-Tso Lee
- Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan.
- Department of Pediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan.
- Department of Pediatrics, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
11
|
Badke D’Andrea C, Marek S, Van AN, Miller RL, Earl EA, Stewart SB, Dosenbach NUF, Schlaggar BL, Laumann TO, Fair DA, Gordon EM, Greene DJ. Thalamo-cortical and cerebello-cortical functional connectivity in development. Cereb Cortex 2023; 33:9250-9262. [PMID: 37293735 PMCID: PMC10492576 DOI: 10.1093/cercor/bhad198] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 06/10/2023] Open
Abstract
The thalamus is a critical relay center for neural pathways involving sensory, motor, and cognitive functions, including cortico-striato-thalamo-cortical and cortico-ponto-cerebello-thalamo-cortical loops. Despite the importance of these circuits, their development has been understudied. One way to investigate these pathways in human development in vivo is with functional connectivity MRI, yet few studies have examined thalamo-cortical and cerebello-cortical functional connectivity in development. Here, we used resting-state functional connectivity to measure functional connectivity in the thalamus and cerebellum with previously defined cortical functional networks in 2 separate data sets of children (7-12 years old) and adults (19-40 years old). In both data sets, we found stronger functional connectivity between the ventral thalamus and the somatomotor face cortical functional network in children compared with adults, extending previous cortico-striatal functional connectivity findings. In addition, there was more cortical network integration (i.e. strongest functional connectivity with multiple networks) in the thalamus in children than in adults. We found no developmental differences in cerebello-cortical functional connectivity. Together, these results suggest different maturation patterns in cortico-striato-thalamo-cortical and cortico-ponto-cerebellar-thalamo-cortical pathways.
Collapse
Affiliation(s)
- Carolina Badke D’Andrea
- Department of Cognitive Science, University of California San Diego, La Jolla, CA 92093, United States
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, United States
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Scott Marek
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Andrew N Van
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Ryland L Miller
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, United States
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Eric A Earl
- Data Science and Sharing Team, National Institute of Mental Health, NIH, DHHS, Bethesda, MD 20899, United States
| | - Stephanie B Stewart
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO 80045, United States
| | - Nico U F Dosenbach
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, United States
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO 63110, United States
| | | | - Timothy O Laumann
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Damien A Fair
- Institute of Child Development, College of Education and Human Development, University of Minnesota, Minneapolis, MN 55455, United States
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, United States
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN 55455, United States
| | - Evan M Gordon
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Deanna J Greene
- Department of Cognitive Science, University of California San Diego, La Jolla, CA 92093, United States
| |
Collapse
|
12
|
Zouki JJ, Ellis EG, Morrison-Ham J, Thomson P, Jesuthasan A, Al-Fatly B, Joutsa J, Silk TJ, Corp DT. Mapping a network for tics in Tourette syndrome using causal lesions and structural alterations. Brain Commun 2023; 5:fcad105. [PMID: 37215485 PMCID: PMC10198704 DOI: 10.1093/braincomms/fcad105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/29/2023] [Accepted: 04/02/2023] [Indexed: 05/24/2023] Open
Abstract
Tics are sudden stereotyped movements or vocalizations. Cases of lesion-induced tics are invaluable, allowing for causal links between symptoms and brain structures. While a lesion network for tics has recently been identified, the degree to which this network translates to Tourette syndrome has not been fully elucidated. This is important given that patients with Tourette syndrome make up a large portion of tic cases; therefore, existing and future treatments should apply to these patients. The aim of this study was to first localize a causal network for tics from lesion-induced cases and then refine and validate this network in patients with Tourette syndrome. We independently performed 'lesion network mapping' using a large normative functional connectome (n = 1000) to isolate a brain network commonly connected to lesions causing tics (n = 19) identified through a systematic search. The specificity of this network to tics was assessed through comparison to lesions causing other movement disorders. Using structural brain coordinates from prior neuroimaging studies (n = 7), we then derived a neural network for Tourette syndrome. This was done using standard anatomical likelihood estimation meta-analysis and a novel method termed 'coordinate network mapping', which uses the same coordinates, yet maps their connectivity using the aforementioned functional connectome. Conjunction analysis was used to refine the network for lesion-induced tics to Tourette syndrome by identifying regions common to both lesion and structural networks. We then tested whether connectivity from this common network is abnormal in a separate resting-state functional connectivity MRI data set from idiopathic Tourette syndrome patients (n = 21) and healthy controls (n = 25). Results showed that lesions causing tics were distributed throughout the brain; however, consistent with a recent study, these were part of a common network with predominant basal ganglia connectivity. Using conjunction analysis, coordinate network mapping findings refined the lesion network to the posterior putamen, caudate nucleus, globus pallidus externus (positive connectivity) and precuneus (negative connectivity). Functional connectivity from this positive network to frontal and cingulate regions was abnormal in patients with idiopathic Tourette syndrome. These findings identify a network derived from lesion-induced and idiopathic data, providing insight into the pathophysiology of tics in Tourette syndrome. Connectivity to our cortical cluster in the precuneus offers an exciting opportunity for non-invasive brain stimulation protocols.
Collapse
Affiliation(s)
- Jade-Jocelyne Zouki
- Correspondence to: Jade-Jocelyne Zouki Cognitive Neuroscience Unit School of Psychology, Deakin University 221 Burwood Hwy, Burwood, VIC 3125, Australia E-mail:
| | - Elizabeth G Ellis
- Centre for Social and Early Emotional Development and School of Psychology, Deakin University, Geelong VIC 3220, Australia
| | - Jordan Morrison-Ham
- Centre for Social and Early Emotional Development and School of Psychology, Deakin University, Geelong VIC 3220, Australia
| | - Phoebe Thomson
- Department of Paediatrics, The University of Melbourne, Melbourne VIC 3010, Australia
- Developmental Imaging, Murdoch Children’s Research Institute, Melbourne VIC 3052, Australia
- Autism Center, Child Mind Institute, New York NY 10022, USA
| | - Aaron Jesuthasan
- Neurology Department, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Bassam Al-Fatly
- Department of Neurology with Experimental Neurology, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Juho Joutsa
- Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, Turku, FI-20014, Finland
- Turku PET Centre, Neurocenter, Turku University Hospital, Turku, FI-20520, Finland
| | | | - Daniel T Corp
- Correspondence may also be addressed to: Daniel T. Corp E-mail:
| |
Collapse
|
13
|
Bölte S, Neufeld J, Marschik PB, Williams ZJ, Gallagher L, Lai MC. Sex and gender in neurodevelopmental conditions. Nat Rev Neurol 2023; 19:136-159. [PMID: 36747038 PMCID: PMC10154737 DOI: 10.1038/s41582-023-00774-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2023] [Indexed: 02/08/2023]
Abstract
Health-related conditions often differ qualitatively or quantitatively between individuals of different birth-assigned sexes and gender identities, and/or with different gendered experiences, requiring tailored care. Studying the moderating and mediating effects of sex-related and gender-related factors on impairment, disability, wellbeing and health is of paramount importance especially for neurodivergent individuals, who are diagnosed with neurodevelopmental conditions with uneven sex/gender distributions. Researchers have become aware of the myriad influences that sex-related and gender-related variables have on the manifestations of neurodevelopmental conditions, and contemporary work has begun to investigate the mechanisms through which these effects are mediated. Here we describe topical concepts of sex and gender science, summarize current knowledge, and discuss research and clinical challenges related to autism, attention-deficit/hyperactivity disorder and other neurodevelopmental conditions. We consider sex and gender in the context of epidemiology, behavioural phenotypes, neurobiology, genetics, endocrinology and neighbouring disciplines. The available evidence supports the view that sex and gender are important contributors to the biological and behavioural variability in neurodevelopmental conditions. Methodological caveats such as frequent conflation of sex and gender constructs, inappropriate measurement of these constructs and under-representation of specific demographic groups (for example, female and gender minority individuals and people with intellectual disabilities) limit the translational potential of research so far. Future research and clinical implementation should integrate sex and gender into next-generation diagnostics, mechanistic investigations and support practices.
Collapse
Affiliation(s)
- Sven Bölte
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.
- Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.
- Curtin Autism Research Group, Curtin School of Allied Health, Curtin University, Perth, WA, Australia.
| | - Janina Neufeld
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Swedish Collegium for Advanced Study (SCAS), Uppsala, Sweden
| | - Peter B Marschik
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen and Leibniz ScienceCampus Primate Cognition, Göttingen, Germany
- iDN - interdisciplinary Developmental Neuroscience, Division of Phoniatrics, Medical University of Graz, Graz, Austria
| | - Zachary J Williams
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN, USA
| | - Louise Gallagher
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Child and Youth Mental Health Collaborative at the Centre for Addiction and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, and Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Meng-Chuan Lai
- Child and Youth Mental Health Collaborative at the Centre for Addiction and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, and Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK.
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.
| |
Collapse
|
14
|
Johnson KA, Worbe Y, Foote KD, Butson CR, Gunduz A, Okun MS. Tourette syndrome: clinical features, pathophysiology, and treatment. Lancet Neurol 2023; 22:147-158. [PMID: 36354027 PMCID: PMC10958485 DOI: 10.1016/s1474-4422(22)00303-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 05/24/2022] [Accepted: 07/11/2022] [Indexed: 11/07/2022]
Abstract
Tourette syndrome is a chronic neurodevelopmental disorder characterised by motor and phonic tics that can substantially diminish the quality of life of affected individuals. Evaluating and treating Tourette syndrome is complex, in part due to the heterogeneity of symptoms and comorbidities between individuals. The underlying pathophysiology of Tourette syndrome is not fully understood, but recent research in the past 5 years has brought new insights into the genetic variations and the alterations in neurophysiology and brain networks contributing to its pathogenesis. Treatment options for Tourette syndrome are expanding with novel pharmacological therapies and increased use of deep brain stimulation for patients with symptoms that are refractory to pharmacological or behavioural treatments. Potential predictors of patient responses to therapies for Tourette syndrome, such as specific networks modulated during deep brain stimulation, can guide clinical decisions. Multicentre data sharing initiatives have enabled several advances in our understanding of the genetics and pathophysiology of Tourette syndrome and will be crucial for future large-scale research and in refining effective treatments.
Collapse
Affiliation(s)
- Kara A Johnson
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA; Department of Neurology, University of Florida, Gainesville, FL, USA.
| | - Yulia Worbe
- Sorbonne University, ICM, Inserm, CNRS, Department of Neurophysiology, Hôpital Saint Antoine (DMU 6), AP-HP, Paris, France
| | - Kelly D Foote
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA; Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Christopher R Butson
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA; Department of Neurology, University of Florida, Gainesville, FL, USA; Department of Neurosurgery, University of Florida, Gainesville, FL, USA; J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Aysegul Gunduz
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA; J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA; Department of Neurology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
15
|
Chou CY, Agin-Liebes J, Kuo SH. Emerging therapies and recent advances for Tourette syndrome. Heliyon 2023; 9:e12874. [PMID: 36691528 PMCID: PMC9860289 DOI: 10.1016/j.heliyon.2023.e12874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/27/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
Tourette syndrome is the most prevalent hyperkinetic movement disorder in children and can be highly disabling. While the pathomechanism of Tourette syndrome remains largely obscure, recent studies have greatly improved our knowledge about this disease, providing a new perspective in our understanding of this condition. Advances in electrophysiology and neuroimaging have elucidated that there is a reduction in frontal cortical volume and reduction of long rage connectivity to the frontal lobe from other parts of the brain. Several genes have also been identified to be associated with Tourette syndrome. Treatment of Tourette syndrome requires a multidisciplinary approach which includes behavioral and pharmacological therapy. In severe cases surgical therapy with deep brain stimulation may be warranted, though the optimal location for stimulation is still being investigated. Studies on alternative therapies including traditional Chinese medicine and neuromodulation, such as transcranial magnetic stimulation have shown promising results, but still are being used in an experimental basis. Several new therapies have also recently been tested in clinical trials. This review provides an overview of the latest findings with regards to genetics and neuroimaging for Tourette syndrome as well as an update on advanced therapeutics.
