1
|
Chen J, Li P, Zou W, Li J, Jiang Y, Li L, Hao P, Gao Z, Hao J, Shi X, Li C. Chicken interferon-induced transmembrane proteins inhibit Newcastle disease virus infection by affecting viral entry and W protein expression. Vet Res 2025; 56:104. [PMID: 40399912 DOI: 10.1186/s13567-025-01530-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/17/2025] [Indexed: 05/23/2025] Open
Abstract
Interferon-induced transmembrane proteins (IFITMs) are essential components of the innate immune system, demonstrating potent resistance to various enveloped viruses (such as influenza, West Nile, and dengue viruses) both in laboratory settings and in living organisms. Newcastle disease (ND), resulting from Newcastle disease virus (NDV), is a severe avian viral ailment with notable economic impact due to its significant mortality and morbidity rates. On the basis of the efficient antiviral effects of IFITMs, an in-depth study of the role and mechanism of NDV inhibition by chicken IFITMs (chIFITMs) is highly important for the prevention and control of this disease. In this study, we found that transient overexpression of chIFITMs effectively inhibited NDV (NDV Lasota, NDV Na) infection in DF-1 cells, with the highest inhibition rates of up to 89% and 99%, respectively, and that there was no significant difference in the antiviral effects of chIFITM1/2/3, which were not significantly different. Virus‒cell binding-entry assays revealed that chIFITMs restrict the entry process of NDV. Deleting endogenous chIFITMs enhances viral replication (more than 1.27-fold) and diminishes chIFNL3-mediated antiviral effects. Concurrently, overexpressing chIFITMs influences the expression level of the W protein; and co-immunoprecipitation experiments confirmed interaction between them. These findings suggest that the W protein could represent a novel target for the inhibition of NDV by chIFITMs. In summary, our results provide the initial comprehensive analysis of the antiviral effects of chIFITMs against NDV. This observation suggests that IFITMs are important barriers against zoonotic infections and important targets against viral invasion.
Collapse
Affiliation(s)
- Jing Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, 130012, China
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Peiheng Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Wancheng Zou
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Ju Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, 130012, China
| | - Yuhang Jiang
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Letian Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Pengfei Hao
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Zihan Gao
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Jiayi Hao
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Xiaoshuang Shi
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| |
Collapse
|
2
|
Sukegawa M, Miyagawa Y, Kuroda S, Yamazaki Y, Yamamoto M, Adachi K, Sato H, Sato Y, Taniai N, Yoshida H, Umezawa A, Sakai M, Okada T. Mesenchymal stem cell origin contributes to the antitumor effect of oncolytic virus carriers. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200896. [PMID: 39554905 PMCID: PMC11568361 DOI: 10.1016/j.omton.2024.200896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/18/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024]
Abstract
Oncolytic virotherapy shows promise as a cancer treatment approach; however, its systemic application is hindered by antibody neutralization. This issue can be overcome by using mesenchymal stem cells (MSCs) as carrier cells for oncolytic viruses (OVs). However, it remains elusive whether MSC source influences the antitumor effect. Here, we demonstrate that their source affects the migration ability and oncolytic activity of OV-loaded MSCs. Among human MSCs derived from different tissues, bone marrow-derived MSCs (BMMSCs) showed a high migration ability toward cancer cells in two- and three-dimensional MSC-cancer cell co-culture models. Comprehensive gene expression and Gene Ontology-based functional analyses suggested that genes involved in cell migration and cytokine response influence the cancer-specific tropism of BMMSCs. Furthermore, MSC origin affected the susceptibility to OVs, including cytotoxicity resistance and OV release from MSCs. MSC-mediated OV delivery significantly increased the viral spread and antitumor activity compared with delivery by OVs alone, and OV-loaded BMMSCs demonstrated the most potent antitumor effect among OV-loaded MSCs. Our results offer promising insights into cancer gene therapy with carrier cells and can help with the selection of an appropriate MSC source for MSC-based OV therapy.
Collapse
Affiliation(s)
- Makoto Sukegawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
- Department of Gastrointestinal Surgery, Graduate School of Medicine, Nippon Medical School Musashikosugi Hospital, Kawasaki, Japan
- Department of Surgery, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yoshitaka Miyagawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Seiji Kuroda
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yoshiyuki Yamazaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Motoko Yamamoto
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Kumi Adachi
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Hirofumi Sato
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yuriko Sato
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Nobuhiko Taniai
- Department of Gastrointestinal Surgery, Graduate School of Medicine, Nippon Medical School Musashikosugi Hospital, Kawasaki, Japan
| | - Hiroshi Yoshida
- Department of Surgery, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan
| | - Mashito Sakai
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Takashi Okada
- Division of Molecular and Medical Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Xiao R, Jin H, Huang F, Huang B, Wang H, Wang YG. Oncolytic virotherapy for hepatocellular carcinoma: A potent immunotherapeutic landscape. World J Gastrointest Oncol 2024; 16:2867-2876. [PMID: 39072175 PMCID: PMC11271782 DOI: 10.4251/wjgo.v16.i7.2867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/24/2024] [Accepted: 05/13/2024] [Indexed: 07/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a systemic disease with augmented malignant degree, high mortality and poor prognosis. Since the establishment of the immune mechanism of tumor therapy, people have realized that immunotherapy is an effective means for improvement of HCC patient prognosis. Oncolytic virus is a novel immunotherapy drug, which kills tumor cells and exempts normal cells by directly lysing tumor and inducing anti-tumor immune response, and it has been extensively examined as an HCC therapy. This editorial discusses oncolytic viruses for the treatment of HCC, emphasizing viral immunotherapy strategies and clinical applications related to HCC.
