1
|
Karadimas T, Huynh TH, Chose C, Zervoudakis G, Clampitt B, Lapp S, Joyce D, Letson GD, Metts J, Binitie O, Mullinax JE, Lazarides A. Oncolytic Viral Therapy in Osteosarcoma. Viruses 2024; 16:1139. [PMID: 39066301 PMCID: PMC11281467 DOI: 10.3390/v16071139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/13/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
Primary bone malignancies, including osteosarcoma (OS), are rare but aggressive. Current OS treatment, involving surgical resection and chemotherapy, has improved survival for non-metastatic cases but remains ineffective for recurrent or metastatic OS. Oncolytic viral therapy (OVT) is a promising alternative, using naturally occurring or genetically modified viruses to selectively target and lyse cancer cells and induce a robust immune response against remaining OS cells. Various oncolytic viruses (OVs), such as adenovirus, herpes simplex virus, and measles virus, have demonstrated efficacy in preclinical OS models. Combining OVT with other therapeutics, such as chemotherapy or immunotherapy, may further improve outcomes. Despite these advances, challenges in reliability of preclinical models, safety, delivery, and immune response must be addressed to optimize OVT for clinical use. Future research should focus on refining delivery methods, exploring combination treatments, and clinical trials to ensure OVT's efficacy and safety for OS. Overall, OVT represents a novel approach with the potential to drastically improve survival outcomes for patients with OS.
Collapse
Affiliation(s)
- Thomas Karadimas
- Morsani College of Medicine, University of South Florida Health, Tampa, FL 33602, USA; (T.H.H.); (C.C.); (B.C.); (S.L.)
| | - Thien Huong Huynh
- Morsani College of Medicine, University of South Florida Health, Tampa, FL 33602, USA; (T.H.H.); (C.C.); (B.C.); (S.L.)
| | - Chloe Chose
- Morsani College of Medicine, University of South Florida Health, Tampa, FL 33602, USA; (T.H.H.); (C.C.); (B.C.); (S.L.)
| | - Guston Zervoudakis
- Sarcoma Department, Moffitt Cancer Center, Tampa, FL 33612, USA; (G.Z.); (D.J.); (G.D.L.); (J.M.); (O.B.); (J.E.M.); (A.L.)
| | - Bryan Clampitt
- Morsani College of Medicine, University of South Florida Health, Tampa, FL 33602, USA; (T.H.H.); (C.C.); (B.C.); (S.L.)
| | - Sean Lapp
- Morsani College of Medicine, University of South Florida Health, Tampa, FL 33602, USA; (T.H.H.); (C.C.); (B.C.); (S.L.)
| | - David Joyce
- Sarcoma Department, Moffitt Cancer Center, Tampa, FL 33612, USA; (G.Z.); (D.J.); (G.D.L.); (J.M.); (O.B.); (J.E.M.); (A.L.)
| | - George Douglas Letson
- Sarcoma Department, Moffitt Cancer Center, Tampa, FL 33612, USA; (G.Z.); (D.J.); (G.D.L.); (J.M.); (O.B.); (J.E.M.); (A.L.)
| | - Jonathan Metts
- Sarcoma Department, Moffitt Cancer Center, Tampa, FL 33612, USA; (G.Z.); (D.J.); (G.D.L.); (J.M.); (O.B.); (J.E.M.); (A.L.)
| | - Odion Binitie
- Sarcoma Department, Moffitt Cancer Center, Tampa, FL 33612, USA; (G.Z.); (D.J.); (G.D.L.); (J.M.); (O.B.); (J.E.M.); (A.L.)
| | - John E. Mullinax
- Sarcoma Department, Moffitt Cancer Center, Tampa, FL 33612, USA; (G.Z.); (D.J.); (G.D.L.); (J.M.); (O.B.); (J.E.M.); (A.L.)
| | - Alexander Lazarides
- Sarcoma Department, Moffitt Cancer Center, Tampa, FL 33612, USA; (G.Z.); (D.J.); (G.D.L.); (J.M.); (O.B.); (J.E.M.); (A.L.)
| |
Collapse
|
2
|
Girod M, Geisler A, Hinze L, Elsner L, Dieringer B, Beling A, Kurreck J, Fechner H. Combination of FOLFOXIRI Drugs with Oncolytic Coxsackie B3 Virus PD-H Synergistically Induces Oncolysis in the Refractory Colorectal Cancer Cell Line Colo320. Int J Mol Sci 2024; 25:5618. [PMID: 38891807 PMCID: PMC11171967 DOI: 10.3390/ijms25115618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
FOLFOXIRI chemotherapy is a first-line therapy for advanced or metastatic colorectal cancer (CRC), yet its therapeutic efficacy remains limited. Immunostimulatory therapies like oncolytic viruses can complement chemotherapies by fostering the infiltration of the tumor by immune cells and enhancing drug cytotoxicity. In this study, we explored the effect of combining the FOLFOXIRI chemotherapeutic agents with the oncolytic coxsackievirus B3 (CVB3) PD-H in the CRC cell line Colo320. Additionally, we examined the impact of the drugs on the expression of microRNAs (miRs), which could be used to increase the safety of oncolytic CVB3 containing corresponding miR target sites (miR-TS). The measurement of cytotoxic activity using the Chou-Talalay combination index approach revealed that PD-H synergistically enhanced the cytotoxic activity of oxaliplatin (OX), 5-fluorouracil (5-FU) and SN-38. PD-H replication was not affected by OX and SN-38 but inhibited by high concentrations of 5-FU. MiR expression levels were not or only slightly elevated by the drugs or with drug/PD-H combinations on Colo320 cells. Moreover, the drug treatment did not increase the mutation rate of the miR-TS inserted into the PD-H genome. The results demonstrate that the combination of FOLFOXIRI drugs and PD-H may be a promising approach to enhance the therapeutic effect of FOLFOXIRI therapy in CRC.
Collapse
Affiliation(s)
- Maxim Girod
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany
| | - Anja Geisler
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany
| | - Luisa Hinze
- Institute of Biochemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Leslie Elsner
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany
| | - Babette Dieringer
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany
| | - Antje Beling
- Institute of Biochemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Jens Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany
| | - Henry Fechner
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany
| |
Collapse
|
3
|
Gao Y. Oncolytic Therapy of Solid Tumors by Modified Vesicular Stomatitis Virus. DNA Cell Biol 2024; 43:57-60. [PMID: 38079267 DOI: 10.1089/dna.2023.0368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024] Open
Abstract
Vesicular stomatitis virus (VSV) is a promising oncolytic virus for treating solid tumors. We recently engineered a replicating VSV that specifically targets and destroys Her2/neu-expressing cancer cells. This virus was created by eliminating its natural binding site and adding a coding sequence for a single chain antibody to the Her2/neu receptor into its genome. Such an approach can be tailored to target various cellular surface molecules. This mini review will discuss genomic modifications of VSVs and their role in oncolytic therapy and discuss some challenges for moving VSVs to clinical applications.
Collapse
Affiliation(s)
- Yanhua Gao
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Kishimoto T, Nishimura K, Morishita K, Fukuda A, Miyamae Y, Kumagai Y, Sumaru K, Nakanishi M, Hisatake K, Sano M. An engineered ligand-responsive Csy4 endoribonuclease controls transgene expression from Sendai virus vectors. J Biol Eng 2024; 18:9. [PMID: 38229076 DOI: 10.1186/s13036-024-00404-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Viral vectors are attractive gene delivery vehicles because of their broad tropism, high transduction efficiency, and durable expression. With no risk of integration into the host genome, the vectors developed from RNA viruses such as Sendai virus (SeV) are especially promising. However, RNA-based vectors have limited applicability because they lack a convenient method to control transgene expression by an external inducer. RESULTS We engineered a Csy4 switch in Sendai virus-based vectors by combining Csy4 endoribonuclease with mutant FKBP12 (DD: destabilizing domain) that becomes stabilized when a small chemical Shield1 is supplied. In this Shield1-responsive Csy4 (SrC) switch, Shield1 increases Csy4 fused with DD (DD-Csy4), which then cleaves and downregulates the transgene mRNA containing the Csy4 recognition sequence (Csy4RS). Moreover, when Csy4RS is inserted in the viral L gene, the SrC switch suppresses replication and transcription of the SeV vector in infected cells in a Shield1-dependent manner, thus enabling complete elimination of the vector from the cells. By temporally controlling BRN4 expression, a BRN4-expressing SeV vector equipped with the SrC switch achieves efficient, stepwise differentiation of embryonic stem cells into neural stem cells, and then into astrocytes. CONCLUSION SeV-based vectors with the SrC switch should find wide applications in stem cell research, regenerative medicine, and gene therapy, especially when precise control of reprogramming factor expression is desirable.
Collapse
Grants
- JP19H03203, JP19K22945, JP19K07343, JP21H02678, JP19K06501 Japan Society for the Promotion of Science
- JP19H03203, JP19K22945, JP19K07343, JP21H02678, JP19K06501 Japan Society for the Promotion of Science
- JP19H03203, JP19K22945, JP19K07343, JP21H02678, JP19K06501 Japan Society for the Promotion of Science
- JP19H03203, JP19K22945, JP19K07343, JP21H02678, JP19K06501 Japan Society for the Promotion of Science
Collapse
Affiliation(s)
- Takumi Kishimoto
- Laboratory of Gene Regulation, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Ken Nishimura
- Laboratory of Gene Regulation, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Kana Morishita
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Aya Fukuda
- Laboratory of Gene Regulation, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yusaku Miyamae
- Institute of Life and Environment Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Yutaro Kumagai
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Kimio Sumaru
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Mahito Nakanishi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
- TOKIWA-Bio, Inc, 2-1-6 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| | - Koji Hisatake
- Laboratory of Gene Regulation, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Masayuki Sano
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.
| |
Collapse
|
5
|
Li Y, Duan HY, Yang KD, Ye JF. Advancements and challenges in oncolytic virus therapy for gastrointestinal tumors. Biomed Pharmacother 2023; 168:115627. [PMID: 37812894 DOI: 10.1016/j.biopha.2023.115627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Tumors of the gastrointestinal tract impose a substantial healthcare burden due to their prevalence and challenging prognosis. METHODS We conducted a review of peer-reviewed scientific literature using reputable databases (PubMed, Scopus, Web of Science) with a focus on oncolytic virus therapy within the context of gastrointestinal tumors. Our search covered the period up to the study's completion in June 2023. INCLUSION AND EXCLUSION CRITERIA This study includes articles from peer-reviewed scientific journals, written in English, that specifically address oncolytic virus therapy for gastrointestinal tumors, encompassing genetic engineering advances, combined therapeutic strategies, and safety and efficacy concerns. Excluded are articles not meeting these criteria or focusing on non-primary gastrointestinal metastatic tumors. RESULTS Our review revealed the remarkable specificity of oncolytic viruses in targeting tumor cells and their potential to enhance anti-tumor immune responses. However, challenges related to safety and efficacy persist, underscoring the need for ongoing research and improvement. CONCLUSION This study highlights the promising role of oncolytic virus therapy in enhancing gastrointestinal tumor treatments. Continued investigation and innovative combination therapies hold the key to reducing the burden of these tumors on patients and healthcare systems.