Collapse
Affiliation(s)
- Chih-Yi Chou
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Julian Agin-Liebes
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Sheng-Han Kuo
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
- Corresponding author. 650 West 168th Street, Room 305, New York, NY, 10032, USA. Fax: +(212) 305 1304.
| |
Collapse
|
16
|
Guo J, Yu K, Dong SS, Yao S, Rong Y, Wu H, Zhang K, Jiang F, Chen YX, Guo Y, Yang TL. Mendelian randomization analyses support causal relationships between brain imaging-derived phenotypes and risk of psychiatric disorders. Nat Neurosci 2022; 25:1519-1527. [PMID: 36216997 DOI: 10.1038/s41593-022-01174-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/29/2022] [Indexed: 01/13/2023]
Abstract
Observational studies have reported the correlations between brain imaging-derived phenotypes (IDPs) and psychiatric disorders; however, whether the relationships are causal is uncertain. We conducted bidirectional two-sample Mendelian randomization (MR) analyses to explore the causalities between 587 reliable IDPs (N = 33,224 individuals) and 10 psychiatric disorders (N = 9,725 to 161,405). We identified nine IDPs for which there was evidence of a causal influence on risk of schizophrenia, anorexia nervosa and bipolar disorder. For example, 1 s.d. increase in the orientation dispersion index of the forceps major was associated with 32% lower odds of schizophrenia risk. Reverse MR indicated that only genetically predicted schizophrenia was positively associated with two IDPs, the cortical surface area and the volume of the right pars orbitalis. We established the BrainMR database ( http://www.bigc.online/BrainMR/ ) to share our results. Our findings provide potential strategies for the prediction and intervention for psychiatric disorder risk at the brain-imaging level.
Collapse
Affiliation(s)
- Jing Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Ke Yu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Shan-Shan Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Shi Yao
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Yu Rong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Hao Wu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Kun Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Feng Jiang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Yi-Xiao Chen
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Yan Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P. R. China.
| | - Tie-Lin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P. R. China.
| |
Collapse
|
17
|
Temiz G, Atkinson-Clement C, Lau B, Czernecki V, Bardinet E, Francois C, Worbe Y, Karachi C. Structural hyperconnectivity of the subthalamic area with limbic cortices underpins anxiety and impulsivity in Tourette syndrome. Cereb Cortex 2022; 33:5181-5191. [PMID: 36310093 DOI: 10.1093/cercor/bhac408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Tourette syndrome (TS) is a neurodevelopmental disorder characterized by motor and vocal tics, which is often associated with psychiatric comorbidities. Dysfunction of basal ganglia pathways might account for the wide spectrum of symptoms in TS patients. Although psychiatric symptoms may be related to limbic networks, the specific contribution of different limbic structures remains unclear. We used tractography to investigate cortical connectivity with the striatal area (caudate, putamen, core and shell of the nucleus accumbens), the subthalamic nucleus (STN), and the adjacent medial subthalamic region (MSR) in 58 TS patients and 35 healthy volunteers. 82% of TS patients showed psychiatric comorbidities, with significantly higher levels of anxiety and impulsivity compared to controls. Tractography analysis revealed significantly increased limbic cortical connectivity of the left MSR with the entorhinal (BA34), insular (BA48), and temporal (BA38) cortices in TS patients compared to controls. Furthermore, we found that left insular-STN connectivity was positively correlated with impulsivity scores for all subjects and with anxiety scores for all subjects, particularly for TS. Our study highlights a heterogenous modification of limbic structure connectivity in TS, with specific abnormalities found for the subthalamic area. Abnormal connectivity with the insular cortex might underpin the higher level of impulsivity and anxiety observed in TS.
Collapse
Affiliation(s)
- Gizem Temiz
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute- ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière , 75013 Paris, France
| | - Cyril Atkinson-Clement
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute- ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière , 75013 Paris, France
| | - Brian Lau
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute- ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière , 75013 Paris, France
| | - Virginie Czernecki
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute- ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière , 75013 Paris, France
- Department of Neurology, Pitié Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris , 75013 Paris, France
| | - Eric Bardinet
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute- ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière , 75013 Paris, France
| | - Chantal Francois
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute- ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière , 75013 Paris, France
| | - Yulia Worbe
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute- ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière , 75013 Paris, France
- Department of Neurophysiology, Saint Antoine Hospital, Assistance Publique-Hôpitaux de Paris , 75012 Paris, France
| | - Carine Karachi
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute- ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière , 75013 Paris, France
- Department of Neurosurgery, Pitié Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris , 75013 Paris, France
| |
Collapse
|
18
|
Gordon EM, Laumann TO, Marek S, Newbold DJ, Hampton JM, Seider NA, Montez DF, Nielsen AM, Van AN, Zheng A, Miller R, Siegel JS, Kay BP, Snyder AZ, Greene DJ, Schlaggar BL, Petersen SE, Nelson SM, Dosenbach NUF. Individualized Functional Subnetworks Connect Human Striatum and Frontal Cortex. Cereb Cortex 2022; 32:2868-2884. [PMID: 34718460 PMCID: PMC9247416 DOI: 10.1093/cercor/bhab387] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/14/2022] Open
Abstract
The striatum and cerebral cortex are interconnected via multiple recurrent loops that play a major role in many neuropsychiatric conditions. Primate corticostriatal connections can be precisely mapped using invasive tract-tracing. However, noninvasive human research has not mapped these connections with anatomical precision, limited in part by the practice of averaging neuroimaging data across individuals. Here we utilized highly sampled resting-state functional connectivity MRI for individual-specific precision functional mapping (PFM) of corticostriatal connections. We identified ten individual-specific subnetworks linking cortex-predominately frontal cortex-to striatum, most of which converged with nonhuman primate tract-tracing work. These included separable connections between nucleus accumbens core/shell and orbitofrontal/medial frontal gyrus; between anterior striatum and dorsomedial prefrontal cortex; between dorsal caudate and lateral prefrontal cortex; and between middle/posterior putamen and supplementary motor/primary motor cortex. Two subnetworks that did not converge with nonhuman primates were connected to cortical regions associated with human language function. Thus, precision subnetworks identify detailed, individual-specific, neurobiologically plausible corticostriatal connectivity that includes human-specific language networks.
Collapse
Affiliation(s)
- Evan M Gordon
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Timothy O Laumann
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Scott Marek
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dillan J Newbold
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jacqueline M Hampton
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicole A Seider
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David F Montez
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ashley M Nielsen
- Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL 60611, USA
| | - Andrew N Van
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Annie Zheng
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ryland Miller
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joshua S Siegel
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Benjamin P Kay
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Abraham Z Snyder
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Deanna J Greene
- Department of Cognitive Science, University of California San Diego, La Jolla, CA 92093, USA
| | - Bradley L Schlaggar
- Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Steven E Petersen
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Psychological & Brain Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven M Nelson
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454, USA
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN 55454, USA
| | - Nico U F Dosenbach
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
19
|
Liao Y, Li X, Jia F, Jiang Y, Ning G, Li X, Fu C, Zhou H, He X, Cai X, Qu H. The Alternation of Gray Matter Morphological Topology in Drug-Naïve Tourette's Syndrome in Children. Front Aging Neurosci 2022; 14:873148. [PMID: 35693336 PMCID: PMC9184754 DOI: 10.3389/fnagi.2022.873148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/29/2022] [Indexed: 11/17/2022] Open
Abstract
Tourette syndrome (TS) is a neurodevelopment disorder characterized by motor and phonic tics. We investigated the topological alterations in pediatric TS using morphological topological analysis of brain structures. We obtained three-dimensional T1-weighted magnetic resonance imaging (MRI) sequences from 59 drug-naïve pediatric patients with TS and 87 healthy controls. We identified morphological topographical alterations in the brains of patients with TS compared to those of the healthy controls via GRETNA software. At the global level, patients with TS exhibited increased global efficiency (E glob ) (p = 0.012) and decreased normalized characteristic path length (λ) (p = 0.027), and characteristic path length (Lp) (p = 0.025) compared to healthy controls. At the nodal level, we detected significant changes in the nodal betweenness, nodal degree, and nodal efficiency in the cerebral cortex-striatum-thalamus-cortex circuit. These changes mainly involved the bilateral caudate nucleus, left thalamus, and gyri related to tics. Nodal betweenness, nodal degree, and nodal efficiency in the right superior parietal gyrus were negatively correlated with the motor tic scores of the Yale Global Tic Severity Scale (YGTSS) (r = -0.328, p = 0.011; r = -0.310, p = 0.017; and r = -0.291, and p = 0.025, respectively). In contrast, nodal betweenness, nodal degree, and nodal efficiency in the right posterior cingulate gyrus were positively correlated with the YGTSS phonic tic scores (r = 0.353, p = 0.006; r = 0.300, p = 0.021; r = 0.290, and p = 0.026, respectively). Nodal betweenness in the right supplementary motor area was positively correlated with the YGTSS phonic tic scores (r = 0.348, p = 0.007). The nodal degree in the right supplementary motor area was positively correlated with the YGTSS phonic tic scores (r = 0.259, p = 0.048). Diagnosis by age interactions did not display a significant effect on brain network properties at either the global or nodal level. Overall, our findings showed alterations in the gray matter morphological networks in drug-naïve children with TS. These findings enhance our understanding of the structural topology of the brain in patients with TS and provide useful clues for exploring imaging biomarkers of TS.
Collapse
Affiliation(s)
- Yi Liao
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xiuli Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Fenglin Jia
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yuexin Jiang
- Department of Radiology, Chengdu Office Hospital of People’s Government of Tibet Autonomous Region, Chengdu, China
| | - Gang Ning
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xuesheng Li
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Chuan Fu
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Hui Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Department of Rehabilitation, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xuejia He
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xiaotang Cai
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Department of Rehabilitation, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Haibo Qu
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
20
|
Wang F, Wen F, Liu J, Yan J, Yu L, Li Y, Cui Y. Classification of tic disorders based on functional MRI by machine learning: a study protocol. BMJ Open 2022; 12:e047343. [PMID: 35577466 PMCID: PMC9114957 DOI: 10.1136/bmjopen-2020-047343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Tic disorder (TD) is a common neurodevelopmental disorder in children, and it can be categorised into three subtypes: provisional tic disorder (PTD), chronic motor or vocal TD (CMT or CVT), and Tourette syndrome (TS). An early diagnostic classification among these subtypes is not possible based on a new-onset tic symptom. Machine learning tools have been widely used for early diagnostic classification based on functional MRI (fMRI). However, few machine learning models have been built for the diagnostic classification of patients with TD. Therefore, in the present study, we will provide a study protocol that uses the machine learning model to make early classifications of the three different types of TD. METHODS AND ANALYSIS We planned to recruit 200 children aged 6-9 years with new-onset tic symptoms and 100 age-matched and sex-matched healthy controls under resting-state MRI scanning. Based on the neuroimaging data of resting-state fMRI, the support vector machine (SVM) model will be built. We planned to construct an SVM model based on functional connectivity for the early diagnosis classification of TD subtypes (including PTD, CMT/CVT, TS). ETHICS AND DISSEMINATION This study was approved by the ethics committee of Beijing Children's Hospital. The trial results will be submitted to peer-reviewed journals for publication. TRIAL REGISTRATION NUMBER ChiCTR2000033257.