Collapse
Affiliation(s)
- Rong Xiao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| | - Hao Jin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| | - Fang Huang
- Department of Pathology, Laboratory Medicine Center, Zhejiang Provincial Peoples’ Hospital, Peoples’ Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Biao Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| | - Hui Wang
- Department of Oncology, Zhejiang Xiaoshan Hospital, Hangzhou 310018, Zhejiang Province, China
| | - Yi-Gang Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| |
Collapse
|
4
|
Iyer M, Ravichandran N, Karuppusamy PA, Gnanarajan R, Yadav MK, Narayanasamy A, Vellingiri B. Molecular insights and promise of oncolytic virus based immunotherapy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 140:419-492. [PMID: 38762277 DOI: 10.1016/bs.apcsb.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Discovering a therapeutic that can counteract the aggressiveness of this disease's mechanism is crucial for improving survival rates for cancer patients and for better understanding the most different types of cancer. In recent years, using these viruses as an anticancer therapy has been thought to be successful. They mostly work by directly destroying cancer cells, activating the immune system to fight cancer, and expressing exogenous effector genes. For the treatment of tumors, oncolytic viruses (OVs), which can be modified to reproduce only in tumor tissues and lyse them while preserving the healthy non-neoplastic host cells and reinstating antitumor immunity which present a novel immunotherapeutic strategy. OVs can exist naturally or be created in a lab by altering existing viruses. These changes heralded the beginning of a new era of less harmful virus-based cancer therapy. We discuss three different types of oncolytic viruses that have already received regulatory approval to treat cancer as well as clinical research using oncolytic adenoviruses. The primary therapeutic applications, mechanism of action of oncolytic virus updates, future views of this therapy will be covered in this chapter.
Collapse
Affiliation(s)
- Mahalaxmi Iyer
- Department of Microbiology, Central University of Punjab, Bathinda, India
| | - Nandita Ravichandran
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | | | - Roselin Gnanarajan
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Mukesh Kumar Yadav
- Department of Microbiology, Central University of Punjab, Bathinda, India
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu, India.
| | - Balachandar Vellingiri
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
5
|
Zhang Q, Na J, Liu X, He J. Exploration of the Delivery of Oncolytic Newcastle Disease Virus by Gelatin Methacryloyl Microneedles. Int J Mol Sci 2024; 25:2353. [PMID: 38397030 PMCID: PMC10888545 DOI: 10.3390/ijms25042353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Oncolytic Newcastle disease virus is a new type of cancer immunotherapy drug. This paper proposes a scheme for delivering oncolytic viruses using hydrogel microneedles. Gelatin methacryloyl (GelMA) was synthesized by chemical grafting, and GelMA microneedles encapsulating oncolytic Newcastle disease virus (NDV) were prepared by micro-molding and photocrosslinking. The release and expression of NDV were tested by immunofluorescence and hemagglutination experiments. The experiments proved that GelMA was successfully synthesized and had hydrogel characteristics. NDV was evenly dispersed in the allantoic fluid without agglomeration, showing a characteristic virus morphology. NDV particle size was 257.4 ± 1.4 nm, zeta potential was -13.8 ± 0.5 mV, virus titer TCID50 was 107.5/mL, and PFU was 2 × 107/mL, which had a selective killing effect on human liver cancer cells in a dose and time-dependent manner. The NDV@GelMA microneedles were arranged in an orderly cone array, with uniform height and complete needle shape. The distribution of virus-like particles was observed on the surface. GelMA microneedles could successfully penetrate 5% agarose gel and nude mouse skin. Optimal preparation conditions were freeze-drying. We successfully prepared GelMA hydrogel microneedles containing NDV, which could effectively encapsulate NDV but did not detect the release of NDV.
Collapse
Affiliation(s)
| | | | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Q.Z.); (J.N.)
| | - Jian He
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Q.Z.); (J.N.)
| |
Collapse
|
6
|
Santry LA, van Vloten JP, AuYeung AWK, Mould RC, Yates JGE, McAusland TM, Petrik JJ, Major PP, Bridle BW, Wootton SK. Recombinant Newcastle disease viruses expressing immunological checkpoint inhibitors induce a pro-inflammatory state and enhance tumor-specific immune responses in two murine models of cancer. Front Microbiol 2024; 15:1325558. [PMID: 38328418 PMCID: PMC10847535 DOI: 10.3389/fmicb.2024.1325558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/02/2024] [Indexed: 02/09/2024] Open
Abstract
Introduction Tumor microenvironments are immunosuppressive due to progressive accumulation of mutations in cancer cells that can drive expression of a range of inhibitory ligands and cytokines, and recruitment of immunomodulatory cells, including myeloid-derived suppressor cells (MDSC), tumor-associated macrophages, and regulatory T cells (Tregs). Methods To reverse this immunosuppression, we engineered mesogenic Newcastle disease virus (NDV) to express immunological checkpoint inhibitors anti-cytotoxic T lymphocyte antigen-4 and soluble programmed death protein-1. Results Intratumoral administration of recombinant NDV (rNDV) to mice bearing intradermal B16-F10 melanomas or subcutaneous CT26LacZ colon carcinomas led to significant changes in the tumor-infiltrating lymphocyte profiles. Vectorizing immunological checkpoint inhibitors in NDV increased activation of intratumoral natural killer cells and cytotoxic T cells and decreased Tregs and MDSCs, suggesting induction of a pro-inflammatory state with greater infiltration of activated CD8+ T cells. These notable changes translated to higher ratios of activated effector/suppressor tumor-infiltrating lymphocytes in both cancer models, which is a promising prognostic marker. Whereas all rNDV-treated groups showed evidence of tumor regression and increased survival in the CT26LacZ and B16-F10, only treatment with NDV expressing immunological checkpoint blockades led to complete responses compared to tumors treated with NDV only. Discussion These data demonstrated that NDV expressing immunological checkpoint inhibitors could reverse the immunosuppressive state of tumor microenvironments and enhance tumor-specific T cell responses.