Collapse
Affiliation(s)
- Yang Li
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China; School of Nursing, Jilin University, Changchun, China
| | - Hao-Yu Duan
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Kai-di Yang
- School of Nursing, Jilin University, Changchun, China
| | - Jun-Feng Ye
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
6
|
Wong B, Birtch R, Rezaei R, Jamieson T, Crupi MJF, Diallo JS, Ilkow CS. Optimal delivery of RNA interference by viral vectors for cancer therapy. Mol Ther 2023; 31:3127-3145. [PMID: 37735876 PMCID: PMC10638062 DOI: 10.1016/j.ymthe.2023.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/28/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
In recent years, there has been a surge in the innovative modification and application of the viral vector-based gene therapy field. Significant and consistent improvements in the engineering, delivery, and safety of viral vectors have set the stage for their application as RNA interference (RNAi) delivery tools. Viral vector-based delivery of RNAi has made remarkable breakthroughs in the treatment of several debilitating diseases and disorders (e.g., neurological diseases); however, their novelty has yet to be fully applied and utilized for the treatment of cancer. This review highlights the most promising and emerging viral vector delivery tools for RNAi therapeutics while discussing the variables limiting their success and suitability for cancer therapy. Specifically, we outline different integrating and non-integrating viral platforms used for gene delivery, currently employed RNAi targets for anti-cancer effect, and various strategies used to optimize the safety and efficacy of these RNAi therapeutics. Most importantly, we provide great insight into what challenges exist in their application as cancer therapeutics and how these challenges can be effectively navigated to advance the field.
Collapse
Affiliation(s)
- Boaz Wong
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Rayanna Birtch
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Reza Rezaei
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Taylor Jamieson
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mathieu J F Crupi
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jean-Simon Diallo
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Carolina S Ilkow
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
7
|
Penza V, Maroun JW, Nace RA, Schulze AJ, Russell SJ. Polycytidine tract deletion from microRNA-detargeted oncolytic Mengovirus optimizes the therapeutic index in a murine multiple myeloma model. Mol Ther Oncolytics 2023; 28:15-30. [PMID: 36619293 PMCID: PMC9800256 DOI: 10.1016/j.omto.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Mengovirus is an oncolytic picornavirus whose broad host range allows for testing in immunocompetent cancer models. Two pathogenicity-ablating approaches, polycytidine (polyC) tract truncation and microRNA (miRNA) targets insertion, eliminated the risk of encephalomyocarditis. To investigate whether a polyC truncated, miRNA-detargeted oncolytic Mengovirus might be boosted, we partially or fully rebuilt the polyC tract into the 5' noncoding region (NCR) of polyC-deleted (MC0) oncolytic constructs (NC) carrying miRNA target (miRT) insertions to eliminate cardiac/muscular (miR-133b and miR-208a) and neuronal (miR-124) tropisms. PolyC-reconstituted viruses (MC24-NC and MC37-NC) replicated in vitro and showed the expected tropism restrictions, but reduced cytotoxicity and miRT deletions were frequently observed. In the MPC-11 immune competent mouse plasmacytoma model, both intratumoral and systemic administration of MC0-NC led to faster tumor responses than MC24-NC or MC37-NC, with combined durable complete response rates of 75%, 0.5%, and 30%, respectively. Secondary viremia was higher following MC0-NC versus MC24-NC or MC37-NC therapy. Sequence analysis of virus progeny from treated mice revealed a high prevalence of miRT sequences loss among MC24- and MC37- viral genomes, but not in MC0-NC. Overall, MC0-NC was capable of stably retaining miRT sites and provided a more effective treatment and is therefore our lead Mengovirus candidate for clinical translation.
Collapse
Affiliation(s)
- Velia Penza
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55902, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Justin W. Maroun
- Mayo Clinic Alix School of Medicine, Mayo Clinic, Rochester, MN 55902, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Rebecca A. Nace
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Autumn J. Schulze
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Stephen J. Russell
- Mayo Clinic Alix School of Medicine, Mayo Clinic, Rochester, MN 55902, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55902, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
8
|
Di C, Zheng G, Zhang Y, Tong E, Ren Y, Hong Y, Song Y, Chen R, Tan X, Yang L. RTA and LANA Competitively Regulate let-7a/RBPJ Signal to Control KSHV Replication. Front Microbiol 2022; 12:804215. [PMID: 35069510 PMCID: PMC8777081 DOI: 10.3389/fmicb.2021.804215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
The recombination signal binding protein for immunoglobulin kappa J region (RBPJ) has a dual effect on Kaposi's sarcoma-associated herpesvirus (KSHV) replication. RBPJ interaction with replication and transcription activator (RTA) is essential for lytic replication, while the interaction with latency-associated nuclear antigen (LANA) facilitates latent infection. Furthermore, our previous study found that LANA decreased RBPJ through upregulating miRNA let-7a. However, it is unclear whether RTA regulates the expression of RBPJ. Here, we show RTA increases RBPJ by decreasing let-7a. During KSHV replication, the RBPJ expression level was positively correlated with the RTA expression level and negatively correlated with the LANA expression level. The let-7a expression level was inverse to RBPJ. Knockdown of RBPJ inhibited the self-activation of RTA promoter and LANA promoter and weakened LANA's inhibition of RTA promoter. Collectively, these findings indicate that RTA and LANA compete for let-7a/RBPJ signal to control the KSHV replication. Regulating the RBPJ expression level by RTA and LANA plays an important role during KSHV replication.
Collapse
Affiliation(s)
- Chunhong Di
- Affiliated Hospital, Hangzhou Normal University, Hangzhou, China.,School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Guoxia Zheng
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Yunheng Zhang
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Enyu Tong
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Yanli Ren
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Yu Hong
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Yang Song
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Rong Chen
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Xiaohua Tan
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Lei Yang
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
9
|
Using oncolytic viruses to ignite the tumour immune microenvironment in bladder cancer. Nat Rev Urol 2021; 18:543-555. [PMID: 34183833 DOI: 10.1038/s41585-021-00483-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2021] [Indexed: 02/06/2023]
Abstract
The advent of immune checkpoint inhibition (ICI) has transformed the treatment paradigm for bladder cancer. However, despite the success of ICI in other tumour types, the majority of ICI-treated patients with bladder cancer failed to respond. The lack of efficacy in some patients could be attributed to a paucity of pre-existing immune reactive cells within the tumour immune microenvironment, which limits the beneficial effects of ICI. In this setting, strategies to attract lymphocytes before implementation of ICI could be helpful. Oncolytic virotherapy is thought to induce the release of damage-associated molecular patterns, eliciting a pro-inflammatory cytokine cascade and stimulating the activation of the innate immune system. Concurrently, oncolytic virotherapy-induced oncolysis leads to further release of neoantigens and subsequent epitope spreading, culminating in a robust, tumour-specific adaptive immune response. Combination therapy using oncolytic virotherapy with ICI has proven successful in a number of preclinical studies and is beginning to enter clinical trials for the treatment of both non-muscle-invasive and muscle-invasive bladder cancer. In this context, understanding of the mechanisms underpinning oncolytic virotherapy and its potential synergism with ICI will enable clinicians to effectively deploy oncolytic virotherapy, either as monotherapy or as combination therapy in the different clinical stages of bladder cancer.
Collapse
|
10
|
Alvanegh AG, Ganji SM, Kamel A, Tavallaie M, Rafati A, Arpanaei A, Dorostkar R, Ghaleh HEG. Comparison of oncolytic virotherapy and nanotherapy as two new miRNA delivery approaches in lung cancer. Biomed Pharmacother 2021; 140:111755. [PMID: 34044282 DOI: 10.1016/j.biopha.2021.111755] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is known as the second leading cause of cancer death. Finding ways to detect early-stage lung cancer can remarkably increase the survival rate. Biomarkers such as microRNAs can be helpful in cancer diagnosis, predicting its prognosis, and patients' chances of survival. Numerous studies have confirmed the correlation between microRNA expression and the likelihood of patients surviving after treatment. Consequently, it is necessary to study the expression profile of microRNAs during and after treatment. Oncolytic virotherapy and nanotherapy are two neoteric methods that use various vectors to deliver microRNAs into cancer cells. Although these treatments have not yet entered into the clinical trials, much progress has been made in this area. Analyzing the expression profile of microRNAs after applying nanotherapy and oncolytic virotherapy can evaluate the effectiveness of these methods. This review refers to the studies conducted about these two approaches. The advantages and disadvantages of these methods in delivery and affecting microRNA expression patterns are discussed below.
Collapse
Affiliation(s)
- Akbar Ghorbani Alvanegh
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Shahla Mohammad Ganji
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ali Kamel
- Cellular and Molecular Research Center, Basic health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahmood Tavallaie
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Rafati
- Instructor of Human Genetics, Laboratory Sciences, School of Medical Sciences, Sirjan Faculty of Medical Sciences, Sirjan, Iran
| | - Ayyoob Arpanaei
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ruhollah Dorostkar
- Applied Virology Research Center, Baqiyatallah University of Medical Science, Tehran, Iran
| | | |
Collapse
|
11
|
Singh HM, Leber MF, Bossow S, Engeland CE, Dessila J, Grossardt C, Zaoui K, Bell JC, Jäger D, von Kalle C, Ungerechts G. MicroRNA-sensitive oncolytic measles virus for chemovirotherapy of pancreatic cancer. MOLECULAR THERAPY-ONCOLYTICS 2021; 21:340-355. [PMID: 34141871 PMCID: PMC8182383 DOI: 10.1016/j.omto.2021.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/28/2021] [Indexed: 02/07/2023]
Abstract
Advanced pancreatic cancer is characterized by few treatment options and poor outcomes. Oncolytic virotherapy and chemotherapy involve complementary pharmacodynamics and could synergize to improve therapeutic efficacy. Likewise, multimodality treatment may cause additional toxicity, and new agents have to be safe. Balancing both aims, we generated an oncolytic measles virus for 5-fluorouracil-based chemovirotherapy of pancreatic cancer with enhanced tumor specificity through microRNA-regulated vector tropism. The resulting vector encodes a bacterial prodrug convertase, cytosine deaminase-uracil phosphoribosyl transferase, and carries synthetic miR-148a target sites in the viral F gene. Combination of the armed and targeted virus with 5-fluorocytosine, a prodrug of 5-fluorouracil, resulted in cytotoxicity toward both infected and bystander pancreatic cancer cells. In pancreatic cancer xenografts, a single intratumoral injection of the virus induced robust in vivo expression of prodrug convertase. Based on intratumoral transgene expression kinetics, we devised a chemovirotherapy regimen to assess treatment efficacy. Concerted multimodality treatment with intratumoral virus and systemic prodrug administration delayed tumor growth and prolonged survival of xenograft-bearing mice. Our results demonstrate that 5-fluorouracil-based chemovirotherapy with microRNA-sensitive measles virus is an effective strategy against pancreatic cancer at a favorable therapeutic index that warrants future clinical translation.
Collapse
Affiliation(s)
- Hans Martin Singh
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.,Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Mathias Felix Leber
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.,Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ONT, Canada
| | - Sascha Bossow
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Christine E Engeland
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.,Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany.,Clinical Cooperation Unit Virotherapy, Research Group Mechanisms of Oncolytic Immunotherapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.,Faculty of Health/School of Medicine, Institute of Virology and Microbiology, Witten/Herdecke University, Stockumer Straße 10, 58453 Witten, Germany
| | - Jan Dessila
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Christian Grossardt
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Karim Zaoui
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.,Department of Otorhinolaryngology and Head and Neck Surgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - John C Bell
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ONT, Canada
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Christof von Kalle
- Berlin Institute of Health and Charité Universitätsmedizin, Anna-Louisa-Karsch-Straße 2, 10178 Berlin, Germany.,Sidra Medical and Research Center, Al Luqta Street, Education City, North Campus, P.O. Box 26999, Doha, Qatar
| | - Guy Ungerechts
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.,Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ONT, Canada
| |
Collapse
|
12
|
Leber MF, Neault S, Jirovec E, Barkley R, Said A, Bell JC, Ungerechts G. Engineering and combining oncolytic measles virus for cancer therapy. Cytokine Growth Factor Rev 2020; 56:39-48. [PMID: 32718830 PMCID: PMC7333629 DOI: 10.1016/j.cytogfr.2020.07.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/02/2020] [Indexed: 12/18/2022]
Abstract
Cancer immunotherapy using tumor-selective, oncolytic viruses is an emerging therapeutic option for solid and hematologic malignancies. A considerable variety of viruses ranging from small picornaviruses to large poxviruses are currently being investigated as potential candidates. In the early days of virotherapy, non-engineered wild-type or vaccine-strain viruses were employed. However, these viruses often did not fully satisfy the major criteria of safety and efficacy. Since the advent of reverse genetics systems for manipulating various classes of viruses, the field has shifted to developing genetically engineered viruses with an improved therapeutic index. In this review, we will summarize the concepts and strategies of multi-level genetic engineering of oncolytic measles virus, a prime candidate for cancer immunovirotherapy. Furthermore, we will provide a brief overview of measles virus-based multimodal combination therapies for improved tumor control and clinical efficacy.
