1
|
Roy A, Meregini S, Cho HJ, Chen Z, Zaki A, Argula T, Beutler B, SoRelle JA. N-glycosylation enzyme Mpi is essential for mucin O-glycosylation, host-microbe homeostasis, Paneth cell defense, and metabolism. RESEARCH SQUARE 2025:rs.3.rs-6222474. [PMID: 40195978 PMCID: PMC11975007 DOI: 10.21203/rs.3.rs-6222474/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Intestinal homeostasis relies on a protective mucus layer that separates bacteria from the host, with Muc2 as its primary component. This secreted, gel-forming mucin is heavily O-glycosylated, allowing it to retain water and support beneficial bacteria. For the first time, we demonstrate that Muc2 N-glycosylation plays a critical in mucin maturation, O-glycosylation, barrier integrity, and the prevention of dysbiosis. Using mouse models with global and intestine-specific N-glycan deficiency- caused by the loss of the mannose producing enzyme, Mpi- we uncover an unexpected link between N-glycosylation and intestinal homeostasis. Our findings reveal that Mpi hypomorphic mice are highly sensitive to DSS-induced colitis, while Mpi flox; Villin Cre mice spontaneously develop disease, exhibiting increased ER stress and dysbiosis. Additionally, electron microscopy, proteomics, and gene expression analyses of goblet and Paneth cells indicate immaturity, mitochondrial loss, and disruptions in lipid metabolism. These results highlight the fundamental role of N-glycosylation in maintaining intestinal homeostasis.
Collapse
Affiliation(s)
- Avishek Roy
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Steve Meregini
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Hye-Jeong Cho
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Zhenglan Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Aariz Zaki
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Tandav Argula
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Bruce Beutler
- Center for Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jeffrey A SoRelle
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
- Center for Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX
- Department of Pediatrics, Division of Allergy and Immunology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
2
|
Varikkapulakkal A, Pillai BR, Mishra SK. Psr1 phosphatase regulates pre-mRNA splicing through spliceosomal B complex factor Snu66. FEBS J 2024; 291:5455-5469. [PMID: 39484844 DOI: 10.1111/febs.17314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 07/11/2024] [Accepted: 10/18/2024] [Indexed: 11/03/2024]
Abstract
Regulated precursor messenger RNA (pre-mRNA) splicing modulates gene expression and promotes alternative splicing. The process is regulated by modifications of spliceosomal proteins and small nuclear RNAs (snRNAs). Here, we show that the protein phosphatase Psr1, known for its plasma membrane localisation and function in general stress response in Saccharomyces cerevisiae, also plays a regulatory role in pre-mRNA splicing. Independently of its presence at the plasma membrane, Psr1 binds and dephosphorylates the core splicing factor Snu66. The enzyme is not an integral component of the spliceosome. Psr1 deletion in yeast, or tethering of its catalytic mutant to Snu66, results in splicing defects of introns with non-canonical 5' splice sites (ss). While the Psr1 binding site on Snu66 is distinct from the Hub1 interaction domains (HIND), Hub1 displaces Psr1 from Snu66. Thus, Psr1 phosphatase plays a regulatory role in pre-mRNA splicing by modulating Snu66 functions.
Collapse
Affiliation(s)
| | - Balashankar R Pillai
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, India
| | - Shravan Kumar Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, India
| |
Collapse
|
3
|
Liu X, Zhang X, Kang Y, Huang F, Liu S, Guo Y, Li Y, Yin C, Liu M, Han Q, Wang Q, Ye H, Yao H, Li C, Li J, Pingcuo W, Zhang Y, Su Y, Gao G, Li Z, Sun X. An autoantibody profile identified by human genome-wide protein arrays in rheumatoid arthritis. MedComm (Beijing) 2024; 5:e679. [PMID: 39132510 PMCID: PMC11317183 DOI: 10.1002/mco2.679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024] Open
Abstract
Precise diagnostic biomarkers of anticitrullination protein antibody (ACPA)-negative and early-stage RA are still to be improved. We aimed to screen autoantibodies in ACPA-negative patients and evaluated their diagnostic performance. The human genome-wide protein arrays (HuProt arrays) were used to define specific autoantibodies from the sera of 182 RA patients and 261 disease and healthy controls. Statistical analysis was performed with SPSS 17.0. In Phase I study, 51 out of 19,275 recombinant proteins covering the whole human genome were selected. In Phase II validation study, anti-ANAPC15 (anaphase promoting complex subunit 15) exhibited 41.8% sensitivity and 91.5% specificity among total RA patients. There were five autoantibodies increased in ACPA-negative RA, including anti-ANAPC15, anti-LSP1, anti-APBB1, anti-parathymosin, and anti-UBL7. Anti-parathymosin showed the highest prevalence of 46.2% (p = 0.016) in ACPA-negative early stage (<2 years) RA. To further improve the diagnostic efficacy, a prediction model was constructed with 44 autoantibodies. With increased threshold for RA calling, the specificity of the model is 90.8%, while the sensitivity is 66.1% (87.8% in ACPA-positive RA and 23.8% in ACPA-negative RA) in independent testing patients. Therefore, HuProt arrays identified RA-associated autoantibodies that might become possible diagnostic markers, especially in early stage ACPA-negative RA.
Collapse
Affiliation(s)
- Xu Liu
- Department of Rheumatology and ImmunologyPeking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135)BeijingChina
| | - Xiaoying Zhang
- Department of Rheumatology and ImmunologyPeking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135)BeijingChina
| | - Yu‐Jian Kang
- Chongqing Key Laboratory of Intelligent Oncology for Breast CancerCancer HospitalSchool of MedicineChongqing UniversityChongqingChina
| | - Fei Huang
- General Medical DepartmentHuazhong University of Science and Technology Union Shenzhen HospitalShenzhenChina
| | - Shuang Liu
- Department of Rheumatology and ImmunologyFirst Affiliated Hospital of Kunming Medical University.KunmingChina
| | - Yixue Guo
- Department of Rheumatology and ImmunologyPeking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135)BeijingChina
| | - Yingni Li
- Department of Rheumatology and ImmunologyPeking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135)BeijingChina
| | - Changcheng Yin
- Beijing Protein InnovationB‐8, Airport Industrial ZoneBeijingChina
| | - Mingling Liu
- Department of Rheumatologythe First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Qimao Han
- Department of RheumatologyThe First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine. No.24 Heping RoadXiangfang DistrictHarbinChina
| | - Qingwen Wang
- Department of Rheumatism and ImmunologyPeking University Shenzhen HospitalShenzhenChina
| | - Hua Ye
- Department of Rheumatology and ImmunologyPeking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135)BeijingChina
| | - Haihong Yao
- Department of Rheumatology and ImmunologyPeking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135)BeijingChina
| | - Chun Li
- Department of Rheumatology and ImmunologyPeking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135)BeijingChina
| | - Jiahe Li
- Department of Rheumatology and ImmunologyPeking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135)BeijingChina
| | - Wangzha Pingcuo
- Department of Rheumatology and ImmunologyPeking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135)BeijingChina
| | - Yan Zhang
- Department of Rheumatology and ImmunologyPeking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135)BeijingChina
| | - Yin Su
- Department of Rheumatology and ImmunologyPeking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135)BeijingChina
| | - Ge Gao
- State Key Laboratory of Protein and Plant Gene Research, School of Life SciencesBiomedical Pioneering Innovative Center (BIOPIC) & Beijing Advanced Innovation Center for Genomics (ICG)Center for Bioinformatics (CBI)Peking UniversityBeijingChina
| | - Zhanguo Li
- Department of Rheumatology and ImmunologyPeking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135)BeijingChina
| | - Xiaolin Sun
- Department of Rheumatology and ImmunologyPeking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135)BeijingChina
| |
Collapse
|
4
|
Peng M, Mathew ND, Anderson VE, Falk MJ, Nakamaru-Ogiso E. N-Glycosylation of MRS2 balances aerobic and anaerobic energy production by reducing rapid mitochondrial Mg 2+ influx in conditions of high glucose or impaired respiratory chain function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602756. [PMID: 39026824 PMCID: PMC11257584 DOI: 10.1101/2024.07.09.602756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
N-linked glycoproteins function in numerous biological processes, modulating enzyme activities as well as protein folding, stability, oligomerization, and trafficking. While N-glycosylation of mitochondrial proteins has been detected by untargeted MS-analyses, the physiological existence and roles of mitochondrial protein N-linked glycosylation remain under debate. Here, we report that MRS2, a mitochondrial inner membrane protein that functions as the high flux magnesium transporter, is N-glycosylated to various extents depending on cellular bioenergetic status. Both N-glycosylated and unglycosylated isoforms were consistently detected in mitochondria isolated from mouse liver, rat and mouse liver fibroblast cells (BRL 3A and AFT024, respectively) as well as human skin fibroblast cells. Immunoblotting of MRS2 showed it was bound to, and required stringent elution conditions to remove from, lectin affinity columns with covalently bound concanavalin A or Lens culinaris agglutinin. Following peptide:N-glycosidase F (PNGase F) digestion of the stringently eluted proteins, the higher Mr MRS2 bands gel-shifted to lower Mr and loss of lectin affinity was seen. BRL 3A cells treated with two different N-linked glycosylation inhibitors, tunicamycin or 6-diazo-5-oxo-l-norleucine, resulted in decreased intensity or loss of the higher Mr MRS2 isoform. To investigate the possible functional role of MRS2 N- glycosylation, we measured rapid Mg2+ influx capacity in intact mitochondria isolated from BRL 3A cells in control media or following treatment with tunicamycin or 6-diazo-5-oxo-l-norleucine. Interestingly, rapid Mg2+ influx capacity increased in mitochondria isolated from BRL 3A cells treated with either N-glycosylation inhibitor. Forcing reliance on mitochondrial respiration by treatment with either galactose media or the glycolytic inhibitor 2-deoxyglucose or by minimizing glucose concentration similarly reduced the N-glycosylated isoform of MRS2, with a correlated concomitant increase in rapid Mg2+ influx capacity. Conversely, inhibiting mitochondrial energy production in BRL 3A cells with either rotenone or oligomycin resulted in an increased fraction of N-glycosylated MRS2, with decreased rapid Mg2+ influx capacity. Collectively, these data provide strong evidence that MRS2 N-glycosylation is directly involved in the regulation of mitochondrial matrix Mg2+, dynamically communicating relative cellular nutrient status and bioenergetic capacity by serving as a physiologic brake on the influx of mitochondrial matrix Mg2+ under conditions of glucose excess or mitochondrial bioenergetic impairment.