Collapse
Affiliation(s)
- Lisa A. Santry
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jacob P. van Vloten
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Amanda W. K. AuYeung
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Robert C. Mould
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jacob G. E. Yates
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Thomas M. McAusland
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - James J. Petrik
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | | | - Byram W. Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Sarah K. Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
7
|
Pathak U, Pal RB, Malik N. The Viral Knock: Ameliorating Cancer Treatment with Oncolytic Newcastle Disease Virus. Life (Basel) 2023; 13:1626. [PMID: 37629483 PMCID: PMC10455894 DOI: 10.3390/life13081626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 08/27/2023] Open
Abstract
The prospect of cancer treatment has drastically transformed over the last four decades. The side effects caused by the traditional methods of cancer treatment like surgery, chemotherapy, and radiotherapy through the years highlight the prospect for a novel, complementary, and alternative cancer therapy. Oncolytic virotherapy is an evolving treatment modality that utilizes oncolytic viruses (OVs) to selectively attack cancer cells by direct lysis and can also elicit a strong anti-cancer immune response. Newcastle disease virus (NDV) provides a very high safety profile compared to other oncolytic viruses. Extensive research worldwide concentrates on experimenting with and better understanding the underlying mechanisms by which oncolytic NDV can be effectively applied to intercept cancer. This review encapsulates the potential of NDV to be explored as an oncolytic agent and discusses current preclinical and clinical research scenarios involving various NDV strains.
Collapse
Affiliation(s)
- Upasana Pathak
- Sir H.N. Medical Research Society, Sir H.N. Reliance Foundation Hospital and Research Centre, Mumbai 400004, Maharashtra, India
- Vivekanand Education Society’s College of Arts, Science and Commerce, Chembur, Mumbai 400071, Maharashtra, India
| | - Ramprasad B. Pal
- Sir H.N. Medical Research Society, Sir H.N. Reliance Foundation Hospital and Research Centre, Mumbai 400004, Maharashtra, India
| | - Nagesh Malik
- Vivekanand Education Society’s College of Arts, Science and Commerce, Chembur, Mumbai 400071, Maharashtra, India
| |
Collapse
|
8
|
Heo J, Liang JD, Kim CW, Woo HY, Shih IL, Su TH, Lin ZZ, Yoo SY, Chang S, Urata Y, Chen PJ. Safety and dose escalation of the targeted oncolytic adenovirus OBP-301 for refractory advanced liver cancer: Phase I clinical trial. Mol Ther 2023; 31:2077-2088. [PMID: 37060176 PMCID: PMC10362399 DOI: 10.1016/j.ymthe.2023.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/29/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023] Open
Abstract
OBP-301 is an oncolytic adenovirus modified to replicate within cancer cells and lyse them. This open-label, non-comparative, phase I dose-escalation trial aimed to assess its safety and optimal dosage in 20 patients with advanced hepatocellular carcinoma. Good tolerance was shown with a maximum tolerated dose of 6 × 1012 viral particles. The most common treatment-emergent adverse events were influenza-like illness, pyrexia, fatigue, decreased platelet count, abdominal distension, and anemia. Cohorts 4 and 5 had approximately 50% higher levels of CD8+ T cells in the peripheral blood after injection. The best target response occurred in 14 patients, 4 of whom had progressive disease. Multiple intratumoral injections of OBP-301 were well tolerated in patients with advanced hepatocellular carcinoma. The stable disease rate for the injected tumors was greater than the overall response rate, even with no obvious tumor response. OBP-301 might have a greater impact on local response as histological examination revealed that the presence of OBP-301 was consistent with the necrotic area at the injection site. Increased infiltration of CD8+ T cells and <1% PD-L1 expression were observed in tumors after injection. Improved antitumor efficacy might be achieved in future studies via viral injection with volume adjustment and in combination with other immuno-therapeutics.