Collapse
Affiliation(s)
- Mathias F Leber
- German Cancer Research Center (DKFZ), Clinical Cooperation Unit Virotherapy, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Heidelberg University Hospital, Department of Medical Oncology, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany; Ottawa Hospital Research Institute, Cancer Therapeutics Program, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada.
| | - Serge Neault
- Ottawa Hospital Research Institute, Cancer Therapeutics Program, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
| | - Elise Jirovec
- Ottawa Hospital Research Institute, Cancer Therapeutics Program, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
| | - Russell Barkley
- Ottawa Hospital Research Institute, Cancer Therapeutics Program, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
| | - Aida Said
- Children's Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada; University of Ottawa, Faculty of Medicine, Department of Cellular and Molecular Medicine, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - John C Bell
- Ottawa Hospital Research Institute, Cancer Therapeutics Program, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
| | - Guy Ungerechts
- German Cancer Research Center (DKFZ), Clinical Cooperation Unit Virotherapy, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Heidelberg University Hospital, Department of Medical Oncology, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany; Ottawa Hospital Research Institute, Cancer Therapeutics Program, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
| |
Collapse
|
13
|
Harrington K, Freeman DJ, Kelly B, Harper J, Soria JC. Optimizing oncolytic virotherapy in cancer treatment. Nat Rev Drug Discov 2019; 18:689-706. [PMID: 31292532 DOI: 10.1038/s41573-019-0029-0] [Citation(s) in RCA: 337] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2019] [Indexed: 02/07/2023]
Abstract
In the wake of the success of modern immunotherapy, oncolytic viruses (OVs) are currently seen as a potential therapeutic option for patients with cancer who do not respond or fail to achieve durable responses following treatment with immune checkpoint inhibitors. OVs offer a multifaceted therapeutic platform because they preferentially replicate in tumour cells, can be engineered to express transgenes that augment their cytotoxic and immunostimulatory activities, and modulate the tumour microenvironment to optimize immune-mediated tumour eradication, both at locoregional and systemic sites of disease. Lysis of tumour cells releases tumour-specific antigens that trigger both the innate and adaptive immune systems. OVs also represent attractive combination partners with other systemically delivered agents by virtue of their highly favourable safety profiles. Rational combinations of OVs with different immune modifiers and/or antitumour agents, based on mechanisms of tumour resistance to immune-mediated attack, may benefit the large, currently underserved, population of patients who respond poorly to immune checkpoint inhibition.
Collapse
Affiliation(s)
- Kevin Harrington
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK.
| | | | - Beth Kelly
- Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | | | - Jean-Charles Soria
- Oncology R&D, AstraZeneca, Gaithersburg, MD, USA.,Department of Medicine and Medical Oncology, Université Paris-Sud, Orsay, France
| |
Collapse
|
14
|
Affiliation(s)
- Claudia Hill
- Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Robert Carlisle
- Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Qi Y, Zheng G, Di C, Zhang J, Wang X, Hong Y, Song Y, Chen R, Yang Y, Yan Y, Xu L, Tan X, Yang L. Latency-associated nuclear antigen inhibits lytic replication of Kaposi's sarcoma-associated herpesvirus by regulating let-7a/RBPJ signaling. Virology 2019; 531:69-78. [PMID: 30856484 DOI: 10.1016/j.virol.2019.02.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 10/27/2022]
Abstract
Latency-associated nuclear antigen (LANA) is the key factor in the establishment and maintenance of latency of Kaposi's sarcoma-associated herpesvirus (KSHV). A cellular protein, recombination signal binding protein for immunoglobulin kappa J region (RBPJ), is essential for the lytic reactivation of KSHV. However, whether RBPJ expression is regulated by KSHV is not clear. Here, we show that LANA upregulates let-7a and its primary transcripts in parallel with its reduction of RBPJ expression. An increase in notch intracellular domain (NICD) and the downregulation of NF-κB and LIN28B contribute to the upregulation of let-7a by LANA. Let-7a represses RBPJ expression by directly binding the 3' untranslated region of RBPJ. Let-7a overexpression or RBPJ knockdown led to a dose- and time-dependent inhibition of lytic reactivation of KSHV. Collectively, these findings support a model wherein LANA inhibits the lytic replication of KSHV by regulating let-7a/RBPJ signaling.
Collapse
Affiliation(s)
- Yan Qi
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Guoxia Zheng
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Chunhong Di
- Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Jinxia Zhang
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaobo Wang
- Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Yu Hong
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Yang Song
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Rong Chen
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Yi Yang
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Yutao Yan
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Liangwen Xu
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaohua Tan
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China.
| | - Lei Yang
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
16
|
A Novel Chimeric Oncolytic Virus Vector for Improved Safety and Efficacy as a Platform for the Treatment of Hepatocellular Carcinoma. J Virol 2018; 92:JVI.01386-18. [PMID: 30232179 DOI: 10.1128/jvi.01386-18] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/12/2018] [Indexed: 11/20/2022] Open
Abstract
Oncolytic viruses represent an exciting new aspect of the evolving field of cancer immunotherapy. We have engineered a novel hybrid vector comprising vesicular stomatitis virus (VSV) and Newcastle disease virus (NDV), named recombinant VSV-NDV (rVSV-NDV), wherein the VSV backbone is conserved but its glycoprotein has been replaced by the hemagglutinin-neuraminidase (HN) and the modified, hyperfusogenic fusion (F) envelope proteins of recombinant NDV. In comparison to wild-type VSV, which kills cells through a classical cytopathic effect, the recombinant virus is able to induce tumor-specific syncytium formation, allowing efficient cell-to-cell spread of the virus and a rapid onset of immunogenic cell death. Furthermore, the glycoprotein exchange substantially abrogates the off-target effects in brain and liver tissue associated with wild-type VSV, resulting in a markedly enhanced safety profile, even in immune-deficient NOD.CB17-prkdcscid/NCrCrl (NOD-SCID) mice, which are highly susceptible to wild-type VSV. Although NDV causes severe pathogenicity in its natural avian hosts, the incorporation of the envelope proteins in the chimeric rVSV-NDV vector is avirulent in embryonated chicken eggs. Finally, systemic administration of rVSV-NDV in orthotopic hepatocellular carcinoma (HCC)-bearing immune-competent mice resulted in significant survival prolongation. This strategy, therefore, combines the beneficial properties of the rapidly replicating VSV platform with the highly efficient spread and immunogenic cell death of a fusogenic virus without risking the safety and environmental threats associated with either parental vector. Taking the data together, rVSV-NDV represents an attractive vector platform for clinical translation as a safe and effective oncolytic virus.IMPORTANCE The therapeutic efficacy of oncolytic viral therapy often comes as a tradeoff with safety, such that potent vectors are often associated with toxicity, while safer viruses tend to have attenuated therapeutic effects. Despite promising preclinical data, the development of VSV as a clinical agent has been substantially hampered by the fact that severe neurotoxicity and hepatotoxicity have been observed in rodents and nonhuman primates in response to treatment with wild-type VSV. Although NDV has been shown to have an attractive safety profile in humans and to have promising oncolytic effects, its further development has been severely restricted due to the environmental risks that it poses. The hybrid rVSV-NDV vector, therefore, represents an extremely promising vector platform in that it has been rationally designed to be safe, with respect to both the recipient and the environment, while being simultaneously effective, both through its direct oncolytic actions and through induction of immunogenic cell death.
Collapse
|
17
|
Girardi E, López P, Pfeffer S. On the Importance of Host MicroRNAs During Viral Infection. Front Genet 2018; 9:439. [PMID: 30333857 PMCID: PMC6176045 DOI: 10.3389/fgene.2018.00439] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/14/2018] [Indexed: 12/21/2022] Open
Abstract
Every living organism has to constantly face threats from the environment and deal with a large number of pathogens against which it has to defend itself to survive. Among those, viruses represent a large class of obligatory intracellular parasites, which rely on their host machinery to multiply and propagate. As a result, viruses and their hosts have engaged in an ever-evolving arms race to be able to maintain their existence. The role played by micro (mi)RNAs in this ongoing battle has been extensively studied in the past 15 years and will be the subject of this review article. We will mainly focus on cellular miRNAs and their implication during viral infection in mammals. Thus, we will describe current techniques that can be used to identify miRNAs involved in the modulation of viral infection and to characterize their targets and mode of action. We will also present different reported examples of miRNA-mediated regulation of viruses, which can have a positive outcome either for the host or for the virus. In addition, the mode of action is also of a dual nature, depending on the target of the miRNA. Indeed, the regulatory small RNA can either directly guide an Argonaute protein on a viral transcript, or target a cellular mRNA involved in the host antiviral response. We will then see whether and how viruses respond to miRNA-mediated targeting. Finally, we will discuss how our knowledge of viral targeting by miRNA can be exploited for developing new antiviral therapeutic approaches.
Collapse
Affiliation(s)
- Erika Girardi
- Architecture and Reactivity of RNA, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, Strasbourg, France
| | - Paula López
- Architecture and Reactivity of RNA, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, Strasbourg, France
| | - Sébastien Pfeffer
- Architecture and Reactivity of RNA, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
18
|
Fay EJ, Langlois RA. MicroRNA-Attenuated Virus Vaccines. Noncoding RNA 2018; 4:E25. [PMID: 30279330 PMCID: PMC6316615 DOI: 10.3390/ncrna4040025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 09/25/2018] [Accepted: 09/28/2018] [Indexed: 12/18/2022] Open
Abstract
Live-attenuated vaccines are the most effective way to establish robust, long-lasting immunity against viruses. However, the possibility of reversion to wild type replication and pathogenicity raises concerns over the safety of these vaccines. The use of host-derived microRNAs (miRNAs) to attenuate viruses has been accomplished in an array of biological contexts. The broad assortment of effective tissue- and species-specific miRNAs, and the ability to target a virus with multiple miRNAs, allow for targeting to be tailored to the virus of interest. While escape is always a concern, effective strategies have been developed to improve the safety and stability of miRNA-attenuated viruses. In this review, we discuss the various approaches that have been used to engineer miRNA-attenuated viruses, the steps that have been taken to improve their safety, and the potential use of these viruses as vaccines.
Collapse
Affiliation(s)
- Elizabeth J Fay
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA.
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Ryan A Langlois
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA.
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA.
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
19
|
Ebrahimi S, Ghorbani E, Shafiee M, Ryzhikov M, Hassanian SM, Azadmanesh K. Therapeutic potency of oncolytic virotherapy in breast cancer targeting, current status and perspective. J Cell Biochem 2018; 120:2801-2809. [PMID: 30260014 DOI: 10.1002/jcb.27725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/29/2018] [Indexed: 12/26/2022]
Abstract
Breast cancer is the most common cause of cancer death in women and presents a serious therapeutic challenge worldwide. Traditional treatments are less successful at targeting cancer tumors, leading to recurrent treatment-resistant secondary malignancies. Oncolytic virotherapy (OV) is a novel anticancer strategy with therapeutic implications at targeting cancer cells by using mechanisms that differ from conventional therapies. Administration of OVs either alone or in combination with standard therapies provide new insights regarding the effectiveness and improvement of treatment responses for breast cancer patients. This review summarizes cellular, animal and clinical studies investigating therapeutic potency of oncolytic virotherapy in breast cancer treatment for a better understanding and hence a better management of this disease.
