1
|
Ubri CE, Farrugia AM, Cohen AS. Mild Traumatic Brain Injury Impairs Fear Extinction and Network Excitability in the Infralimbic Cortex. J Neurotrauma 2025. [PMID: 40401451 DOI: 10.1089/neu.2025.0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of morbidity and disability, with mild TBI (concussions) representing over 80% of cases. Although often considered benign, mild TBI is associated with persistent neuropsychiatric conditions, including post-traumatic stress disorder, anxiety, and depression. A hallmark of these conditions is impaired fear extinction (FE), the process by which learned fear responses are inhibited in safe contexts. This dysfunction contributes to maladaptive fear expression and is linked to altered neurocircuitry, particularly in the infralimbic cortex (IL), a key region in FE. Despite extensive evidence of impaired FE in patients with mild TBI and animal models, the specific mechanisms underlying this deficit remain poorly understood. This study aimed to address this gap by combining cued-FE behavior, local field potential recordings, and whole-cell patch-clamp techniques to investigate how mild TBI affects IL network activity and excitability in a mouse model of TBI. Our results demonstrate that mild lateral fluid percussion injury significantly impairs FE memory, as evidenced by an elevated cued-fear response during extinction testing 10 days post-injury. Field potential recordings revealed decreased activation of the IL network in both layers II/III and V, which was consistent with the observed behavioral deficits. Further analysis of synaptic physiology revealed an imbalance in excitatory and inhibitory neurotransmission (E/I imbalance) in the IL, characterized by reduced excitatory input and enhanced inhibitory input to neurons in both layers. Moreover, intrinsic excitability was altered in IL neurons after mild TBI. This study provides novel insights into how mild TBI disrupts the neurocircuitry underlying FE, specifically by suppressing IL excitability. These results highlight the importance of understanding the mechanistic disruptions in IL activity for developing therapeutic strategies to address fear-based disorders in patients with mild TBI.
Collapse
Affiliation(s)
- Catherine E Ubri
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department and Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Anthony M Farrugia
- Department and Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Akiva S Cohen
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department and Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Rashidi M, Simon JJ, Bertsch K, Wegen GV, Ditzen B, Flor H, Grinevich V, Wolf RC, Herpertz SC. Effects of intranasal oxytocin on fear extinction learning. Neuropsychopharmacology 2025; 50:548-555. [PMID: 39313675 PMCID: PMC11735929 DOI: 10.1038/s41386-024-01996-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024]
Abstract
Once a threat no longer exists, extinction of conditioned fear becomes adaptive in order to reduce allotted resources towards cues that no longer predict the threat. In anxiety and stress disorders, fear extinction learning may be affected. Animal findings suggest that the administration of oxytocin (OT) modulates extinction learning in a timepoint-dependent manner, facilitating extinction when administered prior to fear conditioning, but impairing it when administered prior to extinction learning. The aim of the present study was to examine if these findings translate into human research. Using a randomized, double-blind, placebo-controlled, 2-day fear conditioning and extinction learning design, behavioral (self-reported anxiety), physiological (skin conductance response), neuronal (task-based and resting-state functional magnetic resonance imaging), and hormonal (cortisol) data were collected from 124 naturally cycling (taking no hormonal contraceptives) healthy females. When administered prior to conditioning (Day 1), OT, similar to rodent findings, did not affect fear conditioning, but modulated the intrinsic functional connectivity of the anterior insula immediately after fear conditioning. In contrast to animal findings, OT impaired, not facilitated, extinction learning on the next day and increased anterior insula activity. When administered prior to extinction learning (day 2), OT increased the activity in the bilateral middle temporal gyrus, and similar to animal findings, reduced extinction learning. The current findings suggest that intranasal OT impedes fear extinction learning in humans regardless of the timepoint of administration, providing new insights and directions for future translational research and clinical applications.
Collapse
Affiliation(s)
- Mahmoud Rashidi
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany.
- Department of Psychiatry and Behavioral Health, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| | - Joe J Simon
- Department of General Internal Medicine and Psychosomatics, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Katja Bertsch
- Department of Psychology, Julius Maximilians University of Wuerzburg, Wuerzburg, Germany
| | - Gerhard Vincent Wegen
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Beate Ditzen
- Institute of Medical Psychology, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA
| | - Robert Christian Wolf
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Sabine C Herpertz
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
- DZPG, German Center for Mental Health, Berlin, Germany
| |
Collapse
|
3
|
Kirouac GJ. Update on the connectivity of the paraventricular nucleus of the thalamus and its position within limbic corticostriatal circuits. Neurosci Biobehav Rev 2025; 169:105989. [PMID: 39730100 DOI: 10.1016/j.neubiorev.2024.105989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/12/2024] [Accepted: 12/19/2024] [Indexed: 12/29/2024]
Abstract
The paraventricular nucleus of the thalamus (PVT) is generating interest because evidence establishes a role for this midline thalamic nucleus in behavior. Early tracing studies demonstrated that afferent fibers from the PVT and limbic cortex converge with dopamine fibers within subcompartments of the ventral striatum. Subsequent tracing studies expanded on these observations by establishing that the PVT provides a dense projection to a continuum of striatal-like regions that include the nucleus accumbens and the extended amygdala. These findings have been complemented by recent tracing evidence examining the organization of the PVT's efferent and afferent connections. An updated view of the organization of projection neurons in PVT is provided with a focus on the input-output relationship of these neurons. The review emphasizes recent findings demonstrating that the PVT is composed of intermixed populations of neurons with axons that collateralize to densely innervate limbic striatal regions while being reciprocally connected with limbic cortical areas that innervate the same regions of the striatum. An updated perspective of the PVT's anatomical relationship with limbic corticostriatal circuits is presented to stimulate research on how the PVT regulates behavioral responses associated with emotion and motivation.
Collapse
Affiliation(s)
- Gilbert J Kirouac
- Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 0W2, Canada.
| |
Collapse
|
4
|
Aquino-Miranda G, Jalloul D, Zhang XO, Li S, Kirouac GJ, Beierlein M, Do Monte FH. Functional properties of corticothalamic circuits targeting paraventricular thalamic neurons. Neuron 2024; 112:4060-4080.e7. [PMID: 39504962 DOI: 10.1016/j.neuron.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/02/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024]
Abstract
Corticothalamic projections to sensorimotor thalamic nuclei show modest firing rates and serve to modulate the activity of thalamic relay neurons. By contrast, here we find that high-order corticothalamic projections from the prelimbic (PL) cortex to the anterior paraventricular thalamic nucleus (aPVT) maintain high-frequency activity and evoke strong synaptic excitation of aPVT neurons in rats. In a significant fraction of aPVT cells, such high-frequency excitation of PL-aPVT projections leads to a rapid decay of action potential amplitudes, followed by a depolarization block (DB) that strongly limits aPVT maximum firing rates, thereby regulating both defensive and appetitive behaviors in a frequency-dependent manner. Strong inhibitory inputs from the anteroventral portion of the thalamic reticular nucleus (avTRN) inhibit the firing rate of aPVT neurons during periods of high-spike fidelity but restore it during prominent DB, suggesting that avTRN activity can modulate the effects of PL inputs on aPVT firing rates to ultimately control motivated behaviors.
Collapse
Affiliation(s)
- Guillermo Aquino-Miranda
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Dounya Jalloul
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA; MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX 77030, USA
| | - Xu O Zhang
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA; MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX 77030, USA
| | - Sa Li
- Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Avenue, Winnipeg, MB R3E 0W2, Canada
| | - Gilbert J Kirouac
- Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Avenue, Winnipeg, MB R3E 0W2, Canada
| | - Michael Beierlein
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA; MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX 77030, USA
| | - Fabricio H Do Monte
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA; MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX 77030, USA.
| |
Collapse
|
5
|
Romero LR, Acharya N, Nabás JF, Marín I, Andero R. Sex Differences in Neural Circuits Underlying Fear Processing. Curr Top Behav Neurosci 2024. [PMID: 39587012 DOI: 10.1007/7854_2024_543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Neural circuitry involved in anxiety and fear-related disorders exhibits strong sexual modulation. A limited number of studies integrating female and male data have revealed differences in neural networks, and distinct interconnectivity between these brain areas. Despite the efforts to incorporate female or mixed-sex data, there is compelling evidence that sex, as a biological variable, significantly influences fear processing. This chapter presents primary findings on sex differences in fear circuitry. It is imperative to consider this factor to ensure scientific research's integrity and understand how fear is processed in the central nervous system.
Collapse
Affiliation(s)
| | - Neha Acharya
- Institut de Neurociències, Universistat Autònoma de Barcelona, Barcelona, Spain
| | | | - Ignacio Marín
- Institut de Neurociències, Universistat Autònoma de Barcelona, Barcelona, Spain
| | - Raül Andero
- Departament de Psicobiologia i Metodología de les Ciències de la Salut, Universistat Autònoma de Barcelona, Barcelona, Spain.
- Centro de investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
- Unitat de Neurociència Translational, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universistat Autònoma de Barcelona, Bellaterra, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
6
|
Jin B, Gongwer MW, Kearney BP, Ohanian L, Holden-Wingate L, Le B, Darmawan A, Nakayama Y, Mora SAR, DeNardo LA. A developmental brain-wide screen identifies retrosplenial cortex as a key player in the emergence of persistent memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.07.574554. [PMID: 38260633 PMCID: PMC10802387 DOI: 10.1101/2024.01.07.574554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Memories formed early in life are short-lived while those formed later persist. Recent work revealed that infant memories are stored in a latent state. But why they fail to be retrieved is poorly understood. Here we investigated brain-wide circuit mechanisms underlying infantile amnesia. We performed a screen that combined contextual fear conditioning, activity-dependent neuronal tagging at different postnatal ages, tissue clearing and light sheet microscopy. We observed striking developmental changes in regional activity patterns between infant, juvenile, and adult mice, including changes in the retrosplenial cortex (RSP) that aligned with the emergence of persistent memory. We then performed a series of targeted investigations of RSP structure and function across development. Chronic chemogenetic reactivation of tagged RSP ensembles during the week after learning enhanced memory in adults and juveniles, but not in infants. However, after 33 days, reactivating infant-tagged RSP ensembles recovered forgotten memories. Changes in the developmental functions of RSP memory ensembles were accompanied by changes in dendritic spine density and the likelihood that those ensembles could be reactivated by contextual cues. These studies show that RSP ensembles store latent infant memories, reveal the time course of RSP functional maturation, and suggest that immature RSP functional networks contribute to infantile amnesia.
Collapse
|
7
|
Gao JH, Liu YY, Xu HX, Wu K, Zhang LL, Cheng P, Peng XH, Cao JL, Hua R, Zhang YM. Divergent input patterns to the central lateral amygdala play a duet in fear memory formation. iScience 2024; 27:110886. [PMID: 39319272 PMCID: PMC11421289 DOI: 10.1016/j.isci.2024.110886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/18/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
Somatostatin (SOM)-expressing neurons in the central lateral amygdala (CeL) are responsible for fear memory learning, but the circuit and molecular mechanisms underlying this biology remain elusive. Here, we found that glutamatergic neurons in the lateral parabrachial nucleus (LPB) directly dominated the activity of CeLSOM neurons, and that selectively inhibiting the LPBGlu→CeLSOM pathway suppressed fear memory acquisition. By contrast, inhibiting CeL-projecting glutamatergic neurons in the paraventricular thalamic nucleus (PVT) interfered with consolidation-related processes. Notably, CeLSOM-innervating neurons in the LPB were modulated by presynaptic cannabinoid receptor 1 (CB1R), and knock down of CB1Rs in LPB glutamatergic neurons enhanced excitatory transmission to the CeL and partially rescued the impairment in fear memory induced by CB1R activation in the CeL. Overall, our study reveals the mechanisms by which CeLSOM neurons mediate the formation of fear memories during fear conditioning in mice, which may provide a new direction for the clinical research of fear-related disorders.