Collapse
Affiliation(s)
- Fang Wang
- Department of Psychiatry, Beijing Children's Hospital, Beijing, China
| | - Fang Wen
- Department of Psychiatry, Beijing Children's Hospital, Beijing, China
| | - Jingran Liu
- Department of Psychiatry, Beijing Children's Hospital, Beijing, China
| | - Junjuan Yan
- Department of Psychiatry, Beijing Children's Hospital, Beijing, China
| | - Liping Yu
- Department of Psychiatry, Beijing Children's Hospital, Beijing, China
| | - Ying Li
- Department of Psychiatry, Beijing Children's Hospital, Beijing, China
| | - Yonghua Cui
- Department of Psychiatry, Beijing Children's Hospital, Beijing, China
| |
Collapse
|
21
|
Bortolato M, Coffey BJ, Gabbay V, Scheggi S. Allopregnanolone: The missing link to explain the effects of stress on tic exacerbation? J Neuroendocrinol 2022; 34:e13022. [PMID: 34423500 PMCID: PMC8800948 DOI: 10.1111/jne.13022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022]
Abstract
The neurosteroid allopregnanolone (3α-hydroxy-5α-pregnan-20-one; AP) elicits pleiotropic effects in the central nervous system, ranging from neuroprotective and anti-inflammatory functions to the regulation of mood and emotional responses. Several lines of research show that the brain rapidly produces AP in response to acute stress to reduce the allostatic load and enhance coping. These effects not only are likely mediated by GABAA receptor activation but also result from the contributions of other mechanisms, such as the stimulation of membrane progesterone receptors. In keeping with this evidence, AP has been shown to exert rapid, potent antidepressant properties and has been recently approved for the therapy of moderate-to-severe postpartum depression. In addition to depression, emerging evidence points to the potential of AP as a therapy for other neuropsychiatric disorders, including anxiety, seizures, post-traumatic stress disorder and cognitive problems. Although this evidence has spurred interest in further therapeutic applications of AP, some investigations suggest that this neurosteroid may also be associated with adverse events in specific disorders. For example, our group has recently documented that AP increases tic-like manifestations in several animal models of tic disorders; furthermore, our results indicate that inhibiting AP synthesis and signalling reduces the exacerbation of tic severity associated with acute stress. Although the specific mechanisms of these effects remain partially elusive, our findings point to the possibility that the GABAergic activation by AP may also lead to disinhibitory effects, which could interfere with the ability of patients to suppress their tics. Future studies will be necessary to verify whether these mechanisms may apply to other externalising manifestations, such as impulse-control problems and manic symptoms.
Collapse
Affiliation(s)
- Marco Bortolato
- Department of Pharmacology and ToxicologyCollege of PharmacyUniversity of UtahSalt Lake CityUTUSA
- Research Consortium on NeuroEndocrine Causes of Tics (ReConNECT)
| | - Barbara J. Coffey
- Research Consortium on NeuroEndocrine Causes of Tics (ReConNECT)
- Department of Psychiatry and Behavioral ScienceMiller School of MedicineUniversity of MiamiMiamiFLUSA
| | - Vilma Gabbay
- Research Consortium on NeuroEndocrine Causes of Tics (ReConNECT)
- Department of Psychiatry and Behavioral SciencesAlbert Einstein College of MedicineBronxNYUSA
| | - Simona Scheggi
- Department of Molecular and Developmental MedicineSchool of MedicineUniversity of SienaSienaItaly
| |
Collapse
|
22
|
Paschou P, Jin Y, Müller-Vahl K, Möller HE, Rizzo R, Hoekstra PJ, Roessner V, Mol Debes N, Worbe Y, Hartmann A, Mir P, Cath D, Neuner I, Eichele H, Zhang C, Lewandowska K, Munchau A, Verrel J, Musil R, Silk TJ, Hanlon CA, Bihun ED, Brandt V, Dietrich A, Forde N, Ganos C, Greene DJ, Chu C, Grothe MJ, Hershey T, Janik P, Koller JM, Martin-Rodriguez JF, Müller K, Palmucci S, Prato A, Ramkiran S, Saia F, Szejko N, Torrecuso R, Tumer Z, Uhlmann A, Veselinovic T, Wolańczyk T, Zouki JJ, Jain P, Topaloudi A, Kaka M, Yang Z, Drineas P, Thomopoulos SI, White T, Veltman DJ, Schmaal L, Stein DJ, Buitelaar J, Franke B, van den Heuvel O, Jahanshad N, Thompson PM, Black KJ. Enhancing neuroimaging genetics through meta-analysis for Tourette syndrome (ENIGMA-TS): A worldwide platform for collaboration. Front Psychiatry 2022; 13:958688. [PMID: 36072455 PMCID: PMC9443935 DOI: 10.3389/fpsyt.2022.958688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Tourette syndrome (TS) is characterized by multiple motor and vocal tics, and high-comorbidity rates with other neuropsychiatric disorders. Obsessive compulsive disorder (OCD), attention deficit hyperactivity disorder (ADHD), autism spectrum disorders (ASDs), major depressive disorder (MDD), and anxiety disorders (AXDs) are among the most prevalent TS comorbidities. To date, studies on TS brain structure and function have been limited in size with efforts mostly fragmented. This leads to low-statistical power, discordant results due to differences in approaches, and hinders the ability to stratify patients according to clinical parameters and investigate comorbidity patterns. Here, we present the scientific premise, perspectives, and key goals that have motivated the establishment of the Enhancing Neuroimaging Genetics through Meta-Analysis for TS (ENIGMA-TS) working group. The ENIGMA-TS working group is an international collaborative effort bringing together a large network of investigators who aim to understand brain structure and function in TS and dissect the underlying neurobiology that leads to observed comorbidity patterns and clinical heterogeneity. Previously collected TS neuroimaging data will be analyzed jointly and integrated with TS genomic data, as well as equivalently large and already existing studies of highly comorbid OCD, ADHD, ASD, MDD, and AXD. Our work highlights the power of collaborative efforts and transdiagnostic approaches, and points to the existence of different TS subtypes. ENIGMA-TS will offer large-scale, high-powered studies that will lead to important insights toward understanding brain structure and function and genetic effects in TS and related disorders, and the identification of biomarkers that could help inform improved clinical practice.
Collapse
Affiliation(s)
- Peristera Paschou
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Yin Jin
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Kirsten Müller-Vahl
- Department of Psychiatry, Hannover University Medical School, Hannover, Germany
| | - Harald E Möller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Renata Rizzo
- Radiology Unit 1, Department of Medical Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Pieter J Hoekstra
- University Medical Center Groningen, Department of Psychiatry, University of Groningen, Groningen, Netherlands
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Technische Universität (TU) Dresden, Dresden, Germany
| | - Nanette Mol Debes
- Department of Pediatrics, Herlev University Hospital, Herlev, Denmark
| | - Yulia Worbe
- Department of Neurophysiology, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | | | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Danielle Cath
- University Medical Center Groningen, Department of Psychiatry, University of Groningen, Groningen, Netherlands
| | - Irene Neuner
- Department of Psychiatry, Psychotherapy and Psychosomatic, RWTH Aachen University, Aachen, Germany.,Institute of Neuroscience and Medicine 4, Forschungszentrum Jülich GmbH, Jülich, Germany.,JARA BRAIN-Translational Medicine, Aachen, Germany
| | - Heike Eichele
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Chencheng Zhang
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China
| | | | - Alexander Munchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Julius Verrel
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Richard Musil
- Department of Psychiatry and Psychotherapy, Ludwig Maximilians University of Munich, Munich, Germany
| | - Tim J Silk
- Deakin University, Geelong, VIC, Australia
| | - Colleen A Hanlon
- Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Emily D Bihun
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
| | - Valerie Brandt
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, Southampton, United Kingdom
| | - Andrea Dietrich
- University Medical Center Groningen, Department of Psychiatry, University of Groningen, Groningen, Netherlands
| | - Natalie Forde
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Christos Ganos
- Department of Neurology, Charité-University Medicine Berlin, Berlin, Germany
| | - Deanna J Greene
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, United States
| | - Chunguang Chu
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China
| | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Tamara Hershey
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
| | - Piotr Janik
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Jonathan M Koller
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
| | - Juan Francisco Martin-Rodriguez
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Karsten Müller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Stefano Palmucci
- Radiology Unit 1, Department of Medical Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Adriana Prato
- Child and Adolescent Neurology and Psychiatric Section, Department of Clinical and Experimental Medicine, Catania University, Catania, Italy
| | - Shukti Ramkiran
- Department of Psychiatry, Psychotherapy and Psychosomatic, RWTH Aachen University, Aachen, Germany.,Institute of Neuroscience and Medicine 4, Forschungszentrum Jülich GmbH, Jülich, Germany.,JARA BRAIN-Translational Medicine, Aachen, Germany
| | - Federica Saia
- Child Neuropsychiatry Unit, Department of Clinical and Experimental Medicine, School of Medicine, University of Catania, Catania, Italy
| | - Natalia Szejko
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Renzo Torrecuso
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Zeynep Tumer
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Anne Uhlmann
- Department of Child and Adolescent Psychiatry, Technische Universität (TU) Dresden, Dresden, Germany
| | - Tanja Veselinovic
- Department of Psychiatry, Psychotherapy and Psychosomatic, RWTH Aachen University, Aachen, Germany
| | - Tomasz Wolańczyk
- Department of Child Psychiatry, Medical University of Warsaw, Warsaw, Poland
| | | | - Pritesh Jain
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Apostolia Topaloudi
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Mary Kaka
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Zhiyu Yang
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Petros Drineas
- Department of Computer Science, Purdue University, West Lafayette, IN, United States
| | - Sophia I Thomopoulos
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Tonya White
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, Netherlands
| | - Lianne Schmaal
- Centre for Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Dan J Stein
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Jan Buitelaar
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Barbara Franke
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Odile van den Heuvel
- Department Psychiatry, Department Anatomy and Neuroscience, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Neda Jahanshad
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Paul M Thompson
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Kevin J Black
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
23
|
Bond M, Moll N, Rosello A, Bond R, Schnell J, Burger B, Hoekstra PJ, Dietrich A, Schrag A, Kocovska E, Martino D, Mueller N, Schwarz M, Meier UC. Vitamin D levels in children and adolescents with chronic tic disorders: a multicentre study. Eur Child Adolesc Psychiatry 2022; 31:1-12. [PMID: 33851280 PMCID: PMC9343310 DOI: 10.1007/s00787-021-01757-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/08/2021] [Indexed: 11/24/2022]
Abstract
This study investigated whether vitamin D is associated with the presence or severity of chronic tic disorders and their psychiatric comorbidities. This cross-sectional study compared serum 25-hydroxyvitamin D [25(OH)D] (ng/ml) levels among three groups: children and adolescents (3-16 years) with CTD (n = 327); first-degree relatives (3-10 years) of individuals with CTD who were assessed for a period of up to 7 years for possible onset of tics and developed tics within this period (n = 31); and first-degree relatives who did not develop tics and were ≥ 10 years old at their last assessment (n = 93). The relationship between 25(OH)D and the presence and severity of tics, as well as comorbid obsessive-compulsive disorder (OCD) and attention-deficit/hyperactivity disorder (ADHD), were analysed controlling for age, sex, season, centre, latitude, family relatedness, and comorbidities. When comparing the CTD cohort to the unaffected cohort, the observed result was contrary to the one expected: a 10 ng/ml increase in 25(OH)D was associated with higher odds of having CTD (OR 2.08, 95% CI 1.27-3.42, p < 0.01). There was no association between 25(OH)D and tic severity. However, a 10 ng/ml increase in 25(OH)D was associated with lower odds of having comorbid ADHD within the CTD cohort (OR 0.55, 95% CI 0.36-0.84, p = 0.01) and was inversely associated with ADHD symptom severity (β = - 2.52, 95% CI - 4.16-0.88, p < 0.01). In conclusion, lower vitamin D levels were not associated with a higher presence or severity of tics but were associated with the presence and severity of comorbid ADHD in children and adolescents with CTD.