Collapse
Affiliation(s)
- Safieh Ebrahimi
- Department of Clinical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Ghorbani
- Department of Microbiology, Al-Zahra University, Tehran, Iran
| | - Mojtaba Shafiee
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mikhail Ryzhikov
- Division of Pulmonary and Critical Care Medicine, Washington University, School of Medicine, Saint Louis, Missouri
| | - Seyed M Hassanian
- Department of Clinical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
20
|
Dhungel B, Ramlogan-Steel CA, Steel JC. MicroRNA-Regulated Gene Delivery Systems for Research and Therapeutic Purposes. Molecules 2018; 23:E1500. [PMID: 29933586 PMCID: PMC6099389 DOI: 10.3390/molecules23071500] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 12/18/2022] Open
Abstract
Targeted gene delivery relies on the ability to limit the expression of a transgene within a defined cell/tissue population. MicroRNAs represent a class of highly powerful and effective regulators of gene expression that act by binding to a specific sequence present in the corresponding messenger RNA. Involved in almost every aspect of cellular function, many miRNAs have been discovered with expression patterns specific to developmental stage, lineage, cell-type, or disease stage. Exploiting the binding sites of these miRNAs allows for construction of targeted gene delivery platforms with a diverse range of applications. Here, we summarize studies that have utilized miRNA-regulated systems to achieve targeted gene delivery for both research and therapeutic purposes. Additionally, we identify criteria that are important for the effectiveness of a particular miRNA for such applications and we also discuss factors that have to be taken into consideration when designing miRNA-regulated expression cassettes.
Collapse
Affiliation(s)
- Bijay Dhungel
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, 102 Newdegate Street, Brisbane, QLD 4120, Australia.
- Faculty of Medicine, University of Queensland, 288 Herston Road, Herston, Brisbane, QLD 4006, Australia.
- University of Queensland Diamantina Institute, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia.
| | - Charmaine A Ramlogan-Steel
- Faculty of Medicine, University of Queensland, 288 Herston Road, Herston, Brisbane, QLD 4006, Australia.
- Layton Vision Foundation, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia.
| | - Jason C Steel
- Faculty of Medicine, University of Queensland, 288 Herston Road, Herston, Brisbane, QLD 4006, Australia.
- OcuGene, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
21
|
Yao Y, Zhang Y, Tang N, Pedrera M, Shen Z, Nair V. Inhibition of v- rel-Induced Oncogenesis through microRNA Targeting. Viruses 2018; 10:v10050242. [PMID: 29734737 PMCID: PMC5977235 DOI: 10.3390/v10050242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/30/2018] [Accepted: 05/03/2018] [Indexed: 12/18/2022] Open
Abstract
Several studies have shown that microRNA-targeting is an effective strategy for the selective control of tissue-tropism and pathogenesis of both DNA and RNA viruses. However, the exploitation of microRNA-targeting for the inhibition of transformation by oncogenic viruses has not been studied. The v-rel oncoprotein encoded by reticuloendotheliosis virus T strain (Rev-T) is a member of the rel/NF-κB family of transcription factors capable of transforming primary chicken spleen and bone marrow cells. Here, by engineering the target sequence of endogenous microRNA miR-142 downstream of the v-rel gene in a Replication-Competent ALV (avian leukosis virus) long terminal repeat (LTR) with a splice acceptor (RCAS) vector and using a v-rel-induced transformation model of chicken embryonic splenocyte cultures, we show that hematopoietic-specific miR-142 can inhibit the v-rel-induced transformation, and that this inhibition effect is due to the silencing of v-rel expression. The data supports the idea that microRNA-targeting can be used to inhibit viral oncogene-induced oncogenesis.
Collapse
Affiliation(s)
- Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK.
| | - Yaoyao Zhang
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK.
| | - Na Tang
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK.
- Binzhou Animal Science and Veterinary Medicine Academy & UK-China Centre of Excellence for Research on Avian Diseases, Binzhou 256600, Shandong, China.
| | - Miriam Pedrera
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK.
| | - Zhiqiang Shen
- Binzhou Animal Science and Veterinary Medicine Academy & UK-China Centre of Excellence for Research on Avian Diseases, Binzhou 256600, Shandong, China.
| | - Venugopal Nair
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK.
| |
Collapse
|
22
|
Leber MF, Baertsch MA, Anker SC, Henkel L, Singh HM, Bossow S, Engeland CE, Barkley R, Hoyler B, Albert J, Springfeld C, Jäger D, von Kalle C, Ungerechts G. Enhanced Control of Oncolytic Measles Virus Using MicroRNA Target Sites. MOLECULAR THERAPY-ONCOLYTICS 2018; 9:30-40. [PMID: 29988512 PMCID: PMC6026446 DOI: 10.1016/j.omto.2018.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/08/2018] [Indexed: 12/21/2022]
Abstract
Measles viruses derived from the live-attenuated Edmonton-B vaccine lineage are currently investigated as novel anti-cancer therapeutics. In this context, tumor specificity and oncolytic potency are key determinants of the therapeutic index. Here, we describe a systematic and comprehensive analysis of a recently developed post-entry targeting strategy based on the incorporation of microRNA target sites (miRTS) into the measles virus genome. We have established viruses with target sites for different microRNA species in the 3′ untranslated regions of either the N, F, H, or L genes and generated viruses harboring microRNA target sites in multiple genes. We report critical importance of target-site positioning with proximal genomic positions effecting maximum vector control. No relevant additional effect of six versus three miRTS copies for the same microRNA species in terms of regulatory efficiency was observed. Moreover, we demonstrate that, depending on the microRNA species, viral mRNAs containing microRNA target sites are directly cleaved and/or translationally repressed in presence of cognate microRNAs. In conclusion, we report highly efficient control of measles virus replication with various miRTS positions for development of safe and efficient cancer virotherapy and provide insights into the mechanisms underlying microRNA-mediated vector control.
Collapse
Affiliation(s)
- Mathias Felix Leber
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DFKZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Marc-Andrea Baertsch
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DFKZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Sophie Caroline Anker
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DFKZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Luisa Henkel
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DFKZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Hans Martin Singh
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DFKZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Sascha Bossow
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DFKZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
| | - Christine E. Engeland
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DFKZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Russell Barkley
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DFKZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
| | - Birgit Hoyler
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DFKZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Jessica Albert
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DFKZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Christoph Springfeld
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Christof von Kalle
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DFKZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Guy Ungerechts
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DFKZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
- Corresponding author: Guy Ungerechts, MD, PhD, National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany.
| |
Collapse
|
23
|
Oncotargeting by Vesicular Stomatitis Virus (VSV): Advances in Cancer Therapy. Viruses 2018; 10:v10020090. [PMID: 29473868 PMCID: PMC5850397 DOI: 10.3390/v10020090] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/12/2018] [Accepted: 02/15/2018] [Indexed: 12/28/2022] Open
Abstract
Modern oncotherapy approaches are based on inducing controlled apoptosis in tumor cells. Although a number of apoptosis-induction approaches are available, site-specific delivery of therapeutic agents still remain the biggest hurdle in achieving the desired cancer treatment benefit. Additionally, systemic treatment-induced toxicity remains a major limiting factor in chemotherapy. To specifically address drug-accessibility and chemotherapy side effects, oncolytic virotherapy (OV) has emerged as a novel cancer treatment alternative. In OV, recombinant viruses with higher replication capacity and stronger lytic properties are being considered for tumor cell-targeting and subsequent cell lysing. Successful application of OVs lies in achieving strict tumor-specific tropism called oncotropism, which is contingent upon the biophysical interactions of tumor cell surface receptors with viral receptors and subsequent replication of oncolytic viruses in cancer cells. In this direction, few viral vector platforms have been developed and some of these have entered pre-clinical/clinical trials. Among these, the Vesicular stomatitis virus (VSV)-based platform shows high promise, as it is not pathogenic to humans. Further, modern molecular biology techniques such as reverse genetics tools have favorably advanced this field by creating efficient recombinant VSVs for OV; some have entered into clinical trials. In this review, we discuss the current status of VSV based oncotherapy, challenges, and future perspectives regarding its therapeutic applications in the cancer treatment.
Collapse
|
24
|
Park GT, Choi KC. Advanced new strategies for metastatic cancer treatment by therapeutic stem cells and oncolytic virotherapy. Oncotarget 2018; 7:58684-58695. [PMID: 27494901 PMCID: PMC5295462 DOI: 10.18632/oncotarget.11017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 05/29/2016] [Indexed: 01/14/2023] Open
Abstract
The field of therapeutic stem cell and oncolytic virotherapy for cancer treatment has rapidly expanded over the past decade. Oncolytic viruses constitute a promising new class of anticancer agent because of their ability to selectively infect and destroy tumor cells. Engineering of viruses to express anticancer genes and specific cancer targeting molecules has led to the use of these systems as a novel platform of metastatic cancer therapy. In addition, stem cells have a cancer specific migratory capacity, which is available for metastatic cancer targeting. Prodrug activating enzyme or anticancer cytokine expressing stem cells successfully inhibited the proliferation of cancer cells. Preclinical models have clearly demonstrated anticancer activity of these two platforms against a number of different cancer types and metastatic cancer. Several systems using therapeutic stem cells or oncolytic virus have entered clinical trials, and promising results have led to late stage clinical development. Consequently, metastatic cancer therapies using stem cells and oncolytic viruses are extremely promising. The following review will focus on the metastatic cancer targeting mechanism of therapeutic stem cells and oncolytic viruses, and potential challenges ahead for advancing the field.
Collapse
Affiliation(s)
- Geon-Tae Park
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.,TheraCell Bio & Science, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
25
|
Oliva S, Gambella M, Boccadoro M, Bringhen S. Systemic virotherapy for multiple myeloma. Expert Opin Biol Ther 2017; 17:1375-1387. [PMID: 28796556 DOI: 10.1080/14712598.2017.1364359] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The multiple myeloma (MM) treatment scenario has changed considerably over the past few years. Several novel targeted therapies are currently under consideration including oncolytic virotherapy. Areas covered: This review provides an analysis of the mechanisms of action of virotherapy, and summarizes the preclinical and clinical studies of systemic virotherapy developed for the treatment of MM. Different types of viruses have been identified, including: adenovirus, vaccinia virus, herpes simplex virus 1, myxoma virus, reovirus, measles virus, vesicular stomatitis virus and coxsackievirus A21. Expert opinion: The above-mentioned viruses can do more than simply infect and kill malignant plasma cells alone or in combination with chemo and/or radiotherapy. In fact, some of them can also be used to purge myeloma cells from an autologous bone marrow (BM) transplant. Further investigations are required to better explore the best therapeutic combinations for MM and to also overcome antiviral response immunity that can limit the efficacy of this therapeutic strategy.