Collapse
Affiliation(s)
- Jing-Hua Gao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221002, Jiangsu, China
- Department of Anesthesiology, The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, Yancheng 224008, Jiangsu, China
| | - Yue-Ying Liu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Hui-Xiang Xu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Ke Wu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Le-le Zhang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Peng Cheng
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Xiao-Han Peng
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Jun-Li Cao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Rong Hua
- Department of Emergency, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Yong-Mei Zhang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| |
Collapse
|
8
|
Bhasin BJ, Raymond JL, Goldman MS. Synaptic weight dynamics underlying memory consolidation: Implications for learning rules, circuit organization, and circuit function. Proc Natl Acad Sci U S A 2024; 121:e2406010121. [PMID: 39365821 PMCID: PMC11474072 DOI: 10.1073/pnas.2406010121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/12/2024] [Indexed: 10/06/2024] Open
Abstract
Systems consolidation is a common feature of learning and memory systems, in which a long-term memory initially stored in one brain region becomes persistently stored in another region. We studied the dynamics of systems consolidation in simple circuit architectures with two sites of plasticity, one in an early-learning and one in a late-learning brain area. We show that the synaptic dynamics of the circuit during consolidation of an analog memory can be understood as a temporal integration process, by which transient changes in activity driven by plasticity in the early-learning area are accumulated into persistent synaptic changes at the late-learning site. This simple principle naturally leads to a speed-accuracy tradeoff in systems consolidation and provides insight into how the circuit mitigates the stability-plasticity dilemma of storing new memories while preserving core features of older ones. Furthermore, it imposes two constraints on the circuit. First, the plasticity rule at the late-learning site must stably support a continuum of possible outputs for a given input. We show that this is readily achieved by heterosynaptic but not standard Hebbian rules. Second, to turn off the consolidation process and prevent erroneous changes at the late-learning site, neural activity in the early-learning area must be reset to its baseline activity. We provide two biologically plausible implementations for this reset that propose functional roles in stabilizing consolidation for core elements of the cerebellar circuit.
Collapse
Affiliation(s)
- Brandon J. Bhasin
- Department of Bioengineering, Stanford University, Stanford, CA94305
- Center for Neuroscience, University of California, Davis, CA95616
| | - Jennifer L. Raymond
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA94305
| | - Mark S. Goldman
- Center for Neuroscience, University of California, Davis, CA95616
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA95616
- Department of Ophthalmology and Vision Science, University of California, Davis, CA95616
| |
Collapse
|
9
|
Lei L, Lai CSW, Lee TMC, Lam CLM. The effect of transcranial direct current and magnetic stimulation on fear extinction and return of fear: A meta-analysis and systematic review. J Affect Disord 2024; 362:263-286. [PMID: 38908557 DOI: 10.1016/j.jad.2024.06.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/31/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND We conducted a meta-analysis and qualitative review on the randomized controlled trials investigating the effects of transcranial direct current stimulation and transcranial magnetic stimulation on fear extinction and the return of fear in non-primate animals and humans. METHODS The meta-analysis was conducted by searching PubMed, Web of science, PsycINFO, and Cochrane Library and extracting fear response in the active and sham groups in the randomized controlled trials. The pooled effect size was quantified by Hedges' g using a three-level meta-analytic model in R. RESULTS We identified 18 articles on the tDCS effect and 5 articles on the TMS effect, with 466 animal subjects and 621 human subjects. Our findings show that tDCS of the prefrontal cortex significantly inhibit fear retrieval in animal models (Hedges' g = -0.50). In human studies, TMS targeting the dorsolateral/ventromedial prefrontal cortex has an inhibiting effect on the return of fear (Hedges' g = -0.24). LIMITATIONS The limited number of studies and the heterogeneous designs of the selected studies made cross-study and cross-species comparison difficult. CONCLUSIONS Our findings shed light on the optimal non-invasive brain stimulation protocols for targeting the neural circuitry of threat extinction in humans.
Collapse
Affiliation(s)
- Letian Lei
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Laboratory of Clinical Psychology and Affective Neuroscience, The University of Hong Kong, Hong Kong, China
| | - Cora S W Lai
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China
| | - Tatia M C Lee
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Laboratory of Neuropsychology and Human Neuroscience, The University of Hong Kong, Hong Kong, China
| | - Charlene L M Lam
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Laboratory of Clinical Psychology and Affective Neuroscience, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
10
|
Diehl MM, Moscarello JM, Trask S. Behavioral outputs and overlapping circuits between conditional fear and active avoidance. Neurobiol Learn Mem 2024; 213:107943. [PMID: 38821256 PMCID: PMC11956751 DOI: 10.1016/j.nlm.2024.107943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/19/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Aversive learning can produce a wide variety of defensive behavioral responses depending on the circumstances, ranging from reactive responses like freezing to proactive avoidance responses. While most of this initial learning is behaviorally supported by an expectancy of an aversive outcome and neurally supported by activity within the basolateral amygdala, activity in other brain regions become necessary for the execution of defensive strategies that emerge in other aversive learning paradigms such as active avoidance. Here, we review the neural circuits that support both reactive and proactive defensive behaviors that are motivated by aversive learning, and identify commonalities between the neural substrates of these distinct (and often exclusive) behavioral strategies.
Collapse
Affiliation(s)
- Maria M Diehl
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, USA
| | | | - Sydney Trask
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA; Purdue Institute for Integrative Neuroscience, West Lafayette, IN, USA.
| |
Collapse
|
11
|
Suzuki Y, Kiyosawa M, Wakakura M, Ishii K. Hyperactivity of the medial thalamus in patients with photophobia-associated migraine. Headache 2024; 64:1005-1014. [PMID: 39023425 DOI: 10.1111/head.14785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 07/20/2024]
Abstract
OBJECTIVE To examine cerebral functional alterations associated with sensory processing in patients with migraine and constant photophobia. BACKGROUND Migraine is a common headache disorder that presents with photophobia in many patients during attacks. Furthermore, some patients with migraine experience constant photophobia, even during headache-free intervals, leading to a compromised quality of life. METHODS This prospective, case-control study included 40 patients with migraine (18 male and 22 female) who were recruited at an eye hospital and eye clinic. The patients were divided into two groups: migraine with photophobia group, consisting of 22 patients (10 male and 12 female) with constant photophobia, and migraine without photophobia group, consisting of 18 patients (eight male and 10 female) without constant photophobia. We used 18F-fluorodeoxyglucose and positron emission tomography to compare cerebral glucose metabolism between the two patient groups and 42 healthy participants (16 men and 26 women). RESULTS Compared with the healthy group, both the migraine with photophobia and migraine without photophobia groups showed cerebral glucose hypermetabolism in the bilateral thalamus (p < 0.05, family-wise error-corrected). Moreover, the contrast of migraine with photophobia minus migraine without photophobia patients showed glucose hypermetabolism in the bilateral medial thalamus (p < 0.05, family-wise error-corrected). CONCLUSIONS The medial thalamus may be associated with the development of continuous photophobia in patients with migraine.
Collapse
Affiliation(s)
- Yukihisa Suzuki
- Japan Community Health Care Organization, Mishima General Hospital, Mishima, Shizuoka, Japan
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
12
|
Bhasin BJ, Raymond JL, Goldman MS. Synaptic weight dynamics underlying memory consolidation: implications for learning rules, circuit organization, and circuit function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.586036. [PMID: 38585936 PMCID: PMC10996481 DOI: 10.1101/2024.03.20.586036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Systems consolidation is a common feature of learning and memory systems, in which a long-term memory initially stored in one brain region becomes persistently stored in another region. We studied the dynamics of systems consolidation in simple circuit architectures with two sites of plasticity, one in an early-learning and one in a late-learning brain area. We show that the synaptic dynamics of the circuit during consolidation of an analog memory can be understood as a temporal integration process, by which transient changes in activity driven by plasticity in the early-learning area are accumulated into persistent synaptic changes at the late-learning site. This simple principle naturally leads to a speed-accuracy tradeoff in systems consolidation and provides insight into how the circuit mitigates the stability-plasticity dilemma of storing new memories while preserving core features of older ones. Furthermore, it imposes two constraints on the circuit. First, the plasticity rule at the late-learning site must stably support a continuum of possible outputs for a given input. We show that this is readily achieved by heterosynaptic but not standard Hebbian rules. Second, to turn off the consolidation process and prevent erroneous changes at the late-learning site, neural activity in the early-learning area must be reset to its baseline activity. We propose two biologically plausible implementations for this reset that suggest novel roles for core elements of the cerebellar circuit. Significance Statement How are memories transformed over time? We propose a simple organizing principle for how long term memories are moved from an initial to a final site of storage. We show that successful transfer occurs when the late site of memory storage is endowed with synaptic plasticity rules that stably accumulate changes in activity occurring at the early site of memory storage. We instantiate this principle in a simple computational model that is representative of brain circuits underlying a variety of behaviors. The model suggests how a neural circuit can store new memories while preserving core features of older ones, and suggests novel roles for core elements of the cerebellar circuit.
Collapse
|
13
|
Somelar-Duracz K, Jürgenson M, Viil J, Zharkovsky A, Jaako K. 'Unpredictable chronic mild stress does not exacerbate memory impairment or altered neuronal and glial plasticity in the hippocampus of middle-aged vitamin D deficient mice'. Eur J Neurosci 2024; 59:1696-1722. [PMID: 38269959 DOI: 10.1111/ejn.16256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/10/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024]
Abstract
Vitamin D deficiency is a worldwide health concern, especially in the elderly population. Much remains unknown about the relationship between vitamin D deficiency (VDD), stress-induced cognitive dysfunctions and depressive-like behaviour. In this study, 4-month-old male C57Bl/6J mice were fed with control or vitamin D free diet for 6 months, followed by unpredictable chronic stress (UCMS) for 8 weeks. VDD induced cognitive impairment and reduced grooming behaviour, but did not induce depressive-like behaviour. While UCMS in vitamin D sufficient mice induced expected depressive-like phenotype and impairments in the contextual fear memory, chronic stress did not manifest as an additional risk factor for memory impairments and depressive-like behaviour in VDD mice. In fact, UCMS restored self-care behaviour in VDD mice. At the histopathological level, VDD mice exhibited cell loss in the granule cell layer, reduced survival of newly generated cells, accompanied with an increased number of apoptotic cells and alterations in glial morphology in the hippocampus; however, these effects were not exacerbated by UCMS. Interestingly, UCMS reversed VDD induced loss of microglial cells. Moreover, tyrosine hydroxylase levels decreased in the striatum of VDD mice, but not in stressed VDD mice. These findings indicate that long-term VDD in adulthood impairs cognition but does not augment behavioural response to UCMS in middle-aged mice. While VDD caused cell loss and altered glial response in the DG of the hippocampus, these effects were not exacerbated by UCMS and could contribute to mechanisms regulating altered stress response.
Collapse
Affiliation(s)
- Kelli Somelar-Duracz
- Institute of Biomedicine and Translational Medicine, Department of Pharmacology, University of Tartu, Tartu, Estonia
| | - Monika Jürgenson
- Institute of Biomedicine and Translational Medicine, Department of Pharmacology, University of Tartu, Tartu, Estonia
| | - Janeli Viil
- Institute of Biomedicine and Translational Medicine, Department of Pharmacology, University of Tartu, Tartu, Estonia
| | - Alexander Zharkovsky
- Institute of Biomedicine and Translational Medicine, Department of Pharmacology, University of Tartu, Tartu, Estonia
| | - Külli Jaako
- Institute of Biomedicine and Translational Medicine, Department of Pharmacology, University of Tartu, Tartu, Estonia
| |
Collapse
|
14
|
Coda DM, Gräff J. From cellular to fear memory: An epigenetic toolbox to remember. Curr Opin Neurobiol 2024; 84:102829. [PMID: 38128422 DOI: 10.1016/j.conb.2023.102829] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Throughout development, the neuronal epigenome is highly sensitive to external stimuli, yet capable of safeguarding cellular memory for a lifetime. In the adult brain, memories of fearful experiences are rapidly instantiated, yet can last for decades, but the mechanisms underlying such longevity remain unknown. Here, we showcase how fear memory formation and storage - traditionally thought to exclusively affect synapse-based events - elicit profound and enduring changes to the chromatin, proposing epigenetic regulation as a plausible molecular template for mnemonic processes. By comparing these to mechanisms occurring in development and differentiation, we notice that an epigenetic machinery similar to that preserving cellular memories might be employed by brain cells so as to form, store, and retrieve behavioral memories.