Collapse
Affiliation(s)
- Min Peng
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | - Neal D. Mathew
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | - Vernon E. Anderson
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | - Marni J. Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Eiko Nakamaru-Ogiso
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
5
|
Hao D, Niu LN. Computational Study on the Wealth Conformations of Hepatitis C Virus Envelope Glycoprotein 2 and Role of Its Glycan Coat. J Chem Inf Model 2024; 64:4811-4821. [PMID: 38861660 DOI: 10.1021/acs.jcim.4c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Hepatitis C virus (HCV) is a major cause of chronic liver disease and hepatocellular carcinoma. Antibody development efforts mainly revolve around HCV envelope glycoprotein 2 (E2), which mediates host cell entry by interacting with several cell surface receptors, including CD81. We still have limited knowledge about the structural ensembles and the dynamic behavior of both the CD81 binding sites and the glycans on E2. Here, multiple microsecond-long, all-atom molecular dynamics (MD) simulations, as well as a Markov state model (MSM), were performed to provide an atomistic perspective on the dynamic nature of E2 and its glycans. End-to-end accessibility analyses outline a complete overview of the vulnerabilities of the glycan shield of E2, which may be exploited in therapeutic efforts. Additionally, the Markov state model built from the simulation maps four metastable states for AS412 and three metastable states for the front layer in CD81 binding sites, while binding with HEPC3 would induce a conformation selection for both of them. Overall, this work presents hitherto unseen functional and structural insights into E2 and its glycan coat, providing a new theoretical foundation to control the conformational plasticity of E2 that could be harnessed for vaccine development.
Collapse
Affiliation(s)
- Dongxiao Hao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
- School of Electronics and Information Engineering, Ankang University, Ankang 725000, China
| | - Li-Na Niu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
6
|
Snyman C, Mekoue Nguela J, Sieczkowski N, Divol B, Marangon M. Characterization of Mannoprotein Structural Diversity in Wine Yeast Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19727-19738. [PMID: 38049383 PMCID: PMC10722544 DOI: 10.1021/acs.jafc.3c05742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 12/06/2023]
Abstract
The structure of yeast cell wall (CW) mannoproteins (MPs) influences their impact on wine properties. Yeast species produce a diverse range of MPs, but the link between properties and specific structural features has been ill-characterized. This study compared the protein and polysaccharide moieties of MP-rich preparations from four strains of four different enologically relevant yeast species, named Saccharomyces boulardii (SB62), Saccharomyces cerevisiae (SC01), Metschnikowia fructicola (MF77), and Torulaspora delbrueckii (TD70), and a commercial MP preparation. Monosaccharide determination revealed that SB62 MPs contained the highest mannose/glucose ratio followed by SC01, while polysaccharide size distribution analyses showed maximum molecular weights ranging from 1349 kDa for MF77 to 483 kDa for TD70. Protein identification analysis led to the identification of unique CW proteins in SB62, SC01, and TD70, as well as some proteins shared between different strains. This study reveals MP composition diversity within wine yeasts and paves the way toward their industrial exploitation.
Collapse
Affiliation(s)
- Carla Snyman
- South
African Grape and Wine Research Institute, Department of Viticulture
and Oenology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
- Department
of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale Dell’Università, 16, 35020 Legnaro, Padova, Italy
| | | | | | - Benoit Divol
- South
African Grape and Wine Research Institute, Department of Viticulture
and Oenology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Matteo Marangon
- Department
of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale Dell’Università, 16, 35020 Legnaro, Padova, Italy
- Interdepartmental
Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Via XXVIII Aprile 14, 31015 Conegliano, Italy
| |
Collapse
|
7
|
Puerta-Arias JD, Isaza Agudelo JP, Naranjo Preciado TW. Identification and production of novel potential pathogen-specific biomarkers for diagnosis of histoplasmosis. Microbiol Spectr 2023; 11:e0093923. [PMID: 37882565 PMCID: PMC10714873 DOI: 10.1128/spectrum.00939-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/08/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Histoplasmosis is considered one of the most important mycoses due to the increasing number of individuals susceptible to develop severe clinical forms, particularly those with HIV/AIDS or receiving immunosuppressive biological therapies, the high mortality rates reported when antifungal treatment is not initiated in a timely manner, and the limitations of conventional diagnostic methods. In this context, there is a clear need to improve the capacity of diagnostic tools to specifically detect the fungal pathogen, regardless of the patient's clinical condition or the presence of other co-infections. The proposed novel pathogen-specific biomarkers have the potential to be used in immunodiagnostic platforms and antifungal treatment monitoring in histoplasmosis. In addition, the bioinformatics strategy used in this study could be applied to identify potential diagnostic biomarkers in other models of fungal infection of public health importance.
Collapse
Affiliation(s)
- Juan David Puerta-Arias
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas (CIB-UdeA-UPB-UDES), Medellín, Colombia
- School of Health Sciences, Universidad Pontificia Bolivariana, Medellín, Colombia
- Universidad de Santander (UDES), Facultad de Ciencias Médicas y de la Salud, Bucaramanga, Colombia
| | | | - Tonny Williams Naranjo Preciado
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas (CIB-UdeA-UPB-UDES), Medellín, Colombia
- School of Health Sciences, Universidad Pontificia Bolivariana, Medellín, Colombia
| |
Collapse
|
8
|
Martija AA, Krauß A, Bächle N, Doth L, Christians A, Krunic D, Schneider M, Helm D, Will R, Hartmann C, Herold-Mende C, von Deimling A, Pusch S. EMP3 sustains oncogenic EGFR/CDK2 signaling by restricting receptor degradation in glioblastoma. Acta Neuropathol Commun 2023; 11:177. [PMID: 37936247 PMCID: PMC10629159 DOI: 10.1186/s40478-023-01673-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2023] Open
Abstract
Epithelial membrane protein 3 (EMP3) is an N-glycosylated tetraspanin with a putative trafficking function. It is highly expressed in isocitrate dehydrogenase-wild-type glioblastoma (IDH-wt GBM), and its high expression correlates with poor survival. However, the exact trafficking role of EMP3 and how it promotes oncogenic signaling in GBM remain unclear. Here, we show that EMP3 promotes EGFR/CDK2 signaling by regulating the trafficking and enhancing the stability of EGFR. BioID2-based proximity labeling revealed that EMP3 interacts with endocytic proteins involved in the vesicular transport of EGFR. EMP3 knockout (KO) enhances epidermal growth factor (EGF)-induced shuttling of EGFR into RAB7 + late endosomes, thereby promoting EGFR degradation. Increased EGFR degradation is rescued by the RAB7 negative regulator and novel EMP3 interactor TBC1D5. Phosphoproteomic and transcriptomic analyses further showed that EMP3 KO converges into the inhibition of the cyclin-dependent kinase CDK2 and the repression of EGFR-dependent and cell cycle transcriptional programs. Phenotypically, EMP3 KO cells exhibit reduced proliferation rates, blunted mitogenic response to EGF, and increased sensitivity to the pan-kinase inhibitor staurosporine and the EGFR inhibitor osimertinib. Furthermore, EGFR-dependent patient-derived glioblastoma stem cells display a transcriptomic signature consistent with reduced CDK2 activity, as well as increased susceptibility to CDK2 inhibition upon EMP3 knockdown. Lastly, using TCGA data, we showed that GBM tumors with high EMP3 expression have increased total and phosphorylated EGFR levels. Collectively, our findings demonstrate a novel EMP3-dependent mechanism by which EGFR/CDK2 activity is sustained in GBM. Consequently, EMP3's stabilizing effect provides an additional layer of tumor cell resistance against targeted kinase inhibition.
Collapse
Affiliation(s)
- Antoni Andreu Martija
- Clinical Cooperation Unit (CCU) Neuropathology, German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Alexandra Krauß
- Clinical Cooperation Unit (CCU) Neuropathology, German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Natalie Bächle
- Clinical Cooperation Unit (CCU) Neuropathology, German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Laura Doth
- Clinical Cooperation Unit (CCU) Neuropathology, German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Arne Christians
- Department of Neuropathology, Institute of Pathology, Hannover Medical School, Hannover, Germany
- Canopy Biosciences, Bruker Nano Group, Hannover, Germany
| | - Damir Krunic
- Light Microscopy Facility, DKFZ, Heidelberg, Germany
| | | | - Dominic Helm
- Proteomics Core Facility, DKFZ, Heidelberg, Germany
| | - Rainer Will
- Cellular Tools Core Facility, DKFZ, Heidelberg, Germany
| | - Christian Hartmann
- Department of Neuropathology, Institute of Pathology, Hannover Medical School, Hannover, Germany
| | | | - Andreas von Deimling
- Clinical Cooperation Unit (CCU) Neuropathology, German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Pusch
- Clinical Cooperation Unit (CCU) Neuropathology, German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
9
|
Bandini G, Damerow S, Sempaio Guther ML, Guo H, Mehlert A, Paredes Franco JC, Beverley S, Ferguson MAJ. An essential, kinetoplastid-specific GDP-Fuc: β-D-Gal α-1,2-fucosyltransferase is located in the mitochondrion of Trypanosoma brucei. eLife 2021; 10:e70272. [PMID: 34410224 PMCID: PMC8439653 DOI: 10.7554/elife.70272] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/15/2021] [Indexed: 02/06/2023] Open
Abstract
Fucose is a common component of eukaryotic cell-surface glycoconjugates, generally added by Golgi-resident fucosyltransferases. Whereas fucosylated glycoconjugates are rare in kinetoplastids, the biosynthesis of the nucleotide sugar GDP-Fuc has been shown to be essential in Trypanosoma brucei. Here we show that the single identifiable T. brucei fucosyltransferase (TbFUT1) is a GDP-Fuc: β-D-galactose α-1,2-fucosyltransferase with an apparent preference for a Galβ1,3GlcNAcβ1-O-R acceptor motif. Conditional null mutants of TbFUT1 demonstrated that it is essential for both the mammalian-infective bloodstream form and the insect vector-dwelling procyclic form. Unexpectedly, TbFUT1 was localized in the mitochondrion of T. brucei and found to be required for mitochondrial function in bloodstream form trypanosomes. Finally, the TbFUT1 gene was able to complement a Leishmania major mutant lacking the homologous fucosyltransferase gene (Guo et al., 2021). Together these results suggest that kinetoplastids possess an unusual, conserved and essential mitochondrial fucosyltransferase activity that may have therapeutic potential across trypanosomatids.
Collapse
Affiliation(s)
- Giulia Bandini
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Sebastian Damerow
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Maria Lucia Sempaio Guther
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Hongjie Guo
- Department of Molecular Microbiology, Washington University School of MedicineSt. LouisUnited States
| | - Angela Mehlert
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Jose Carlos Paredes Franco
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Stephen Beverley
- Department of Molecular Microbiology, Washington University School of MedicineSt. LouisUnited States
| | - Michael AJ Ferguson
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| |
Collapse
|
10
|
Govindarajan A, Gnanasambandam V. Toward Intracellular Bioconjugation Using Transition-Metal-Free Techniques. Bioconjug Chem 2021; 32:1431-1454. [PMID: 34197073 DOI: 10.1021/acs.bioconjchem.1c00173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Bioconjugation is the chemical strategy of covalent modification of biomolecules, using either an external reagent or other biomolecules. Since its inception in the twentieth century, the technique has grown by leaps and bounds, and has a variety of applications in chemical biology. However, it is yet to reach its full potential in the study of biochemical processes in live cells, mainly because the bioconjugation strategies conflict with cellular processes. This has mostly been overcome by using transition metal catalysts, but the presence of metal centers limit them to in vitro use, or to the cell surface. These hurdles can potentially be circumvented by using metal-free strategies. However, the very modifications that are necessary to make such metal-free reactions proceed effectively may impact their biocompatibility. This is because biological processes are easily perturbed and greatly depend on the prevailing inter- and intracellular environment. With this taken into consideration, this review analyzes the applicability of the transition-metal-free strategies reported in this decade to the study of biochemical processes in vivo.