Collapse
Affiliation(s)
- Molly Bond
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK.
| | - Natalie Moll
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Alicia Rosello
- Statistics, Modelling and Economic Department, National Infection Service, PHE, London, UK ,Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Rod Bond
- University of Sussex, Brighton, UK
| | - Jaana Schnell
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Bianka Burger
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Pieter J. Hoekstra
- Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Andrea Dietrich
- Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anette Schrag
- Department of Clinical Neuroscience, UCL Institute of Neurology, University College London, London, UK
| | - Eva Kocovska
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT UK
| | - Davide Martino
- Department of Clinical Neurosciences, Cumming School of Medicine and Hotchkiss Brain Institute, University of Calgary, Calgary, AB Canada
| | - Norbert Mueller
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Markus Schwarz
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Ute-Christiane Meier
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK ,Ludwig-Maximilians-University Munich, Munich, Germany
| | | |
Collapse
|
24
|
Lousada E, Boudreau M, Cohen-Adad J, Nait Oumesmar B, Burguière E, Schreiweis C. Reduced Axon Calibre in the Associative Striatum of the Sapap3 Knockout Mouse. Brain Sci 2021; 11:1353. [PMID: 34679417 PMCID: PMC8570333 DOI: 10.3390/brainsci11101353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/28/2022] Open
Abstract
Pathological repetitive behaviours are a common feature of various neuropsychiatric disorders, including compulsions in obsessive-compulsive disorder or tics in Gilles de la Tourette syndrome. Clinical research suggests that compulsive-like symptoms are related to associative cortico-striatal dysfunctions, and tic-like symptoms to sensorimotor cortico-striatal dysfunctions. The Sapap3 knockout mouse (Sapap3-KO), the current reference model to study such repetitive behaviours, presents both associative as well as sensorimotor cortico-striatal dysfunctions. Previous findings point to deficits in both macro-, as well as micro-circuitry, both of which can be affected by neuronal structural changes. However, to date, structural connectivity has not been analysed. Hence, in the present study, we conducted a comprehensive structural characterisation of both associative and sensorimotor striatum as well as major cortical areas connecting onto these regions. Besides a thorough immunofluorescence study on oligodendrocytes, we applied AxonDeepSeg, an open source software, to automatically segment and characterise myelin thickness and axon area. We found that axon calibre, the main contributor to changes in conduction speed, is specifically reduced in the associative striatum of the Sapap3-KO mouse; myelination per se seems unaffected in associative and sensorimotor cortico-striatal circuits.
Collapse
Affiliation(s)
- Eliana Lousada
- Team ‘Neurophysiology of Repetitive Behaviours’ (NERB), Institut du Cerveau, Inserm U1127, Centre National de la Recherche Scientifique (CNRS) U7225, Sorbonne Universités, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France; (E.L.); (E.B.)
| | - Mathieu Boudreau
- Montreal Heart Institute, Montréal, QC H1T 1C8, Canada;
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada;
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada;
- Functional Neuroimaging Unit, Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal (CRIUGM), Université de Montréal, Montréal, QC H3W 1W5, Canada
- Mila—Quebec AI Institute, Montréal, QC H2S 3H1, Canada
| | - Brahim Nait Oumesmar
- Team ‘Myelin Plasticity and Regeneration’, Institut du Cerveau, Inserm U1127, Centre National de la Recherche Scientifique (CNRS) U7225, Sorbonne Universités, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France;
| | - Eric Burguière
- Team ‘Neurophysiology of Repetitive Behaviours’ (NERB), Institut du Cerveau, Inserm U1127, Centre National de la Recherche Scientifique (CNRS) U7225, Sorbonne Universités, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France; (E.L.); (E.B.)
| | - Christiane Schreiweis
- Team ‘Neurophysiology of Repetitive Behaviours’ (NERB), Institut du Cerveau, Inserm U1127, Centre National de la Recherche Scientifique (CNRS) U7225, Sorbonne Universités, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France; (E.L.); (E.B.)
| |
Collapse
|
25
|
Abstract
Human functional brain networks can be reliably characterized within individuals using precision functional mapping. This approach entails the collection of large quantities of functional magnetic resonance imaging (fMRI) data from each individual subject. Studies employing precision functional mapping in the cerebral cortex have found that individuals manifest unique representations of functional brain networks around a central tendency described by previous group average approaches. We recently extended precision functional mapping to the subcortex and cerebellum, which has revealed several novel organizational principles within these structures. Here, we detail these principles and provide insights into how precision functional mapping of subcortical structures and the cerebellum may become clinically translatable.
Collapse
Affiliation(s)
- Scott Marek
- Department of Psychiatry, Washington University School of Medicine
| | - Deanna J Greene
- Department of Cognitive Science, University of California San Diego
| |
Collapse
|
26
|
Gray matter abnormalities in Tourette Syndrome: a meta-analysis of voxel-based morphometry studies. Transl Psychiatry 2021; 11:287. [PMID: 33990537 PMCID: PMC8121885 DOI: 10.1038/s41398-021-01394-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 02/05/2023] Open
Abstract
Tourette syndrome (TS) is a neurobehavioral disorder for which the neurological mechanism has not been elucidated. Voxel-based morphometry (VBM) studies have revealed abnormalities in gray matter volume (GMV) in patients with TS; however, consistent results have not been obtained. The current study attempted to provide a voxel wise meta-analysis of gray matter changes using seed-based d mapping (SDM). We identified ten relevant studies that investigated gray matter alterations in TS patients and performed a meta-analysis using the SDM method to quantitatively estimate regional gray matter abnormalities. Next, we examined the relationships between GMV abnormalities and demographic and clinical characteristics. Our results demonstrated that TS patients had smaller GMV in the bilateral inferior frontal gyri and greater GMV in the cerebellum, right striatum (putamen), and bilateral thalami (pulvinar nucleus) than healthy controls. A meta-regression analysis did not identify correlations between GMV changes and demographic or clinical variables. This meta-analysis confirmed significant and consistent GMV changes in several brain regions of TS patients, primarily in the cortico-striato-thalamo-cortical network.
Collapse
|
27
|
Wen F, Yan J, Yu L, Wang F, Liu J, Li Y, Cui Y. Grey matter abnormalities in Tourette syndrome: an activation likelihood estimation meta-analysis. BMC Psychiatry 2021; 21:184. [PMID: 33827505 PMCID: PMC8028086 DOI: 10.1186/s12888-021-03187-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 03/29/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Tourette syndrome (TS) is a neurodevelopmental disorder defined by the continual presence of primary motor and vocal tics. Grey matter abnormalities have been identified in numerous studies of TS, but conflicting results have been reported. This study was an unbiased statistical meta-analysis of published neuroimaging studies of TS structures. METHODS A voxel quantitative meta-analysis technique called activation likelihood estimation (ALE) was used. The meta-analysis included six neuroimaging studies involving 247 TS patients and 236 healthy controls. A statistical threshold of p < 0.05 was established based on the false discovery rate and a cluster extent threshold of 50 voxels. RESULTS We found that grey matter volumes were significantly increased in the bilateral thalamus, right hypothalamus, right precentral gyrus, left postcentral gyrus, left inferior parietal lobule, right lentiform nucleus, and left insula of TS patients compared to those of healthy controls. In contrast, grey matter volumes were significantly decreased in the bilateral postcentral gyrus, bilateral anterior cingulate, bilateral insula, left posterior cingulate and left postcentral gyrus of TS patients compared to those of healthy controls. CONCLUSIONS Our present meta-analysis primarily revealed significant increases in grey matter volumes in the thalamus and lentiform nucleus, and decreased grey matter volumes in the anterior cingulate gyrus, of TS patients compared to those in healthy controls. Most of these identified regions are associated with cortico-striato-thalamo-cortical circuits. Further studies with larger sample sizes are needed to confirm these changes in grey matter volumes in TS patients.
Collapse
Affiliation(s)
- Fang Wen
- grid.24696.3f0000 0004 0369 153XDepartment of Psychiatry, Beijing Children’s Hospital, Capital Medical University, National Center for Children Healthy, 56 Nanlishi Road, Beijing, China
| | - Junjuan Yan
- grid.24696.3f0000 0004 0369 153XDepartment of Psychiatry, Beijing Children’s Hospital, Capital Medical University, National Center for Children Healthy, 56 Nanlishi Road, Beijing, China
| | - Liping Yu
- grid.24696.3f0000 0004 0369 153XDepartment of Psychiatry, Beijing Children’s Hospital, Capital Medical University, National Center for Children Healthy, 56 Nanlishi Road, Beijing, China
| | - Fang Wang
- grid.24696.3f0000 0004 0369 153XDepartment of Psychiatry, Beijing Children’s Hospital, Capital Medical University, National Center for Children Healthy, 56 Nanlishi Road, Beijing, China
| | - Jingran Liu
- grid.24696.3f0000 0004 0369 153XDepartment of Psychiatry, Beijing Children’s Hospital, Capital Medical University, National Center for Children Healthy, 56 Nanlishi Road, Beijing, China
| | - Ying Li
- Department of Psychiatry, Beijing Children's Hospital, Capital Medical University, National Center for Children Healthy, 56 Nanlishi Road, Beijing, China.
| | - Yonghua Cui
- Department of Psychiatry, Beijing Children's Hospital, Capital Medical University, National Center for Children Healthy, 56 Nanlishi Road, Beijing, China.
| |
Collapse
|
28
|
Jackson SR, Sigurdsson HP, Dyke K, Condon M, Jackson GM. The role of the cingulate cortex in the generation of motor tics and the experience of the premonitory urge-to-tic in Tourette syndrome. J Neuropsychol 2021; 15:340-362. [PMID: 33774919 DOI: 10.1111/jnp.12242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 01/07/2021] [Indexed: 12/26/2022]
Abstract
Tourette syndrome (TS) is a neurological disorder of childhood onset that is characterized by the occurrence of motor and vocal tics. TS is associated with cortical-striatal-thalamic-cortical circuit [CSTC] dysfunction and hyper-excitability of cortical limbic and motor regions that are thought to lead to the occurrence of tics. Individuals with TS often report that their tics are preceded by 'premonitory sensory/urge phenomena' (PU) that are described as uncomfortable bodily sensations that precede the execution of a tic and are experienced as a strong urge for motor discharge. While the precise role played by PU in the occurrence of tics is largely unknown, they are nonetheless of considerable theoretical and clinical importance as they form a core component of many behavioural therapies used in the treatment of tic disorders. Recent evidence indicates that the cingulate cortex may play an important role in the generation of PU in TS, and in 'urges-for-action' more generally. In the current study, we utilized voxel-based morphometry (VBM) techniques, together with 'seed-to-voxel' structural covariance network (SCN) mapping, to investigate the putative role played by the cingulate cortex in the generation of motor tics and the experience of PU in a relatively large group of young people with TS. Whole-brain VBM analysis revealed that TS was associated with clusters of significantly reduced grey matter volumes bilaterally within: the orbito-frontal cortex; the cerebellum; and the anterior and mid-cingulate cortex. Similarly, analysis of SCNs associated with bilateral mid- and anterior cingulate 'seed' regions demonstrated that TS is associated with increased structural covariance primarily with the bilateral motor cerebellum; the inferior frontal cortex; and the posterior cingulate cortex.
Collapse
Affiliation(s)
- Stephen R Jackson
- School of Psychology, University of Nottingham, UK.,Institute of Mental Health, School of Medicine, University of Nottingham, UK
| | | | | | - Maria Condon
- School of Psychology, University of Nottingham, UK
| | - Georgina M Jackson
- Institute of Mental Health, School of Medicine, University of Nottingham, UK
| |
Collapse
|
29
|
Impulsive prepotent actions and tics in Tourette disorder underpinned by a common neural network. Mol Psychiatry 2021; 26:3548-3557. [PMID: 32994553 PMCID: PMC8505252 DOI: 10.1038/s41380-020-00890-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/25/2020] [Accepted: 09/14/2020] [Indexed: 01/25/2023]
Abstract
Tourette disorder (TD), which is characterized by motor and vocal tics, is not in general considered as a product of impulsivity, despite a frequent association with attention deficit hyperactivity disorder and impulse control disorders. It is unclear which type of impulsivity, if any, is intrinsically related to TD and specifically to the severity of tics. The waiting type of motor impulsivity, defined as the difficulty to withhold a specific action, shares some common features with tics. In a large group of adult TD patients compared to healthy controls, we assessed waiting motor impulsivity using a behavioral task, as well as structural and functional underpinnings of waiting impulsivity and tics using multi-modal neuroimaging protocol. We found that unmedicated TD patients showed increased waiting impulsivity compared to controls, which was independent of comorbid conditions, but correlated with the severity of tics. Tic severity did not account directly for waiting impulsivity, but this effect was mediated by connectivity between the right orbito-frontal cortex with caudate nucleus bilaterally. Waiting impulsivity in unmedicated patients with TD also correlated with a higher gray matter signal in deep limbic structures, as well as connectivity with cortical and with cerebellar regions on a functional level. Neither behavioral performance nor structural or functional correlates were related to a psychometric measure of impulsivity or impulsive behaviors in general. Overall, the results suggest that waiting impulsivity in TD was related to tic severity, to functional connectivity of orbito-frontal cortex with caudate nucleus and to structural changes within limbic areas.