Collapse
Affiliation(s)
- Davide Martino Coda
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Federale Lausanne (EPFL), 1015, Lausanne, Switzerland.
| | - Johannes Gräff
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Federale Lausanne (EPFL), 1015, Lausanne, Switzerland.
| |
Collapse
|
15
|
Zhang XO, Zhang Y, Cho CE, Engelke DS, Smolen P, Byrne JH, Do-Monte FH. Enhancing Associative Learning in Rats With a Computationally Designed Training Protocol. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:165-181. [PMID: 38298784 PMCID: PMC10829654 DOI: 10.1016/j.bpsgos.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/30/2023] [Accepted: 07/20/2023] [Indexed: 02/02/2024] Open
Abstract
Background Learning requires the activation of protein kinases with distinct temporal dynamics. In Aplysia, nonassociative learning can be enhanced by a computationally designed learning protocol with intertrial intervals (ITIs) that maximize the interaction between fast-activated PKA (protein kinase A) and slow-activated ERK (extracellular signal-regulated kinase). Whether a similar strategy can enhance associative learning in mammals is unknown. Methods We simulated 1000 training protocols with varying ITIs to predict an optimal protocol based on empirical data for PKA and ERK dynamics in rat hippocampus. Adult male rats received the optimal protocol or control protocols in auditory fear conditioning and fear extinction experiments. Immunohistochemistry was performed to evaluate pCREB (phosphorylated cAMP response element binding)\protein levels in brain regions that have been implicated in fear acquisition. Results Rats exposed to the optimal conditioning protocol with irregular ITIs exhibited impaired extinction memory acquisition within the session using a standard footshock intensity, and stronger fear memory retrieval and spontaneous recovery with a weaker footshock intensity, compared with rats that received massed or spaced conditioning protocols with fixed ITIs. Rats exposed to the optimal extinction protocol displayed improved extinction of contextual fear memory and reduced spontaneous recovery compared with rats that received standard extinction protocols. Moreover, the optimal conditioning protocol increased pCREB levels in the dentate gyrus of the dorsal hippocampus, suggesting enhanced induction of long-term potentiation. Conclusions These findings demonstrate that a computational model-driven behavioral intervention can enhance associative learning in mammals and may provide insight into strategies to improve cognition in humans.
Collapse
Affiliation(s)
- Xu O. Zhang
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Yili Zhang
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Claire E. Cho
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Douglas S. Engelke
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Paul Smolen
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - John H. Byrne
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Fabricio H. Do-Monte
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
16
|
Bertocchi I, Rocha-Almeida F, Romero-Barragán MT, Cambiaghi M, Carretero-Guillén A, Botta P, Dogbevia GK, Treviño M, Mele P, Oberto A, Larkum ME, Gruart A, Sprengel R, Delgado-García JM, Hasan MT. Pre- and postsynaptic N-methyl-D-aspartate receptors are required for sequential printing of fear memory engrams. iScience 2023; 26:108050. [PMID: 37876798 PMCID: PMC10590821 DOI: 10.1016/j.isci.2023.108050] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/24/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023] Open
Abstract
The organization of fear memory involves the participation of multiple brain regions. However, it is largely unknown how fear memory is formed, which circuit pathways are used for "printing" memory engrams across brain regions, and the role of identified brain circuits in memory retrieval. With advanced genetic methods, we combinatorially blocked presynaptic output and manipulated N-methyl-D-aspartate receptor (NMDAR) in the basolateral amygdala (BLA) and medial prefrontal cortex (mPFC) before and after cued fear conditioning. Further, we tagged fear-activated neurons during associative learning for optogenetic memory recall. We found that presynaptic mPFC and postsynaptic BLA NMDARs are required for fear memory formation, but not expression. Our results provide strong evidence that NMDAR-dependent synaptic plasticity drives multi-trace systems consolidation for the sequential printing of fear memory engrams from BLA to mPFC and, subsequently, to the other regions, for flexible memory retrieval.
Collapse
Affiliation(s)
- Ilaria Bertocchi
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, 10043 Turin, Italy
| | - Florbela Rocha-Almeida
- Division of Neurosciences, University Pablo de Olavide, Ctra. de Utrera, km. 1 41013 Seville, Spain
| | | | - Marco Cambiaghi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, Verona, Italy
| | - Alejandro Carretero-Guillén
- Laboratory of Brain Circuits Therapeutics, Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Sede Building, Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - Paolo Botta
- CNS drug development, Copenhagen, Capital Region, Denmark
| | - Godwin K. Dogbevia
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
- Health Canada, 70 Colombine Driveway, Ottawa, ON K1A0K9, Canada
| | - Mario Treviño
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
- Laboratorio de Plasticidad Cortical y Aprendizaje Perceptual, Instituto de Neurociencias, Universidad de Guadalajara, Guadalajara, Mexico
| | - Paolo Mele
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, 10043 Turin, Italy
| | - Alessandra Oberto
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, 10043 Turin, Italy
| | - Matthew E. Larkum
- NeuroCure, Charité-Universitatsmedizin, Virchowweg 6, 10117 Berlin, Germany
| | - Agnes Gruart
- Division of Neurosciences, University Pablo de Olavide, Ctra. de Utrera, km. 1 41013 Seville, Spain
| | - Rolf Sprengel
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | | | - Mazahir T. Hasan
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
- Laboratory of Brain Circuits Therapeutics, Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Sede Building, Barrio Sarriena, s/n, 48940 Leioa, Spain
- Ikerbasque – Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
17
|
Gunduz-Cinar O, Castillo LI, Xia M, Van Leer E, Brockway ET, Pollack GA, Yasmin F, Bukalo O, Limoges A, Oreizi-Esfahani S, Kondev V, Báldi R, Dong A, Harvey-White J, Cinar R, Kunos G, Li Y, Zweifel LS, Patel S, Holmes A. A cortico-amygdala neural substrate for endocannabinoid modulation of fear extinction. Neuron 2023; 111:3053-3067.e10. [PMID: 37480845 PMCID: PMC10592324 DOI: 10.1016/j.neuron.2023.06.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 04/25/2023] [Accepted: 06/23/2023] [Indexed: 07/24/2023]
Abstract
Preclinical and clinical studies implicate endocannabinoids (eCBs) in fear extinction, but the underlying neural circuit basis of these actions is unclear. Here, we employed in vivo optogenetics, eCB biosensor imaging, ex vivo electrophysiology, and CRISPR-Cas9 gene editing in mice to examine whether basolateral amygdala (BLA)-projecting medial prefrontal cortex (mPFC) neurons represent a neural substrate for the effects of eCBs on extinction. We found that photoexcitation of mPFC axons in BLA during extinction mobilizes BLA eCBs. eCB biosensor imaging showed that eCBs exhibit a dynamic stimulus-specific pattern of activity at mPFC→BLA neurons that tracks extinction learning. Furthermore, using CRISPR-Cas9-mediated gene editing, we demonstrated that extinction memory formation involves eCB activity at cannabinoid CB1 receptors expressed at vmPFC→BLA synapses. Our findings reveal the temporal characteristics and a neural circuit basis of eCBs' effects on fear extinction and inform efforts to target the eCB system as a therapeutic approach in extinction-deficient neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ozge Gunduz-Cinar
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA.
| | - Laura I Castillo
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Maya Xia
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Elise Van Leer
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Emma T Brockway
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Gabrielle A Pollack
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Farhana Yasmin
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Olena Bukalo
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Aaron Limoges
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Sarvar Oreizi-Esfahani
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Veronika Kondev
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Rita Báldi
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ao Dong
- Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Judy Harvey-White
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Resat Cinar
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA; Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Yulong Li
- Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Larry S Zweifel
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Sachin Patel
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
18
|
Hammack RJ, Fischer VE, Andrade MA, Toney GM. Presence of a remote fear memory engram in the central amygdala. Learn Mem 2023; 30:250-259. [PMID: 37802546 PMCID: PMC10561632 DOI: 10.1101/lm.053833.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023]
Abstract
Fear memory formation and recall are highly regulated processes, with the central amygdala (CeA) contributing to fear memory-related behaviors. We recently reported that a remote fear memory engram is resident in the anterior basolateral amygdala (aBLA). However, the extent to which downstream neurons in the CeA participate in this engram is unknown. We tested the hypothesis that CeA neurons activated during fear memory formation are reactivated during remote memory retrieval such that a CeA engram participates in remote fear memory recall and its associated behavior. Using contextual fear conditioning in TRAP2;Ai14 mice, we identified, by persistent Cre-dependent tdTomato expression (i.e., "TRAPing"), CeA neurons that were c-fos-activated during memory formation. Twenty-one days later, we quantified neurons activated during remote memory recall using Fos immunohistochemistry. Dual labeling was used to identify the subpopulation of CeA neurons that was both activated during memory formation and reactivated during recall. Compared with their context-conditioned (no shock) controls, fear-conditioned (electric shock) mice (n = 5/group) exhibited more robust fear memory-related behavior (freezing) as well as larger populations of activated (tdTomato+) and reactivated (dual-labeled) CeA neurons. Most neurons in both groups were mainly located in the capsular CeA subdivision (CeAC). Notably, however, only the size of the TRAPed population distributed throughout the CeA was significantly correlated with time spent freezing during remote fear memory recall. Our findings indicate that fear memory formation robustly activates CeA neurons and that a subset located mainly in the CeAC may contribute to both remote fear memory storage/retrieval and the resulting fear-like behavior.
Collapse
Affiliation(s)
- Robert J Hammack
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Victoria E Fischer
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Mary Ann Andrade
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Glenn M Toney
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| |
Collapse
|
19
|
Zheng Y, Fan L, Fang Z, Liu Z, Chen J, Zhang X, Wang Y, Zhang Y, Jiang L, Chen Z, Hu W. Postsynaptic histamine H 3 receptors in ventral basal forebrain cholinergic neurons modulate contextual fear memory. Cell Rep 2023; 42:113073. [PMID: 37676764 DOI: 10.1016/j.celrep.2023.113073] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/16/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
Overly strong fear memories can cause pathological conditions. Histamine H3 receptor (H3R) has been viewed as an optimal drug target for CNS disorders, but its role in fear memory remains elusive. We find that a selective deficit of H3R in cholinergic neurons, but not in glutamatergic neurons, enhances freezing level during contextual fear memory retrieval without affecting cued memory. Consistently, genetically knocking down H3R or chemogenetically activating cholinergic neurons in the ventral basal forebrain (vBF) mimics this enhanced fear memory, whereas the freezing augmentation is rescued by re-expressing H3R or chemogenetic inhibition of vBF cholinergic neurons. Spatiotemporal regulation of H3R by a light-sensitive rhodopsin-H3R fusion protein suggests that postsynaptic H3Rs in vBF cholinergic neurons, but not presynaptic H3Rs of cholinergic projections in the dorsal hippocampus, are responsible for modulating contextual fear memory. Therefore, precise modulation of H3R in a cell-type- and subcellular-location-specific manner should be explored for pathological fear memory.