Collapse
Affiliation(s)
- Stefania Oliva
- a Myeloma Unit, Division of Hematology , University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino , Torino , Italy
| | - Manuela Gambella
- a Myeloma Unit, Division of Hematology , University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino , Torino , Italy
| | - Mario Boccadoro
- a Myeloma Unit, Division of Hematology , University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino , Torino , Italy
| | - Sara Bringhen
- a Myeloma Unit, Division of Hematology , University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino , Torino , Italy
| |
Collapse
|
26
|
Bofill-De Ros X, Rovira-Rigau M, Fillat C. Implications of MicroRNAs in Oncolytic Virotherapy. Front Oncol 2017; 7:142. [PMID: 28725635 PMCID: PMC5495989 DOI: 10.3389/fonc.2017.00142] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/20/2017] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are an abundant class of small non-coding RNA molecules (~22 nt) that can repress gene expression. Deregulation of certain miRNAs is widely recognized as a robust biomarker for many neoplasms, as well as an important player in tumorigenesis and the establishment of tumoral microenvironments. The downregulation of specific miRNAs in tumors has been exploited as a mechanism to provide selectivity to oncolytic viruses or gene-based therapies. miRNA response elements recognizing miRNAs expressed in specific tissues, but downregulated in tumors, have been inserted into the 3′UTR of viral genes to promote the degradation of these viral mRNAs in healthy tissue, but not in tumor cells. Consequently, oncolytic virotherapy-associated toxicities were diminished, while therapeutic activity in tumor cells was preserved. However, viral infections themselves can modulate the miRNome of the host cell, and such miRNA changes under infection impact the normal viral lifecycle. Thus, there is a miRNA-mediated interplay between virus and host cell, affecting both viral and cellular activities. Moreover, the outcome of such interactions may be cell type or condition specific, suggesting that the impact on normal and tumoral cells may differ. Here, we provide an insight into the latest developments in miRNA-based viral engineering for cancer therapy, following the most recent discoveries in miRNA biology. Furthermore, we report on the relevance of miRNAs in virus–host cell interaction, and how such knowledge can be exploited to improve the control of viral activity in tumor cells.
Collapse
Affiliation(s)
- Xavier Bofill-De Ros
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Maria Rovira-Rigau
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Cristina Fillat
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| |
Collapse
|
27
|
Falls T, Roy DG, Bell JC, Bourgeois-Daigneault MC. Murine Tumor Models for Oncolytic Rhabdo-Virotherapy. ILAR J 2017; 57:73-85. [PMID: 27034397 DOI: 10.1093/ilar/ilv048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The preclinical optimization and validation of novel treatments for cancer therapy requires the use of laboratory animals. Although in vitro experiments using tumor cell lines and ex vivo treatment of patient tumor samples provide a remarkable first-line tool for the initial study of tumoricidal potential, tumor-bearing animals remain the primary option to study delivery, efficacy, and safety of therapies in the context of a complete tumor microenvironment and functional immune system. In this review, we will describe the use of murine tumor models for oncolytic virotherapy using vesicular stomatitis virus. We will discuss studies using immunocompetent and immunodeficient models with respect to toxicity and therapeutic treatments, as well as the various techniques and tools available to study cancer therapy with Rhabdoviruses.
Collapse
Affiliation(s)
- Theresa Falls
- Theresa Falls is a research technician at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada. Dominic Guy Roy is a Ph.D candidate at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and a Ph.D candidate in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada. John Cameron Bell is a senior researcher at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and professor in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada. Marie-Claude Bourgeois-Daigneault is a postdoctoral fellow at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and a postdoctoral fellow in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada
| | - Dominic Guy Roy
- Theresa Falls is a research technician at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada. Dominic Guy Roy is a Ph.D candidate at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and a Ph.D candidate in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada. John Cameron Bell is a senior researcher at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and professor in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada. Marie-Claude Bourgeois-Daigneault is a postdoctoral fellow at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and a postdoctoral fellow in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada
| | - John Cameron Bell
- Theresa Falls is a research technician at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada. Dominic Guy Roy is a Ph.D candidate at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and a Ph.D candidate in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada. John Cameron Bell is a senior researcher at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and professor in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada. Marie-Claude Bourgeois-Daigneault is a postdoctoral fellow at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and a postdoctoral fellow in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada
| | - Marie-Claude Bourgeois-Daigneault
- Theresa Falls is a research technician at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada. Dominic Guy Roy is a Ph.D candidate at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and a Ph.D candidate in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada. John Cameron Bell is a senior researcher at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and professor in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada. Marie-Claude Bourgeois-Daigneault is a postdoctoral fellow at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and a postdoctoral fellow in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada
| |
Collapse
|
28
|
Novel Strategy to Control Transgene Expression Mediated by a Sendai Virus-Based Vector Using a Nonstructural C Protein and Endogenous MicroRNAs. PLoS One 2016; 11:e0164720. [PMID: 27764162 PMCID: PMC5072705 DOI: 10.1371/journal.pone.0164720] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 09/29/2016] [Indexed: 12/30/2022] Open
Abstract
Tissue-specific control of gene expression is an invaluable tool for studying various biological processes and medical applications. Efficient regulatory systems have been utilized to control transgene expression in various types of DNA viral or integrating viral vectors. However, existing regulatory systems are difficult to transfer into negative-strand RNA virus vector platforms because of significant differences in their transcriptional machineries. In this study, we developed a novel strategy for regulating transgene expression mediated by a cytoplasmic RNA vector based on a replication-defective and persistent Sendai virus (SeVdp). Because of the capacity of Sendai virus (SeV) nonstructural C proteins to specifically inhibit viral RNA synthesis, overexpression of C protein significantly reduced transgene expression mediated by SeVdp vectors. We found that SeV C overexpression concomitantly reduced SeVdp mRNA levels and genomic RNA synthesis. To control C expression, target sequences for an endogenous microRNA were incorporated into the 3′ untranslated region of the C genes. Incorporation of target sequences for miR-21 into the SeVdp vector restored transgene expression in HeLa cells by decreasing C expression. Furthermore, the SeVdp vector containing target sequences for let-7a enabled cell-specific control of transgene expression in human fibroblasts and induced pluripotent stem cells. Our findings demonstrate that SeV C can be used as an effective regulator for controlling transgene expression. This strategy will contribute to efficient and less toxic SeVdp-mediated gene transfer in various biological applications.
Collapse
|
29
|
Choi AH, O'Leary MP, Fong Y, Chen NG. From Benchtop to Bedside: A Review of Oncolytic Virotherapy. Biomedicines 2016; 4:biomedicines4030018. [PMID: 28536385 PMCID: PMC5344257 DOI: 10.3390/biomedicines4030018] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 12/14/2022] Open
Abstract
Oncolytic viruses (OVs) demonstrate the ability to replicate selectively in cancer cells, resulting in antitumor effects by a variety of mechanisms, including direct cell lysis and indirect cell death through immune-mediate host responses. Although the mechanisms of action of OVs are still not fully understood, major advances have been made in our understanding of how OVs function and interact with the host immune system, resulting in the recent FDA approval of the first OV for cancer therapy in the USA. This review provides an overview of the history of OVs, their selectivity for cancer cells, and their multifaceted mechanism of antitumor action, as well as strategies employed to augment selectivity and efficacy of OVs. OVs in combination with standard cancer therapies are also discussed, as well as a review of ongoing human clinical trials.
Collapse
Affiliation(s)
- Audrey H Choi
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | - Michael P O'Leary
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | - Yuman Fong
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA.
- Center for Gene Therapy, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | - Nanhai G Chen
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA.
- Center for Gene Therapy, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
30
|
Geisler A, Fechner H. MicroRNA-regulated viral vectors for gene therapy. World J Exp Med 2016; 6:37-54. [PMID: 27226955 PMCID: PMC4873559 DOI: 10.5493/wjem.v6.i2.37] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 03/02/2016] [Accepted: 03/17/2016] [Indexed: 02/06/2023] Open
Abstract
Safe and effective gene therapy approaches require targeted tissue-specific transfer of a therapeutic transgene. Besides traditional approaches, such as transcriptional and transductional targeting, microRNA-dependent post-transcriptional suppression of transgene expression has been emerging as powerful new technology to increase the specificity of vector-mediated transgene expression. MicroRNAs are small non-coding RNAs and often expressed in a tissue-, lineage-, activation- or differentiation-specific pattern. They typically regulate gene expression by binding to imperfectly complementary sequences in the 3' untranslated region (UTR) of the mRNA. To control exogenous transgene expression, tandem repeats of artificial microRNA target sites are usually incorporated into the 3' UTR of the transgene expression cassette, leading to subsequent degradation of transgene mRNA in cells expressing the corresponding microRNA. This targeting strategy, first shown for lentiviral vectors in antigen presenting cells, has now been used for tissue-specific expression of vector-encoded therapeutic transgenes, to reduce immune response against the transgene, to control virus tropism for oncolytic virotherapy, to increase safety of live attenuated virus vaccines and to identify and select cell subsets for pluripotent stem cell therapies, respectively. This review provides an introduction into the technical mechanism underlying microRNA-regulation, highlights new developments in this field and gives an overview of applications of microRNA-regulated viral vectors for cardiac, suicide gene cancer and hematopoietic stem cell therapy, as well as for treatment of neurological and eye diseases.
Collapse
|
31
|
MicroRNA-Detargeted Mengovirus for Oncolytic Virotherapy. J Virol 2016; 90:4078-4092. [PMID: 26865716 PMCID: PMC4810567 DOI: 10.1128/jvi.02810-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/31/2016] [Indexed: 12/12/2022] Open
Abstract
Mengovirus, a member of the Picornaviridae family, has a broad cell tropism and can cause encephalitis and myocarditis in multiple mammalian species. Attenuation has been achieved by shortening the polycytidine tract in the 5′ noncoding region (NCR). A poly(C)-truncated strain of mengovirus, vMC24, resulted in significant tumor regression in immunocompetent BALB/c mice bearing syngeneic MPC-11 plasmacytomas, but the associated toxicities were unacceptable. To enhance its safety profile, microRNA target sequences complementary to miR-124 or miR-125 (enriched in nervous tissue), miR-133 and miR-208 (enriched in cardiac tissue), or miR-142 (control; enriched in hematopoietic tissues) were inserted into the vMC24 NCRs. The microRNA-detargeted viruses showed reduced replication and cell killing specifically in cells expressing the cognate microRNAs, but certain insertions additionally were associated with nonspecific suppression of viral fitness in vivo. In vivo toxicity testing confirmed that miR-124 targets within the 5′ NCR suppressed virus replication in the central nervous system while miR-133 and miR-208 targets in the 3′ NCR suppressed viral replication in cardiac tissue. A dual-detargeted virus named vMC24-NC, with miR-124 targets in the 5′ NCR and miR-133 plus miR-208 targets in the 3′ NCR, showed the suppression of replication in both nervous and cardiac tissues but retained full oncolytic potency when administered by intratumoral (106 50% tissue culture infectious doses [TCID50]) or intravenous (107 to 108 TCID50) injection into BALB/c mice bearing MPC-11 plasmacytomas. Overall survival of vMC24-NC-treated tumor-bearing mice was significantly improved compared to that of nontreated mice. MicroRNA-detargeted mengoviruses offer a promising oncolytic virotherapy platform that merits further development for clinical translation. IMPORTANCE The clinical potential of oncolytic virotherapy for cancer treatment has been well demonstrated, justifying the continued development of novel oncolytic viruses with enhanced potency. Here, we introduce mengovirus as a novel oncolytic agent. Mengovirus is appealing as an oncolytic virotherapy platform because of its small size, simple genome structure, rapid replication cycle, and broad cell/species tropism. However, mengovirus can cause encephalomyelitis and myocarditis. It can be partially attenuated by shortening the poly(C) tract in the 5′ NCR but remains capable of damaging cardiac and nervous tissue. Here, we further enhanced the safety profile of a poly(C)-truncated mengovirus by incorporating muscle- and neuron-specific microRNA target sequences into the viral genome. This dual-detargeted virus has reduced pathogenesis but retained potent oncolytic activity. Our data show that microRNA targeting can be used to further increase the safety of an attenuated mengovirus, providing a basis for its development as an oncolytic platform.