Collapse
Affiliation(s)
- Aaditya Govindarajan
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry - 605014, India
| | - Vasuki Gnanasambandam
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry - 605014, India
| |
Collapse
|
11
|
Behnke J, Cohen AM, LaRoche J. N-linked glycosylation enzymes in the diatom Thalassiosira oceanica exhibit a diel cycle in transcript abundance and favor for NXT-type sites. Sci Rep 2021; 11:3227. [PMID: 33547363 PMCID: PMC7864949 DOI: 10.1038/s41598-021-82545-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 01/04/2021] [Indexed: 01/30/2023] Open
Abstract
N-linked glycosylation is a posttranslational modification affecting protein folding and function. The N-linked glycosylation pathway in algae is poorly characterized, and further knowledge is needed to understand the cell biology of algae and the evolution of N-linked glycosylation. This study investigated the N-linked glycosylation pathway in Thalassiosira oceanica, an open ocean diatom adapted to survive at growth-limiting iron concentrations. Here we identified and annotated the genes coding for the essential enzymes involved in the N-linked glycosylation pathway of T. oceanica. Transcript levels for genes coding for calreticulin, oligosaccharyltransferase (OST), N-acetylglucosaminyltransferase (GnT1), and UDP-glucose glucosyltransferase (UGGT) under high- and low-iron growth conditions revealed diel transcription patterns with a significant decrease of calreticulin and OST transcripts under iron-limitation. Solid-phase extraction of N-linked glycosylated peptides (SPEG) revealed 118 N-linked glycosylated peptides from cells grown in high- and low-iron growth conditions. The identified peptides had 81% NXT-type motifs, with X being any amino acids except proline. The presence of N-linked glycosylation sites in the iron starvation-induced protein 1a (ISIP1a) confirmed its predicted topology, contributing to the biochemical characterization of ISIP1 proteins. Analysis of extensive oceanic gene databases showed a global distribution of calreticulin, OST, and UGGT, reinforcing the importance of glycosylation in microalgae.
Collapse
Affiliation(s)
- Joerg Behnke
- grid.55602.340000 0004 1936 8200Department of Biology, Life Science Centre, Dalhousie University, 1355 Oxford Street, PO BOX 15000, Halifax, NS B3H 4R2 Canada
| | - Alejandro M. Cohen
- grid.55602.340000 0004 1936 8200Department of Biochemistry and Molecular Biology, Life Science Research Institute, Dalhousie University, 1344 Summer Street, PO Box 15000, Halifax, NS B3H 4R2 Canada
| | - Julie LaRoche
- grid.55602.340000 0004 1936 8200Department of Biology, Life Science Centre, Dalhousie University, 1355 Oxford Street, PO BOX 15000, Halifax, NS B3H 4R2 Canada
| |
Collapse
|
12
|
Rekstina VV, Sabirzyanova TA, Sabirzyanov FA, Adzhubei AA, Tkachev YV, Kudryashova IB, Snalina NE, Bykova AA, Alessenko AV, Ziganshin RH, Kuznetsov SA, Kalebina TS. The Post-Translational Modifications, Localization, and Mode of Attachment of Non-Covalently Bound Glucanosyltransglycosylases of Yeast Cell Wall as a Key to Understanding their Functioning. Int J Mol Sci 2020; 21:ijms21218304. [PMID: 33167499 PMCID: PMC7663962 DOI: 10.3390/ijms21218304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 01/27/2023] Open
Abstract
Glucan linked to proteins is a natural mega-glycoconjugate (mGC) playing the central role as a structural component of a yeast cell wall (CW). Regulation of functioning of non-covalently bound glucanosyltransglycosylases (ncGTGs) that have to remodel mGC to provide CW extension is poorly understood. We demonstrate that the main ncGTGs Bgl2 and Scw4 have phosphorylated and glutathionylated residues and are represented in CW as different pools of molecules having various firmness of attachment. Identified pools contain Bgl2 molecules with unmodified peptides, but differ from each other in the presence and combination of modified ones, as well as in the presence or absence of other CW proteins. Correlation of Bgl2 distribution among pools and its N-glycosylation was not found. Glutathione affects Bgl2 conformation, probably resulting in the mode of its attachment and enzymatic activity. Bgl2 from the pool of unmodified and monophosphorylated molecules demonstrates the ability to fibrillate after isolation from CW. Revealing of Bgl2 microcompartments and their mosaic arrangement summarized with the results obtained give the evidence that the functioning of ncGTGs in CW can be controlled by reversible post-translational modifications and facilitated due to their compact localization. The hypothetical scheme of distribution of Bgl2 inside CW is represented.
Collapse
Affiliation(s)
- Valentina V. Rekstina
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (V.V.R.); (T.A.S.); (F.A.S.); (I.B.K.); (A.A.B.)
| | - Tatyana A. Sabirzyanova
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (V.V.R.); (T.A.S.); (F.A.S.); (I.B.K.); (A.A.B.)
| | - Fanis A. Sabirzyanov
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (V.V.R.); (T.A.S.); (F.A.S.); (I.B.K.); (A.A.B.)
| | - Alexei A. Adzhubei
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (A.A.A.); (Y.V.T.)
| | - Yaroslav V. Tkachev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (A.A.A.); (Y.V.T.)
| | - Irina B. Kudryashova
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (V.V.R.); (T.A.S.); (F.A.S.); (I.B.K.); (A.A.B.)
| | - Natalia E. Snalina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russia; (N.E.S.); (A.V.A.)
| | - Anastasia A. Bykova
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (V.V.R.); (T.A.S.); (F.A.S.); (I.B.K.); (A.A.B.)
| | - Alice V. Alessenko
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russia; (N.E.S.); (A.V.A.)
| | - Rustam H. Ziganshin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia;
| | - Sergei A. Kuznetsov
- Institute of Biological Sciences, University of Rostock, 18059 Rostock, Germany;
| | - Tatyana S. Kalebina
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (V.V.R.); (T.A.S.); (F.A.S.); (I.B.K.); (A.A.B.)
- Correspondence: ; Tel.: +7-(495)-939-50-75
| |
Collapse
|
13
|
Morales Herrera DS, Contreras Rodríguez LE, Rubiano Castellanos CC, Ramírez Hernández MH. Identification and sub-cellular localization of a NAD transporter in Leishmania braziliensis ( LbNDT1). Heliyon 2020; 6:e04331. [PMID: 32671255 PMCID: PMC7350145 DOI: 10.1016/j.heliyon.2020.e04331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/18/2020] [Accepted: 06/24/2020] [Indexed: 01/19/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is one of the central molecules involved in energy homeostasis, cellular signaling and antioxidative defense systems. Consequently, its biosynthetic pathways and transport systems are of vital importance. The nicotinamide/nicotinate mononucleotide adenylyltransferase (NMNAT), a key enzyme in the biosynthesis of NAD, is distributed in all domains of life and exhibits various isoforms in free-living organisms in contrast with intracellular parasites, which displays a single enzyme. In Leishmania braziliensis a unique cytosolic NMNAT has been reported to date and the mechanisms through which adequate levels of NAD are maintained among the different sub-cellular compartments of this parasite are unknown. Experimental evidences have related the transport of NAD to the Nucleotide Transporters (NTTs) family, whose members are located in the cytoplasmic membrane of parasitic life organisms. Additionally, the Mitochondrial Carrier Family (MCF), a group of proteins located in the membrane of internal organelles such as the mitochondria of free life organisms, has been implicated in NAD transport. Applying bioinformatics tools, the main characteristics of the MCF were found in a transporter candidate that we have designated as Nicotinamide Adenine Dinucleotide Transporter 1 of L. braziliensis (LbNDT1). The expression of LbNDT1 was tested both in axenic amastigotes and promastigotes of L. braziliensis, through immunodetection using polyclonal avian antibodies produced in this study. N-glycosylation of LbNDT1 was observed in both stages. Additionally, a possible partial mitochondrial distribution for LbNDT1 in amastigotes and a possible glycosomal location in promastigotes are proposed. Finally, the capability of LbNDT1 to transport NAD was confirmed by complementation assays in Saccharomyces cerevisiae. Our results demonstrate the existence of LbNDT1 in L. braziliensis becoming the first NAD transporter identified in protozoan parasites to date.
Collapse
Affiliation(s)
- David S. Morales Herrera
- Laboratorio de Investigaciones Básicas en Bioquímica, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, 111321, Colombia
| | - Luis E. Contreras Rodríguez
- Laboratorio de Investigaciones Básicas en Bioquímica, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, 111321, Colombia
| | - Claudia C. Rubiano Castellanos
- Laboratorio de Investigaciones Básicas en Bioquímica, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, 111321, Colombia
| | - Maria H. Ramírez Hernández
- Laboratorio de Investigaciones Básicas en Bioquímica, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, 111321, Colombia
- Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, 111321, Colombia
| |
Collapse
|
14
|
A Variant of SLC1A5 Is a Mitochondrial Glutamine Transporter for Metabolic Reprogramming in Cancer Cells. Cell Metab 2020; 31:267-283.e12. [PMID: 31866442 DOI: 10.1016/j.cmet.2019.11.020] [Citation(s) in RCA: 269] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/05/2019] [Accepted: 11/27/2019] [Indexed: 12/27/2022]
Abstract
Glutamine is an essential nutrient that regulates energy production, redox homeostasis, and signaling in cancer cells. Despite the importance of glutamine in mitochondrial metabolism, the mitochondrial glutamine transporter has long been unknown. Here, we show that the SLC1A5 variant plays a critical role in cancer metabolic reprogramming by transporting glutamine into mitochondria. The SLC1A5 variant has an N-terminal targeting signal for mitochondrial localization. Hypoxia-induced gene expression of the SLC1A5 variant is mediated by HIF-2α. Overexpression of the SLC1A5 variant mediates glutamine-induced ATP production and glutathione synthesis and confers gemcitabine resistance to pancreatic cancer cells. SLC1A5 variant knockdown and overexpression alter cancer cell and tumor growth, supporting an oncogenic role. This work demonstrates that the SLC1A5 variant is a mitochondrial glutamine transporter for cancer metabolic reprogramming.