Collapse
|
30
|
Bhikram T, Crawley A, Arnold P, Abi-Jaoude E, Sandor P. Neuroimaging the emotional modulation of urge inhibition in Tourette Syndrome. Cortex 2020; 135:341-351. [PMID: 33317808 DOI: 10.1016/j.cortex.2020.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 05/24/2020] [Accepted: 10/08/2020] [Indexed: 10/23/2022]
Abstract
Tourette Syndrome (TS) is a neuropsychiatric condition characterized by tics that are typically preceded by uncomfortable urges that build until the tic is performed. Both tics and their associated urges are commonly exacerbated during states of heightened emotion. However, the neural substrates that are responsible for the development of urges have not been fully elucidated, particularly with regards to the influence of emotion. In this study, we investigate the brain areas associated with the development of urges and their modulation by emotion in patients with TS. Moreover, we explore the influence of obsessive-compulsive symptoms (OCS) which are commonly comorbid in TS. Forty patients with TS and 20 healthy controls completed an emotional blink suppression paradigm while undergoing functional magnetic resonance imaging. For the paradigm, participants completed alternating blocks of blink inhibition and free blinking while viewing pictures of angry and neutral facial expressions. Compared to controls, patients exhibited greater activity in the superior temporal gyrus and midcingulate during the inhibition of urges. Within the patient group, tic severity was associated with activity in the superior frontal gyrus during the angry inhibition contrast as compared to neutral; greater premonitory urge severity was associated with greater activity in the hippocampus, middle temporal gyrus and in the subcortex; blink inhibition ability was negatively associated with activity in the thalamus and insula. There were no significant associations with OCS severity for the emotion-related contrasts. The observed activated regions may represent a network that produces urges in patients, or alternatively, could represent compensatory cortical activity needed to keep urges and tics under control during emotional situations. Additionally, our findings suggest that OCS in the context of TS is similar to traditional obsessive-compulsive disorder and is neurobiologically dissociable from tics.
Collapse
Affiliation(s)
- Tracy Bhikram
- Tourette Syndrome Neurodevelopmental Clinic, Toronto Western Hospital, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| | - Adrian Crawley
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Paul Arnold
- Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Program in Genetics and Genomic Biology, University of Calgary, Calgary, Alberta, Canada
| | - Elia Abi-Jaoude
- Tourette Syndrome Neurodevelopmental Clinic, Toronto Western Hospital, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Paul Sandor
- Tourette Syndrome Neurodevelopmental Clinic, Toronto Western Hospital, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Division of Child Psychiatry, Department of Psychiatry, Youthdale Treatment Centers, Toronto, Ontario, Canada.
| |
Collapse
|
31
|
Hsu CJ, Wong LC, Wang HP, Lee WT. The multimodality neuroimage findings in individuals with Tourette syndrome. Pediatr Neonatol 2020; 61:467-474. [PMID: 32284198 DOI: 10.1016/j.pedneo.2020.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/28/2020] [Accepted: 03/06/2020] [Indexed: 01/03/2023] Open
Abstract
Chronic tic disorder and Gilles de la Tourette syndrome are very common childhood-onset diseases. However, the pathophysiology underlying these disorders is not yet clear and most studies focus on the disinhibition of the cortico-striatal-thalamo-cortical circuit. Although dysfunction of this circuit is possible, routine clinical neuroimaging studies such as T1-weighted or T2-weighted MRI usually reveal normal results. Therefore, special neuroimaging techniques may be needed to investigate the possible microstructural or functional changes in the brain. Previous structural studies, such as those using diffusion tensor imaging, and volumetric MRI studies, revealed the main abnormalities to be located in the cortico-striatal-thalamo-cortical circuit and to be related to brain regions such as basal ganglion, thalamus, frontal cortex, and motor cortex. Some other potential regions, such as the amygdala, hippocampus or cerebellum, are also occasionally reported. Perfusion studies, such as those using positron emission tomography or functional MRI, also suggest hemodynamic changes over those brain regions related to the cortico-striatal-thalamo-cortical circuit. However, the results can be different in adult and pediatric groups, and neuroimaging findings are also inconsistent between different studies, which may reflect the high diversity of this disease or differences in enrolled patient groups with different comorbidities. Therefore, in this review article, we will focus on the neuroimaging findings relating to Tourette syndrome in different age groups using different imaging techniques.
Collapse
Affiliation(s)
- Chia-Jui Hsu
- Department of Pediatrics, Taipei City Hospital, Yangming Branch, Taipei, Taiwan; Department of Pediatrics, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan; Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Lee Chin Wong
- Department of Pediatrics, Cathay General Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsin-Pei Wang
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Pediatrics, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Wang-Tso Lee
- Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Pediatric Neurology, National Taiwan University Children's Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
32
|
Gratton C, Kraus BT, Greene DJ, Gordon EM, Laumann TO, Nelson SM, Dosenbach NUF, Petersen SE. Defining Individual-Specific Functional Neuroanatomy for Precision Psychiatry. Biol Psychiatry 2020; 88:28-39. [PMID: 31916942 PMCID: PMC7203002 DOI: 10.1016/j.biopsych.2019.10.026] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/07/2019] [Accepted: 10/25/2019] [Indexed: 12/28/2022]
Abstract
Studies comparing diverse groups have shown that many psychiatric diseases involve disruptions across distributed large-scale networks of the brain. There is hope that functional magnetic resonance imaging (fMRI) functional connectivity techniques will shed light on these disruptions, providing prognostic and diagnostic biomarkers as well as targets for therapeutic interventions. However, to date, progress on clinical translation of fMRI methods has been limited. Here, we argue that this limited translation is driven by a combination of intersubject heterogeneity and the relatively low reliability of standard fMRI techniques at the individual level. We review a potential solution to these limitations: the use of new "precision" fMRI approaches that shift the focus of analysis from groups to single individuals through the use of extended data acquisition strategies. We begin by discussing the potential advantages of fMRI functional connectivity methods for improving our understanding of functional neuroanatomy and disruptions in psychiatric disorders. We then discuss the budding field of precision fMRI and findings garnered from this work. We demonstrate that precision fMRI can improve the reliability of functional connectivity measures, while showing high stability and sensitivity to individual differences. We close by discussing the application of these approaches to clinical settings.
Collapse
Affiliation(s)
- Caterina Gratton
- Department of Psychology, Northwestern University, Evanston, Illinois; Department of Neurology, Northwestern University, Evanston, Illinois.
| | - Brian T Kraus
- Department of Psychology, Northwestern University, Evanston, Illinois
| | - Deanna J Greene
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri; Department of Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Evan M Gordon
- VISN Center of Excellence for Research on Returning War Veterans, Waco, Texas; Department of Psychology and Neuroscience, Baylor University, Waco, Texas; Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas
| | - Timothy O Laumann
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Steven M Nelson
- VISN Center of Excellence for Research on Returning War Veterans, Waco, Texas; Department of Psychology and Neuroscience, Baylor University, Waco, Texas; Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas; Department of Psychiatry and Behavioral Science, Texas A&M Health Science Center, College of Medicine, Bryan, Texas
| | - Nico U F Dosenbach
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri; Department of Neurology, Washington University in St. Louis, St. Louis, Missouri; Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Steven E Petersen
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri; Department of Radiology, Washington University in St. Louis, St. Louis, Missouri; Department of Neurology, Washington University in St. Louis, St. Louis, Missouri; Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri; Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
33
|
Kong L, Lv B, Wu T, Zhang J, Fan Y, Ouyang M, Huang H, Peng Y, Liu Y. Altered structural cerebral cortex in children with Tourette syndrome. Eur J Radiol 2020; 129:109119. [PMID: 32593075 DOI: 10.1016/j.ejrad.2020.109119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/24/2020] [Accepted: 06/04/2020] [Indexed: 11/28/2022]
Abstract
PURPOSE In this study, we used magnetic resonance imaging (MRI) to investigate the anatomical alterations of cerebral cortex in children with Tourette syndrome (TS) and explore whether such deficits were related with their clinical symptoms. METHODS All subjects were scanned in a 3.0T MRI scanner with three-dimensional T1-weighted images (3DT1WI). Then, some surface-based features were extracted by using the FreeSurfer software. After that, the between-group differences of those features were assessed. RESULTS Sixty TS patients and 52 age- and gender-matched healthy control were included in this study. Surface-based analyses revealed altered cortical thickness, cortical sulcus, cortical curvature and local gyrification index (LGI) in TS group compared with healthy controls. The brain regions with significant-group differences in cortical thickness included postcentral gyrus, superiorparietal gyrus, rostral anterior cingulate cortex in the left hemisphere and frontal pole, lateral occipital gyrus, inferior temporal gyrus in the right hemisphere. In addition, the superior temporal gyrus, medial orbitofrontal gyrus, supramarginal gyrus, medial orbitofrontal gyrus, superiorparietal gyrus and lateral occipital gyrus showed significant between-group differences for cortical sulcus. Moreover, the brain regions with significant between-group differences in cortical curvature were located in caudal anterior cingulate cortex, supramarginal gyrus, inferior parietal gyrus and lateral occipital gyrus. The alteration of LGI were most prominent in the inferior temporal gyrus and insula. Additionally, there was no statistical difference in brain surface area for TS children compared with controls. CONCLUSION The results of this study revealed that cortical thickness, sulcus, cortical curvature and LGI were changed in multiple brain regions for children with TS.
Collapse
Affiliation(s)
- Lei Kong
- The Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China; The Department of Radiology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Bin Lv
- China Academy of Information and Communications Technology, Beijing, China; Ping An Technology (Shenzhen) Company Limited, Shenzhen, China
| | - Tongning Wu
- China Academy of Information and Communications Technology, Beijing, China
| | - Jishui Zhang
- The Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yang Fan
- Beijing Intelligent Brain Cloud Incorporated, Beijing, China
| | - Minhui Ouyang
- Radiology Research, Children's Hospital of Philadelphia, Philadelphia, United States
| | - Hao Huang
- Radiology Research, Children's Hospital of Philadelphia, Philadelphia, United States; The Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Yun Peng
- The Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yue Liu
- The Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
| |
Collapse
|
34
|
Hippocampal Volume in Provisional Tic Disorder Predicts Tic Severity at 12-Month Follow-up. J Clin Med 2020; 9:jcm9061715. [PMID: 32503289 PMCID: PMC7355974 DOI: 10.3390/jcm9061715] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 01/18/2023] Open
Abstract
Previous studies have investigated differences in the volumes of subcortical structures (e.g., caudate nucleus, putamen, thalamus, amygdala, and hippocampus) between individuals with and without Tourette syndrome (TS), as well as the relationships between these volumes and tic symptom severity. These volumes may also predict clinical outcome in Provisional Tic Disorder (PTD), but that hypothesis has never been tested. This study aimed to examine whether the volumes of subcortical structures measured shortly after tic onset can predict tic symptom severity at one-year post-tic onset, when TS can first be diagnosed. We obtained T1-weighted structural MRI scans from 41 children with PTD (25 with prospective motion correction (vNavs)) whose tics had begun less than 9 months (mean 4.04 months) prior to the first study visit (baseline). We re-examined them at the 12-month anniversary of their first tic (follow-up), assessing tic severity using the Yale Global Tic Severity Scale. We quantified the volumes of subcortical structures using volBrain software. Baseline hippocampal volume was correlated with tic severity at the 12-month follow-up, with a larger hippocampus at baseline predicting worse tic severity at follow-up. The volumes of other subcortical structures did not significantly predict tic severity at follow-up. Hippocampal volume may be an important marker in predicting prognosis in Provisional Tic Disorder.