Collapse
Affiliation(s)
- Yanrong Zheng
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lishi Fan
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhuowen Fang
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zonghan Liu
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiahui Chen
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiangnan Zhang
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi Wang
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yan Zhang
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lei Jiang
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Zhong Chen
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Weiwei Hu
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
20
|
Laricchiuta D, Gimenez J, Sciamanna G, Termine A, Fabrizio C, Della Valle F, Caioli S, Saba L, De Bardi M, Balsamo F, Panuccio A, Passarello N, Mattioni A, Bisicchia E, Zona C, Orlando V, Petrosini L. Synaptic and transcriptomic features of cortical and amygdala pyramidal neurons predict inefficient fear extinction. Cell Rep 2023; 42:113066. [PMID: 37656620 DOI: 10.1016/j.celrep.2023.113066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/08/2023] [Accepted: 08/17/2023] [Indexed: 09/03/2023] Open
Abstract
Fear-related disorders arise from inefficient fear extinction and have immeasurable social and economic costs. Here, we characterize mouse phenotypes that spontaneously show fear-independent behavioral traits predicting adaptive or maladaptive fear extinction. We find that, already before fear conditioning, specific morphological, electrophysiological, and transcriptomic patterns of cortical and amygdala pyramidal neurons predispose to fear-related disorders. Finally, by using an optogenetic approach, we show the possibility to rescue inefficient fear extinction by activating infralimbic pyramidal neurons and to impair fear extinction by activating prelimbic pyramidal neurons.
Collapse
Affiliation(s)
| | | | - Giuseppe Sciamanna
- IRCCS Santa Lucia Foundation, 00143 Rome, Italy; Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
| | | | | | - Francesco Della Valle
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia
| | - Silvia Caioli
- Unit of Neurology, IRCCS Neuromed, 86077 Pozzilli, Isernia, Italy
| | - Luana Saba
- University of Campus Biomedico, 00128 Rome, Italy
| | | | - Francesca Balsamo
- IRCCS Santa Lucia Foundation, 00143 Rome, Italy; Department of Human Sciences, Guglielmo Marconi University, 00166 Rome, Italy
| | - Anna Panuccio
- IRCCS Santa Lucia Foundation, 00143 Rome, Italy; Department of Psychology, University Sapienza of Rome, 00185 Rome, Italy
| | - Noemi Passarello
- IRCCS Santa Lucia Foundation, 00143 Rome, Italy; Department of Humanities, Federico II University of Naples, 80138 Naples, Italy
| | | | | | - Cristina Zona
- Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Valerio Orlando
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia.
| | | |
Collapse
|
21
|
Kalivas PW, Gourley SL, Paulus MP. Intrusive thinking: Circuit and synaptic mechanisms of a transdiagnostic psychiatric symptom. Neurosci Biobehav Rev 2023; 150:105196. [PMID: 37094741 PMCID: PMC10249786 DOI: 10.1016/j.neubiorev.2023.105196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023]
Abstract
Spontaneous thought is an adaptive cognitive process that can produce novel and insightful thought sequences useful in guiding future behavior. In many psychiatric disorders, spontaneous thinking becomes intrusive and uncontrolled, and can trigger symptoms such as craving, repetitive negative thinking and trauma-related memories. We link studies using clinical imaging and rodent modeling towards understanding the neurocircuitry and neuroplasticity of intrusive thinking. We propose a framework in which drugs or stress change the homeostatic set point of brain reward circuitry, which then impacts subsequent plasticity induced by drug/stress conditioned cues (metaplastic allostasis). We further argue for the importance of examining not only the canonical pre- and postsynapse, but also the adjacent astroglial protrusions and extracellular matrix that together form the tetrapartite synapse and that plasticity throughout the tetrapartite synapse is necessary for cue-induced drug or stress behaviors. This analysis reveals that drug use or trauma cause long-lasting allostatic brain plasticity that sets the stage for subsequent drug/trauma-associated cues to induce transient plasticity that can lead to intrusive thinking.
Collapse
Affiliation(s)
- Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
| | - Shannon L Gourley
- Emory National Primate Research Center, Emory University, Department of Pediatrics and Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA; Emory National Primate Research Center, Emory University, Emory University School of Medicine, Atlanta, GA, USA
| | | |
Collapse
|
22
|
Hammack RJ, Fischer VE, Andrade MA, Toney GM. Anterior basolateral amygdala neurons comprise a remote fear memory engram. Front Neural Circuits 2023; 17:1167825. [PMID: 37180762 PMCID: PMC10174320 DOI: 10.3389/fncir.2023.1167825] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/31/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction Threatening environmental cues often generate enduring fear memories, but how these are formed and stored remains actively investigated. Recall of a recent fear memory is thought to reflect reactivation of neurons, in multiple brain regions, activated during memory formation, indicating that anatomically distributed and interconnected neuronal ensembles comprise fear memory engrams. The extent to which anatomically specific activation-reactivation engrams persist during long-term fear memory recall, however, remains largely unexplored. We hypothesized that principal neurons in the anterior basolateral amygdala (aBLA), which encode negative valence, acutely reactivate during remote fear memory recall to drive fear behavior. Methods Using adult offspring of TRAP2 and Ai14 mice, persistent tdTomato expression was used to "TRAP" aBLA neurons that underwent Fos-activation during contextual fear conditioning (electric shocks) or context only conditioning (no shocks) (n = 5/group). Three weeks later, mice were re-exposed to the same context cues for remote memory recall, then sacrificed for Fos immunohistochemistry. Results TRAPed (tdTomato +), Fos +, and reactivated (double-labeled) neuronal ensembles were larger in fear- than context-conditioned mice, with the middle sub-region and middle/caudal dorsomedial quadrants of aBLA displaying the greatest densities of all three ensemble populations. Whereas tdTomato + ensembles were dominantly glutamatergic in context and fear groups, freezing behavior during remote memory recall was not correlated with ensemble sizes in either group. Discussion We conclude that although an aBLA-inclusive fear memory engram forms and persists at a remote time point, plasticity impacting electrophysiological responses of engram neurons, not their population size, encodes fear memory and drives behavioral manifestations of long-term fear memory recall.
Collapse
Affiliation(s)
- Robert J. Hammack
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Victoria E. Fischer
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Mary Ann Andrade
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Glenn M. Toney
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
23
|
Yan Y, Song D, Jin Y, Deng Y, Wang C, Huang T, Tang Y, Yang Y, Zhang Y, Wang Z, Dong Z, Wang Y, Zhao J, Ni J, Li H, Zhang J, Lang Y, Wu Y, Qing H, Quan Z. ACx-projecting cholinergic neurons in the NB influence the BLA ensembles to modulate the discrimination of auditory fear memory. Transl Psychiatry 2023; 13:79. [PMID: 36878900 PMCID: PMC9988865 DOI: 10.1038/s41398-023-02384-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
Animals need discriminating auditory fear memory (DAFM) to survive, but the related neural circuits of DAFM remain largely unknown. Our study shows that DAFM depends on acetylcholine (ACh) signal in the auditory cortex (ACx), which is projected from the nucleus basalis (NB). At the encoding stage, optogenetic inhibition of cholinergic projections of NB-ACx obfuscates distinct tone-responsive neurons of ACx recognizing from fear-paired tone to fear-unpaired tone signals, while simultaneously regulating the neuronal activity and reactivation of basal lateral amygdala (BLA) engram cells at the retrieval stage. This NBACh-ACx-BLA neural circuit for the modulation of DAFM is especially dependent on the nicotinic ACh receptor (nAChR). A nAChR antagonist reduces DAFM and diminishes the increased magnitude of ACx tone-responsive neuronal activity during the encoding stage. Our data suggest a critical role of NBACh-ACx-BLA neural circuit in DAFM: manipulation of the NB cholinergic projection to the ACx via nAChR during the encoding stage affects the activation of ACx tone-responsive neuron clusters and the BLA engram cells during the retrieval stage, thus modulating the DAFM.
Collapse
Affiliation(s)
- Yan Yan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Da Song
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yue Jin
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yujun Deng
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Chunjian Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Tao Huang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuanhong Tang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yu Yang
- Shandong Key Laboratory of Behavioral Medicine, Shandong Collaborative Innovation Center for Diagnosis, Treatment & Behavioral Interventions of Mental Disorders, School of Mental Health, Jining Medical University, Jining, 272013, China
| | - Yun Zhang
- Advanced Innovation Center for Human Brain Protection, Capital Medical University; The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100069, China
| | - Zhe Wang
- Advanced Innovation Center for Human Brain Protection, Capital Medical University; The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100069, China
| | - Zhifang Dong
- Ministry of Education Key Laboratory of Child Development and Disorders, National Research Center for Child Health and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yuetian Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Juan Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Hui Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Jun Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yiran Lang
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, 100081, China
| | - Yili Wu
- Shandong Key Laboratory of Behavioral Medicine, Shandong Collaborative Innovation Center for Diagnosis, Treatment & Behavioral Interventions of Mental Disorders, School of Mental Health, Jining Medical University, Jining, 272013, China. .,Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
24
|
Kant D, Jha SK. Compensatory Contextual Fear Memory Pathways Develop in the Infralimbic Cortex within 3 Days after the First Test in the Absence of the Dorsal Hippocampus. ACS Chem Neurosci 2023; 14:619-627. [PMID: 36748948 DOI: 10.1021/acschemneuro.2c00407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The dorsal hippocampus (DH) is primarily involved in the formation of contextual fear-conditioned (CxFC) memory. However, CxFC memory can be formed even in the absence of the DH. In addition to the DH, the infralimbic cortex (IL), a sub-region of the medial prefrontal cortex (mPFC), also plays an important role in the consolidation of CxFC memory. However, role of IL in the development of compensatory CxFC memory is not known. Here, we have examined (a) the development of the compensatory circuitry of CxFC memory within 3 days after the first test in the absence of the DH and (b) the role of IL in the induction of compensatory CxFC memory in the absence of the DH. The DH-lesioned rats re-trained for CxFC 1 day after the first testing exhibited significantly less freezing compared to the control group. However, the DH-lesioned rats, re-trained for CxFC 3 days after the first testing, showed a robust freezing response. It suggests that the fully functional compensatory circuitry of contextual fear memory develops after multiple training separated by 3 days. Furthermore, we observed that reversible inactivation of the IL of the DH-lesioned rats during the first training waned the formation of compensatory CxFC. It suggests that (a) the IL receives contextual fear memory information during the first trial in the absence of the DH and (b) perturbation in fear memory information encoding in the IL during the first trial impairs the development of the compensatory network in the absence of the DH.
Collapse
Affiliation(s)
- Deepika Kant
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sushil K Jha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
25
|
Prior fear learning enables the rapid assimilation of new fear memories directly into cortical networks. PLoS Biol 2022; 20:e3001789. [PMID: 36178983 PMCID: PMC9555644 DOI: 10.1371/journal.pbio.3001789] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/12/2022] [Accepted: 08/08/2022] [Indexed: 11/20/2022] Open
Abstract
Long-term memory formation involves the reorganization of brain circuits, termed system consolidation. Whether and how a prior fear experience influences system consolidation of new memories is poorly understood. In rats, we found that prior auditory fear learning allows the secondary auditory cortex to immediately encode new auditory memories, with these new memories purely requiring the activation of cellular mechanisms of synaptic consolidation within secondary auditory cortex. Similar results were obtained in the anterior cingulate cortex for contextual fear memories. Moreover, prior learning enabled connections from these cortices to the basolateral amygdala (BLA) to support recent memory retention. We propose that the reorganization of circuits that characterizes system consolidation occurs only in the first instance that an event is learned, subsequently allowing the immediate assimilation of new analogous events in final storage sites.