Collapse
|
15
|
Qamar SA, Asgher M, Khalid N, Sadaf M. Nanobiotechnology in health sciences: Current applications and future perspectives. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101388] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Whittaker K, Burgess R, Jones V, Yang Y, Zhou W, Luo S, Wilson J, Huang R. Quantitative proteomic analyses in blood: A window to human health and disease. J Leukoc Biol 2019; 106:759-775. [PMID: 31329329 DOI: 10.1002/jlb.mr1118-440r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/11/2019] [Accepted: 06/24/2019] [Indexed: 12/13/2022] Open
Affiliation(s)
| | | | | | | | | | - Shuhong Luo
- RayBiotech Life Norcross Georgia USA
- RayBiotech Life Guangzhou Guangdong China
- South China Biochip Research Center Guangzhou Guangdong China
| | | | - Ruo‐Pan Huang
- RayBiotech Life Norcross Georgia USA
- RayBiotech Life Guangzhou Guangdong China
- South China Biochip Research Center Guangzhou Guangdong China
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhou Medical University Guangzhou China
- Guangdong Provincial Hospital of Chinese Medicine Guangzhou China
| |
Collapse
|
17
|
Scheckhuber CQ. Studying the mechanisms and targets of glycation and advanced glycation end-products in simple eukaryotic model systems. Int J Biol Macromol 2019; 127:85-94. [DOI: 10.1016/j.ijbiomac.2019.01.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 12/20/2022]
|
18
|
Kim BM, Lotter‐Stark HCT, Rybicki EP, Chikwamba RK, Palmer KE. Characterization of the hypersensitive response-like cell death phenomenon induced by targeting antiviral lectin griffithsin to the secretory pathway. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1811-1821. [PMID: 29509998 PMCID: PMC6131415 DOI: 10.1111/pbi.12917] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 02/24/2018] [Accepted: 02/28/2018] [Indexed: 05/23/2023]
Abstract
Griffithsin (GRFT) is an antiviral lectin, originally derived from a red alga, which is currently being investigated as a topical microbicide to prevent transmission of human immunodeficiency virus (HIV). Targeting GRFT to the apoplast for production in Nicotiana benthamiana resulted in necrotic symptoms associated with a hypersensitive response (HR)-like cell death, accompanied by H2 O2 generation and increased PR1 expression. Mannose-binding lectins surfactant protein D (SP-D), cyanovirin-N (CV-N) and human mannose-binding lectin (hMBL) also induce salicylic acid (SA)-dependent HR-like cell death in N. benthamiana, and this effect is mediated by the lectin's glycan binding activity. We found that secreted GRFT interacts with an endogenous glycoprotein, α-xylosidase (XYL1), which is involved in cell wall organization. The necrotic effect could be mitigated by overexpression of Arabidopsis XYL1, and by co-expression of SA-degrading enzyme NahG, providing strategies for enhancing expression of oligomannose-binding lectins in plants.
Collapse
Affiliation(s)
- Bo Min Kim
- Center for Predictive MedicineJames Graham Brown Cancer CenterDepartment of Pharmacology and ToxicologyUniversity of Louisville School of MedicineLouisvilleKYUSA
| | | | - Edward P. Rybicki
- Department of Molecular & Cell BiologyInstitute of Infectious Disease and Molecular MedicineUniversity of Cape TownCape TownSouth Africa
| | - Rachel K. Chikwamba
- BiosciencesCouncil for Scientific and Industrial Research (CSIR)PretoriaSouth Africa
| | - Kenneth E. Palmer
- Center for Predictive MedicineJames Graham Brown Cancer CenterDepartment of Pharmacology and ToxicologyUniversity of Louisville School of MedicineLouisvilleKYUSA
| |
Collapse
|
19
|
Liu J, Basit A, Miao T, Zheng F, Yu H, Wang Y, Jiang W, Cao Y. Secretory expression of β-mannanase in Saccharomyces cerevisiae and its high efficiency for hydrolysis of mannans to mannooligosaccharides. Appl Microbiol Biotechnol 2018; 102:10027-10041. [PMID: 30215129 DOI: 10.1007/s00253-018-9355-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/05/2018] [Accepted: 08/30/2018] [Indexed: 01/23/2023]
Abstract
Degradation of mannans is a key process in the production of foods and prebiotics. β-Mannanase is the key enzyme that hydrolyzes 1,4-β-D-mannosidic linkages in mannans. Heterogeneous expression of β-mannanase in Pichia pastoris systems is widely used; however, Saccharomyces cerevisiae expression systems are more reliable and safer. We optimized β-mannanase gene from Aspergillus sulphureus and expressed it in five S. cerevisiae strains. Haploid and diploid strains, and strains with constitutive promoter TEF1 or inducible promoter GAL1, were tested for enzyme expression in synthetic auxotrophic or complex medium. Highest efficiency expression was observed for haploid strain BY4741 integrated with β-mannanase gene under constitutive promoter TEF1, cultured in complex medium. In fed-batch culture in a fermentor, enzyme activity reached ~ 24 U/mL after 36 h, and production efficiency reached 16 U/mL/day. Optimal enzyme pH was 2.0-7.0, and optimal temperature was 60 °C. In studies of β-mannanase kinetic parameters for two substrates, locust bean gum galactomannan (LBG) gave Km = 24.13 mg/mL and Vmax = 715 U/mg, while konjac glucomannan (KGM) gave Km = 33 mg/mL and Vmax = 625 U/mg. One-hour hydrolysis efficiency values were 57% for 1% LBG, 74% for 1% KGM, 39% for 10% LBG, and 53% for 10% KGM. HPLC analysis revealed that the major hydrolysis products were the oligosaccharides mannose, mannobiose, mannotriose, mannotetraose, mannopentaose, and mannohexaose. Our findings show that this β-mannanase has high efficiency for hydrolysis of mannans to mannooligosaccharides, a type of prebiotic, suggesting strong potential application in food industries.
Collapse
Affiliation(s)
- Junquan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, China
| | - Abdul Basit
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, China
| | - Ting Miao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, China
| | - Fengzhen Zheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, China
| | - Hang Yu
- Liaoning Union Pharmaceutical Company Limited, Benxi, Liaoning, China
| | - Yan Wang
- Liaoning Union Pharmaceutical Company Limited, Benxi, Liaoning, China
| | - Wei Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, China.
| | - Yunhe Cao
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.
| |
Collapse
|
20
|
Videira PAQ, Castro-Caldas M. Linking Glycation and Glycosylation With Inflammation and Mitochondrial Dysfunction in Parkinson's Disease. Front Neurosci 2018; 12:381. [PMID: 29930494 PMCID: PMC5999786 DOI: 10.3389/fnins.2018.00381] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/18/2018] [Indexed: 01/08/2023] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder, affecting about 6.3 million people worldwide. PD is characterized by the progressive degeneration of dopaminergic neurons in the Substantia nigra pars compacta, resulting into severe motor symptoms. The cellular mechanisms underlying dopaminergic cell death in PD are still not fully understood, but mitochondrial dysfunction, oxidative stress and inflammation are strongly implicated in the pathogenesis of both familial and sporadic PD cases. Aberrant post-translational modifications, namely glycation and glycosylation, together with age-dependent insufficient endogenous scavengers and quality control systems, lead to cellular overload of dysfunctional proteins. Such injuries accumulate with time and may lead to mitochondrial dysfunction and exacerbated inflammatory responses, culminating in neuronal cell death. Here, we will discuss how PD-linked protein mutations, aging, impaired quality control mechanisms and sugar metabolism lead to up-regulated abnormal post-translational modifications in proteins. Abnormal glycation and glycosylation seem to be more common than previously thought in PD and may underlie mitochondria-induced oxidative stress and inflammation in a feed-forward mechanism. Moreover, the stress-induced post-translational modifications that directly affect parkin and/or its substrates, deeply impairing its ability to regulate mitochondrial dynamics or to suppress inflammation will also be discussed. Together, these represent still unexplored deleterious mechanisms implicated in neurodegeneration in PD, which may be used for a more in-depth knowledge of the pathogenic mechanisms, or as biomarkers of the disease.
Collapse
Affiliation(s)
- Paula A Q Videira
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal.,CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Margarida Castro-Caldas
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal.,Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
21
|
Xu Z, Li X, Zhou S, Xie W, Wang J, Cheng L, Wang S, Guo S, Xu Z, Cao X, Zhang M, Yu B, Narimatsu H, Tao SC, Zhang Y. Systematic identification of the protein substrates of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase-T1/T2/T3 using a human proteome microarray. Proteomics 2017; 17. [PMID: 28394504 DOI: 10.1002/pmic.201600485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/31/2017] [Accepted: 04/07/2017] [Indexed: 12/12/2022]
Abstract
O-GalNAc glycosylation is the initial step of the mucin-type O-glycosylation. In humans, it is catalyzed by a family of 20 homologous UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts). So far, there is very limited information on their protein substrate specificities. In this study, we developed an on-chip ppGalNAc-Ts assay that could rapidly and systematically identify the protein substrates of each ppGalNAc-T. In detail, we utilized a human proteome microarray as the protein substrates and UDP-GalNAz as the nucleotide sugar donor for click chemistry detection. From a total of 16 368 human proteins, we identified 570 potential substrates of ppGalNAc-T1, T2, and T3. Among them, 128 substrates were overlapped, while the rest were isoform specific. Further cluster analysis of these substrates showed that the substrates of ppGalNAc-T1 had a closer phylogenetic relationship with that of ppGalNAc-T3 compared with ppGalNAc-T2, which was consistent with the topology of the phylogenetic tree of these ppGalNAc-Ts. Taken together, our microarray-based enzymatic assay comprehensively reveals the substrate profile of the ppGalNAc-T1, T2, and T3, which not only provides a plausible explanation for their partial functional redundancy as reported, but clearly implies some specialized roles of each enzyme in different biological processes.
Collapse
Affiliation(s)
- Zhijue Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Xing Li
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Shumin Zhou
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Wenxian Xie
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Jing Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, Shanghai, P. R. China
- State Key Laboratory of Microbial metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Li Cheng
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, Shanghai, P. R. China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, P. R. China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Sheng Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Shujuan Guo
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Zhaowei Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Xin Cao
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Menghui Zhang
- State Key Laboratory of Microbial metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Biao Yu
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Hisashi Narimatsu
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- SCSB (China) - AIST (Japan) Joint Medical Glycomics Laboratory, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Sheng-Ce Tao
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, Shanghai, P. R. China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, P. R. China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yan Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, Shanghai, P. R. China
- State Key Laboratory of Microbial metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
- SCSB (China) - AIST (Japan) Joint Medical Glycomics Laboratory, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
22
|
Tsigaridas A, Papanikolaou IS, Vaiopoulou A, Anagnostopoulos AK, Viazis N, Karamanolis G, Karamanolis DG, Tsangaris GT, Mantzaris GJ, Gazouli M. Proteomics and irritable bowel syndrome. Expert Rev Proteomics 2017; 14:461-468. [PMID: 28395553 DOI: 10.1080/14789450.2017.1317600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Irritable bowel syndrome (IBS) is a gastrointestinal disease that according to Rome IV criteria is subdivided into four subtypes. The pathophysiology of this disease is not well understood due to numerous factors playing multiple roles in disease development, such as diet, stress and hormones. IBS has a variety of symptoms and overlaps with many other gastrointestinal and non-gastrointestinal diseases. Area covered: This review aims to present an overview of implementation of proteomics in experimental studies in the field of IBS. Expert commentary: Proteomics is commonly used for biomarker discovery in and has also been extensively used in IBS research. The necessity of a sensitive and specific biomarker for IBS is apparent, but despite the intensive research performed in this field, an appropriate biomarker is not yet available.