Collapse
Affiliation(s)
- Jeong Heo
- Department of Internal Medicine, College of Medicine, Pusan National University and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea.
| | - Ja-Der Liang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chang Won Kim
- Department of Radiology, College of Medicine, Pusan National University, Busan, Republic of Korea
| | - Hyun Young Woo
- Department of Internal Medicine, College of Medicine, Pusan National University and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - I-Lun Shih
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Tung-Hung Su
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Zhong-Zhe Lin
- Department of Medical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
| | - So Young Yoo
- BIO-IT Foundry Technology Institute, Pusan National University, Busan, Republic of Korea
| | | | | | - Pei-Jer Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
9
|
Zhu X, Fan C, Xiong Z, Chen M, Li Z, Tao T, Liu X. Development and application of oncolytic viruses as the nemesis of tumor cells. Front Microbiol 2023; 14:1188526. [PMID: 37440883 PMCID: PMC10335770 DOI: 10.3389/fmicb.2023.1188526] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/18/2023] [Indexed: 07/15/2023] Open
Abstract
Viruses and tumors are two pathologies that negatively impact human health, but what occurs when a virus encounters a tumor? A global consensus among cancer patients suggests that surgical resection, chemotherapy, radiotherapy, and other methods are the primary means to combat cancer. However, with the innovation and development of biomedical technology, tumor biotherapy (immunotherapy, molecular targeted therapy, gene therapy, oncolytic virus therapy, etc.) has emerged as an alternative treatment for malignant tumors. Oncolytic viruses possess numerous anti-tumor properties, such as directly lysing tumor cells, activating anti-tumor immune responses, and improving the tumor microenvironment. Compared to traditional immunotherapy, oncolytic virus therapy offers advantages including high killing efficiency, precise targeting, and minimal side effects. Although oncolytic virus (OV) therapy was introduced as a novel approach to tumor treatment in the 19th century, its efficacy was suboptimal, limiting its widespread application. However, since the U.S. Food and Drug Administration (FDA) approved the first OV therapy drug, T-VEC, in 2015, interest in OV has grown significantly. In recent years, oncolytic virus therapy has shown increasingly promising application prospects and has become a major research focus in the field of cancer treatment. This article reviews the development, classification, and research progress of oncolytic viruses, as well as their mechanisms of action, therapeutic methods, and routes of administration.
Collapse
Affiliation(s)
- Xiao Zhu
- Zhejiang Provincial People's Hospital Affiliated to Hangzhou Medical College, Hangzhou Medical College, Hangzhou, China
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
- Department of Biological and Chemical Sciences, New York Institute of Technology—Manhattan Campus, New York, NY, United States
| | - Chenyang Fan
- Department of Clinical Medicine, Medicine and Technology, School of Zunyi Medical University, Zunyi, China
| | - Zhuolong Xiong
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Mingwei Chen
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Zesong Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital(Shenzhen Institute of Translational Medicine), Shenzhen, China
| | - Tao Tao
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China
| | - Xiuqing Liu
- Department of Clinical Laboratory, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| |
Collapse
|
10
|
Li X, Sun X, Wang B, Li Y, Tong J. Oncolytic virus-based hepatocellular carcinoma treatment: Current status, intravenous delivery strategies, and emerging combination therapeutic solutions. Asian J Pharm Sci 2023; 18:100771. [PMID: 36896445 PMCID: PMC9989663 DOI: 10.1016/j.ajps.2022.100771] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/24/2022] [Accepted: 12/04/2022] [Indexed: 12/30/2022] Open
Abstract
Current treatments for advanced hepatocellular carcinoma (HCC) have limited success in improving patients' quality of life and prolonging life expectancy. The clinical need for more efficient and safe therapies has contributed to the exploration of emerging strategies. Recently, there has been increased interest in oncolytic viruses (OVs) as a therapeutic modality for HCC. OVs undergo selective replication in cancerous tissues and kill tumor cells. Strikingly, pexastimogene devacirepvec (Pexa-Vec) was granted an orphan drug status in HCC by the U.S. Food and Drug Administration (FDA) in 2013. Meanwhile, dozens of OVs are being tested in HCC-directed clinical and preclinical trials. In this review, the pathogenesis and current therapies of HCC are outlined. Next, we summarize multiple OVs as single therapeutic agents for the treatment of HCC, which have demonstrated certain efficacy and low toxicity. Emerging carrier cell-, bioengineered cell mimetic- or nonbiological vehicle-mediated OV intravenous delivery systems in HCC therapy are described. In addition, we highlight the combination treatments between oncolytic virotherapy and other modalities. Finally, the clinical challenges and prospects of OV-based biotherapy are discussed, with the aim of continuing to develop a fascinating approach in HCC patients.
Collapse
Affiliation(s)
- Xinguo Li
- The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiaonan Sun
- The 4th People's Hospital of Shenyang, Shenyang 110031, China
| | - Bingyuan Wang
- The First Hospital of China Medical University, Shenyang 110001, China
| | - Yiling Li
- The First Hospital of China Medical University, Shenyang 110001, China
| | - Jing Tong
- The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
11
|
Huang F, Dai C, Zhang Y, Zhao Y, Wang Y, Ru G. Development of Molecular Mechanisms and Their Application on Oncolytic Newcastle Disease Virus in Cancer Therapy. Front Mol Biosci 2022; 9:889403. [PMID: 35860357 PMCID: PMC9289221 DOI: 10.3389/fmolb.2022.889403] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer is caused by the destruction or mutation of cellular genetic materials induced by environmental or genetic factors. It is defined by uncontrolled cell proliferation and abnormality of the apoptotic pathways. The majority of human malignancies are characterized by distant metastasis and dissemination. Currently, the most common means of cancer treatment include surgery, radiotherapy, and chemotherapy, which usually damage healthy cells and cause toxicity in patients. Targeted therapy is an effective tumor treatment method with few side effects. At present, some targeted therapeutic drugs have achieved encouraging results in clinical studies, but finding an effective solution to improve the targeting and delivery efficiency of these drugs remains a challenge. In recent years, oncolytic viruses (OVs) have been used to direct the tumor-targeted therapy or immunotherapy. Newcastle disease virus (NDV) is a solid oncolytic agent capable of directly killing tumor cells and increasing tumor antigen exposure. Simultaneously, NDV can trigger the proliferation of tumor-specific immune cells and thus improve the therapeutic efficacy of NDV in cancer. Based on NDV’s inherent oncolytic activity and the stimulation of antitumor immune responses, the combination of NDV and other tumor therapy approaches can improve the antitumor efficacy while reducing drug toxicity, indicating a broad application potential. We discussed the biological properties of NDV, the antitumor molecular mechanisms of oncolytic NDV, and its application in the field of tumor therapy in this review. Furthermore, we presented new insights into the challenges that NDV will confront and suggestions for increasing NDV’s therapeutic efficacy in cancer.