Collapse
|
26
|
Vertes RP, Linley SB, Rojas AKP. Structural and functional organization of the midline and intralaminar nuclei of the thalamus. Front Behav Neurosci 2022; 16:964644. [PMID: 36082310 PMCID: PMC9445584 DOI: 10.3389/fnbeh.2022.964644] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/07/2022] [Indexed: 12/03/2022] Open
Abstract
The midline and intralaminar nuclei of the thalamus form a major part of the "limbic thalamus;" that is, thalamic structures anatomically and functionally linked with the limbic forebrain. The midline nuclei consist of the paraventricular (PV) and paratenial nuclei, dorsally and the rhomboid and nucleus reuniens (RE), ventrally. The rostral intralaminar nuclei (ILt) consist of the central medial (CM), paracentral (PC) and central lateral (CL) nuclei. We presently concentrate on RE, PV, CM and CL nuclei of the thalamus. The nucleus reuniens receives a diverse array of input from limbic-related sites, and predominantly projects to the hippocampus and to "limbic" cortices. The RE participates in various cognitive functions including spatial working memory, executive functions (attention, behavioral flexibility) and affect/fear behavior. The PV receives significant limbic-related afferents, particularly the hypothalamus, and mainly distributes to "affective" structures of the forebrain including the bed nucleus of stria terminalis, nucleus accumbens and the amygdala. Accordingly, PV serves a critical role in "motivated behaviors" such as arousal, feeding/consummatory behavior and drug addiction. The rostral ILt receives both limbic and sensorimotor-related input and distributes widely over limbic and motor regions of the frontal cortex-and throughout the dorsal striatum. The intralaminar thalamus is critical for maintaining consciousness and directly participates in various sensorimotor functions (visuospatial or reaction time tasks) and cognitive tasks involving striatal-cortical interactions. As discussed herein, while each of the midline and intralaminar nuclei are anatomically and functionally distinct, they collectively serve a vital role in several affective, cognitive and executive behaviors - as major components of a brainstem-diencephalic-thalamocortical circuitry.
Collapse
Affiliation(s)
- Robert P. Vertes
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, United States
- Department of Psychology, Florida Atlantic University, Boca Raton, FL, United States
| | - Stephanie B. Linley
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, United States
- Department of Psychology, Florida Atlantic University, Boca Raton, FL, United States
- Department of Psychological Science, University of North Georgia, Dahlonega, GA, United States
| | - Amanda K. P. Rojas
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, United States
| |
Collapse
|
27
|
Herzallah MM, Amir A, Paré D. Influence of Rat Central Thalamic Neurons on Foraging Behavior in a Hazardous Environment. J Neurosci 2022; 42:6053-6068. [PMID: 35772968 PMCID: PMC9351640 DOI: 10.1523/jneurosci.0461-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/25/2022] [Accepted: 05/02/2022] [Indexed: 02/05/2023] Open
Abstract
Foraging entails a complex balance between approach and avoidance alongside sensorimotor and homeostatic processes under the control of multiple cortical and subcortical areas. Recently, it has become clear that several thalamic nuclei located near the midline regulate motivated behaviors. However, one midline thalamic nucleus that projects to key nodes in the foraging network, the central medial thalamic nucleus (CMT), has received little attention so far. Therefore, the present study examined CMT contributions to foraging behavior using inactivation and unit recording techniques in male rats. Inactivation of CMT or the basolateral amygdala (BLA) with muscimol abolished the normally cautious behavior of rats in the foraging task. Moreover, CMT neurons showed large but heterogeneous activity changes during the foraging task, with many neurons decreasing or increasing their discharge rates, with a modest bias for the latter. A generalized linear model revealed that the nature (inhibitory vs excitatory) and relative magnitude of the activity modulations seen in CMT neurons differed markedly from those of principal BLA cells but were very similar to those of fast-spiking BLA interneurons. Together, these findings suggest that CMT is an important regulator of foraging behavior. In the Discussion, we consider how CMT is integrated into the network of structures that regulate foraging.SIGNIFICANCE STATEMENT Foraging entails a complex balance between approach and avoidance alongside sensorimotor and homeostatic processes under the control of multiple cortical and subcortical areas. Although the central medial thalamic nucleus (CMT) is connected to many nodes in this network, its role in the regulation of foraging behavior has not been investigated so far. Here, we examined CMT contributions to foraging behavior using inactivation and unit recording techniques. We found that CMT inactivation abolishes the normally cautious foraging behavior of rats and that CMT neurons show large but heterogeneous changes in firing rates during the foraging task. Together, these results suggest that CMT is an important regulator of foraging behavior.
Collapse
Affiliation(s)
- Mohammad M Herzallah
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102
- Palestinian Neuroscience Initiative, Al-Quds University, Jerusalem, Palestine 20002
| | - Alon Amir
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102
| | - Denis Paré
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102,
| |
Collapse
|
28
|
Dunsmoor JE, Cisler JM, Fonzo GA, Creech SK, Nemeroff CB. Laboratory models of post-traumatic stress disorder: The elusive bridge to translation. Neuron 2022; 110:1754-1776. [PMID: 35325617 PMCID: PMC9167267 DOI: 10.1016/j.neuron.2022.03.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/18/2022] [Accepted: 02/28/2022] [Indexed: 12/14/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating mental illness composed of a heterogeneous collection of symptom clusters. The unique nature of PTSD as arising from a precipitating traumatic event helps simplify cross-species translational research modeling the neurobehavioral effects of stress and fear. However, the neurobiological progress on these complex neural circuits informed by animal models has yet to produce novel, evidence-based clinical treatment for PTSD. Here, we provide a comprehensive overview of popular laboratory models of PTSD and provide concrete ideas for improving the validity and clinical translational value of basic research efforts in humans. We detail modifications to simplified animal paradigms to account for myriad cognitive factors affected in PTSD, which may contribute to abnormalities in regulating fear. We further describe new avenues for integrating different areas of psychological research underserved by animal models of PTSD. This includes incorporating emerging trends in the cognitive neuroscience of episodic memory, emotion regulation, social-emotional processes, and PTSD subtyping to provide a more comprehensive recapitulation of the human experience to trauma in laboratory research.
Collapse
Affiliation(s)
- Joseph E Dunsmoor
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin Dell Medical School, Austin, TX, USA; Center for Psychedelic Research and Therapy, University of Texas at Austin Dell Medical School, Austin, TX, USA.
| | - Josh M Cisler
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin Dell Medical School, Austin, TX, USA; Institute for Early Life Adversity Research, University of Texas at Austin, Austin, TX, USA; Center for Psychedelic Research and Therapy, University of Texas at Austin Dell Medical School, Austin, TX, USA
| | - Gregory A Fonzo
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin Dell Medical School, Austin, TX, USA; Institute for Early Life Adversity Research, University of Texas at Austin, Austin, TX, USA; Center for Psychedelic Research and Therapy, University of Texas at Austin Dell Medical School, Austin, TX, USA
| | - Suzannah K Creech
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin Dell Medical School, Austin, TX, USA; Institute for Early Life Adversity Research, University of Texas at Austin, Austin, TX, USA
| | - Charles B Nemeroff
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin Dell Medical School, Austin, TX, USA; Institute for Early Life Adversity Research, University of Texas at Austin, Austin, TX, USA; Center for Psychedelic Research and Therapy, University of Texas at Austin Dell Medical School, Austin, TX, USA.
| |
Collapse
|
29
|
Liu J, Totty MS, Melissari L, Bayer H, Maren S. Convergent Coding of Recent and Remote Fear Memory in the Basolateral Amygdala. Biol Psychiatry 2022; 91:832-840. [PMID: 35246314 PMCID: PMC9018498 DOI: 10.1016/j.biopsych.2021.12.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 11/02/2022]
Abstract
BACKGROUND In both rodents and humans, the basolateral amygdala (BLA) is essential for encoding and retrieving conditioned fear memories. Although the BLA is a putative storage site for these memories, recent evidence suggests that they become independent of the BLA with the passage of time. METHODS We systematically examined the role for the BLA in the retrieval of recent (1 day) and remote (2 weeks) fear memory using optogenetic, electrophysiological, and calcium imaging methods in male and female Long-Evans rats. Critically, we used a behavioral design that permits within-subjects comparison of recent and remote memory at the same time point; freezing behavior served as the index of learned fear. RESULTS We found that BLA c-Fos expression was similar after the retrieval of recent or remote fear memories. Extracellular single-unit recordings in awake, behaving animals revealed that single BLA neurons exhibit robust increases in spike firing to both recent and remote conditioned stimuli. Fiber photometry recordings revealed that these patterns of activity emerge from principal neurons. Consistent with these results, optogenetic inhibition of BLA principal neurons impaired conditioned freezing to both recent and remote conditioned stimuli. There were no sex differences in any of the measures or manipulations. CONCLUSIONS These data reveal that BLA neurons encode both recent and remote fear memories, suggesting substantial overlap in the allocation of temporally distinct events. This may underlie the broad generalization of fear memories across both space and time. Ultimately, these results provide evidence that the BLA is a long-term storage site for emotional memories.
Collapse
Affiliation(s)
| | | | | | | | - Stephen Maren
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, Texas.
| |
Collapse
|
30
|
Namkung H, Thomas KL, Hall J, Sawa A. Parsing neural circuits of fear learning and extinction across basic and clinical neuroscience: Towards better translation. Neurosci Biobehav Rev 2022; 134:104502. [PMID: 34921863 DOI: 10.1016/j.neubiorev.2021.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/22/2022]
Abstract
Over the past decades, studies of fear learning and extinction have advanced our understanding of the neurobiology of threat and safety learning. Animal studies can provide mechanistic/causal insights into human brain regions and their functional connectivity involved in fear learning and extinction. Findings in humans, conversely, may further enrich our understanding of neural circuits in animals by providing macroscopic insights at the level of brain-wide networks. Nevertheless, there is still much room for improvement in translation between basic and clinical research on fear learning and extinction. Through the lens of neural circuits, in this article, we aim to review the current knowledge of fear learning and extinction in both animals and humans, and to propose strategies to fill in the current knowledge gap for the purpose of enhancing clinical benefits.
Collapse
Affiliation(s)
- Ho Namkung
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Kerrie L Thomas
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK; School of Biosciences, Cardiff University, Cardiff, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK; School of Medicine, Cardiff University, Cardiff, UK
| | - Akira Sawa
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21287, USA.
| |
Collapse
|
31
|
Yan Y, Aierken A, Wang C, Jin W, Quan Z, Wang Z, Qing H, Ni J, Zhao J. Neuronal Circuits Associated with Fear Memory: Potential Therapeutic Targets for Posttraumatic Stress Disorder. Neuroscientist 2022; 29:332-351. [PMID: 35057666 DOI: 10.1177/10738584211069977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a psychiatric disorder that is associated with long-lasting memories of traumatic experiences. Extinction and discrimination of fear memory have become therapeutic targets for PTSD. Newly developed optogenetics and advanced in vivo imaging techniques have provided unprecedented spatiotemporal tools to characterize the activity, connectivity, and functionality of specific cell types in complicated neuronal circuits. The use of such tools has offered mechanistic insights into the exquisite organization of the circuitry underlying the extinction and discrimination of fear memory. This review focuses on the acquisition of more detailed, comprehensive, and integrated neural circuits to understand how the brain regulates the extinction and discrimination of fear memory. A future challenge is to translate these researches into effective therapeutic treatment for PTSD from the perspective of precise regulation of the neural circuits associated with the extinction and discrimination of fear memories.