Collapse
Affiliation(s)
| | - Ioannis S Papanikolaou
- b Hepatogastroenterology Unit, Second Department of Internal Medicine and Research Institute, Attikon University General Hospital, Medical School , National and Kapodistrian University of Athens , Athens , Greece
| | - Anna Vaiopoulou
- c Department of Basic Medical Sciences, Laboratory of Biology Medical School , National and Kapodistrian University of Athens , Athens , Greece
| | | | - Nikos Viazis
- a Gastroenterology Unit , Evangelismos Hospital , Athens , Greece
| | - George Karamanolis
- e Gastroenterology Unit, 2nd Department of Surgery, 'Aretaieio' University Hospital, Medical School , National and Kapodistrian University of Athens , Athens , Greece
| | | | - George T Tsangaris
- d Proteomics Research Unit , Biomedical Research Foundation of the Academy of Athens (IIBEAA) , Athens , Greece
| | | | - Maria Gazouli
- c Department of Basic Medical Sciences, Laboratory of Biology Medical School , National and Kapodistrian University of Athens , Athens , Greece
| |
Collapse
|
23
|
Protein Array-based Approaches for Biomarker Discovery in Cancer. GENOMICS PROTEOMICS & BIOINFORMATICS 2017; 15:73-81. [PMID: 28392481 PMCID: PMC5414965 DOI: 10.1016/j.gpb.2017.03.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/24/2017] [Accepted: 03/30/2017] [Indexed: 01/15/2023]
Abstract
Biomarkers are deemed to be potential tools in early diagnosis, therapeutic monitoring, and prognosis evaluation for cancer, with simplicity as well as economic advantages compared with computed tomography and biopsy. However, most of the current cancer biomarkers present insufficient sensitivity as well as specificity. Therefore, there is urgent requirement for the discovery of biomarkers for cancer. As one of the most exciting emerging technologies, protein array provides a versatile and robust platform in cancer proteomics research because it shows tremendous advantages of miniaturized features, high throughput, and sensitive detections in last decades. Here, we will present a relatively complete picture on the characteristics and advance of different types of protein arrays in application for biomarker discovery in cancer, and give the future perspectives in this area of research.
Collapse
|
24
|
Newman RH, Zhang J. Integrated Strategies to Gain a Systems-Level View of Dynamic Signaling Networks. Methods Enzymol 2017; 589:133-170. [PMID: 28336062 DOI: 10.1016/bs.mie.2017.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In order to survive and function properly in the face of an ever changing environment, cells must be able to sense changes in their surroundings and respond accordingly. Cells process information about their environment through complex signaling networks composed of many discrete signaling molecules. Individual pathways within these networks are often tightly integrated and highly dynamic, allowing cells to respond to a given stimulus (or, as is typically the case under physiological conditions, a combination of stimuli) in a specific and appropriate manner. However, due to the size and complexity of many cellular signaling networks, it is often difficult to predict how cellular signaling networks will respond under a particular set of conditions. Indeed, crosstalk between individual signaling pathways may lead to responses that are nonintuitive (or even counterintuitive) based on examination of the individual pathways in isolation. Therefore, to gain a more comprehensive view of cell signaling processes, it is important to understand how signaling networks behave at the systems level. This requires integrated strategies that combine quantitative experimental data with computational models. In this chapter, we first examine some of the progress that has recently been made toward understanding the systems-level regulation of cellular signaling networks, with a particular emphasis on phosphorylation-dependent signaling networks. We then discuss how genetically targetable fluorescent biosensors are being used together with computational models to gain unique insights into the spatiotemporal regulation of signaling networks within single, living cells.
Collapse
Affiliation(s)
- Robert H Newman
- North Carolina Agricultural and Technical State University, Greensboro, NC, United States.
| | - Jin Zhang
- University of California, San Diego, San Diego, CA, United States.
| |
Collapse
|
25
|
Sacoman JL, Dagda RY, Burnham-Marusich AR, Dagda RK, Berninsone PM. Mitochondrial O-GlcNAc Transferase (mOGT) Regulates Mitochondrial Structure, Function, and Survival in HeLa Cells. J Biol Chem 2017; 292:4499-4518. [PMID: 28100784 DOI: 10.1074/jbc.m116.726752] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 12/30/2016] [Indexed: 01/06/2023] Open
Abstract
O-Linked N-acetylglucosamine transferase (OGT) catalyzes O-GlcNAcylation of target proteins and regulates numerous biological processes. OGT is encoded by a single gene that yields nucleocytosolic and mitochondrial isoforms. To date, the role of the mitochondrial isoform of OGT (mOGT) remains largely unknown. Using high throughput proteomics, we identified 84 candidate mitochondrial glycoproteins, of which 44 are novel. Notably, two of the candidate glycoproteins identified (cytochrome oxidase 2 (COX2) and NADH:ubiquinone oxidoreductase core subunit 4 (MT-ND4)) are encoded by mitochondrial DNA. Using siRNA in HeLa cells, we found that reducing endogenous mOGT expression leads to alterations in mitochondrial structure and function, including Drp1-dependent mitochondrial fragmentation, reduction in mitochondrial membrane potential, and a significant loss of mitochondrial content in the absence of mitochondrial ROS. These defects are associated with a compensatory increase in oxidative phosphorylation per mitochondrion. mOGT is also critical for cell survival; siRNA-mediated knockdown of endogenous mOGT protected cells against toxicity mediated by rotenone, a complex I inhibitor. Conversely, reduced expression of both nucleocytoplasmic (ncOGT) and mitochondrial (mOGT) OGT isoforms is associated with increased mitochondrial respiration and elevated glycolysis, suggesting that ncOGT is a negative regulator of cellular bioenergetics. Last, we determined that mOGT is probably involved in the glycosylation of a restricted set of mitochondrial targets. We identified four proteins implicated in mitochondrial biogenesis and metabolism regulation as candidate substrates of mOGT, including leucine-rich PPR-containing protein and mitochondrial aconitate hydratase. Our findings suggest that mOGT is catalytically active in vivo and supports mitochondrial structure, health, and survival, whereas ncOGT predominantly regulates cellular bioenergetics.
Collapse
Affiliation(s)
- Juliana L Sacoman
- From the Department of Biology, University of Nevada, Reno, Nevada 89557 and
| | | | | | | | | |
Collapse
|
26
|
Comparison of the glycopattern alterations of mitochondrial proteins in cerebral cortex between rat Alzheimer's disease and the cerebral ischemia model. Sci Rep 2017; 7:39948. [PMID: 28071664 PMCID: PMC5223200 DOI: 10.1038/srep39948] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 11/28/2016] [Indexed: 12/22/2022] Open
Abstract
Alzheimer’s disease (AD) and ischemic brain injury are two major neurodegenerative diseases. Mitochondrial dysfunction commonly occurs in AD and ischemic brain injury. Currently, little attention has been paid to the glycans on mitochondrial glycoproteins, which may play vital roles during the process of mitochondrial dysfunction. The aim of this study was to illustrate and compare the glycopattern alterations of mitochondrial glycoproteins extracted from the cerebral cortex of the rat models of these two diseases using High-throughput lectin microarrays. The results shown that the number of lectins with significant differences compared to normal brains was nine for the rat sporadic Alzheimer’s disease (SAD) model and eighteen for the rat middle cerebral artery occlusion (MCAO) model. Interestingly, five lectins showed opposite expression patterns between the SAD and MCAO rat models. We conclude that glycopattern alterations of mitochondrial glycoproteins in the cerebral cortex may provide vital information to help understand mitochondrial dysfunction in AD and ischemic brain injury. In addition, glycans recognized by diverse lectins with opposite expression patterns between these two diseases hints at the different pathomechanisms of mitochondrial dysfunction in AD and ischemic brain injury.
Collapse
|
27
|
Na Z, Pan S, Uttamchandani M, Yao SQ. Protein-Protein Interaction Inhibitors of BRCA1 Discovered Using Small Molecule Microarrays. Methods Mol Biol 2017; 1518:139-156. [PMID: 27873205 DOI: 10.1007/978-1-4939-6584-7_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microarray screening technology has transformed the life sciences arena over the last decade. The platform is widely used in the area of mapping interaction networks, to molecular fingerprinting and small molecular inhibitor discovery. The technique has significantly impacted both basic and applied research. The microarray platform can likewise enable high-throughput screening and discovery of protein-protein interaction (PPI) inhibitors. Herein we demonstrate the application of microarray-guided PPI inhibitor discovery, using human BRCA1 as an example. Mutations in BRCA1 have been implicated in ~50 % of hereditary breast cancers. By targeting the (BRCT)2 domain, we showed compound 15a and its prodrug 15b inhibited BRCA1 activities in tumor cells. Unlike previously reported peptide-based PPI inhibitors of BRCA1, the compounds identified could be directly administered to tumor cells, thus making them useful in targeting BRCA1/PARP-related pathways involved in DNA damage and repair response, for cancer therapy.
Collapse
Affiliation(s)
- Zhenkun Na
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Sijun Pan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Mahesh Uttamchandani
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.,Defence Medical & Environmental Research Institute, DSO National Laboratories, Singapore, Singapore
| | - Shao Q Yao
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.
| |
Collapse
|
28
|
Dong D, Zhang Y, Reece EA, Wang L, Harman CR, Yang P. microRNA expression profiling and functional annotation analysis of their targets modulated by oxidative stress during embryonic heart development in diabetic mice. Reprod Toxicol 2016; 65:365-374. [PMID: 27629361 DOI: 10.1016/j.reprotox.2016.09.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/03/2016] [Accepted: 09/09/2016] [Indexed: 02/07/2023]
Abstract
Maternal pregestational diabetes mellitus (PGDM) induces congenital heart defects (CHDs). The molecular mechanism underlying PGDM-induced CHDs is unknown. microRNAs (miRNAs), small non-coding RNAs, repress gene expression at the posttranscriptional level and play important roles in heart development. We performed a global miRNA profiling study to assist in revealing potential miRNAs modulated by PGDM and possible developmental pathways regulated by miRNAs during heart development. A total of 149 mapped miRNAs in the developing heart were significantly altered by PGDM. Bioinformatics analysis showed that the majority of the 2111 potential miRNA target genes were associated with cardiac development-related pathways including STAT3 and IGF-1 and transcription factors (Cited2, Zeb2, Mef2c, Smad4 and Ets1). Overexpression of the antioxidant enzyme, superoxide dismutase 1, reversed PGDM-altered miRNAs, suggesting that oxidative stress is responsible for dysregulation of miRNAs. Thus, our study provides the foundation for further investigation of a miRNA-dependent mechanism underlying PGDM-induced CHDs.