Collapse
|
32
|
Pol J, Buqué A, Aranda F, Bloy N, Cremer I, Eggermont A, Erbs P, Fucikova J, Galon J, Limacher JM, Preville X, Sautès-Fridman C, Spisek R, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch-Oncolytic viruses and cancer therapy. Oncoimmunology 2016; 5:e1117740. [PMID: 27057469 PMCID: PMC4801444 DOI: 10.1080/2162402x.2015.1117740] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/03/2015] [Indexed: 02/06/2023] Open
Abstract
Oncolytic virotherapy relies on the administration of non-pathogenic viral strains that selectively infect and kill malignant cells while favoring the elicitation of a therapeutically relevant tumor-targeting immune response. During the past few years, great efforts have been dedicated to the development of oncolytic viruses with improved specificity and potency. Such an intense wave of investigation has culminated this year in the regulatory approval by the US Food and Drug Administration (FDA) of a genetically engineered oncolytic viral strain for use in melanoma patients. Here, we summarize recent preclinical and clinical advances in oncolytic virotherapy.
Collapse
Affiliation(s)
- Jonathan Pol
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Aitziber Buqué
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Fernando Aranda
- Group of Immune receptors of the Innate and Adaptive System, Institut d’Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Norma Bloy
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Isabelle Cremer
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 13, Center de Recherche des Cordeliers, Paris, France
| | | | | | - Jitka Fucikova
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Jérôme Galon
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Laboratory of Integrative Cancer Immunology, Centre de Recherche des Cordeliers, Paris, France
| | | | | | - Catherine Sautès-Fridman
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 13, Center de Recherche des Cordeliers, Paris, France
| | - Radek Spisek
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France
- INSERM, U1015, CICBT507, Villejuif, France
| | - Guido Kroemer
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
33
|
Jefferson A, Cadet VE, Hielscher A. The mechanisms of genetically modified vaccinia viruses for the treatment of cancer. Crit Rev Oncol Hematol 2015; 95:407-16. [PMID: 25900073 DOI: 10.1016/j.critrevonc.2015.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/18/2014] [Accepted: 04/02/2015] [Indexed: 02/06/2023] Open
Abstract
The use of oncolytic viruses for the treatment of cancer is an emerging field of cancer research and therapy. Oncolytic viruses are designed to induce tumor specific immunity while replicating selectively within cancer cells to cause lysis of the tumor cells. While there are several forms of oncolytic viruses, the use of vaccinia viruses for oncolysis may be more beneficial than other forms of oncolytic viruses. For example, vaccinia viruses have been shown to exert their anti-tumor effects through genetic engineering strategies which enhance their therapeutic efficacy. This paper will address some of the most common forms of genetically modified vaccinia viruses and will explore the mechanisms whereby they selectively target, enter and destroy cancer cells. Furthermore, this review will highlight how vaccinia viruses activate host immune responses against cancer cells and will address clinical trials evaluating the tumor-directed and killing efficacy of these viruses against solid tumors.
Collapse
Affiliation(s)
- Artrish Jefferson
- Department of Biomedical Sciences, Georgia-Philadelphia College of Osteopathic Medicine, Suwanee, GA 30024, United States
| | - Valerie E Cadet
- Department of Biomedical Sciences, Georgia-Philadelphia College of Osteopathic Medicine, Suwanee, GA 30024, United States
| | - Abigail Hielscher
- Department of Biomedical Sciences, Georgia-Philadelphia College of Osteopathic Medicine, Suwanee, GA 30024, United States.
| |
Collapse
|
34
|
Feng C, Tan M, Sun W, Shi Y, Xing Z. Attenuation of the influenza virus by microRNA response element in vivo and protective efficacy against 2009 pandemic H1N1 virus in mice. Int J Infect Dis 2015; 38:146-52. [PMID: 26163223 DOI: 10.1016/j.ijid.2015.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/29/2015] [Accepted: 07/02/2015] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The 2009 influenza pandemics underscored the need for effective vaccines to block the spread of influenza virus infection. Most live attenuated vaccines utilize cold-adapted, temperature-sensitive virus. An alternative to live attenuated virus is presented here, based on microRNA-induced gene silencing. METHODS In this study, miR-let-7b target sequences were inserted into the H1N1 genome to engineer a recombinant virus - miRT-H1N1. Female BALB/c mice were vaccinated intranasally with the miRT-H1N1 and challenged with a lethal dose of homologous virus. RESULTS This miRT-H1N1 virus was attenuated in mice, while it exhibited wild-type characteristics in chicken embryos. Mice vaccinated intranasally with the miRT-H1N1 responded with robust immunity that protected the vaccinated mice from a lethal challenge with the wild-type 2009 pandemic H1N1 virus. CONCLUSIONS These results indicate that the influenza virus containing microRNA response elements (MREs) is attenuated in vivo and can be used to design a live attenuated vaccine.
Collapse
Affiliation(s)
- Chunlai Feng
- Department of Respiratory and Critical Care Medicine, Jinling Hospital affiliated to Southern Medical University, Nanjing, China
| | - Mingming Tan
- Department of Respiratory and Critical Care Medicine, Jinling Hospital affiliated to Southern Medical University, Nanjing, China
| | - Wenkui Sun
- Department of Respiratory and Critical Care Medicine, Jinling Hospital affiliated to Southern Medical University, Nanjing, China
| | - Yi Shi
- Department of Respiratory and Critical Care Medicine, Jinling Hospital affiliated to Southern Medical University, Nanjing, China.
| | - Zheng Xing
- The Key Laboratory of Pharmaceutical Biotechnology and Medical School, Nanjing University, Nanjing, China; Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, University of Minnesota at Twin Cities, Saint Paul, Minnesota, USA.
| |
Collapse
|
35
|
Tsetsarkin KA, Liu G, Kenney H, Bustos-Arriaga J, Hanson CT, Whitehead SS, Pletnev AG. Dual miRNA targeting restricts host range and attenuates neurovirulence of flaviviruses. PLoS Pathog 2015; 11:e1004852. [PMID: 25906260 PMCID: PMC4408003 DOI: 10.1371/journal.ppat.1004852] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 04/03/2015] [Indexed: 12/31/2022] Open
Abstract
Mosquito-borne flaviviruses are among the most significant arboviral pathogens worldwide. Vaccinations and mosquito population control programs remain the most reliable means for flavivirus disease prevention, and live attenuated viruses remain one of the most attractive flavivirus vaccine platforms. Some live attenuated viruses are capable of infecting principle mosquito vectors, as demonstrated in the laboratory, which in combination with their intrinsic genetic instability could potentially lead to a vaccine virus reversion back to wild-type in nature, followed by introduction and dissemination of potentially dangerous viral strains into new geographic locations. To mitigate this risk we developed a microRNA-targeting approach that selectively restricts replication of flavivirus in the mosquito host. Introduction of sequences complementary to a mosquito-specific mir-184 and mir-275 miRNAs individually or in combination into the 3’NCR and/or ORF region resulted in selective restriction of dengue type 4 virus (DEN4) replication in mosquito cell lines and adult Aedes mosquitos. Moreover a combined targeting of DEN4 genome with mosquito-specific and vertebrate CNS-specific mir-124 miRNA can silence viral replication in two evolutionally distant biological systems: mosquitoes and mouse brains. Thus, this approach can reinforce the safety of newly developed or existing vaccines for use in humans and could provide an additional level of biosafety for laboratories using viruses with altered pathogenic or transmissibility characteristics. Despite advances in developing flavivirus live attenuated vaccine (LAV) candidates, a concern exists that they might not be safe in the environment due to their intrinsic genetic instability leading to potential reversion back to wild-type that could be associated with possible dissemination of these mutated viruses by mosquitoes. Here, we describe a miRNA targeting approach that can be adapted to support the design of environmentally-safe LAV restricted in their ability to infect and be transmitted by competent vectors, thereby limiting the possibility of subsequent viral evolution and unpredictable consequences. A combined co-targeting of flavivirus genome with mosquito- and vertebrate brain- specific miRNAs resulted in simultaneous restriction of dengue virus infection and replication in mosquitoes and in brains of newborn mice indicating that the miRNA-mediated approach for virus attenuation represents an alternative to non-specific strategies for the control of viral tissue tropism and pathogenesis in the vertebrate host and replicative efficacy in permissive vectors.
Collapse
Affiliation(s)
- Konstantin A. Tsetsarkin
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Guangping Liu
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Heather Kenney
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jose Bustos-Arriaga
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christopher T. Hanson
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stephen S. Whitehead
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alexander G. Pletnev
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
36
|
Ruiz AJ, Russell SJ. MicroRNAs and oncolytic viruses. Curr Opin Virol 2015; 13:40-8. [PMID: 25863717 DOI: 10.1016/j.coviro.2015.03.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/12/2015] [Accepted: 03/16/2015] [Indexed: 02/07/2023]
Abstract
MicroRNAs regulate gene expression in mammalian cells and often exhibit tissue-specific expression patterns. Incorporation of microRNA target sequences can be used to control exogenous gene expression and viral tropism in specific tissues to enhance the therapeutic indices of oncolytic viruses expressing therapeutic transgenes. Continued development of this targeting strategy has resulted in the generation of unattenuated oncolytic viruses with enhanced potency, broad species-tropisms and reduced off-target toxicities in multiple-tissues simultaneously. Furthermore, oncolytic viruses have been used to enhance the delivery, duration and therapeutic efficacy of microRNA-based therapeutics designed to either restore or inhibit the function of dysregulated microRNAs in cancer cells. Recent efforts focused on combining oncolytic virotherapy and microRNA regulation have generated increasingly potent and safe cancer therapeutics.
Collapse
Affiliation(s)
- Autumn J Ruiz
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, United States
| | - Stephen J Russell
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, United States.
| |
Collapse
|
37
|
Li J, Arévalo MT, Diaz-Arévalo D, Chen Y, Choi JG, Zeng M. Generation of a safe and effective live viral vaccine by virus self-attenuation using species-specific artificial microRNA. J Control Release 2015; 207:70-6. [PMID: 25858415 DOI: 10.1016/j.jconrel.2015.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 02/12/2015] [Accepted: 04/02/2015] [Indexed: 10/23/2022]
Abstract
Vaccination with live attenuated vaccines (LAVs) is an effective way for prevention of infectious disease. While several methods are employed to create them, efficacy and safety are still a challenge. In this study, we evaluated the feasibility of creating a self-attenuated RNA virus expressing a functional species-specific artificial microRNA. Using influenza virus as a model, we produced an attenuated virus carrying a mammalian-specific miR-93 expression cassette that expresses a viral nucleoprotein (NP)-specific artificial microRNA from an insertion site within the non-structural (NS) gene segment. The resulting engineered live-attenuated influenza virus, PR8-amiR-93NP, produced mature and functional artificial microRNA against NP in mammalian cells, but not in avian cells. Furthermore, PR8-amiR-93NP was attenuated by 10(4) fold in mice compared with its wild-type counterpart. Importantly, intranasal immunization with PR8-amiR-93NP conferred cross-protective immunity against heterologous influenza virus strains. In short, this method provides a safe and effective platform for creation of live attenuated RNA viral vaccines.