Collapse
|
35
|
Black KJ, Kim S, Schlaggar BL, Greene DJ. The New Tics study: A Novel Approach to Pathophysiology and Cause of Tic Disorders. JOURNAL OF PSYCHIATRY AND BRAIN SCIENCE 2020; 5:e200012. [PMID: 32587895 PMCID: PMC7316401 DOI: 10.20900/jpbs.20200012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report on the ongoing project "The New Tics Study: A Novel Approach to Pathophysiology and Cause of Tic Disorders," describing the work completed to date, ongoing studies and long-term goals. The overall goals of this research are to study the pathophysiology of Provisional Tic Disorder, and to study tic remission (or improvement) in a prospective fashion. Preliminary data collection for the project began almost 10 years ago. The current study is nearing completion of its third year, and has already reported several novel and important results. First, surprisingly, at least 90% of children who had experienced tics for only a mean of 3 months still had tics at the 12-month anniversary of their first tic, though in some cases tics were seen only with remote video observation of the child sitting alone. Thus almost all of them now had a DSM-5 diagnosis of Tourette's Disorder or Persistent (Chronic) Tic Disorder. Baseline clinical features that predicted 12-month outcome included tic severity, subsyndromal autism spectrum symptoms, an anxiety disorder, and a history of 3 or more phonic tics. Second, we found that poorer tic suppression ability when immediately rewarded for suppression predicted greater tic severity at follow-up. Third, striatal volumes did not predict outcome as hypothesized, but a larger hippocampus at baseline predicted worse severity at follow-up. Enrollment and data collection continue, including functional connectivity MRI (fcMRI) imaging, and additional analyses are planned once the full sample is enrolled.
Collapse
Affiliation(s)
- Kevin J. Black
- Departments of Psychiatry, Neurology, Radiology and Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Soyoung Kim
- Departments of Psychiatry and Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Bradley L. Schlaggar
- Kennedy Krieger Institute, Baltimore, MD 21205; and Departments of Neurology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Deanna J. Greene
- Departments of Psychiatry and Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
36
|
Jackson SR, Loayza J, Crighton M, Sigurdsson HP, Dyke K, Jackson GM. The role of the insula in the generation of motor tics and the experience of the premonitory urge-to-tic in Tourette syndrome. Cortex 2020; 126:119-133. [DOI: 10.1016/j.cortex.2019.12.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/08/2019] [Accepted: 12/13/2019] [Indexed: 01/18/2023]
|
37
|
Abstract
Background:Tics, defined as quick, rapid, sudden, recurrent, non-rhythmic motor movements or vocalizations are required components of Tourette Syndrome (TS) - a complex disorder characterized by the presence of fluctuating, chronic motor and vocal tics, and the presence of co-existing neuropsychological problems. Despite many advances, the underlying pathophysiology of tics/TS remains unknown.Objective:To address a variety of controversies surrounding the pathophysiology of TS. More specifically: 1) the configuration of circuits likely involved; 2) the role of inhibitory influences on motor control; 3) the classification of tics as either goal-directed or habitual behaviors; 4) the potential anatomical site of origin, e.g. cortex, striatum, thalamus, cerebellum, or other(s); and 5) the role of specific neurotransmitters (dopamine, glutamate, GABA, and others) as possible mechanisms (Abstract figure).Methods:Existing evidence from current clinical, basic science, and animal model studies are reviewed to provide: 1) an expanded understanding of individual components and the complex integration of the Cortico-Basal Ganglia-Thalamo-Cortical (CBGTC) circuit - the pathway involved with motor control; and 2) scientific data directly addressing each of the aforementioned controversies regarding pathways, inhibition, classification, anatomy, and neurotransmitters.Conclusion:Until a definitive pathophysiological mechanism is identified, one functional approach is to consider that a disruption anywhere within CBGTC circuitry, or a brain region inputting to the motor circuit, can lead to an aberrant message arriving at the primary motor cortex and enabling a tic. Pharmacologic modulation may be therapeutically beneficial, even though it might not be directed toward the primary abnormality.
Collapse
Affiliation(s)
- Harvey S. Singer
- Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Farhan Augustine
- Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, United States
| |
Collapse
|
38
|
Greene DJ, Marek S, Gordon EM, Siegel JS, Gratton C, Laumann TO, Gilmore AW, Berg JJ, Nguyen AL, Dierker D, Van AN, Ortega M, Newbold DJ, Hampton JM, Nielsen AN, McDermott KB, Roland JL, Norris SA, Nelson SM, Snyder AZ, Schlaggar BL, Petersen SE, Dosenbach NUF. Integrative and Network-Specific Connectivity of the Basal Ganglia and Thalamus Defined in Individuals. Neuron 2020; 105:742-758.e6. [PMID: 31836321 PMCID: PMC7035165 DOI: 10.1016/j.neuron.2019.11.012] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/28/2019] [Accepted: 11/07/2019] [Indexed: 10/25/2022]
Abstract
The basal ganglia, thalamus, and cerebral cortex form an interconnected network implicated in many neurological and psychiatric illnesses. A better understanding of cortico-subcortical circuits in individuals will aid in development of personalized treatments. Using precision functional mapping-individual-specific analysis of highly sampled human participants-we investigated individual-specific functional connectivity between subcortical structures and cortical functional networks. This approach revealed distinct subcortical zones of network specificity and multi-network integration. Integration zones were systematic, with convergence of cingulo-opercular control and somatomotor networks in the ventral intermediate thalamus (motor integration zones), dorsal attention and visual networks in the pulvinar, and default mode and multiple control networks in the caudate nucleus. The motor integration zones were present in every individual and correspond to consistently successful sites of deep brain stimulation (DBS; essential tremor). Individually variable subcortical zones correspond to DBS sites with less consistent treatment effects, highlighting the importance of PFM for neurosurgery, neurology, and psychiatry.
Collapse
Affiliation(s)
- Deanna J Greene
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Scott Marek
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Evan M Gordon
- VISN17 Center of Excellence for Research on Returning War Veterans, Waco, TX, USA; Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA; Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
| | - Joshua S Siegel
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Caterina Gratton
- Department of Psychology, Northwestern University, Evanston, IL, USA; Department of Neurology, Northwestern University, Evanston, IL, USA
| | - Timothy O Laumann
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Adrian W Gilmore
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Jeffrey J Berg
- Department of Psychology, New York University, New York, NY, USA
| | - Annie L Nguyen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Donna Dierker
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew N Van
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mario Ortega
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dillan J Newbold
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jacqueline M Hampton
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Ashley N Nielsen
- Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL, USA
| | - Kathleen B McDermott
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA; Department of Psychological and Brain Sciences, Washington University, St. Louis, MO, USA
| | - Jarod L Roland
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Scott A Norris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven M Nelson
- VISN17 Center of Excellence for Research on Returning War Veterans, Waco, TX, USA; Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA; Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
| | - Abraham Z Snyder
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bradley L Schlaggar
- Kennedy Krieger Institute, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steven E Petersen
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Nico U F Dosenbach
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA; Program in Occupational Therapy, Washington University, St. Louis, MO, USA.
| |
Collapse
|
39
|
Mirabella G, Upadhyay N, Mancini C, Giannì C, Panunzi S, Petsas N, Suppa A, Cardona F, Pantano P. Loss in grey matter in a small network of brain areas underpins poor reactive inhibition in Obsessive-Compulsive Disorder patients. Psychiatry Res Neuroimaging 2020; 297:111044. [PMID: 32078965 DOI: 10.1016/j.pscychresns.2020.111044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 01/01/2023]
Abstract
Reactive inhibition correlates with the severity of symptoms in paediatric patients with Obsessive-Compulsive Disorder (OCD) though not in those with Tourette syndrome (TS). Here we assessed whether structural alterations in both grey (GM) and white matter (WM) volumes correlate with a measure of reactive inhibition, i.e. the stop-signal reaction time (SSRT), and with clinical scale scores. Nine OCD and 11 TS uncomplicated drug-naïve paediatric patients and 12 age-matched controls underwent 3T magnetic resonance imaging scanning. Between-group differences in GM and WM volumes across the whole brain were assessed. Outside the scanner, patients performed a reaching version of the stop-signal task. Both behavioural inhibitory control and neuroimaging measures were normal in TS patients. By contrast, OCD patients exhibited a significant loss in GM volume in five areas. The GM volume of the left inferior frontal gyrus was inversely correlated with the length of the SSRT, the left mid-cingulate gyrus and the right middle frontal gyrus were inversely correlated with the severity of OCD symptoms, and the left insula and the right medial orbitofrontal gyrus were inversely correlated with both. These results indicate that cortical areas showing GM loss in OCD patients are also involved in the network subserving reactive inhibition.
Collapse
Affiliation(s)
- Giovanni Mirabella
- Department of Anatomy, Histology, Forensic Medicine & Orthopedics, Sapienza University, Rome, Italy; IRCCS Neuromed, Pozzilli (IS), Italy.
| | - Neeraj Upadhyay
- Department of Human Neuroscience, Sapienza University, Rome, Italy; DZNE, German Centre for Neurodegenerative Diseases, Bonn, Germany
| | - Christian Mancini
- Department of Anatomy, Histology, Forensic Medicine & Orthopedics, Sapienza University, Rome, Italy
| | - Costanza Giannì
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Sara Panunzi
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Nikolaos Petsas
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Antonio Suppa
- IRCCS Neuromed, Pozzilli (IS), Italy; Department of Human Neuroscience, Sapienza University, Rome, Italy
| | | | - Patrizia Pantano
- IRCCS Neuromed, Pozzilli (IS), Italy; Department of Human Neuroscience, Sapienza University, Rome, Italy
| |
Collapse
|
40
|
Seitzman BA, Gratton C, Marek S, Raut RV, Dosenbach NUF, Schlaggar BL, Petersen SE, Greene DJ. A set of functionally-defined brain regions with improved representation of the subcortex and cerebellum. Neuroimage 2020; 206:116290. [PMID: 31634545 PMCID: PMC6981071 DOI: 10.1016/j.neuroimage.2019.116290] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022] Open
Abstract
An important aspect of network-based analysis is robust node definition. This issue is critical for functional brain network analyses, as poor node choice can lead to spurious findings and misleading inferences about functional brain organization. Two sets of functional brain nodes from our group are well represented in the literature: (1) 264 volumetric regions of interest (ROIs) reported in Power et al., 2011, and (2) 333 cortical surface parcels reported in Gordon et al., 2016. However, subcortical and cerebellar structures are either incompletely captured or missing from these ROI sets. Therefore, properties of functional network organization involving the subcortex and cerebellum may be underappreciated thus far. Here, we apply a winner-take-all partitioning method to resting-state fMRI data to generate novel functionally-constrained ROIs in the thalamus, basal ganglia, amygdala, hippocampus, and cerebellum. We validate these ROIs in three datasets using several criteria, including agreement with existing literature and anatomical atlases. Further, we demonstrate that combining these ROIs with established cortical ROIs recapitulates and extends previously described functional network organization. This new set of ROIs is made publicly available for general use, including a full list of MNI coordinates and functional network labels.