Collapse
Affiliation(s)
- Daoyin Dong
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Yuji Zhang
- Division of Biostatistics and Bioinformatics, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201 ,United States
| | - E Albert Reece
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine Baltimore, MD 21201, United States
| | - Lei Wang
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Christopher R Harman
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Peixin Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine Baltimore, MD 21201, United States.
| |
Collapse
|
29
|
Gao W, Li H, Liu Y, Liu Y, Feng X, Liu BF, Liu X. Rapid and sensitive analysis of N-glycans by MALDI-MS using permanent charge derivatization and methylamidation. Talanta 2016; 161:554-559. [PMID: 27769447 DOI: 10.1016/j.talanta.2016.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/30/2016] [Accepted: 09/03/2016] [Indexed: 11/25/2022]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has become an important technology for glycan analysis due to its ease of operation, short analysis time and impurity tolerance. However, the low ionization efficiency of N-glycans led to the difficulty in analyzing glycans of low abundance in complex biological samples due to the lack of basic site for protonation. Therefore, highly sensitive method for the glycans analysis is in urgent demand. Here we report a new strategy to introduce a permanent charge at the reducing end of N-linked glycans by a one pot reaction, where glycosylamines that were obtained by rapid deglycosylation within 5min were labeled with N-succinimidyloxycarbonylmethyl tris (2,4,6- trimethoxyphenyl) phosphonium bromide (TMPP-Ac-OSu). With TMPP-Ac labeling, more than 50 fold enhancement in the sensitivity of method was achieved for neutral glycans from ribonuclease B (RNase B) in comparison to their native counterparts. In combination with methylamidation of sialic acid residues, this novel developed strategy could also be used for sialylated glycans analysis from sialoglycoproteins and complex serum sample. As a result, more than 50 glycans were detected with only 25nL human serum sample.
Collapse
Affiliation(s)
- Wenjie Gao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Henghui Li
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yanyan Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuhong Liu
- Department of Rheumatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xiaojun Feng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bi-Feng Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xin Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
30
|
Kwarteng A, Ahuno ST. The Potentials and Pitfalls of Microarrays in Neglected Tropical Diseases: A Focus on Human Filarial Infections. MICROARRAYS 2016; 5:microarrays5030020. [PMID: 27600086 PMCID: PMC5040967 DOI: 10.3390/microarrays5030020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/01/2016] [Accepted: 06/28/2016] [Indexed: 12/01/2022]
Abstract
Data obtained from expression microarrays enables deeper understanding of the molecular signatures of infectious diseases. It provides rapid and accurate information on how infections affect the clustering of gene expression profiles, pathways and networks that are transcriptionally active during various infection states compared to conventional diagnostic methods, which primarily focus on single genes or proteins. Thus, microarray technologies offer advantages in understanding host-parasite interactions associated with filarial infections. More importantly, the use of these technologies can aid diagnostics and helps translate current genomic research into effective treatment and interventions for filarial infections. Studying immune responses via microarray following infection can yield insight into genetic pathways and networks that can have a profound influence on the development of anti-parasitic vaccines.
Collapse
Affiliation(s)
- Alexander Kwarteng
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Private Mail Bag, Kwame Nkrumah University Science & Technology, KNUST, Kumasi 233, Ghana.
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University Science & Technology, KNUST, Kumasi 233, Ghana.
| | - Samuel Terkper Ahuno
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University Science & Technology, KNUST, Kumasi 233, Ghana.
| |
Collapse
|
31
|
Ma J, Banerjee P, Whelan SA, Liu T, Wei AC, Genaro Ramirez-Correa, McComb ME, Costello CE, O’Rourke B, Murphy A, Hart GW. Comparative Proteomics Reveals Dysregulated Mitochondrial O-GlcNAcylation in Diabetic Hearts. J Proteome Res 2016; 15:2254-64. [PMID: 27213235 PMCID: PMC7814404 DOI: 10.1021/acs.jproteome.6b00250] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc), a post-translational modification on serine and threonine residues of many proteins, plays crucial regulatory roles in diverse biological events. As a nutrient sensor, O-GlcNAc modification (O-GlcNAcylation) on nuclear and cytoplasmic proteins underlies the pathology of diabetic complications including cardiomyopathy. However, mitochondrial O-GlcNAcylation, especially in response to chronic hyperglycemia in diabetes, has been poorly explored. We performed a comparative O-GlcNAc profiling of mitochondria from control and streptozotocin (STZ)-induced diabetic rat hearts by using an improved β-elimination/Michael addition with isotopic DTT reagents (BEMAD) followed by tandem mass spectrometric analysis. In total, 86 mitochondrial proteins, involved in diverse pathways, were O-GlcNAcylated. Among them, many proteins have site-specific alterations in O-GlcNAcylation in response to diabetes, which suggests that protein O-GlcNAcylation is a novel layer of regulation mediating adaptive changes in mitochondrial metabolism during the progression of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Junfeng Ma
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Partha Banerjee
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Stephen A. Whelan
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - Ting Liu
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - An-Chi Wei
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Genaro Ramirez-Correa
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Mark E. McComb
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - Catherine E. Costello
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - Brian O’Rourke
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Anne Murphy
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Gerald W. Hart
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
32
|
Léger T, Garcia C, Camadro JM. The Metacaspase (Mca1p) Restricts O-glycosylation During Farnesol-induced Apoptosis in Candida albicans. Mol Cell Proteomics 2016; 15:2308-23. [PMID: 27125826 DOI: 10.1074/mcp.m116.059378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Indexed: 11/06/2022] Open
Abstract
Protein glycolysation is an essential posttranslational modification in eukaryotic cells. In pathogenic yeasts, it is involved in a large number of biological processes, such as protein folding quality control, cell viability and host/pathogen relationships. A link between protein glycosylation and apoptosis was established by the analysis of the phenotypes of oligosaccharyltransferase mutants in budding yeast. However, little is known about the contribution of glycosylation modifications to the adaptive response to apoptosis inducers. The cysteine protease metacaspase Mca1p plays a key role in the apoptotic response in Candida albicans triggered by the quorum sensing molecule farnesol. We subjected wild-type and mca1-deletion strains to farnesol stress and then studied the early phase of apoptosis release in quantitative glycoproteomics and glycomics experiments on cell-free extracts essentially devoid of cell walls. We identified and characterized 62 new glycosylated peptides with their glycan composition: 17 N-glycosylated, 45 O-glycosylated, and 81 additional sites of N-glycosylation. They were found to be involved in the control of protein folding, cell wall integrity and cell cycle regulation. We showed a general increase in the O-glycosylation of proteins in the mca1 deletion strain after farnesol challenge. We identified 44 new putative protein substrates of the metacaspase in the glycoprotein fraction enriched on concanavalin A. Most of these substrates are involved in protein folding or protein resolubilization and in mitochondrial functions. We show here that key Mca1p substrates, such as Cdc48p or Ssb1p, involved in degrading misfolded glycoproteins and in the protein quality control system, are themselves differentially glycosylated. We found putative substrates, such as Bgl2p (validated by immunoblot), Srb1p or Ugp1p, that are involved in the biogenesis of glycans. Our findings highlight a new role of the metacaspase in amplifying cell death processes by affecting several critical protein quality control systems through the alteration of the protein glycosylation machinery.Data are available via ProteomeXchange with identifier PXD003677.
Collapse
Affiliation(s)
- Thibaut Léger
- From the ‡Mass Spectrometry Laboratory, Institut Jacques Monod, UMR 7592, Univ Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris, France
| | - Camille Garcia
- From the ‡Mass Spectrometry Laboratory, Institut Jacques Monod, UMR 7592, Univ Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris, France
| | - Jean-Michel Camadro
- From the ‡Mass Spectrometry Laboratory, Institut Jacques Monod, UMR 7592, Univ Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris, France; §Mitochondria, Metals and Oxidative Stress Group, Institut Jacques Monod, UMR 7592, Univ Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris, France
| |
Collapse
|
33
|
Krizkova S, Heger Z, Zalewska M, Moulick A, Adam V, Kizek R. Nanotechnologies in protein microarrays. Nanomedicine (Lond) 2015; 10:2743-55. [PMID: 26039143 DOI: 10.2217/nnm.15.81] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Protein microarray technology became an important research tool for study and detection of proteins, protein-protein interactions and a number of other applications. The utilization of nanoparticle-based materials and nanotechnology-based techniques for immobilization allows us not only to extend the surface for biomolecule immobilization resulting in enhanced substrate binding properties, decreased background signals and enhanced reporter systems for more sensitive assays. Generally in contemporarily developed microarray systems, multiple nanotechnology-based techniques are combined. In this review, applications of nanoparticles and nanotechnologies in creating protein microarrays, proteins immobilization and detection are summarized. We anticipate that advanced nanotechnologies can be exploited to expand promising fields of proteins identification, monitoring of protein-protein or drug-protein interactions, or proteins structures.
Collapse
Affiliation(s)
- Sona Krizkova
- Department of Chemistry & Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic, European Union.,Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic, European Union
| | - Zbynek Heger
- Department of Chemistry & Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic, European Union.,Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic, European Union
| | - Marta Zalewska
- Department of Biomedical & Environmental Analysis, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland, European Union
| | - Amitava Moulick
- Department of Chemistry & Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic, European Union.,Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic, European Union
| | - Vojtech Adam
- Department of Chemistry & Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic, European Union.,Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic, European Union
| | - Rene Kizek
- Department of Chemistry & Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic, European Union.,Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic, European Union
| |
Collapse
|
34
|
Lauber MA, Yu YQ, Brousmiche DW, Hua Z, Koza SM, Magnelli P, Guthrie E, Taron CH, Fountain KJ. Rapid Preparation of Released N-Glycans for HILIC Analysis Using a Labeling Reagent that Facilitates Sensitive Fluorescence and ESI-MS Detection. Anal Chem 2015; 87:5401-9. [PMID: 25927596 DOI: 10.1021/acs.analchem.5b00758] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
N-glycosylation of proteins is now routinely characterized and monitored because of its significance to the detection of disease states and the manufacturing of biopharmaceuticals. At the same time, hydrophilic interaction chromatography (HILIC) has emerged as a powerful technology for N-glycan profiling. Sample preparation techniques for N-glycan HILIC analyses have however tended to be laborious or require compromises in sensitivity. To address these shortcomings, we have developed an N-glycan labeling reagent that provides enhanced fluorescence response and MS sensitivity for glycan detection and have also simplified the process of preparing a sample for analysis. The developed labeling reagent rapidly reacts with glycosylamines upon their release from glycoproteins. Within a 5 min reaction, enzymatically released N-glycans are labeled with this reagent comprised of an NHS-carbamate reactive group, a quinoline fluorophore, and a tertiary amine for enhancing ESI+ MS ionization. To further expedite the released N-glycan sample preparation, rapid tagging has been integrated with a fast PNGase F deglycosylation procedure that achieves complete deglycosylation of a diverse set of glycoproteins in approximately 10 min. Moreover, a technique for HILIC-SPE of the labeled glycans has been developed to provide quantitative recovery and facilitate immediate HILIC analysis of the prepared samples. The described approach makes it possible to quickly prepare N-glycan samples and to incorporate the use of a fluorescence and MS sensitivity enhancing labeling reagent. In demonstration of these new capabilities, we have combined the developed sample preparation techniques with UHPLC HILIC chromatography and high sensitivity mass spectrometry to thoroughly detail the N-glycan profile of a monoclonal antibody.