Collapse
Affiliation(s)
- Fang Huang
- Cancer Center, Department of Pathology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Chuanjing Dai
- Cancer Center, Department of Pathology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- College of Life Sciences and Medicine, Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou, China
| | - Youni Zhang
- College of Life Sciences and Medicine, Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou, China
- Department of Laboratory Medicine, Tiantai People’s Hospital, Taizhou, China
| | - Yuqi Zhao
- College of Life Sciences and Medicine, Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yigang Wang
- College of Life Sciences and Medicine, Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou, China
- *Correspondence: Yigang Wang, ; Guoqing Ru,
| | - Guoqing Ru
- Cancer Center, Department of Pathology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- *Correspondence: Yigang Wang, ; Guoqing Ru,
| |
Collapse
|
12
|
Optogenetic technologies in translational cancer research. Biotechnol Adv 2022; 60:108005. [PMID: 35690273 DOI: 10.1016/j.biotechadv.2022.108005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/07/2022] [Accepted: 06/04/2022] [Indexed: 11/23/2022]
Abstract
Gene and cell therapies are widely recognized as future cancer therapeutics but poor controllability limits their clinical applications. Optogenetics, the use of light-controlled proteins to precisely spatiotemporally regulate the activity of genes and cells, opens up new possibilities for cancer treatment. Light of specific wavelength can activate the immune response, oncolytic activity and modulate cell signaling in tumor cells non-invasively, in dosed manner, with tissue confined action and without side effects of conventional therapies. Here, we review optogenetic approaches in cancer research, their clinical potential and challenges of incorporating optogenetics in cancer therapy. We critically discuss beneficial combinations of optogenetic technologies with therapeutic nanobodies, T-cell activation and CAR-T cell approaches, genome editors and oncolytic viruses. We consider viral vectors and nanoparticles for delivering optogenetic payloads and activating light to tumors. Finally, we highlight herein the prospects for integrating optogenetics into immunotherapy as a novel, fast, reversible and safe approach to cancer treatment.
Collapse
|
13
|
Chen L, Niu Y, Sun J, Lin H, Liang G, Xiao M, Shi D, Wang J, Zhu H, Guan Y. Oncolytic Activity of Wild-type Newcastle Disease Virus HK84 Against Hepatocellular Carcinoma Associated with Activation of Type I Interferon Signaling. J Clin Transl Hepatol 2022; 10:284-296. [PMID: 35528990 PMCID: PMC9039698 DOI: 10.14218/jcth.2021.00284] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/18/2021] [Accepted: 10/10/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND AIMS Hepatocellular carcinoma (HCC) is listed as one of the most common causes of cancer-related death. Oncolytic therapy has become a promising treatment because of novel immunotherapies and gene editing technology, but biosafety concerns remain the biggest limitation for clinical application. We studied the the antitumor activity and biosafety of the wild-type Newcastle disease virus HK84 strain (NDV/HK84) and 10 other NDV strains. METHODS Cell proliferation and apoptosis were determined by cell counting Kit-8 and fluorescein isothiocyanate Annexin V apoptosis assays. Colony formation, wound healing, and a xenograft mouse model were used to evaluate in vivo and in vitro oncolytic effectiveness. The safety of NDV/HK84 was tested in nude mice by an in vivo luciferase imaging system. The replication kinetics of NDV/HK84 in normal tissues and tumors were evaluated by infectious-dose assays in eggs. RNA sequencing analysis was performed to explore NDV/HK84 activity and was validated by quantitative real-time PCR. RESULTS The cell counting Kit-8 assays of viability found that the oncolytic activity of the NDV strains differed with the multiplicity of infection (MOI). At an MOI of 20, the oncolytic activity of all NDV strains except the DK/JX/21358/08 strain was >80%. The oncolytic activities of the NDV/HK84 and DK/JX/8224/04 strains were >80% at both MOI=20 and MOI=2. Only NDV/HK84 had >80% oncolytic activities at both MOI=20 and MOI=2. We chose NDV/HK84 as the candidate virus to test the oncolytic effect of NDV in HCC in the in vitro and in vivo experiments. NDV/HK84 killed human SK-HEP-1 HCC cells without affecting healthy cells. CONCLUSIONS Intratumor infection with NDV/HK84 strains compared with vehicle controls or positive controls indicated that NDV/HK84 strain specifically inhibited HCC without affecting healthy mice. High-throughput RNA sequencing showed that the oncolytic activity of NDV/HK84 was dependent on the activation of type I interferon signaling.