Collapse
Affiliation(s)
- Benjamin A Seitzman
- Department of Neurology, Washington University in St. Louis- School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA.
| | - Caterina Gratton
- Department of Neurology, Washington University in St. Louis- School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA.
| | - Scott Marek
- Department of Neurology, Washington University in St. Louis- School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA.
| | - Ryan V Raut
- Department of Radiology, Washington University in St. Louis- School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA.
| | - Nico U F Dosenbach
- Department of Neurology, Washington University in St. Louis- School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA; Department of Radiology, Washington University in St. Louis- School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA; Department of Pediatrics, Washington University in St. Louis- School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA; Department of Occupational Therapy, Washington University in St. Louis- School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis- School of Engineering and Applied Science, One Brookings Dr, St. Louis, MO, 63130, USA.
| | - Bradley L Schlaggar
- Department of Neurology, Washington University in St. Louis- School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA; Department of Psychiatry, Washington University in St. Louis- School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA; Department of Radiology, Washington University in St. Louis- School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA; Department of Pediatrics, Washington University in St. Louis- School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA; Department of Neuroscience, Washington University in St. Louis- School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA.
| | - Steven E Petersen
- Department of Neurology, Washington University in St. Louis- School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA; Department of Psychological and Brain Sciences, Washington University in St. Louis, One Brookings Dr, St. Louis, MO, 63130, USA; Department of Radiology, Washington University in St. Louis- School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA; Department of Neuroscience, Washington University in St. Louis- School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis- School of Engineering and Applied Science, One Brookings Dr, St. Louis, MO, 63130, USA.
| | - Deanna J Greene
- Department of Psychiatry, Washington University in St. Louis- School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA; Department of Radiology, Washington University in St. Louis- School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA.
| |
Collapse
|
41
|
Pourfar MH, Mogilner AY. Gilles de la Tourette Syndrome: Deep Brain Stimulation. Stereotact Funct Neurosurg 2020. [DOI: 10.1007/978-3-030-34906-6_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
42
|
Zhang W, Yu W, Liu X, Wang Q, Bai X, Cui X, Wang S. Effect of Jian-Pi-Zhi-Dong Decoction on the Amino Acid Neurotransmitters in a Rat Model of Tourette Syndrome and Comorbid Anxiety Disorder. Front Psychiatry 2020; 11:515. [PMID: 32581885 PMCID: PMC7292006 DOI: 10.3389/fpsyt.2020.00515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/19/2020] [Indexed: 01/22/2023] Open
Abstract
Amino acid neurotransmitters have been shown to correlate with Tourette syndrome (TS) and its comorbidities. In this study, we investigated the effects of Jian-Pi-Zhi-Dong Decoction (JPZDD), a formula containing 10 different Chinese medical herbs, on amino acid neurotransmitters in rats. We established a rat model of Tourette syndrome and comorbid anxiety with an iminodipropionitrile injection plus uncertain empty water bottle stimulation for 3 weeks. Then the rats were randomly divided into four groups: control group and model group were gavaged with saline, while the remaining two treatment groups were gavaged with fluoxetine hydrochloride or JPZDD for four consecutive weeks. We recorded the behaviors of the rats with TS and comorbid anxiety by stereotypy recording, open field test, and elevated plus maze. We observed mitochondrial changes with transmission electron microscopy. We measured the content of glutamate (GLU) and γ-aminobutyric acid (GABA) both in the serum and striatum and the expression of their receptors by Western blot and real-time polymerase chain reaction. The study revealed that JPZDD was effective in alleviating the behavioral symptoms of both tic and anxiety in the rat model groups. These results might be associated with the increase in GABA levels and decrease in GLU levels in the serum, as well as an increase in striatal GABA level by the activation of GABA receptors Type A (GABAAR). JPZDD treatment also reversed the mitochondrial dysfunction both in the striatum and cortex in affected animals.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Pediatrics, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wenjing Yu
- Department of Pediatrics, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaofang Liu
- Department of Pediatrics, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qian Wang
- Department of Pediatrics, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xue Bai
- Department of Pediatrics, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xia Cui
- Department of Pediatrics, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Sumei Wang
- Department of Pediatrics, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
43
|
Lamothe H, Baleyte JM, Mallet L, Pelissolo A. Trichotillomania is more related to Tourette disorder than to obsessive-compulsive disorder. REVISTA BRASILEIRA DE PSIQUIATRIA (SAO PAULO, BRAZIL : 1999) 2020; 42:87-104. [PMID: 31576938 PMCID: PMC6986481 DOI: 10.1590/1516-4446-2019-0471] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 06/08/2019] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Trichotillomania (TTM) is characterized by the pulling out of one's hair. TTM was classified as an impulse control disorder in DSM-IV, but is now classified in the obsessive-compulsive related disorders section of DSM-5. Classification for TTM remains an open question, especially considering its impact on treatment of the disorder. In this review, we questioned the relation of TTM to tic disorder and obsessive-compulsive disorder (OCD). METHOD We reviewed relevant MEDLINE-indexed articles on clinical, neuropsychological, neurobiological, and therapeutic aspects of trichotillomania, OCD, and tic disorders. RESULTS Our review found a closer relationship between TTM and tic disorder from neurobiological (especially imaging) and therapeutic standpoints. CONCLUSION We sought to challenge the DSM-5 classification of TTM and to compare TTM with both OCD and tic disorder. Some discrepancies between TTM and tic disorders notwithstanding, several arguments are in favor of a closer relationship between these two disorders than between TTM and OCD, especially when considering implications for therapy. This consideration is essential for patients.
Collapse
Affiliation(s)
- Hugues Lamothe
- Centre Hospitalier Intercommunal de Créteil, Université Paris Est Créteil, Créteil, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U955, Créteil, France
- Fondation FondaMental, Créteil, France
| | - Jean-Marc Baleyte
- Centre Hospitalier Intercommunal de Créteil, Université Paris Est Créteil, Créteil, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U955, Créteil, France
- Fondation FondaMental, Créteil, France
- Université de Caen Normandie (UNICAEN), INSERM, U1077, Caen, France
| | - Luc Mallet
- Fondation FondaMental, Créteil, France
- Assistance Publique Hôspitaux de Paris (APHP), Hôpitaux Universitaires Henri Mondor Albert Chenevier, Université Paris Est Créteil, Créteil, France
- Department of Mental Health and Psychiatry, Geneva University Hospital, University of Geneva, Geneva, Switzerland
- Unité Mixte de Recherche (UMR) S1127, Centre National de la Recherche Scientifique (CNRS), UMR 7225, Institut du Cerveau et de la Moelle Epinière, Paris, France
| | - Antoine Pelissolo
- Institut National de la Santé et de la Recherche Médicale (INSERM), U955, Créteil, France
- Fondation FondaMental, Créteil, France
- Assistance Publique Hôspitaux de Paris (APHP), Hôpitaux Universitaires Henri Mondor Albert Chenevier, Université Paris Est Créteil, Créteil, France
| |
Collapse
|
44
|
Mufford M, Cheung J, Jahanshad N, van der Merwe C, Ding L, Groenewold N, Koen N, Chimusa ER, Dalvie S, Ramesar R, Knowles JA, Lochner C, Hibar DP, Paschou P, van den Heuvel OA, Medland SE, Scharf JM, Mathews CA, Thompson PM, Stein DJ. Concordance of genetic variation that increases risk for tourette syndrome and that influences its underlying neurocircuitry. Transl Psychiatry 2019; 9:120. [PMID: 30902966 PMCID: PMC6430767 DOI: 10.1038/s41398-019-0452-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 02/13/2019] [Accepted: 02/16/2019] [Indexed: 01/18/2023] Open
Abstract
There have been considerable recent advances in understanding the genetic architecture of Tourette syndrome (TS) as well as its underlying neurocircuitry. However, the mechanisms by which genetic variation that increases risk for TS-and its main symptom dimensions-influence relevant brain regions are poorly understood. Here we undertook a genome-wide investigation of the overlap between TS genetic risk and genetic influences on the volume of specific subcortical brain structures that have been implicated in TS. We obtained summary statistics for the most recent TS genome-wide association study (GWAS) from the TS Psychiatric Genomics Consortium Working Group (4644 cases and 8695 controls) and GWAS of subcortical volumes from the ENIGMA consortium (30,717 individuals). We also undertook analyses using GWAS summary statistics of key symptom factors in TS, namely social disinhibition and symmetry behaviour. SNP effect concordance analysis (SECA) was used to examine genetic pleiotropy-the same SNP affecting two traits-and concordance-the agreement in single nucelotide polymorphism (SNP) effect directions across these two traits. In addition, a conditional false discovery rate (FDR) analysis was performed, conditioning the TS risk variants on each of the seven subcortical and the intracranial brain volume GWAS. Linkage disequilibrium score regression (LDSR) was used as validation of the SECA method. SECA revealed significant pleiotropy between TS and putamen (p = 2 × 10-4) and caudate (p = 4 × 10-4) volumes, independent of direction of effect, and significant concordance between TS and lower thalamic volume (p = 1 × 10-3). LDSR lent additional support for the association between TS and thalamus volume (p = 5.85 × 10-2). Furthermore, SECA revealed significant evidence of concordance between the social disinhibition symptom dimension and lower thalamus volume (p = 1 × 10-3), as well as concordance between symmetry behaviour and greater putamen volume (p = 7 × 10-4). Conditional FDR analysis further revealed novel variants significantly associated with TS (p < 8 × 10-7) when conditioning on intracranial (rs2708146, q = 0.046; and rs72853320, q = 0.035) and hippocampal (rs1922786, q = 0.001) volumes, respectively. These data indicate concordance for genetic variation involved in disorder risk and subcortical brain volumes in TS. Further work with larger samples is needed to fully delineate the genetic architecture of these disorders and their underlying neurocircuitry.
Collapse
Affiliation(s)
- Mary Mufford
- 0000 0004 1937 1151grid.7836.aHuman Genetics Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Josh Cheung
- 0000 0001 2156 6853grid.42505.36Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA USA
| | - Neda Jahanshad
- 0000 0001 2156 6853grid.42505.36Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA USA
| | - Celia van der Merwe
- 0000 0004 1937 1151grid.7836.aHuman Genetics Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Linda Ding
- 0000 0001 2156 6853grid.42505.36Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA USA
| | - Nynke Groenewold
- 0000 0004 1937 1151grid.7836.aDepartment of Psychiatry and MRC Unit on Risk & Resilience, University of Cape Town, Cape Town, South Africa
| | - Nastassja Koen
- 0000 0004 1937 1151grid.7836.aDepartment of Psychiatry and MRC Unit on Risk & Resilience, University of Cape Town, Cape Town, South Africa ,0000 0004 0635 1506grid.413335.3Groote Schuur Hospital and Neuroscience Institute, Cape Town, South Africa
| | - Emile R. Chimusa
- 0000 0004 1937 1151grid.7836.aHuman Genetics Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Shareefa Dalvie
- 0000 0004 1937 1151grid.7836.aDepartment of Psychiatry and MRC Unit on Risk & Resilience, University of Cape Town, Cape Town, South Africa ,0000 0004 0635 1506grid.413335.3Groote Schuur Hospital and Neuroscience Institute, Cape Town, South Africa
| | - Raj Ramesar
- 0000 0004 1937 1151grid.7836.aHuman Genetics Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - James A. Knowles
- 0000 0001 2156 6853grid.42505.36Department of Psychiatry and the Behavioural Sciences, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Christine Lochner
- 0000 0001 2214 904Xgrid.11956.3aDepartment of Psychiatry, University of Stellenbosch, Stellenbosch, South Africa
| | - Derrek P. Hibar
- 0000 0001 2156 6853grid.42505.36Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA USA
| | - Peristera Paschou
- 0000 0004 1937 2197grid.169077.eDepartment of Biological Sciences, Purdue University, West Lafayette, IN USA
| | - Odile A. van den Heuvel
- grid.484519.5Department of Psychiatry, Department of Anatomy & Neurosciences, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Sarah E. Medland
- 0000 0001 2294 1395grid.1049.cQIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Jeremiah M. Scharf
- 000000041936754Xgrid.38142.3cPsychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Harvard Medical School, Boston, MA USA ,0000 0004 0386 9924grid.32224.35Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA ,0000 0004 0386 9924grid.32224.35Department of Neurology, Massachusetts General Hospital, Boston, MA USA
| | - Carol A. Mathews
- 0000 0004 1936 8091grid.15276.37Department of Psychiatry, Genetics Institute, University of Florida, Gainesville, FL USA
| | - Paul M. Thompson
- 0000 0001 2156 6853grid.42505.36Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA USA
| | - Dan J. Stein
- 0000 0004 1937 1151grid.7836.aDepartment of Psychiatry and MRC Unit on Risk & Resilience, University of Cape Town, Cape Town, South Africa ,0000 0004 0635 1506grid.413335.3Groote Schuur Hospital and Neuroscience Institute, Cape Town, South Africa
| | | |
Collapse
|
45
|
Abstract
Motor and vocal tics are common in childhood. The received wisdom among clinicians is that for most children the tics are temporary, disappearing within a few months. However, that common clinical teaching is based largely on biased and incomplete data. The present study was designed to prospectively assess outcome of children with what the current nomenclature calls Provisional Tic Disorder. We identified 43 children with recent onset tics (mean 3.3 months since tic onset) and re-examined 39 of them on the 12-month anniversary of their first tic. Tic symptoms improved on a group level at the 12-month follow-up, and only two children had more than minimal impairment due to tics. Remarkably, however, tics were present in all children at follow-up, although in several cases tics were apparent only when the child was observed remotely by video. Our results suggest that remission of Provisional Tic Disorder is the exception rather than the rule. We also identified several clinical features present at the first examination that predict one-year outcome; these include baseline tic severity, subsyndromal autism spectrum symptoms, and the presence of an anxiety disorder.