Collapse
Affiliation(s)
- Junwei Li
- Center of Excellence for Infectious Diseases, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, TX 79905, USA
| | - Maria T Arévalo
- Center of Excellence for Infectious Diseases, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, TX 79905, USA
| | - Diana Diaz-Arévalo
- Center of Excellence for Infectious Diseases, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, TX 79905, USA
| | - Yanping Chen
- Center of Excellence for Infectious Diseases, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, TX 79905, USA
| | - Jang-Gi Choi
- Center of Excellence for Infectious Diseases, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, TX 79905, USA
| | - Mingtao Zeng
- Center of Excellence for Infectious Diseases, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, TX 79905, USA.
| |
Collapse
|
38
|
Pfaller CK, Cattaneo R, Schnell MJ. Reverse genetics of Mononegavirales: How they work, new vaccines, and new cancer therapeutics. Virology 2015; 479-480:331-44. [PMID: 25702088 DOI: 10.1016/j.virol.2015.01.029] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 01/26/2015] [Accepted: 01/30/2015] [Indexed: 12/24/2022]
Abstract
The order Mononegavirales includes five families: Bornaviridae, Filoviridae, Nyamaviridae, Paramyxoviridae, and Rhabdoviridae. The genome of these viruses is one molecule of negative-sense single strand RNA coding for five to ten genes in a conserved order. The RNA is not infectious until packaged by the nucleocapsid protein and transcribed by the polymerase and co-factors. Reverse genetics approaches have answered fundamental questions about the biology of Mononegavirales. The lack of icosahedral symmetry and modular organization in the genome of these viruses has facilitated engineering of viruses expressing fluorescent proteins, and these fluorescent proteins have provided important insights about the molecular and cellular basis of tissue tropism and pathogenesis. Studies have assessed the relevance for virulence of different receptors and the interactions with cellular proteins governing the innate immune responses. Research has also analyzed the mechanisms of attenuation. Based on these findings, ongoing clinical trials are exploring new live attenuated vaccines and the use of viruses re-engineered as cancer therapeutics.
Collapse
Affiliation(s)
| | - Roberto Cattaneo
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | - Matthias J Schnell
- Department of Microbiology and Immunology, Philadelphia, PA 19107, USA; Jefferson Vaccine Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
39
|
Bofill-De Ros X, Gironella M, Fillat C. miR-148a- and miR-216a-regulated oncolytic adenoviruses targeting pancreatic tumors attenuate tissue damage without perturbation of miRNA activity. Mol Ther 2014; 22:1665-77. [PMID: 24895996 PMCID: PMC4435498 DOI: 10.1038/mt.2014.98] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 05/23/2014] [Indexed: 12/12/2022] Open
Abstract
Oncolytic virotherapy shows promise for pancreatic ductal adenocarcinoma (PDAC) treatment, but there is the need to minimize associated-toxicities. In the current work, we engineered artificial target sites recognized by miR-216a and/or miR-148a to provide pancreatic tumor-selectivity to replication-competent adenoviruses (Ad-miRTs) and improve their safety profile. Expression analysis in PDAC patients identified miR-148a and miR-216a downregulated in resectable (FC(miR-148a) = 0.044, P < 0.05; FC(miR-216a) = 0.017, P < 0.05), locally advanced (FC(miR-148a) = 0.038, P < 0.001; FC(miR-216a) = 0.001, P < 0.001) and metastatic tumors (FC(miR-148a) = 0.041, P < 0.01; FC(miR-216a) = 0.002, P < 0.001). In mouse tissues, miR-216a was highly specific of the exocrine pancreas whereas miR-148a was abundant in the exocrine pancreas, Langerhans islets, and the liver. In line with the miRNA content and the miRNA target site design, we show E1A gene expression and viral propagation efficiently controlled in Ad-miRT-infected cells. Consequently, Ad-miRT-infected mice presented reduced pancreatic and liver damage without perturbation of the endogenous miRNAs and their targets. Interestingly, the 8-miR148aT design showed repressing activity by all miR-148/152 family members with significant detargeting effects in the pancreas and liver. Ad-miRTs preserved their oncolytic activity and triggered strong antitumoral responses. This study provides preclinical evidences of miR-148a and miR-216a target site insertions to confer adenoviral selectivity and proposes 8-miR148aT as an optimal detargeting strategy for genetically-engineered therapies against PDAC.
Collapse
Affiliation(s)
- Xavier Bofill-De Ros
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Meritxell Gironella
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Cristina Fillat
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer-IDIBAPS, Rosselló 149–153, 08036-Barcelona, Spain. E-mail:
| |
Collapse
|
40
|
MicroRNA-mediated multi-tissue detargeting of oncolytic measles virus. Cancer Gene Ther 2014; 21:373-80. [PMID: 25145311 DOI: 10.1038/cgt.2014.40] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 07/06/2014] [Accepted: 07/07/2014] [Indexed: 02/07/2023]
Abstract
Precise oncotropism is required for successful systemic administration of next-generation oncolytic measles viruses (MVs). We have previously established a system for efficient post-entry targeting by insertion of synthetic microRNA target sites (miRTS) into the MV genome, thereby repressing replication in the presence of cognate microRNAs. Thus, differential expression of microRNAs, as frequently observed in normal compared with malignant tissues, can be exploited to increase vector specificity and safety. Here we report the combination of miRTS for different microRNAs in a single vector to detarget pivotal organs at risk during systemic administration (liver, brain, gastrointestinal tract). Accordingly, miRTS for miR-122, miR-7 and miR-148a that are enriched in these tissues were inserted to create multi-tissue-detargeted MV (MV-EGFP(mtd)). Replication of MV-EGFP(mtd) is repressed in cell lines as well as in non-transformed primary human hepatocytes and liver slices expressing cognate microRNAs. Oncolytic potency of MV-EGFP(mtd) is retained in a model of pancreatic cancer in vitro and in vivo. This work is a proof-of-concept that favorable expression profiles of multiple microRNAs can be exploited concomitantly to reshape the tropism of MV without compromising oncolytic efficacy. This strategy can be adapted to different vectors and cancer entities for safe and efficient high-dose systemic administration in clinical trials.
Collapse
|
41
|
The Mammalian response to virus infection is independent of small RNA silencing. Cell Rep 2014; 8:114-25. [PMID: 24953656 DOI: 10.1016/j.celrep.2014.05.038] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 04/24/2014] [Accepted: 05/14/2014] [Indexed: 01/18/2023] Open
Abstract
A successful cellular response to virus infection is essential for evolutionary survival. In plants, arthropods, and nematodes, cellular antiviral defenses rely on RNAi. Interestingly, the mammalian response to virus is predominantly orchestrated through interferon (IFN)-mediated induction of antiviral proteins. Despite the potency of the IFN system, it remains unclear whether mammals also have the capacity to employ antiviral RNAi. Here, we investigated this by disabling IFN function, small RNA function, or both activities in the context of virus infection. We find that loss of small RNAs in the context of an in vivo RNA virus infection lowers titers due to reduced transcriptional repression of the host antiviral response. In contrast, enabling a virus with the capacity to inhibit the IFN system results in increased titers. Taken together, these results indicate that small RNA silencing is not a physiological contributor to the IFN-mediated cellular response to virus infection.
Collapse
|
42
|
Lin AH, Timberlake N, Logg CR, Liu Y, Kamijima S, Diago O, Wong K, Gammon DK, Ostertag D, Hacke K, Yang EC, Gruber H, Kasahara N, Jolly DJ. MicroRNA 142-3p attenuates spread of replicating retroviral vector in hematopoietic lineage-derived cells while maintaining an antiviral immune response. Hum Gene Ther 2014; 25:759-71. [PMID: 24825189 DOI: 10.1089/hum.2012.216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We are developing a retroviral replicating vector (RRV) encoding cytosine deaminase as an anticancer agent for gliomas. Despite its demonstrated natural selectivity for tumors, and other safety features, such a virus could potentially cause off-target effects by productively infecting healthy tissues. Here, we investigated whether incorporation of a hematopoietic lineage-specific microRNA target sequence in RRV further restricts replication in hematopoietic lineage-derived human cells in vitro and in murine lymphoid tissues in vivo. One or four copies of a sequence perfectly complementary to the guide strand of microRNA 142-3p were inserted into the 3' untranslated region of the RRV genome expressing the transgene encoding green fluorescent protein (GFP). Viral spread and GFP expression of these vectors in hematopoietic lineage cells in vitro and in vivo were measured by qPCR, qRT-PCR, and flow cytometry. In hematopoietic lineage-derived human cell lines and primary human stimulated peripheral blood mononuclear cells, vectors carrying the 142-3pT sequence showed a remarkable decrease in GFP expression relative to the parental vector, and viral spread was not observed over time. In a syngeneic subcutaneous mouse tumor model, RRVs with and without the 142-3pT sequences spread equally well in tumor cells; were strongly repressed in blood, bone marrow, and spleen; and generated antiviral immune responses. In an immune-deficient mouse model, RRVs with 142-3pT sequences were strongly repressed in blood, bone marrow, and spleen compared with unmodified RRV. Tissue-specific microRNA-based selective attenuation of RRV replication can maintain antiviral immunity, and if needed, provide an additional safeguard to this delivery platform for gene therapy applications.
Collapse
|
43
|
Viral oncolysis - can insights from measles be transferred to canine distemper virus? Viruses 2014; 6:2340-75. [PMID: 24921409 PMCID: PMC4074931 DOI: 10.3390/v6062340] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 12/12/2022] Open
Abstract
Neoplastic diseases represent one of the most common causes of death among humans and animals. Currently available and applied therapeutic options often remain insufficient and unsatisfactory, therefore new and innovative strategies and approaches are highly needed. Periodically, oncolytic viruses have been in the center of interest since the first anecdotal description of their potential usefulness as an anti-tumor treatment concept. Though first reports referred to an incidental measles virus infection causing tumor regression in a patient suffering from lymphoma several decades ago, no final treatment concept has been developed since then. However, numerous viruses, such as herpes-, adeno- and paramyxoviruses, have been investigated, characterized, and modified with the aim to generate a new anti-cancer treatment option. Among the different viruses, measles virus still represents a highly interesting candidate for such an approach. Numerous different tumors of humans including malignant lymphoma, lung and colorectal adenocarcinoma, mesothelioma, and ovarian cancer, have been studied in vitro and in vivo as potential targets. Moreover, several concepts using different virus preparations are now in clinical trials in humans and may proceed to a new treatment option. Surprisingly, only few studies have investigated viral oncolysis in veterinary medicine. The close relationship between measles virus (MV) and canine distemper virus (CDV), both are morbilliviruses, and the fact that numerous tumors in dogs exhibit similarities to their human counterpart, indicates that both the virus and species dog represent a highly interesting translational model for future research in viral oncolysis. Several recent studies support such an assumption. It is therefore the aim of the present communication to outline the mechanisms of morbillivirus-mediated oncolysis and to stimulate further research in this potentially expanding field of viral oncolysis in a highly suitable translational animal model for the benefit of humans and dogs.
Collapse
|
44
|
Pol J, Bloy N, Obrist F, Eggermont A, Galon J, Cremer I, Erbs P, Limacher JM, Preville X, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch:: Oncolytic viruses for cancer therapy. Oncoimmunology 2014; 3:e28694. [PMID: 25097804 PMCID: PMC4091053 DOI: 10.4161/onci.28694] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 12/11/2022] Open
Abstract
Oncolytic viruses are natural or genetically modified viral species that selectively infect and kill neoplastic cells. Such an innate or exogenously conferred specificity has generated considerable interest around the possibility to employ oncolytic viruses as highly targeted agents that would mediate cancer cell-autonomous anticancer effects. Accumulating evidence, however, suggests that the therapeutic potential of oncolytic virotherapy is not a simple consequence of the cytopathic effect, but strongly relies on the induction of an endogenous immune response against transformed cells. In line with this notion, superior anticancer effects are being observed when oncolytic viruses are engineered to express (or co-administered with) immunostimulatory molecules. Although multiple studies have shown that oncolytic viruses are well tolerated by cancer patients, the full-blown therapeutic potential of oncolytic virotherapy, especially when implemented in the absence of immunostimulatory interventions, remains unclear. Here, we cover the latest advances in this active area of translational investigation, summarizing high-impact studies that have been published during the last 12 months and discussing clinical trials that have been initiated in the same period to assess the therapeutic potential of oncolytic virotherapy in oncological indications.