Collapse
Affiliation(s)
- Liming Chen
- Department of Oncology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- International Joint Laboratory for Virology and Emerging Infectious Diseases (Ministry of Education), Guangdong-Hong Kong Joint Laboratory for Emerging Infectious Diseases, Joint Institute of Virology of STU/HKU, Shantou, Guangdong, China
| | - Yongdong Niu
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China
| | - Jiating Sun
- Department of Oncology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- International Joint Laboratory for Virology and Emerging Infectious Diseases (Ministry of Education), Guangdong-Hong Kong Joint Laboratory for Emerging Infectious Diseases, Joint Institute of Virology of STU/HKU, Shantou, Guangdong, China
| | - Hong Lin
- Department of Oncology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- International Joint Laboratory for Virology and Emerging Infectious Diseases (Ministry of Education), Guangdong-Hong Kong Joint Laboratory for Emerging Infectious Diseases, Joint Institute of Virology of STU/HKU, Shantou, Guangdong, China
| | - Guoxi Liang
- Department of Oncology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- International Joint Laboratory for Virology and Emerging Infectious Diseases (Ministry of Education), Guangdong-Hong Kong Joint Laboratory for Emerging Infectious Diseases, Joint Institute of Virology of STU/HKU, Shantou, Guangdong, China
| | - Min Xiao
- International Joint Laboratory for Virology and Emerging Infectious Diseases (Ministry of Education), Guangdong-Hong Kong Joint Laboratory for Emerging Infectious Diseases, Joint Institute of Virology of STU/HKU, Shantou, Guangdong, China
| | - Dongmei Shi
- Department of Oncology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- International Joint Laboratory for Virology and Emerging Infectious Diseases (Ministry of Education), Guangdong-Hong Kong Joint Laboratory for Emerging Infectious Diseases, Joint Institute of Virology of STU/HKU, Shantou, Guangdong, China
| | - Jia Wang
- International Joint Laboratory for Virology and Emerging Infectious Diseases (Ministry of Education), Guangdong-Hong Kong Joint Laboratory for Emerging Infectious Diseases, Joint Institute of Virology of STU/HKU, Shantou, Guangdong, China
| | - Huachen Zhu
- International Joint Laboratory for Virology and Emerging Infectious Diseases (Ministry of Education), Guangdong-Hong Kong Joint Laboratory for Emerging Infectious Diseases, Joint Institute of Virology of STU/HKU, Shantou, Guangdong, China
| | - Yi Guan
- International Joint Laboratory for Virology and Emerging Infectious Diseases (Ministry of Education), Guangdong-Hong Kong Joint Laboratory for Emerging Infectious Diseases, Joint Institute of Virology of STU/HKU, Shantou, Guangdong, China
| |
Collapse
|
14
|
Rahman MM, McFadden G. Oncolytic Viruses: Newest Frontier for Cancer Immunotherapy. Cancers (Basel) 2021; 13:5452. [PMID: 34771615 PMCID: PMC8582515 DOI: 10.3390/cancers13215452] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer remains a leading cause of death worldwide. Despite many signs of progress, currently available cancer treatments often do not provide desired outcomes for too many cancers. Therefore, newer and more effective therapeutic approaches are needed. Oncolytic viruses (OVs) have emerged as a novel cancer treatment modality, which selectively targets and kills cancer cells while sparing normal ones. In the past several decades, many different OV candidates have been developed and tested in both laboratory settings as well as in cancer patient clinical trials. Many approaches have been taken to overcome the limitations of OVs, including engineering OVs to selectively activate anti-tumor immune responses. However, newer approaches like the combination of OVs with current immunotherapies to convert "immune-cold" tumors to "immune-hot" will almost certainly improve the potency of OVs. Here, we discuss strategies that are explored to further improve oncolytic virotherapy.
Collapse
Affiliation(s)
- Masmudur M. Rahman
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA;
| | | |
Collapse
|
15
|
Martini G, Ciardiello D, Paragliola F, Nacca V, Santaniello W, Urraro F, Stanzione M, Niosi M, Dallio M, Federico A, Selvaggi F, Della Corte CM, Napolitano S, Ciardiello F, Martinelli E. How Immunotherapy Has Changed the Continuum of Care in Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13184719. [PMID: 34572944 PMCID: PMC8466991 DOI: 10.3390/cancers13184719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/08/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of death worldwide. The use of local treatment, such as surgical resection, liver transplant, and local ablation, has improved the survival of patients with HCC detected at an early stage. Until recently, the treatment of patients with metastatic disease was limited to the use of the multikinase inhibitor (MKI) sorafenib with a marginal effect on survival outcome. New target approaches, such as the oral MKI lenvatinib in first-line treatment and regorafenib, ramucirumab, and cabozantinib in later lines of therapy, have demonstrated efficacy in patients with preserved liver function (Child-Pugh class A) and good performance status. On the other hand, the implementation of immune checkpoint inhibitors directed against PD-1 (nivolumab and pembrolizumab), PD-L1 (atezolizumab), and anti-CTLA4 (ipilimumab) in the management of advanced HCC has strongly changed the continuum of care of HCC. Future research should include the evaluation of molecular biomarkers that can help patient selection and provide new insight on potential combined approaches. In this review, we provide an overview of the clinical evidence of the use of immune checkpoint inhibitors in HCC, and discuss how immunotherapy has been implemented into the continuum of HCC care.