Collapse
|
46
|
Albin RL. Tourette Syndrome as a Disorder of the Social Decision Making Network. Front Psychiatry 2019; 10:742. [PMID: 31649568 PMCID: PMC6792345 DOI: 10.3389/fpsyt.2019.00742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/16/2019] [Indexed: 11/19/2022] Open
Abstract
Tourette syndrome is a common neurodevelopmental disorder defined by the presence of tics, stereotyped involuntary movements and phonations. Considerable evidence points to developmental abnormalities of the basal ganglia as tic substrates. Basal ganglia dysfunction does not account for important features of Tourette syndrome, including its natural history, male predominance, and the characteristic quality and distribution of tics. The latter mainly involve eye, face, and head movements, in addition to a variety of simple to complex phonations. A major normal function of these movements, and of phonations as well, is social signaling. Many important species- and sex-specific stereotyped social behaviors are mediated by a phylogenetically conserved network of subcortical nuclei, the social behavior network (SBN). Some SBN nuclei are sexually dimorphic, and SBN function is modulated strongly by gonadal steroids. Recent studies indicate that the SBN meshes with the basal ganglia to form a larger network, the Social Decision Making Network (SDM; O'Connell and Hofmann [2011]). The SDM concept overlaps significantly with Holstege's (1993) model of an emotional motor system mediating socially relevant facial movements and phonations. Dopaminergic signaling within the basal ganglia component of the SDM may regulate social act motivation with the SBN component responsible for act expression. Developmental SDM abnormalities can explain all major Tourette syndrome features, including natural history, male predominance, the characteristic distribution of tics, and their stereotyped quality. Some data directly support this hypothesis. Tourette syndrome may be a disorder of social communication manifesting primarily as abnormal involuntary movements.
Collapse
Affiliation(s)
- Roger L Albin
- GRECC & Neurology Service, VAAAHS, Ann Arbor, MI, United States.,Department of Neurology, University of Michigan, Ann Arbor, MI, United States.,University of Michigan Morris K. Udall Center of Excellence for Parkinson's Disease Research, Ann Arbor, MI, United States.,Michigan Alzheimer Disease Center, Ann Arbor, MI, United States
| |
Collapse
|
47
|
Fan S, van den Heuvel OA, Cath DC, de Wit SJ, Vriend C, Veltman DJ, van der Werf YD. Altered Functional Connectivity in Resting State Networks in Tourette's Disorder. Front Hum Neurosci 2018; 12:363. [PMID: 30279651 PMCID: PMC6154258 DOI: 10.3389/fnhum.2018.00363] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 08/23/2018] [Indexed: 11/13/2022] Open
Abstract
Introduction: Brain regions are anatomically and functionally interconnected in order to facilitate important functions like cognition and movement. It remains incompletely understood how brain connectivity contributes to the pathophysiology of Tourette's disorder (TD). By using resting-state functional MRI, we aimed to identify alterations in the default mode network (DMN), frontal-parietal network (FPN), sensori-motor network (SMN), and salience network (SN) in TD compared with healthy control (HC) subjects. Method: In 23 adult TD patients and 22 HC, 3T-MRI resting-state scans were obtained. Independent component analysis was performed comparing TD and HC to investigate connectivity patterns within and between resting-state networks. Results: TD patients showed higher involvement of the dorsal medial prefrontal cortex in the connectivity of the DMN and less involvement of the inferior parietal cortex in the connectivity of the FPN when compared to HC. Moreover, TD patients showed a stronger coupling between DMN and left FPN than HC. Finally, in TD patients, functional connectivity within DMN correlated negatively with tic severity. Conclusion: We tentatively interpret the increased functional connectivity within DMN in TD patients as compensatory to the lower functional connectivity within left FPN. The stronger coupling between DMN and left FPN, together with the finding that higher DMN intrinsic connectivity is associated with lower tic severity would indicate that DMN is recruited to exert motor inhibition.
Collapse
Affiliation(s)
- Siyan Fan
- Division of Social and Behavioural Science, Utrecht University, Utrecht, Netherlands.,Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Odile A van den Heuvel
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,The OCD Team, Haukeland University Hospital, Bergen, Norway
| | - Danielle C Cath
- Division of Social and Behavioural Science, Utrecht University, Utrecht, Netherlands.,Department of Psychiatry and Rob Giel Research Center (RGOC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Stella J de Wit
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Chris Vriend
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ysbrand D van der Werf
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
48
|
Maia TV, Conceição VA. Dopaminergic Disturbances in Tourette Syndrome: An Integrative Account. Biol Psychiatry 2018; 84:332-344. [PMID: 29656800 DOI: 10.1016/j.biopsych.2018.02.1172] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 02/04/2018] [Accepted: 02/25/2018] [Indexed: 12/28/2022]
Abstract
Tourette syndrome (TS) is thought to involve dopaminergic disturbances, but the nature of those disturbances remains controversial. Existing hypotheses suggest that TS involves 1) supersensitive dopamine receptors, 2) overactive dopamine transporters that cause low tonic but high phasic dopamine, 3) presynaptic dysfunction in dopamine neurons, or 4) dopaminergic hyperinnervation. We review evidence that contradicts the first two hypotheses; we also note that the last two hypotheses have traditionally been considered too narrowly, explaining only small subsets of findings. We review all studies that have used positron emission tomography and single-photon emission computerized tomography to investigate the dopaminergic system in TS. The seemingly diverse findings from those studies have typically been interpreted as pointing to distinct mechanisms, as evidenced by the various hypotheses concerning the nature of dopaminergic disturbances in TS. We show, however, that the hyperinnervation hypothesis provides a simple, parsimonious explanation for all such seemingly diverse findings. Dopaminergic hyperinnervation likely causes increased tonic and phasic dopamine. We have previously shown, using a computational model of the role of dopamine in basal ganglia, that increased tonic dopamine and increased phasic dopamine likely increase the propensities to express and learn tics, respectively. There is therefore a plausible mechanistic link between dopaminergic hyperinnervation and TS via increased tonic and phasic dopamine. To further bolster this argument, we review evidence showing that all medications that are effective for TS reduce signaling by tonic dopamine, phasic dopamine, or both.
Collapse
Affiliation(s)
- Tiago V Maia
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| | - Vasco A Conceição
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
49
|
Tübing J, Gigla B, Brandt VC, Verrel J, Weissbach A, Beste C, Münchau A, Bäumer T. Associative plasticity in supplementary motor area - motor cortex pathways in Tourette syndrome. Sci Rep 2018; 8:11984. [PMID: 30097615 PMCID: PMC6086903 DOI: 10.1038/s41598-018-30504-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/31/2018] [Indexed: 12/29/2022] Open
Abstract
The important role of the supplementary motor area (SMA) in the generation of tics and urges in Gilles de la Tourette syndrome (GTS) is underscored by an increased SMA-motor cortex (M1) connectivity. However, whether plasticity is also altered in SMA-M1 pathways is unclear. We explored whether SMA-M1 plasticity is altered in patients with Tourette syndrome. 15 patients with GTS (mean age of 33.4 years, SD = 9.9) and 19 age and sex matched healthy controls were investigated with a paired association stimulation (PAS) protocol using three transcranial magnetic stimulation (TMS) coils stimulating both M1 and the SMA. Standard clinical measures for GTS symptoms were collected. There was a significant PAS effect showing that MEP amplitudes measured in blocks during and after PAS were significantly higher compared to those in the first block. However, the degree of PAS was not differentially modulated between patients and controls as shown by a Bayesian data analysis. PAS effects in GTS correlated positively with the YGTSS motor tic severity. Plasticity previously reported to be altered in sensorimotor pathways in GTS is normal in SMA-M1 projections suggesting that the dysfunction of the SMA in GTS is not primarily related to altered plasticity in SMA-M1 connections.
Collapse
Affiliation(s)
- Jennifer Tübing
- Institute of Neurogenetics, Department of Pediatric and Adult Movement Disorders and Neuropsychiatry, University of Lübeck, 23562, Lübeck, Germany.,Department of Neurology, University Medical Hospital of Schleswig-Holstein, 23538, Lübeck, Germany
| | - Bettina Gigla
- Institute of Neurogenetics, Department of Pediatric and Adult Movement Disorders and Neuropsychiatry, University of Lübeck, 23562, Lübeck, Germany
| | - Valerie Cathérine Brandt
- Institute of Neurogenetics, Department of Pediatric and Adult Movement Disorders and Neuropsychiatry, University of Lübeck, 23562, Lübeck, Germany.,Centre for Innovation in Mental Health, Department of Psychology, University of Southampton, SO17 1BJ, Southampton, England
| | - Julius Verrel
- Institute of Neurogenetics, Department of Pediatric and Adult Movement Disorders and Neuropsychiatry, University of Lübeck, 23562, Lübeck, Germany
| | - Anne Weissbach
- Institute of Neurogenetics, Department of Pediatric and Adult Movement Disorders and Neuropsychiatry, University of Lübeck, 23562, Lübeck, Germany.,Department of Neurology, University Medical Hospital of Schleswig-Holstein, 23538, Lübeck, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, 01307, Dresden, Germany
| | - Alexander Münchau
- Institute of Neurogenetics, Department of Pediatric and Adult Movement Disorders and Neuropsychiatry, University of Lübeck, 23562, Lübeck, Germany
| | - Tobias Bäumer
- Institute of Neurogenetics, Department of Pediatric and Adult Movement Disorders and Neuropsychiatry, University of Lübeck, 23562, Lübeck, Germany.
| |
Collapse
|
50
|
Abstract
This is the fourth yearly article in the Tourette Syndrome Research Highlights series, summarizing research from 2017 relevant to Tourette syndrome and other tic disorders. The authors briefly summarize reports they consider most important or interesting. The highlights from 2018 article is being drafted on the Authorea online authoring platform, and readers are encouraged to add references or give feedback on our selections using the comments feature on that page. After the calendar year ends, the article is submitted as the annual update for the Tics collection on F1000Research.
Collapse
Affiliation(s)
- Andreas Hartmann
- Sorbonne University, National Reference Centre for Tourette Disorder, Pitié-Salpêtrière Hospital, Paris, France
| | - Yulia Worbe
- Sorbonne University, National Reference Centre for Tourette Disorder, Pitié-Salpêtrière Hospital, Paris, France
- Department of Physiology, Saint-Antoine Hospital, Paris, France
| | - Kevin J. Black
- Psychiatry, Neurology, Radiology, and Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110-1093, USA
| |
Collapse
|