Collapse
Affiliation(s)
- Matthew A Lauber
- †Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757-3696, United States
| | - Ying-Qing Yu
- †Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757-3696, United States
| | - Darryl W Brousmiche
- †Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757-3696, United States
| | - Zhengmao Hua
- †Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757-3696, United States
| | - Stephan M Koza
- †Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757-3696, United States
| | - Paula Magnelli
- ‡New England Biolabs, 240 County Road, Ipswich, Massachusetts 01938-2723, United States
| | - Ellen Guthrie
- ‡New England Biolabs, 240 County Road, Ipswich, Massachusetts 01938-2723, United States
| | - Christopher H Taron
- ‡New England Biolabs, 240 County Road, Ipswich, Massachusetts 01938-2723, United States
| | - Kenneth J Fountain
- †Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757-3696, United States
| |
Collapse
|
35
|
Rentier C, Pacini G, Nuti F, Peroni E, Rovero P, Papini AM. Synthesis of diastereomerically pure Lys(N
ε
-lipoyl) building blocks and their use in Fmoc/tBu solid phase synthesis of lipoyl-containing peptides for diagnosis of primary biliary cirrhosis. J Pept Sci 2015; 21:408-14. [DOI: 10.1002/psc.2761] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/07/2015] [Accepted: 01/21/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Cédric Rentier
- French-Italian Interdepartmental Laboratory of Peptide and Protein Chemistry & Biology - PeptLab
- Laboratoire de Chimie Biologique EA4505; University of Cergy-Pontoise; 5 mail Gay-Lussac, Neuville-sur-Oise 95000 Cergy-Pontoise France
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3/13 I-50019 Sesto Fiorentino Italy
| | - Giulia Pacini
- French-Italian Interdepartmental Laboratory of Peptide and Protein Chemistry & Biology - PeptLab
- Department NeuroFarBa, Section of Pharmaceutical and Nutraceutical Sciences; University of Florence, Via Ugo Schiff 6; I-50019 Sesto Fiorentino Italy
| | - Francesca Nuti
- French-Italian Interdepartmental Laboratory of Peptide and Protein Chemistry & Biology - PeptLab
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3/13 I-50019 Sesto Fiorentino Italy
| | - Elisa Peroni
- French-Italian Interdepartmental Laboratory of Peptide and Protein Chemistry & Biology - PeptLab
- Laboratoire de Chimie Biologique EA4505; University of Cergy-Pontoise; 5 mail Gay-Lussac, Neuville-sur-Oise 95000 Cergy-Pontoise France
| | - Paolo Rovero
- French-Italian Interdepartmental Laboratory of Peptide and Protein Chemistry & Biology - PeptLab
- Department NeuroFarBa, Section of Pharmaceutical and Nutraceutical Sciences; University of Florence, Via Ugo Schiff 6; I-50019 Sesto Fiorentino Italy
| | - Anna Maria Papini
- French-Italian Interdepartmental Laboratory of Peptide and Protein Chemistry & Biology - PeptLab
- Laboratoire de Chimie Biologique EA4505; University of Cergy-Pontoise; 5 mail Gay-Lussac, Neuville-sur-Oise 95000 Cergy-Pontoise France
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3/13 I-50019 Sesto Fiorentino Italy
| |
Collapse
|
36
|
Role of the unfolded protein response in regulating the mucin-dependent filamentous-growth mitogen-activated protein kinase pathway. Mol Cell Biol 2015; 35:1414-32. [PMID: 25666509 DOI: 10.1128/mcb.01501-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Signaling mucins are evolutionarily conserved regulators of signal transduction pathways. The signaling mucin Msb2p regulates the Cdc42p-dependent mitogen-activated protein kinase (MAPK) pathway that controls filamentous growth in yeast. The cleavage and release of the glycosylated inhibitory domain of Msb2p is required for MAPK activation. We show here that proteolytic processing of Msb2p was induced by underglycosylation of its extracellular domain. Cleavage of underglycosylated Msb2p required the unfolded protein response (UPR), a quality control (QC) pathway that operates in the endoplasmic reticulum (ER). The UPR regulator Ire1p, which detects misfolded/underglycosylated proteins in the ER, controlled Msb2p cleavage by regulating transcriptional induction of Yps1p, the major protease that processes Msb2p. Accordingly, the UPR was required for differentiation to the filamentous cell type. Cleavage of Msb2p occurred in conditional trafficking mutants that trap secretory cargo in the endomembrane system. Processed Msb2p was delivered to the plasma membrane, and its turnover by the ubiquitin ligase Rsp5p and ESCRT attenuated the filamentous-growth pathway. We speculate that the QC pathways broadly regulate signaling glycoproteins and their cognate pathways by recognizing altered glycosylation patterns that can occur in response to extrinsic cues.
Collapse
|
37
|
Mycobacterium tuberculosis proteome microarray for global studies of protein function and immunogenicity. Cell Rep 2014; 9:2317-29. [PMID: 25497094 DOI: 10.1016/j.celrep.2014.11.023] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/17/2014] [Accepted: 11/17/2014] [Indexed: 12/30/2022] Open
Abstract
Poor understanding of the basic biology of Mycobacterium tuberculosis (MTB), the etiological agent of tuberculosis, hampers development of much-needed drugs, vaccines, and diagnostic tests. Better experimental tools are needed to expedite investigations of this pathogen at the systems level. Here, we present a functional MTB proteome microarray covering most of the proteome and an ORFome library. We demonstrate the broad applicability of the microarray by investigating global protein-protein interactions, small-molecule-protein binding, and serum biomarker discovery, identifying 59 PknG-interacting proteins, 30 bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) binding proteins, and 14 MTB proteins that together differentiate between tuberculosis (TB) patients with active disease and recovered individuals. Results suggest that the MTB rhamnose pathway is likely regulated by both the serine/threonine kinase PknG and c-di-GMP. This resource has the potential to generate a greater understanding of key biological processes in the pathogenesis of tuberculosis, possibly leading to more effective therapies for the treatment of this ancient disease.
Collapse
|
38
|
Gahoi N, Ray S, Srivastava S. Array-based proteomic approaches to study signal transduction pathways: prospects, merits and challenges. Proteomics 2014; 15:218-31. [PMID: 25266292 DOI: 10.1002/pmic.201400261] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 09/17/2014] [Accepted: 09/25/2014] [Indexed: 01/17/2023]
Abstract
Very often dysfunctional aspects of various signalling networks are found to be associated with human diseases and disorders. The major characteristics of signal transduction pathways are specificity, amplification of the signal, desensitisation and integration, which is accomplished not solely, but majorly by proteins. Array-based profiling of protein-protein and other biomolecular interactions is a versatile approach, which holds immense potential for multiplex interactome mapping and provides an inclusive representation of the signal transduction pathways and networks. Protein microarrays such as analytical protein microarrays (antigen-antibody interactions, autoantibody screening), RP microarrays (interaction of a particular ligand with all the possible targets in cell), functional protein microarrays (protein-protein or protein-ligand interactions) are implemented for various applications, including analysis of protein interactions and their significance in signalling cascades. Additionally, successful amalgamation of the array-based approaches with different label-free detection techniques allows real-time analysis of interaction kinetics of multiple interaction events simultaneously. This review discusses the prospects, merits and limitations of different variants of array-based techniques and their promising applications for studying the modifications and interactions of biomolecules, and highlights the studies associated with signal transduction pathways and their impact on disease pathobiology.
Collapse
Affiliation(s)
- Nikita Gahoi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | | | | |
Collapse
|
39
|
Vanholme B, Vanholme R, Turumtay H, Goeminne G, Cesarino I, Goubet F, Morreel K, Rencoret J, Bulone V, Hooijmaijers C, De Rycke R, Gheysen G, Ralph J, De Block M, Meulewaeter F, Boerjan W. Accumulation of N-acetylglucosamine oligomers in the plant cell wall affects plant architecture in a dose-dependent and conditional manner. PLANT PHYSIOLOGY 2014; 165:290-308. [PMID: 24664205 PMCID: PMC4012587 DOI: 10.1104/pp.113.233742] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/21/2014] [Indexed: 05/18/2023]
Abstract
To study the effect of short N-acetylglucosamine (GlcNAc) oligosaccharides on the physiology of plants, N-ACETYLGLUCOSAMINYLTRANSFERASE (NodC) of Azorhizobium caulinodans was expressed in Arabidopsis (Arabidopsis thaliana). The corresponding enzyme catalyzes the polymerization of GlcNAc and, accordingly, β-1,4-GlcNAc oligomers accumulated in the plant. A phenotype characterized by difficulties in developing an inflorescence stem was visible when plants were grown for several weeks under short-day conditions before transfer to long-day conditions. In addition, a positive correlation between the oligomer concentration and the penetrance of the phenotype was demonstrated. Although NodC overexpression lines produced less cell wall compared with wild-type plants under nonpermissive conditions, no indications were found for changes in the amount of the major cell wall polymers. The effect on the cell wall was reflected at the transcriptome level. In addition to genes encoding cell wall-modifying enzymes, a whole set of genes encoding membrane-coupled receptor-like kinases were differentially expressed upon GlcNAc accumulation, many of which encoded proteins with an extracellular Domain of Unknown Function26. Although stress-related genes were also differentially expressed, the observed response differed from that of a classical chitin response. This is in line with the fact that the produced chitin oligomers were too small to activate the chitin receptor-mediated signal cascade. Based on our observations, we propose a model in which the oligosaccharides modify the architecture of the cell wall by acting as competitors in carbohydrate-carbohydrate or carbohydrate-protein interactions, thereby affecting noncovalent interactions in the cell wall or at the interface between the cell wall and the plasma membrane.
Collapse
|
40
|
Antoniel M, Giorgio V, Fogolari F, Glick GD, Bernardi P, Lippe G. The oligomycin-sensitivity conferring protein of mitochondrial ATP synthase: emerging new roles in mitochondrial pathophysiology. Int J Mol Sci 2014; 15:7513-36. [PMID: 24786291 PMCID: PMC4057687 DOI: 10.3390/ijms15057513] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 04/18/2014] [Accepted: 04/21/2014] [Indexed: 01/08/2023] Open
Abstract
The oligomycin-sensitivity conferring protein (OSCP) of the mitochondrial F(O)F1 ATP synthase has long been recognized to be essential for the coupling of proton transport to ATP synthesis. Located on top of the catalytic F1 sector, it makes stable contacts with both F1 and the peripheral stalk, ensuring the structural and functional coupling between F(O) and F1, which is disrupted by the antibiotic, oligomycin. Recent data have established that OSCP is the binding target of cyclophilin (CyP) D, a well-characterized inducer of the mitochondrial permeability transition pore (PTP), whose opening can precipitate cell death. CyPD binding affects ATP synthase activity, and most importantly, it decreases the threshold matrix Ca²⁺ required for PTP opening, in striking analogy with benzodiazepine 423, an apoptosis-inducing agent that also binds OSCP. These findings are consistent with the demonstration that dimers of ATP synthase generate Ca²⁺-dependent currents with features indistinguishable from those of the PTP and suggest that ATP synthase is directly involved in PTP formation, although the underlying mechanism remains to be established. In this scenario, OSCP appears to play a fundamental role, sensing the signal(s) that switches the enzyme of life in a channel able to precipitate cell death.