Collapse
Affiliation(s)
- Yan Yan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Ailikemu Aierken
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Chunjian Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Wei Jin
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhe Wang
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Juan Zhao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
- Aerospace Medical Center, Aerospace Center Hospital, Beijing, China
| |
Collapse
|
32
|
Kark SM, Adams JG, Sathishkumar M, Granger SJ, McMillan L, Baram TZ, Yassa MA. Why do mothers never stop grieving for their deceased children? Enduring alterations of brain connectivity and function. Front Hum Neurosci 2022; 16:925242. [PMID: 36118972 PMCID: PMC9478601 DOI: 10.3389/fnhum.2022.925242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
A child's death is a profound loss for mothers and affects hundreds of thousands of women. Mothers report inconsolable and progressive grief that is distinct from depression and impacts daily emotions and functions. The brain mechanisms responsible for this relatively common and profound mental health problem are unclear, hampering its clinical recognition and care. In an initial exploration of this condition, we used resting state functional MRI (fMRI) scans to examine functional connectivity in key circuits, and task-based fMRI to examine brain network activity in grieving mothers in response to pictures of their deceased child and as well as recognizable deceased celebrities and unfamiliar individuals. We compared nine mothers who had lost an adult child and aged-matched control mothers with a living child of a similar age. Additionally, we collected diffusion imaging scans to probe structural connectivity and complemented the imaging studies with neuropsychological assessments. Increased functional activation in Ventral Attention/Salience Networks accompanied by a reduced activation in the medial prefrontal cortex in response to the deceased child's picture robustly distinguished the grieving mothers from controls. Heightened resting-state functional connectivity between the paraventricular thalamic nucleus (PVT) and the amygdala distinguished the grieving mothers from the controls and correlated with subjective grief severity. Structurally, maternal grief and its severity were associated with alterations in corticolimbic white matter tracts. Finally, grieving mothers performed worse than controls on neuropsychological tests of learning, memory, and executive function, linked with grief severity. Reduced activation in cortical regions inhibiting emotions and changes in the PVT circuitry-a region involved in long-term emotional memories and decision making under conflict-distinguish grieving mothers from controls. Notably, the magnitude of neurobiological changes correlates with the subjective severity of grief. Together, these new discoveries delineate a prevalent and under-recognized mental health syndrome and chart a path for its appreciation and care.
Collapse
Affiliation(s)
- Sarah M Kark
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States.,Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Joren G Adams
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States.,Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Mithra Sathishkumar
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States.,Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Steven J Granger
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States.,Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Liv McMillan
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States.,Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Tallie Z Baram
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States.,Department of Pediatrics, University of California, Irvine, Irvine, CA, United States.,Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, United States
| | - Michael A Yassa
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States.,Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States.,Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
33
|
Sottile RJ, Vida T. A proposed mechanism for the MDMA-mediated extinction of traumatic memories in PTSD patients treated with MDMA-assisted therapy. Front Psychiatry 2022; 13:991753. [PMID: 36311515 PMCID: PMC9596814 DOI: 10.3389/fpsyt.2022.991753] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a devastating psychiatric disorder afflicting millions of people around the world. Characterized by severe anxiety, intrusive thoughts, pervasive nightmares, an assortment of somatic symptoms, associations with severe long-term health problems, and an elevated risk of suicide, as much as 40-70% of patients suffer from refractory disease. 3,4-Methylenedioxy-methamphetamine (MDMA), like classic psychedelics such as psilocybin, have been used to enhance the efficacy of psychotherapy almost since their discovery, but due to their perceived potential for abuse and inclusion on USFDA (United States Food and Drug Administration) schedule 1, research into the mechanism by which they produce improvements in PTSD symptomology has been limited. Nevertheless, several compelling rationales have been explored, with the pro-social effects of MDMA thought to enhance therapeutic alliance and thus facilitate therapist-assisted trauma processing. This may be insufficient to fully explain the efficacy of MDMA in the treatment of psychiatric illness. Molecular mechanisms such as the MDMA mediated increase of brain-derived neurotrophic factor (BDNF) availability in the fear memory learning pathways combined with MDMA's pro-social effects may provide a more nuanced explanation for the therapeutic actions of MDMA.
Collapse
Affiliation(s)
- Robert J Sottile
- Department of Medical Education, Kirk Kerkorian School of Medicine at UNLV, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Thomas Vida
- Department of Medical Education, Kirk Kerkorian School of Medicine at UNLV, University of Nevada Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
34
|
Fiedler D, Pape HC, Lange MD. Stress-induced impairment of fear extinction recall is associated with changes in neuronal activity patterns in PVT. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110338. [PMID: 33915218 DOI: 10.1016/j.pnpbp.2021.110338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 10/21/2022]
Abstract
Treatment resistance of anxiety-related disorders often arises from an inappropriate fear expression, impairment in fear extinction, and spontaneous return of fear. Stress exposure is considered a high risk factor for neuropsychiatric disorders, but understanding of the long-term consequences of stress is limited, particularly when it comes to treatment outcome. Therefore, studying the consequences of acute stress would provide critical information on the role of stress in psychopathology. In the present study, we investigated the effect of acute immobilization stress on anxiety-like behavior and on conditioned fear memory. Our results demonstrate that prior stress exposure had no effect on anxiety-related behavior, fear acquisition, as well as fear extinction compared to non-stressed controls, but resulted in significantly higher rates of freezing during recall of extinction, indicating a consolidation failure. Further, immunohistochemical analysis of the expression of the immediate early gene c-Fos after recall of extinction revealed increased neuronal activity in the posterior paraventricular nucleus of the thalamus (PVT) in previously stressed animals compared to non-stressed controls. These results indicate, firstly, that acute stress affects long-term fear memory even after successful extinction training, and secondly, a strong involvement of the PVT in maladaptive fear responses induced by prior stress. Thus, stress-induced changes in PVT neuronal activity might be of importance for the pathophysiology of stress-sensitive anxiety-related psychiatric disorders, since exposure to an earlier acute stressor could counteract the success of therapy.
Collapse
Affiliation(s)
- D Fiedler
- Institute of Physiology I, Westfälische Wilhelms-University Münster, 48149 Münster, Germany
| | - H C Pape
- Institute of Physiology I, Westfälische Wilhelms-University Münster, 48149 Münster, Germany
| | - M D Lange
- Institute of Physiology I, Westfälische Wilhelms-University Münster, 48149 Münster, Germany.
| |
Collapse
|
35
|
Fernandez-Leon JA, Engelke DS, Aquino-Miranda G, Goodson A, Rasheed MN, Do Monte FH. Neural correlates and determinants of approach-avoidance conflict in the prelimbic prefrontal cortex. eLife 2021; 10:74950. [PMID: 34913438 PMCID: PMC8853658 DOI: 10.7554/elife.74950] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/13/2021] [Indexed: 12/04/2022] Open
Abstract
The recollection of environmental cues associated with threat or reward allows animals to select the most appropriate behavioral responses. Neurons in the prelimbic (PL) cortex respond to both threat- and reward-associated cues. However, it remains unknown whether PL regulates threat-avoidance vs. reward-approaching responses when an animals’ decision depends on previously associated memories. Using a conflict model in which male Long–Evans rats retrieve memories of shock- and food-paired cues, we observed two distinct phenotypes during conflict: (1) rats that continued to press a lever for food (Pressers) and (2) rats that exhibited a complete suppression in food seeking (Non-pressers). Single-unit recordings revealed that increased risk-taking behavior in Pressers is associated with persistent food-cue responses in PL, and reduced spontaneous activity in PL glutamatergic (PLGLUT) neurons during conflict. Activating PLGLUT neurons in Pressers attenuated food-seeking responses in a neutral context, whereas inhibiting PLGLUT neurons in Non-pressers reduced defensive responses and increased food approaching during conflict. Our results establish a causal role for PLGLUT neurons in mediating individual variability in memory-based risky decision-making by regulating threat-avoidance vs. reward-approach behaviors.
Collapse
Affiliation(s)
| | - Douglas S Engelke
- Department of Neurobiology and Anatomy, The University of Texas Health Science Center at Houston, Houston, United States
| | - Guillermo Aquino-Miranda
- Department of Neurobiology and Anatomy, The University of Texas Health Science Center at Houston, Houston, United States
| | | | - Maria N Rasheed
- Department of Neurobiology and Anatomy, The University of Texas Health Science Center at Houston, Houston, United States
| | - Fabricio H Do Monte
- Department of Neurobiology and Anatomy, The University of Texas Health Science Center at Houston, Houston, United States
| |
Collapse
|
36
|
Bengoetxea X, Goedecke L, Remmes J, Blaesse P, Grosch T, Lesting J, Pape HC, Jüngling K. Human-Specific Neuropeptide S Receptor Variants Regulate Fear Extinction in the Basal Amygdala of Male and Female Mice Depending on Threat Salience. Biol Psychiatry 2021; 90:145-155. [PMID: 33902914 DOI: 10.1016/j.biopsych.2021.02.967] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/31/2021] [Accepted: 02/19/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND A nonsynonymous single nucleotide polymorphism in the neuropeptide S receptor 1 (NPSR1) gene (rs324981) results in isoleucine-to-asparagine substitution at amino acid 107. In humans, the ancestral variant (NPSR1 I107) is associated with increased anxiety sensitivity and risk of panic disorder, while the human-specific variant (NPSR1 N107) is considered protective against excessive anxiety. In rodents, neurobiological constituents of the NPS system have been analyzed in detail and their anxiolytic-like effects have been endorsed. However, their implication for anxiety and related disorders in humans remains unclear, as rodents carry only the ancestral NPSR1 I107 variant. METHODS We hypothesized that phenotypic correlates of NPSR1 variants manifest in fear-related circuits in the amygdala. We used CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/Cas9)-mediated gene editing to generate a "humanized" mouse strain, in which individuals express either NPSR1 I107 or NPSR1 N107. RESULTS Stimulation of NPSR1 evoked excitatory responses in principal neurons of the anterior basal amygdala with significant differences in magnitude between genotypes, resulting in synaptic disinhibition of putative extinction neurons in the posterior basal amygdala in mice expressing the human-specific hypofunctional N107 but not the ancestral I107 variant. N107 mice displayed improved extinction of conditioned fear, which was phenocopied after pharmacological antagonism of NPSR1 in the anterior basal amygdala of I107 mice. Differences in fear extinction between male and female mice were related to an interaction of Npsr1 genotype and salience of fear training. CONCLUSIONS The NPS system regulates extinction circuits in the amygdala depending on the Npsr1 genotype, contributing to sex-specific differences in fear extinction and high anxiety sensitivity of individuals bearing the ancestral NPSR1 I107 variant.
Collapse
Affiliation(s)
- Xabier Bengoetxea
- Institute of Physiology I, Westfälische Wilhelms-Universität, Münster, Germany
| | - Lena Goedecke
- Institute of Physiology I, Westfälische Wilhelms-Universität, Münster, Germany
| | - Jasmin Remmes
- Institute of Physiology I, Westfälische Wilhelms-Universität, Münster, Germany
| | - Peter Blaesse
- Institute of Physiology I, Westfälische Wilhelms-Universität, Münster, Germany
| | - Thomas Grosch
- Institute of Physiology I, Westfälische Wilhelms-Universität, Münster, Germany
| | - Jörg Lesting
- Institute of Physiology I, Westfälische Wilhelms-Universität, Münster, Germany
| | - Hans-Christian Pape
- Institute of Physiology I, Westfälische Wilhelms-Universität, Münster, Germany
| | - Kay Jüngling
- Institute of Physiology I, Westfälische Wilhelms-Universität, Münster, Germany.
| |
Collapse
|
37
|
Kong MS, Zweifel LS. Central amygdala circuits in valence and salience processing. Behav Brain Res 2021; 410:113355. [PMID: 33989728 DOI: 10.1016/j.bbr.2021.113355] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 12/11/2022]
Abstract
Behavioral responses to environmental stimuli are dictated by the affective valence of the stimulus, good (positive valence) or bad (negative valence). These stimuli can innately elicit an affective response that promotes approach or avoidance behavior. In addition to innately valenced stimuli, valence can also be assigned to initially neutral stimuli through associative learning. A stimulus of a given valence can vary in salience depending on the strength of the stimulus, the underlying state of the animal, and the context of the stimulus presentation. Salience endows the stimulus with the ability to direct attention and elicit preparatory responses to mount an incentive-based motivated behavior. The central nucleus of the amygdala (CeA) has emerged as an early integration point for valence and salience detection to engage preparatory autonomic responses and behavioral posturing in response to both aversive and appetitive stimuli. There are numerous cell types in the CeA that are involved in valence and salience processing through a variety of connections, and we will review the recent progress that has been made in identifying these circuit elements and their roles in these processes.