Collapse
Affiliation(s)
- Giulia Martini
- Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania “L. Vanvitelli”, 80100 Naples, Italy; (G.M.); (D.C.); (F.P.); (V.N.); (C.M.D.C.); (S.N.); (F.C.)
| | - Davide Ciardiello
- Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania “L. Vanvitelli”, 80100 Naples, Italy; (G.M.); (D.C.); (F.P.); (V.N.); (C.M.D.C.); (S.N.); (F.C.)
| | - Fernando Paragliola
- Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania “L. Vanvitelli”, 80100 Naples, Italy; (G.M.); (D.C.); (F.P.); (V.N.); (C.M.D.C.); (S.N.); (F.C.)
| | - Valeria Nacca
- Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania “L. Vanvitelli”, 80100 Naples, Italy; (G.M.); (D.C.); (F.P.); (V.N.); (C.M.D.C.); (S.N.); (F.C.)
| | - Walter Santaniello
- Chirurgia Epatobiliare e Trapianto di Fegato, A.O.R.N. Antonio Cardarelli, 80100 Naples, Italy;
| | - Fabrizio Urraro
- Radiologia, Dipartimento di Medicina di Precisione, Università degli Studi della Campania “L. Vanvitelli”, 80100 Naples, Italy;
| | - Maria Stanzione
- Malattie Infettive, Dipartimento di Salute Mentale e Fisica e Medicina Preventiva, Università degli Studi della Campania “L. Vanvitelli”, 80100 Naples, Italy;
| | - Marco Niosi
- Epato-Gastroenterologia, Dipartimento di Medicina di Precisione, Università degli Studi della Campania “L. Vanvitelli”, 80100 Naples, Italy; (M.N.); (M.D.); (A.F.)
| | - Marcello Dallio
- Epato-Gastroenterologia, Dipartimento di Medicina di Precisione, Università degli Studi della Campania “L. Vanvitelli”, 80100 Naples, Italy; (M.N.); (M.D.); (A.F.)
| | - Alessandro Federico
- Epato-Gastroenterologia, Dipartimento di Medicina di Precisione, Università degli Studi della Campania “L. Vanvitelli”, 80100 Naples, Italy; (M.N.); (M.D.); (A.F.)
| | - Francesco Selvaggi
- Dipartimento di Scienze Mediche e Chirurgiche Avanzate, Università degli Studi della Campania “L. Vanvitelli”, 80100 Naples, Italy;
| | - Carminia Maria Della Corte
- Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania “L. Vanvitelli”, 80100 Naples, Italy; (G.M.); (D.C.); (F.P.); (V.N.); (C.M.D.C.); (S.N.); (F.C.)
| | - Stefania Napolitano
- Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania “L. Vanvitelli”, 80100 Naples, Italy; (G.M.); (D.C.); (F.P.); (V.N.); (C.M.D.C.); (S.N.); (F.C.)
| | - Fortunato Ciardiello
- Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania “L. Vanvitelli”, 80100 Naples, Italy; (G.M.); (D.C.); (F.P.); (V.N.); (C.M.D.C.); (S.N.); (F.C.)
| | - Erika Martinelli
- Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania “L. Vanvitelli”, 80100 Naples, Italy; (G.M.); (D.C.); (F.P.); (V.N.); (C.M.D.C.); (S.N.); (F.C.)
- Correspondence:
| |
Collapse
|
16
|
Leung EYL, McNeish IA. Strategies to Optimise Oncolytic Viral Therapies: The Role of Natural Killer Cells. Viruses 2021; 13:1450. [PMID: 34452316 PMCID: PMC8402671 DOI: 10.3390/v13081450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/28/2021] [Accepted: 07/20/2021] [Indexed: 12/19/2022] Open
Abstract
Oncolytic viruses (OVs) are an emerging class of anti-cancer agents that replicate selectively within malignant cells and generate potent immune responses. Their potential efficacy has been shown in clinical trials, with talimogene laherparepvec (T-VEC or IMLYGIC®) now approved both in the United States and Europe. In healthy individuals, NK cells provide effective surveillance against cancer and viral infections. In oncolytic viral therapy, NK cells may render OV ineffective by rapid elimination of the propagating virus but could also improve therapeutic efficacy by preferential killing of OV-infected malignant cells. Existing evidence suggests that the overall effect of NK cells against OV is context dependent. In the past decade, the understanding of cancer and OV biology has improved significantly, which helped refine this class of treatments in early-phase clinical trials. In this review, we summarised different strategies that have been evaluated to modulate NK activities for improving OV therapeutic benefits. Further development of OVs will require a systematic approach to overcome the challenges of the production and delivery of complex gene and cell-based therapies in clinical settings.