Collapse
Affiliation(s)
- Jonathan Pol
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Paris, France
| | - Norma Bloy
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Paris, France
| | - Florine Obrist
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Paris, France
| | | | - Jérôme Galon
- Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France ; Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, UMRS1138; Paris, France ; Laboratory of Integrative Cancer Immunology, Centre de Recherche des Cordeliers; Paris, France
| | - Isabelle Cremer
- Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France ; Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, UMRS1138; Paris, France ; Equipe 13, Centre de Recherche des Cordeliers; Paris, France
| | | | | | | | - Laurence Zitvogel
- Gustave Roussy; Villejuif, France ; INSERM, U1015; CICBT507; Villejuif, France
| | - Guido Kroemer
- INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France ; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP; Paris, France ; Metabolomics and Cell Biology Platforms; Gustave Roussy; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France
| |
Collapse
|
45
|
Human metapneumovirus infection induces significant changes in small noncoding RNA expression in airway epithelial cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e163. [PMID: 24845106 PMCID: PMC4040629 DOI: 10.1038/mtna.2014.18] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 04/12/2014] [Indexed: 12/14/2022]
Abstract
Small noncoding RNAs (sncRNAs), such as microRNAs (miRNA), virus-derived sncRNAs, and more recently identified tRNA-derived RNA fragments, are critical to posttranscriptional control of genes. Upon viral infection, host cells alter their sncRNA expression as a defense mechanism, while viruses can circumvent host defenses and promote their own propagation by affecting host cellular sncRNA expression or by expressing viral sncRNAs. Therefore, characterizing sncRNA profiles in response to viral infection is an important tool for understanding host–virus interaction, and for antiviral strategy development. Human metapneumovirus (hMPV), a recently identified pathogen, is a major cause of lower respiratory tract infections in infants and children. To investigate whether sncRNAs play a role in hMPV infection, we analyzed the changes in sncRNA profiles of airway epithelial cells in response to hMPV infection using ultrahigh-throughput sequencing. Of the cloned sncRNAs, miRNA was dominant in A549 cells, with the percentage of miRNA increasing in a time-dependent manner after the infection. In addition, several hMPV-derived sncRNAs and corresponding ribonucleases for their biogenesis were identified. hMPV M2-2 protein was revealed to be a key viral protein regulating miRNA expression. In summary, this study revealed several novel aspects of hMPV-mediated sncRNA expression, providing a new perspective on hMPV–host interactions.
Collapse
|
46
|
Shapiro JS, Schmid S, Aguado LC, Sabin LR, Yasunaga A, Shim JV, Sachs D, Cherry S, tenOever BR. Drosha as an interferon-independent antiviral factor. Proc Natl Acad Sci U S A 2014; 111:7108-13. [PMID: 24778219 PMCID: PMC4024876 DOI: 10.1073/pnas.1319635111] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Utilization of antiviral small interfering RNAs is thought to be largely restricted to plants, nematodes, and arthropods. In an effort to determine whether a physiological interplay exists between the host small RNA machinery and the cellular response to virus infection in mammals, we evaluated antiviral activity in the presence and absence of Dicer or Drosha, the RNase III nucleases responsible for generating small RNAs. Although loss of Dicer did not compromise the cellular response to virus infection, Drosha deletion resulted in a significant increase in virus levels. Here, we demonstrate that diverse RNA viruses trigger exportin 1 (XPO1/CRM1)-dependent Drosha translocation into the cytoplasm in a manner independent of de novo protein synthesis or the canonical type I IFN system. Additionally, increased virus infection in the absence of Drosha was not due to a loss of viral small RNAs but, instead, correlated with cleavage of viral genomic RNA and modulation of the host transcriptome. Taken together, we propose that Drosha represents a unique and conserved arm of the cellular defenses used to combat virus infection.
Collapse
Affiliation(s)
- Jillian S Shapiro
- Department of Microbiology,Icahn Graduate School of Biomedical Sciences, and
| | | | - Lauren C Aguado
- Department of Microbiology,Icahn Graduate School of Biomedical Sciences, and
| | - Leah R Sabin
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Ari Yasunaga
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | | | - David Sachs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Benjamin R tenOever
- Department of Microbiology,Icahn Graduate School of Biomedical Sciences, and
| |
Collapse
|
47
|
Muik A, Stubbert LJ, Jahedi RZ, Geiβ Y, Kimpel J, Dold C, Tober R, Volk A, Klein S, Dietrich U, Yadollahi B, Falls T, Miletic H, Stojdl D, Bell JC, von Laer D. Re-engineering vesicular stomatitis virus to abrogate neurotoxicity, circumvent humoral immunity, and enhance oncolytic potency. Cancer Res 2014; 74:3567-78. [PMID: 24812275 DOI: 10.1158/0008-5472.can-13-3306] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As cancer treatment tools, oncolytic viruses (OV) have yet to realize what some see as their ultimate clinical potential. In this study, we have engineered a chimeric vesicular stomatitis virus (VSV) that is devoid of its natural neurotoxicity while retaining potent oncolytic activity. The envelope glycoprotein (G) of VSV was replaced with a variant glycoprotein of the lymphocytic choriomeningitis virus (LCMV-GP), creating a replicating therapeutic, rVSV(GP), that is benign in normal brain but can effectively eliminate brain cancer in multiple preclinical tumor models in vivo. Furthermore, it can be safely administered systemically to mice and displays greater potency against a spectrum of human cancer cell lines than current OV candidates. Remarkably, rVSV(GP) escapes humoral immunity, thus, for the first time, allowing repeated systemic OV application without loss of therapeutic efficacy. Taken together, rVSV(GP) offers a considerably improved OV platform that lacks several of the major drawbacks that have limited the clinical potential of this technology to date.
Collapse
Affiliation(s)
- Alexander Muik
- Authors' Affiliations: Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Lawton J Stubbert
- Ottawa Hospital Research Institute, Centre for Innovative Cancer Research
| | | | - Yvonne Geiβ
- Authors' Affiliations: Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Janine Kimpel
- Institute for Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Catherine Dold
- Institute for Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Reinhard Tober
- Institute for Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Andreas Volk
- Authors' Affiliations: Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Sabine Klein
- Ottawa Hospital Research Institute, Centre for Innovative Cancer Research
| | - Ursula Dietrich
- Authors' Affiliations: Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Beta Yadollahi
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Theresa Falls
- Ottawa Hospital Research Institute, Centre for Innovative Cancer Research
| | - Hrvoje Miletic
- Department of Biomedicine, University of Bergen; Department of Pathology, Haukeland University Hospital, Bergen, Norway; and
| | - David Stojdl
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - John C Bell
- Ottawa Hospital Research Institute, Centre for Innovative Cancer Research
| | - Dorothee von Laer
- Institute for Virology, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
48
|
Teterina NL, Liu G, Maximova OA, Pletnev AG. Silencing of neurotropic flavivirus replication in the central nervous system by combining multiple microRNA target insertions in two distinct viral genome regions. Virology 2014; 456-457:247-58. [PMID: 24889244 DOI: 10.1016/j.virol.2014.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 02/28/2014] [Accepted: 04/01/2014] [Indexed: 01/23/2023]
Abstract
In recent years, microRNA-targeting has become an effective strategy for selective control of tissue-tropism and pathogenesis of both DNA and RNA viruses. Here, using a neurotropic flavivirus as a model, we demonstrate that simultaneous miRNA targeting of the viral genome in the open reading frame and 3'-noncoding regions for brain-expressed miRNAs had an additive effect and produced a more potent attenuation of the virus compared to separate targeting of those regions. Multiple miRNA co-targeting of these two distantly located regions completely abolished the virus neurotropism as no viral replication was detected in the developing brain of neonatal mice. Furthermore, no viral antigens were detected in neurons, and neuronal integrity in the brain of mice was well preserved. This miRNA co-targeting approach can be adapted for other viruses in order to minimize their replication in a cell- or tissue-type specific manner, but most importantly, to prevent virus escape from miRNA-mediated silencing.
Collapse
Affiliation(s)
- Natalya L Teterina
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Guangping Liu
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Olga A Maximova
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Alexander G Pletnev
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
49
|
Kueberuwa G, Cawood R, Tedcastle A, Seymour LW. Tissue-specific attenuation of oncolytic sindbis virus without compromised genetic stability. Hum Gene Ther Methods 2014; 25:154-65. [PMID: 24568203 DOI: 10.1089/hgtb.2013.202] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Wild-type Sindbis virus (SV) shows promise as an oncolytic agent, although potential off-target replication is a safety concern. To remove possible pathology reflecting virus replication in liver, muscle, and/or hematopoietic cells, microRNA (miR)-response elements (MREs) to liver-specific miR122, muscle-specific miR133a and miR206, or hematopoietic-specific miR142-3p were inserted into the Sindbis viral genome. We compared the effectiveness of MREs in two distinct genomic locations and found better tissue-specific attenuation when they were inserted into the structural polyprotein coding region (up to 6000-fold selectivity with miR142-3p) rather than into the 3' untranslated region (up to 850-fold with miR142-3p). While this degree of tissue-specific attenuation may be effective for relieving pathology in vivo, genetic instability of RNA viruses raises concerns over the mutation or loss of MREs conferring safety. Genetically modified SVs containing a reporter transgene, used as a surrogate for virus replication, mutated quickly in vitro, losing 50% transgene sequence within 6.2 passages. Using a shorter insert containing MREs but no transgene, complete genetic stability was observed over at least 10 passages. We conclude that SV may be genetically modified to improve clinical properties, but attention must be paid to ensure that genetic stability is sufficient for intended applications.
Collapse
Affiliation(s)
- Gray Kueberuwa
- Department of Oncology, University of Oxford , Headington, Oxford OX3 7DQ, United Kingdom
| | | | | | | |
Collapse
|
50
|
Pavlova GV, Baklaushev VP, Ivanova MA, Goriaĭnov SA, Rybalkina EI, Kopylov AM, Chekhonin VP, Potapov AA, Konovalov AN. Modern molecular approaches to diagnosis and treatment of high-grade brain gliomas. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2014; 78:85-100. [PMID: 25874291 DOI: 10.17116/neiro201478685-100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The review analyzes the current state of the problem of diagnosis and therapy of high-grade gliomas on the basis of the most promising present-day approaches. The diagnostic and treatment perspectives of the molecular genetic analysis of glioblastoma markers located on the tumor cell surface are considered. Gene therapy and the use of dendritic cells and oncolytic viruses are considered as the most interesting approaches to therapy of high-grade gliomas.
Collapse
Affiliation(s)
| | - V P Baklaushev
- Natsional'nyĭ issledovatel'skiĭ meditsinskiĭ universitet im. N.I. Pirogova Minzdrava Rossii; Gosudarstvennyĭ nauchnyĭ tsentr sotsial'noĭ i sudebnoĭ psikhiatrii im. V.P. Serbskogo Minzdrava Rossii
| | - M A Ivanova
- Khimicheskiĭ fakul'tet Moskovskogo gosudarstvennogo universiteta im. M.V. Lomonosova
| | - S A Goriaĭnov
- FGBNU "Nauchno-issledovatel'skiĭ institut neĭrokhirurgii im. akad. N.N. Burdenko"
| | - E Iu Rybalkina
- FGBNU "Rossiĭskiĭ onkologicheskiĭ nauchnyĭ tsentr im. N.N. Blokhina", Moskva
| | - A M Kopylov
- Khimicheskiĭ fakul'tet Moskovskogo gosudarstvennogo universiteta im. M.V. Lomonosova
| | - V P Chekhonin
- Natsional'nyĭ issledovatel'skiĭ meditsinskiĭ universitet im. N.I. Pirogova Minzdrava Rossii; Gosudarstvennyĭ nauchnyĭ tsentr sotsial'noĭ i sudebnoĭ psikhiatrii im. V.P. Serbskogo Minzdrava Rossii
| | - A A Potapov
- FGBNU "Nauchno-issledovatel'skiĭ institut neĭrokhirurgii im. akad. N.N. Burdenko"
| | - A N Konovalov
- FGBNU "Nauchno-issledovatel'skiĭ institut neĭrokhirurgii im. akad. N.N. Burdenko"
| |
Collapse
|