Collapse
Affiliation(s)
- Mi-Seon Kong
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, United States
| | - Larry S Zweifel
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, United States; Department of Pharmacology, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
38
|
Engelke DS, Zhang XO, O'Malley JJ, Fernandez-Leon JA, Li S, Kirouac GJ, Beierlein M, Do-Monte FH. A hypothalamic-thalamostriatal circuit that controls approach-avoidance conflict in rats. Nat Commun 2021; 12:2517. [PMID: 33947849 PMCID: PMC8097010 DOI: 10.1038/s41467-021-22730-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/27/2021] [Indexed: 12/27/2022] Open
Abstract
Survival depends on a balance between seeking rewards and avoiding potential threats, but the neural circuits that regulate this motivational conflict remain largely unknown. Using an approach-food vs. avoid-predator threat conflict test in rats, we identified a subpopulation of neurons in the anterior portion of the paraventricular thalamic nucleus (aPVT) which express corticotrophin-releasing factor (CRF) and are preferentially recruited during conflict. Inactivation of aPVTCRF neurons during conflict biases animal's response toward food, whereas activation of these cells recapitulates the food-seeking suppression observed during conflict. aPVTCRF neurons project densely to the nucleus accumbens (NAc), and activity in this pathway reduces food seeking and increases avoidance. In addition, we identified the ventromedial hypothalamus (VMH) as a critical input to aPVTCRF neurons, and demonstrated that VMH-aPVT neurons mediate defensive behaviors exclusively during conflict. Together, our findings describe a hypothalamic-thalamostriatal circuit that suppresses reward-seeking behavior under the competing demands of avoiding threats.
Collapse
Affiliation(s)
- D S Engelke
- Department of Neurobiology and Anatomy, The University of Texas Health Science Center, Houston, TX, USA
| | - X O Zhang
- Department of Neurobiology and Anatomy, The University of Texas Health Science Center, Houston, TX, USA
| | - J J O'Malley
- Department of Neurobiology and Anatomy, The University of Texas Health Science Center, Houston, TX, USA
| | - J A Fernandez-Leon
- Department of Neurobiology and Anatomy, The University of Texas Health Science Center, Houston, TX, USA
| | - S Li
- Department of Oral Biol., University of Manitoba, Winnipeg, MB, Canada
| | - G J Kirouac
- Department of Oral Biol., University of Manitoba, Winnipeg, MB, Canada
| | - M Beierlein
- Department of Neurobiology and Anatomy, The University of Texas Health Science Center, Houston, TX, USA
| | - F H Do-Monte
- Department of Neurobiology and Anatomy, The University of Texas Health Science Center, Houston, TX, USA.
| |
Collapse
|
39
|
Quiñones-Laracuente K, Vega-Medina A, Quirk GJ. Time-Dependent Recruitment of Prelimbic Prefrontal Circuits for Retrieval of Fear Memory. Front Behav Neurosci 2021; 15:665116. [PMID: 34012387 PMCID: PMC8126619 DOI: 10.3389/fnbeh.2021.665116] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/26/2021] [Indexed: 12/16/2022] Open
Abstract
The long-lasting nature of fear memories is essential for survival, but the neural circuitry for retrieval of these associations changes with the passage of time. We previously reported a time-dependent shift from prefrontal-amygdalar circuits to prefrontal-thalamic circuits for the retrieval of auditory fear conditioning. However, little is known about the time-dependent changes in the originating site, the prefrontal cortex. Here we monitored the responses of prelimbic (PL) prefrontal neurons to conditioned tones at early (2 h) vs. late (4 days) timepoints following training. Using c-Fos, we find that PL neurons projecting to the amygdala are activated early after learning, but not later, whereas PL neurons projecting to the paraventricular thalamus (PVT) show the opposite pattern. Using unit recording, we find that PL neurons in layer V (the origin of projections to amygdala) showed cue-induced excitation at earlier but not later timepoints, whereas PL neurons in Layer VI (the origin of projections to PVT) showed cue-induced inhibition at later, but not earlier, timepoints, along with an increase in spontaneous firing rate. Thus, soon after conditioning, there are conditioned excitatory responses in PL layer V which influence the amygdala. With the passage of time, however, retrieval of fear memories shifts to inhibitory responses in PL layer VI which influence the midline thalamus.
Collapse
Affiliation(s)
| | | | - Gregory J. Quirk
- Laboratory of Gregory J. Quirk, Departments of Psychiatry, Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, San Juan, PR, United States
| |
Collapse
|
40
|
Kark SM, Birnie MT, Baram TZ, Yassa MA. Functional Connectivity of the Human Paraventricular Thalamic Nucleus: Insights From High Field Functional MRI. Front Integr Neurosci 2021; 15:662293. [PMID: 33967711 PMCID: PMC8096909 DOI: 10.3389/fnint.2021.662293] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/29/2021] [Indexed: 12/30/2022] Open
Abstract
The paraventricular thalamic nucleus (PVT) is a small but highly connected nucleus of the dorsal midline thalamus. The PVT has garnered recent attention as a context-sensitive node within the thalamocortical arousal system that modulates state-dependent motivated behaviors. Once considered related to generalized arousal responses with non-specific impacts on behavior, accumulating evidence bolsters the contemporary view that discrete midline thalamic subnuclei belong to specialized corticolimbic and corticostriatal circuits related to attention, emotions, and cognition. However, the functional connectivity patterns of the human PVT have yet to be mapped. Here, we combined high-quality, high-resolution 7T and 3T resting state MRI data from 121 young adult participants from the Human Connectome Project (HCP) and thalamic subnuclei atlas masks to investigate resting state functional connectivity of the human PVT. The 7T results demonstrated extensive positive functional connectivity with the brainstem, midbrain, ventral and dorsal medial prefrontal cortex (mPFC), anterior and posterior cingulate, ventral striatum, hippocampus, and amygdala. These connections persist upon controlling for functional connectivity of the rest of the thalamus. Whole-brain contrasts provided further evidence that, compared to three nearby midline thalamic subnuclei, functional connectivity of the PVT is strong with the hippocampus, amygdala, ventral and dorsal mPFC, and middle temporal gyrus. These findings suggest that, even during rest, the human PVT is functionally coupled with many regions known to be structurally connected to rodent and non-human primate PVT. Further, cosine similarity analysis results suggested the PVT is integrated into the default mode network (DMN), an intrinsic connectivity network associated with episodic memory and self-referential thought. The current work provides a much-needed foundation for ongoing and future work examining the functional roles of the PVT in humans.
Collapse
Affiliation(s)
- Sarah M. Kark
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Matthew T. Birnie
- Department of Pediatrics, University of California, Irvine, Irvine, CA, United States
| | - Tallie Z. Baram
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
- Department of Pediatrics, University of California, Irvine, Irvine, CA, United States
- Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA, United States
| | - Michael A. Yassa
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
41
|
The paraventricular nucleus of the thalamus: an integrative node underlying homeostatic behavior. Trends Neurosci 2021; 44:538-549. [PMID: 33775435 DOI: 10.1016/j.tins.2021.03.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/20/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022]
Abstract
Early anatomical evidence suggested that the paraventricular nucleus of the thalamus (PVT) regulates arousal, as well as emotional and motivated behaviors. We discuss recent studies using modern techniques which now confirm and expand the involvement of the rodent PVT in these functions. Despite the emerging notion that the PVT is implicated in various behavioral processes, a recurrent theme is that activity in this brain region depends on internal state information arriving from the hypothalamus and brainstem, and is influenced by prior experience. We propose that the primary function of the PVT is to detect homeostatic challenges by integrating information about prior experiences, competing needs, and internal state to guide adaptive behavioral responses aimed at restoring homeostasis.
Collapse
|
42
|
Understanding the dynamic and destiny of memories. Neurosci Biobehav Rev 2021; 125:592-607. [PMID: 33722616 DOI: 10.1016/j.neubiorev.2021.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/18/2021] [Accepted: 03/08/2021] [Indexed: 01/16/2023]
Abstract
Memory formation enables the retention of life experiences overtime. Based on previously acquired information, organisms can anticipate future events and adjust their behaviors to maximize survival. However, in an ever-changing environment, a memory needs to be malleable to maintain its relevance. In fact, substantial evidence suggests that a consolidated memory can become labile and susceptible to modifications after being reactivated, a process termed reconsolidation. When an extinction process takes place, a memory can also be temporarily inhibited by a second memory that carries information with opposite meaning. In addition, a memory can fade and lose its significance in a process known as forgetting. Thus, following retrieval, new life experiences can be integrated with the original memory trace to maintain its predictive value. In this review, we explore the determining factors that regulate the fate of a memory after its reactivation. We focus on three post-retrieval memory destinies (reconsolidation, extinction, and forgetting) and discuss recent rodent studies investigating the biological functions and neural mechanisms underlying each of these processes.
Collapse
|
43
|
Kirouac GJ. The Paraventricular Nucleus of the Thalamus as an Integrating and Relay Node in the Brain Anxiety Network. Front Behav Neurosci 2021; 15:627633. [PMID: 33732118 PMCID: PMC7959748 DOI: 10.3389/fnbeh.2021.627633] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/28/2021] [Indexed: 12/25/2022] Open
Abstract
The brain anxiety network is composed of a number of interconnected cortical regions that detect threats and execute appropriate defensive responses via projections to the shell of the nucleus accumbens (NAcSh), dorsolateral region of the bed nucleus of the stria terminalis (BSTDL) and lateral region of the central nucleus of the amygdala (CeL). The paraventricular nucleus of the thalamus (PVT) is anatomically positioned to integrate threat- and arousal-related signals from cortex and hypothalamus and then relay these signals to neural circuits in the NAcSh, BSTDL, and CeL that mediate defensive responses. This review describes the anatomical connections of the PVT that support the view that the PVT may be a critical node in the brain anxiety network. Experimental findings are reviewed showing that the arousal peptides orexins (hypocretins) act at the PVT to promote avoidance of potential threats especially following exposure of rats to a single episode of footshocks. Recent anatomical and experimental findings are discussed which show that neurons in the PVT provide divergent projections to subcortical regions that mediate defensive behaviors and that the projection to the NAcSh is critical for the enhanced social avoidance displayed in rats exposed to footshocks. A theoretical model is proposed for how the PVT integrates cortical and hypothalamic signals to modulate the behavioral responses associated with anxiety and other challenging situations.
Collapse
Affiliation(s)
- Gilbert J. Kirouac
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
44
|
Distributed coding in auditory thalamus and basolateral amygdala upon associative fear learning. Curr Opin Neurobiol 2020; 67:183-189. [PMID: 33373858 DOI: 10.1016/j.conb.2020.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
Associative fear learning is a fundamental learning mechanism that is crucial for an animal's survival. The amygdala's role in fear memory formation has been studied extensively and molecular, cell type and circuit-specific learning mechanisms as well as population level encoding of threatful stimuli within the amygdala are at the core of fear learning. Nevertheless, increasing evidence suggests that fear memories are acquired, stored and modulated by a distributed neuronal network across many brain areas. Here we review recent studies that particularly re-assessed the role of auditory/lateral thalamus, which is one synapse upstream of the lateral amygdala, required for fear learning and exhibits a striking functional resemblance and plasticity pattern to downstream amygdala neurons on the single cell level, yet distinct population level coding.