Collapse
Affiliation(s)
- Manuela Antoniel
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35121 Padua, Italy.
| | - Valentina Giorgio
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35121 Padua, Italy.
| | - Federico Fogolari
- Department of Biomedical Sciences, University of Udine, p.le Kolbe, 33100 Udine, Italy.
| | - Gary D Glick
- Department of Chemistry, Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Paolo Bernardi
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35121 Padua, Italy.
| | - Giovanna Lippe
- Department of Food Science, University of Udine, via Sondrio 2/A, 33100 Udine, Italy.
| |
Collapse
|
41
|
Lin MS, Cherny JJ, Fournier CT, Roth SJ, Krizanc D, Weir MP. Assessment of MS/MS search algorithms with parent-protein profiling. J Proteome Res 2014; 13:1823-32. [PMID: 24533481 PMCID: PMC3993968 DOI: 10.1021/pr401090d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
![]()
Peptide
mass spectrometry relies crucially on algorithms that match
peptides to spectra. We describe a method to evaluate the accuracy
of these algorithms based on the masses of parent proteins before
trypsin endoprotease digestion. Measurement of conformance to parent
proteins provides a score for comparison of the performances of different
algorithms as well as alternative parameter settings for a given algorithm.
Tracking of conformance scores for spectrum matches to proteins with
progressively lower expression levels revealed that conformance scores
are not uniform within data sets but are significantly lower for less
abundant proteins. Similarly peptides with lower algorithm peptide-spectrum
match scores have lower conformance. Although peptide mass spectrometry
data is typically filtered through decoy analysis to ensure a low
false discovery rate, this analysis confirms that the filtered data
should not be considered as having a uniform confidence. The analysis
suggests that use of different algorithms and multiple standardized
parameter settings of these algorithms can increase significantly
the numbers of peptides identified. This data set can be used as a
resource for future algorithm assessment.
Collapse
Affiliation(s)
- Miin S Lin
- Department of Biology and ‡Department of Mathematics and Computer Science, Wesleyan University Middletown Connecticut 06459, United States
| | | | | | | | | | | |
Collapse
|
42
|
Cao L, Yu L, Guo Z, Shen A, Guo Y, Liang X. N-Glycosylation Site Analysis of Proteins from Saccharomyces cerevisiae by Using Hydrophilic Interaction Liquid Chromatography-Based Enrichment, Parallel Deglycosylation, and Mass Spectrometry. J Proteome Res 2014; 13:1485-93. [DOI: 10.1021/pr401049e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Liwei Cao
- Key Laboratory of Separation
Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Long Yu
- Key Laboratory of Separation
Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhimou Guo
- Key Laboratory of Separation
Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Aijin Shen
- Key Laboratory of Separation
Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yunü Guo
- Key Laboratory of Separation
Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinmiao Liang
- Key Laboratory of Separation
Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
43
|
N-glycosidase treatment with 18O labeling and de novo sequencing argues for flagellin FliC glycopolymorphism in Pseudomonas aeruginosa. Anal Bioanal Chem 2013; 405:9835-42. [PMID: 24220757 DOI: 10.1007/s00216-013-7424-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/27/2013] [Accepted: 10/07/2013] [Indexed: 10/26/2022]
Abstract
In prokaryote organisms, N-glycosylation of proteins is often correlated to cell-cell recognition and extracellular events. Those glycoproteins are potential targets for infection control. To date, many surface-glycosylated proteins from bacterial pathogens have been described. However, N-linked Pseudomonas surface-associated glycoproteins remain underexplored. We report a combined enrichment and labeling strategy to identify major glycoproteins on the outside of microorganisms. More precisely, bacteria were exposed to a mix of biotinylated lectins able to bind with glycoproteins. The latter were then recovered by avidin beads, digested with trypsin, and submitted to mass spectrometry. The targeted mixture of glycoproteins was additionally deglycosylated in the presence of H2(18)O to incorporate (18)O during PNGase F treatment and were also analyzed using mass spectrometry. This approach allowed us to identify a few tens of potential N-glycoproteins, among which flagellin FliC was the most abundant. To detect the possible sites of FliC modifications, a de novo sequencing step was also performed to discriminate between spontaneous deamidation and N-glycan loss. This approach led to the proposal of three potential N-glycosylated sites on the primary sequence of FliC: N26, N69, and N439, with two of these three asparagines belonging to an N-X-(S/T) consensus sequence. These observations suggest that flagellin FliC is a heterogeneous protein mixture containing both O- and N-glycoforms.
Collapse
|
44
|
Hu S, Feng Y, Henson B, Wang B, Huang X, Li M, Desai P, Zhu H. VirD: a virion display array for profiling functional membrane proteins. Anal Chem 2013; 85:8046-54. [PMID: 23941274 DOI: 10.1021/ac401795y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
To facilitate high-throughput biochemical analyses of membrane proteins, we have developed a novel display technology in a microarray format. Both single-pass (cluster of differentiation 4, CD4) and multiple-pass (G protein-coupled receptor 77, GPR77) human transmembrane proteins were engineered to be displayed in the membrane envelop of herpes simplex virions. These viruses produce large spherical virions displaying multiple copies of envelop proteins. Our aim was to engineer this virus to express these human proteins during the virus productive cycle and incorporate the human proteins into the virion during the assembly process. Another strategy presented includes engineering a fusion of glycoprotein C (gC), a major constituent of herpes simplex virus type 1 (HSV-1) virions, by hijacking the cis-acting signals to direct incorporation of the chimeric protein into the virion. The expression of the human proteins in infected cells, at the cell surface and in purified virions, is in the correct transmembrane orientation, and the proteins are biochemically functional. Purified virions printed on glass slides form a high-density Virion Display (VirD) Array, and the displayed proteins were demonstrated to retain their native conformations and interactions on the VirD Array judging by similar assays, such as antibody staining, as well as lectin and ligand binding. This method can be readily scaled or tailored for different modalities including a high-content, high-throughput platform for screening ligands and drugs of human membrane proteins.
Collapse
Affiliation(s)
- Shaohui Hu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Ma C, Zhao X, Han H, Tong W, Zhang Q, Qin P, Chang C, Peng B, Ying W, Qian X. N-linked glycoproteome profiling of human serum using tandem enrichment and multiple fraction concatenation. Electrophoresis 2013; 34:2440-50. [PMID: 23712678 DOI: 10.1002/elps.201200662] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 03/05/2013] [Accepted: 03/08/2013] [Indexed: 11/08/2022]
Affiliation(s)
| | - Xinyuan Zhao
- State Key Laboratory of Proteomics; Beijing Proteome Research Center; Beijing Institute of Radiation Medicine; Beijing; P. R. China
| | - Huanhuan Han
- State Key Laboratory of Proteomics; Beijing Proteome Research Center; Beijing Institute of Radiation Medicine; Beijing; P. R. China
| | - Wei Tong
- State Key Laboratory of Proteomics; Beijing Proteome Research Center; Beijing Institute of Radiation Medicine; Beijing; P. R. China
| | - Qi Zhang
- State Key Laboratory of Proteomics; Beijing Proteome Research Center; Beijing Institute of Radiation Medicine; Beijing; P. R. China
| | - Peibin Qin
- State Key Laboratory of Proteomics; Beijing Proteome Research Center; Beijing Institute of Radiation Medicine; Beijing; P. R. China
| | - Cheng Chang
- State Key Laboratory of Proteomics; Beijing Proteome Research Center; Beijing Institute of Radiation Medicine; Beijing; P. R. China
| | - Bo Peng
- State Key Laboratory of Proteomics; Beijing Proteome Research Center; Beijing Institute of Radiation Medicine; Beijing; P. R. China
| | - Wantao Ying
- State Key Laboratory of Proteomics; Beijing Proteome Research Center; Beijing Institute of Radiation Medicine; Beijing; P. R. China
| | | |
Collapse
|
46
|
Abstract
Emergence of proteome microarray provides a versatile platform to globally explore biological functions of broad significance. In the past decade, researchers have successfully fabricated functional proteome microarrays by printing individually purified proteins at a high-throughput, proteome-wide scale on one single slide. These arrays have been used to profile protein posttranslational modifications, including phosphorylation, ubiquitylation, acetylation, and nitrosylation. In this chapter, we summarize our work of using the yeast proteome microarrays to connect protein lysine acetylation substrates to their upstream modifying enzyme, the nucleosome acetyltransferase of H4 (NuA4), which is the only essential acetyltransferase in yeast. We further prove that the reversible acetylation on critical cell metabolism-related enzymes controls life span in yeast. Our studies represent a paradigm shift for the functional dissection of a crucial acetylation enzyme affecting aging and longevity pathways.
Collapse
|
47
|
Sola L, Gagni P, Cretich M, Chiari M. Surface immobilized hydrogels as versatile reagent reservoirs for microarrays. J Immunol Methods 2013; 391:95-102. [DOI: 10.1016/j.jim.2013.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/04/2013] [Accepted: 02/19/2013] [Indexed: 11/26/2022]
|
48
|
Zhang Y, Fonslow BR, Shan B, Baek MC, Yates JR. Protein analysis by shotgun/bottom-up proteomics. Chem Rev 2013; 113:2343-94. [PMID: 23438204 PMCID: PMC3751594 DOI: 10.1021/cr3003533] [Citation(s) in RCA: 1017] [Impact Index Per Article: 84.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yaoyang Zhang
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bryan R. Fonslow
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bing Shan
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Moon-Chang Baek
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Molecular Medicine, Cell and Matrix Biology Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
49
|
Festa F, Steel J, Bian X, Labaer J. High-throughput cloning and expression library creation for functional proteomics. Proteomics 2013; 13:1381-99. [PMID: 23457047 DOI: 10.1002/pmic.201200456] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 01/11/2013] [Accepted: 01/31/2013] [Indexed: 12/11/2022]
Abstract
The study of protein function usually requires the use of a cloned version of the gene for protein expression and functional assays. This strategy is particularly important when the information available regarding function is limited. The functional characterization of the thousands of newly identified proteins revealed by genomics requires faster methods than traditional single-gene experiments, creating the need for fast, flexible, and reliable cloning systems. These collections of ORF clones can be coupled with high-throughput proteomics platforms, such as protein microarrays and cell-based assays, to answer biological questions. In this tutorial, we provide the background for DNA cloning, discuss the major high-throughput cloning systems (Gateway® Technology, Flexi® Vector Systems, and Creator(TM) DNA Cloning System) and compare them side-by-side. We also report an example of high-throughput cloning study and its application in functional proteomics. This tutorial is part of the International Proteomics Tutorial Programme (IPTP12).
Collapse
Affiliation(s)
- Fernanda Festa
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287-6401, USA
| | | | | | | |
Collapse
|
50
|
Abstract
Protein microarray technology is an emerging field that provides a versatile platform for the characterization of hundreds of thousands of proteins in a highly parallel and high-throughput manner. Protein microarrays are composed of two major classes: analytical and functional. In addition, tissue or cell lysates can also be fractionated and spotted on a slide to form a reverse-phase protein microarray. Applications of protein microarrays, especially functional protein microarrays, have flourished over the past decade as the fabrication technology has matured. In this unit, advances in protein microarray technologies are reviewed, and then a series of examples are presented to illustrate the applications of analytical and functional protein microarrays in both basic and clinical research. Relevant areas of research include the detection of various binding properties of proteins, the study of protein post-translational modifications, the analysis of host-microbe interactions, profiling antibody specificity, and the identification of biomarkers in autoimmune diseases.
Collapse
Affiliation(s)
- F X Reymond Sutandy
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli, Taiwan
| | | | | | | |
Collapse
|