Collapse
|
45
|
Sofia Beas B, Gu X, Leng Y, Koita O, Rodriguez-Gonzalez S, Kindel M, Matikainen-Ankney BA, Larsen RS, Kravitz AV, Hoon MA, Penzo MA. A ventrolateral medulla-midline thalamic circuit for hypoglycemic feeding. Nat Commun 2020; 11:6218. [PMID: 33277492 PMCID: PMC7719163 DOI: 10.1038/s41467-020-19980-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/06/2020] [Indexed: 12/16/2022] Open
Abstract
Marked deficits in glucose availability, or glucoprivation, elicit organism-wide counter-regulatory responses whose purpose is to restore glucose homeostasis. However, while catecholamine neurons of the ventrolateral medulla (VLMCA) are thought to orchestrate these responses, the circuit and cellular mechanisms underlying specific counter-regulatory responses are largely unknown. Here, we combined anatomical, imaging, optogenetic and behavioral approaches to interrogate the circuit mechanisms by which VLMCA neurons orchestrate glucoprivation-induced food seeking behavior. Using these approaches, we found that VLMCA neurons form functional connections with nucleus accumbens (NAc)-projecting neurons of the posterior portion of the paraventricular nucleus of the thalamus (pPVT). Importantly, optogenetic manipulations revealed that while activation of VLMCA projections to the pPVT was sufficient to elicit robust feeding behavior in well fed mice, inhibition of VLMCA-pPVT communication significantly impaired glucoprivation-induced feeding while leaving other major counterregulatory responses intact. Collectively our findings identify the VLMCA-pPVT-NAc pathway as a previously-neglected node selectively controlling glucoprivation-induced food seeking. Moreover, by identifying the ventrolateral medulla as a direct source of metabolic information to the midline thalamus, our results support a growing body of literature on the role of the PVT in homeostatic regulation.
Collapse
Affiliation(s)
- B Sofia Beas
- Unit on the Neurobiology of Affective Memory, National Institute of Mental Health, Bethesda, MD, USA
| | - Xinglong Gu
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research, Bethesda, MD, USA
| | - Yan Leng
- Unit on the Neurobiology of Affective Memory, National Institute of Mental Health, Bethesda, MD, USA
| | - Omar Koita
- Unit on the Neurobiology of Affective Memory, National Institute of Mental Health, Bethesda, MD, USA
| | | | - Morgan Kindel
- Unit on the Neurobiology of Affective Memory, National Institute of Mental Health, Bethesda, MD, USA
| | | | | | - Alexxai V Kravitz
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Mark A Hoon
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research, Bethesda, MD, USA.
| | - Mario A Penzo
- Unit on the Neurobiology of Affective Memory, National Institute of Mental Health, Bethesda, MD, USA.
| |
Collapse
|
46
|
Yaeger JD, Krupp KT, Gale JJ, Summers CH. Counterbalanced microcircuits for Orx1 and Orx2 regulation of stress reactivity. MEDICINE IN DRUG DISCOVERY 2020. [DOI: 10.1016/j.medidd.2020.100059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
47
|
Bostanciklioğlu M. Unexpected awakenings in severe dementia from case reports to laboratory. Alzheimers Dement 2020; 17:125-136. [PMID: 33064369 DOI: 10.1002/alz.12162] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/17/2020] [Accepted: 07/07/2020] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Case report notions of unexpected memory retrieval in patients with severe dementia near to death are starting to alter the central "irreversible" paradigm of dementia and locate dementia as a problem of memory retrieval, not consolidation. We suggest that the most likely central tenet of this paradoxical memory retrieval is the fluctuation of neuromodulators projecting from the brain stem to the medial prefrontal cortex and the hippocampus. The neuromodulation-centric explanation of this phenomenon aims to open the "irreversible" paradigm of dementia up for discussion and suggest a plausible treatment strategy by questioning how the devastating process of death fluctuates memory performance in severe dementia. BACKGROUND Supporting demented patients, who are mostly unresponsive, without making demands or asking a question and regarding them as valuable human beings unexpectedly improve their memory performance around the time of death. NEW LUCIDITY HYPOTHESIS Around the time of death, neurological signs (hyper-arousal and -attention) of demented people point out that neurotransmitter discharges are dramatically changed. Relatively resistant neuromodulator circuits to neurodegeneration can maintain optimal levels of arousal and attention for memory processing. In this way, unexpected episodes of lucidity can be triggered. Also, corticotropin-releasing peptides might increase mental clarity by increasing the excitability of the neuromodulator circuits. The science of memory retrieval is more complicated and nuanced than retrieval observations in case reports, but the rapid development of new techniques holds promise for future understanding of lucidity in severe dementia. MAJOR CHALLENGE FOR THE MODEL There is no an animal or human model to test this hypothesis; however, the similarities between neurological signs (instantaneous cognitive fluctuations) of delirium and paradoxical lucidity could provide a unique window to understand neural events of terminal lucidity on a modified animal model of delirium. Likewise, similarities between unexpected consciousness signs of terminal lucidity and lucid dreaming suggest that lucid dreaming episodes might be considered a human model for terminal lucidity research.
Collapse
|
48
|
Neurotrophin signalling in amygdala-dependent cued fear learning. Cell Tissue Res 2020; 382:161-172. [PMID: 32845430 PMCID: PMC7529623 DOI: 10.1007/s00441-020-03260-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022]
Abstract
The amygdala is a central hub for fear learning assessed by Pavlovian fear conditioning. Indeed, the prevailing hypothesis that learning and memory are mediated by changes in synaptic strength was shown most convincingly at thalamic and cortical afferents to the lateral amygdala. The neurotrophin brain-derived neurotrophic factor (BDNF) is known to regulate synaptic plasticity and memory formation in many areas of the mammalian brain including the amygdala, where BDNF signalling via tropomyosin-related kinase B (TrkB) receptors is prominently involved in fear learning. This review updates the current understanding of BDNF/TrkB signalling in the amygdala related to fear learning and extinction. In addition, actions of proBDNF/p75NTR and NGF/TrkA as well as NT-3/TrkC signalling in the amygdala are introduced.
Collapse
|
49
|
Deletion of NRXN1α impairs long-range and local connectivity in amygdala fear circuit. Transl Psychiatry 2020; 10:242. [PMID: 32684634 PMCID: PMC7370229 DOI: 10.1038/s41398-020-00926-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 01/26/2023] Open
Abstract
Neurexins are a family of presynaptic cell adhesion proteins that regulate synaptic structure and maintain normal synaptic transmission. Mutations in the α-isoform of neurexin1-gene (NRXN1α) are linked with cognitive and emotional dysregulation, which are heavily dependent on the amygdala and medial prefrontal cortex (mPFC). It is however not known whether deletion of NRXN1α gene affect specific synaptic elements within the amygdala microcircuit and connectivity with mPFC. In this study, we show that NRXN1α deletion impairs synaptic transmission between the dorsal medial prefrontal cortex (dmPFC) and basal amygdala (BA) principal neurons. Stimulation of dmPFC fibers resulted in reduced paired pulse ratio (PPR) and AMPA/NMDA ratio at dmPFC to BA synapses in NRXN1α-knockout (KO) (NRXN1α KO) mice suggestive of pre- and postsynaptic deficits but there was no change at the lateral amygdala (LA) to BA synapses following LA stimulation. However, feedforward inhibition from either pathway was significantly reduced, suggestive of input-independent deficit in GABAergic transmission within BA. We further analyzed BA inhibitory network and found reduced connectivity between BA GABAergic and glutamatergic neurons in NRXN1α KO mice. As this circuit is tightly linked with fear regulation, we subjected NRXN1α KO and WT mice to discriminative fear conditioning and found a deficit in fear memory retrieval in NRXN1α KO mice compared with WT mice. Together, we provide novel evidence that deletion of NRNX1α disrupts amygdala fear circuit.
Collapse
|
50
|
Yuan K, Cao L, Xue Y, Luo Y, Liu X, Kong F, Tabarak S, Liao F, Meng S, Han Y, Wu P, Bao Y, Zhang W, Lu L, Shi J. Basolateral amygdala is required for reconsolidation updating of heroin-associated memory after prolonged withdrawal. Addict Biol 2020; 25:e12793. [PMID: 31339209 DOI: 10.1111/adb.12793] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/06/2019] [Accepted: 05/23/2019] [Indexed: 11/27/2022]
Abstract
Postretrieval extinction procedures are effective nonpharmacological interventions for disrupting drug-associated memories. Nonetheless, the conditioned stimulus (CS) memory retrieval-extinction procedure is ineffective in inhibiting drug craving and relapse after prolonged withdrawal, which significantly undermines its therapeutic potential. In the present study, we showed that, unlike the CS memory retrieval-extinction procedure, noncontingent heroin injections (unconditioned stimulus [UCS]) 1 hour before the extinction sessions decreased the heroin-priming-induced reinstatement, renewal, and spontaneous recovery of heroin seeking after 28 days of withdrawal (ie, remote heroin-associated memories) in rats. The UCS retrieval manipulation induced reactivation of the basolateral amygdala (BLA) after prolonged withdrawal, and this reactivation was absent with the CS retrieval manipulation. Chemogenetic inactivation of the BLA abolished the inhibitory effect of the UCS memory retrieval-extinction procedure on heroin-priming-induced reinstatement after prolonged withdrawal. Furthermore, the combination of chemogenetic reactivation of BLA and CS retrieval-extinction procedure resembled the inhibitory effect of UCS retrieval-extinction procedure on heroin seeking after prolonged withdrawal. We also observed that the inhibitory effect of the UCS retrieval-extinction procedure is mediated by regulation of AMPA receptor endocytosis in the BLA. Our results demonstrate critical engagement of the BLA in reconsolidation updating of heroin-associated memory after prolonged withdrawal, extending our knowledge of the boundary conditions of the reconsolidation of drug-associated memories.
Collapse
Affiliation(s)
- Kai Yuan
- Peking University Sixth Hospital/Peking University Institute of Mental Health Peking University Beijing China
- Peking‐Tsinghua Center for Life Sciences and PKU‐IDG/McGovern Institute for Brain Research Peking University Beijing China
| | - Lu Cao
- Peking University Sixth Hospital/Peking University Institute of Mental Health Peking University Beijing China
- Peking‐Tsinghua Center for Life Sciences and PKU‐IDG/McGovern Institute for Brain Research Peking University Beijing China
| | - Yan‐Xue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Peking University Beijing China
| | - Yi‐Xiao Luo
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Peking University Beijing China
| | - Xiao‐Xing Liu
- Peking University Sixth Hospital/Peking University Institute of Mental Health Peking University Beijing China
- Peking‐Tsinghua Center for Life Sciences and PKU‐IDG/McGovern Institute for Brain Research Peking University Beijing China
| | - Fan‐Ni Kong
- Peking University Sixth Hospital/Peking University Institute of Mental Health Peking University Beijing China
- Peking‐Tsinghua Center for Life Sciences and PKU‐IDG/McGovern Institute for Brain Research Peking University Beijing China
| | - Serik Tabarak
- Peking University Sixth Hospital/Peking University Institute of Mental Health Peking University Beijing China
- Peking‐Tsinghua Center for Life Sciences and PKU‐IDG/McGovern Institute for Brain Research Peking University Beijing China
| | - Fan Liao
- Peking University Sixth Hospital/Peking University Institute of Mental Health Peking University Beijing China
| | - Shi‐Qiu Meng
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Peking University Beijing China
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Peking University Beijing China
| | - Ping Wu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Peking University Beijing China
| | - Yan‐Ping Bao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Peking University Beijing China
| | - Wen Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Peking University Beijing China
| | - Lin Lu
- Peking University Sixth Hospital/Peking University Institute of Mental Health Peking University Beijing China
- Peking‐Tsinghua Center for Life Sciences and PKU‐IDG/McGovern Institute for Brain Research Peking University Beijing China
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Peking University Beijing China
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital) Peking University Beijing China
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Peking University Beijing China
| |
Collapse
|