Collapse
Affiliation(s)
- Elaine Y. L. Leung
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Iain A. McNeish
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, IRDB Building, Imperial College London, London W12 0NN, UK
| |
Collapse
|
17
|
Virotherapy in Germany-Recent Activities in Virus Engineering, Preclinical Development, and Clinical Studies. Viruses 2021; 13:v13081420. [PMID: 34452286 PMCID: PMC8402873 DOI: 10.3390/v13081420] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
Virotherapy research involves the development, exploration, and application of oncolytic viruses that combine direct killing of cancer cells by viral infection, replication, and spread (oncolysis) with indirect killing by induction of anti-tumor immune responses. Oncolytic viruses can also be engineered to genetically deliver therapeutic proteins for direct or indirect cancer cell killing. In this review—as part of the special edition on “State-of-the-Art Viral Vector Gene Therapy in Germany”—the German community of virotherapists provides an overview of their recent research activities that cover endeavors from screening and engineering viruses as oncolytic cancer therapeutics to their clinical translation in investigator-initiated and sponsored multi-center trials. Preclinical research explores multiple viral platforms, including new isolates, serotypes, or fitness mutants, and pursues unique approaches to engineer them towards increased safety, shielded or targeted delivery, selective or enhanced replication, improved immune activation, delivery of therapeutic proteins or RNA, and redirecting antiviral immunity for cancer cell killing. Moreover, several oncolytic virus-based combination therapies are under investigation. Clinical trials in Germany explore the safety and potency of virotherapeutics based on parvo-, vaccinia, herpes, measles, reo-, adeno-, vesicular stomatitis, and coxsackie viruses, including viruses encoding therapeutic proteins or combinations with immune checkpoint inhibitors. These research advances represent exciting vantage points for future endeavors of the German virotherapy community collectively aimed at the implementation of effective virotherapeutics in clinical oncology.
Collapse
|
18
|
Malogolovkin A, Gasanov N, Egorov A, Weener M, Ivanov R, Karabelsky A. Combinatorial Approaches for Cancer Treatment Using Oncolytic Viruses: Projecting the Perspectives through Clinical Trials Outcomes. Viruses 2021; 13:1271. [PMID: 34209981 PMCID: PMC8309967 DOI: 10.3390/v13071271] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023] Open
Abstract
Recent cancer immunotherapy breakthroughs have fundamentally changed oncology and revived the fading hope for a cancer cure. The immune checkpoint inhibitors (ICI) became an indispensable tool for the treatment of many malignant tumors. Alongside ICI, the application of oncolytic viruses in clinical trials is demonstrating encouraging outcomes. Dozens of combinations of oncolytic viruses with conventional radiotherapy and chemotherapy are widely used or studied, but it seems quite complicated to highlight the most effective combinations. Our review summarizes the results of clinical trials evaluating oncolytic viruses with or without genetic alterations in combination with immune checkpoint blockade, cytokines, antigens and other oncolytic viruses as well. This review is focused on the efficacy and safety of virotherapy and the most promising combinations based on the published clinical data, rather than presenting all oncolytic virus variations, which are discussed in comprehensive literature reviews. We briefly revise the research landscape of oncolytic viruses and discuss future perspectives in virus immunotherapy, in order to provide an insight for novel strategies of cancer treatment.
Collapse
Affiliation(s)
- Alexander Malogolovkin
- Gene Therapy Department, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia; (N.G.); (A.E.); (M.W.); (R.I.)
| | | | | | | | | | - Alexander Karabelsky
- Gene Therapy Department, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia; (N.G.); (A.E.); (M.W.); (R.I.)
| |
Collapse
|
19
|
He J, An Y, Qi J, Cui L, Yang K, Liu M, Qu B, Yan S, Yin J, Jing X, Dong H, Yu Q, Li D, Wu Y. The recombinant Newcastle disease virus Anhinga strain expressing human TRAIL exhibit antitumor effects on a glioma nude mice model. J Med Virol 2021; 93:3890-3898. [PMID: 32779745 DOI: 10.1002/jmv.26419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/22/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022]
Abstract
Oncolytic virus therapy is perhaps the next major breakthrough in cancer treatment following the success in immunotherapy using immune checkpoint inhibitors. However, the potential oncolytic ability of the recombinant newcastle disease virus (NDV) Anhinga strain carried with tumor necrosis factor-related apoptosis inducing ligand (TRAIL) has not been fully explored at present. In the present study, the recombinant NDV/Anh-TRAIL that secretes soluble TRAIL was constructed and the experiment results suggested NDV/Anh-TRAIL as a promising candidate for glioma therapy. Growth kinetic and TRAIL secreted quantity of recombinant NDV/Anh-TRAIL virus were measured. Cytotoxic and cell apoptosis were analyzed for its anti-glioma therapy in vitro. Nude mice were used for the in vivo evaluation. Both tumor volume and mice behavior after injection were observed. The recombinant virus replicated with the same kinetics as the parental virus and the highest expression of TRAIL (77.8 ng/L) was found at 48 hours. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a tetrazole and flow cytometry data revealed that the recombinant NDV/Anh-TRAIL (56.1 ± 8.2%) virus could induce a more severe apoptosis rate, when compared with the NDV wild type (37.2 ± 7.0%) and mock (7.0 ± 1.8%) groups (P < .01), in U251 cells. Furthermore, in the present animal study, the average tumor volume was smaller in the NDV/Anh-TRAIL group (97.21 mm3 ), when compared with the NDV wild type (205.03 mm3 , P < .05) and PBS (310.30 mm3 , P < .01) groups.
Collapse
Affiliation(s)
- Jinjiao He
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
- School of Life sciences & Basic Medicine, Xinxiang University, Xinxiang, Henan, China
| | - Ying An
- Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianying Qi
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Lin Cui
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Kai Yang
- Knowledge Management Center Nutrition & Health Research Institute, COFCO Corporation, Beijing, China
| | - Mingyao Liu
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Bo Qu
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shijun Yan
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jiechao Yin
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiaohui Jing
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Hui Dong
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Qingzhong Yu
- Southeast Poultry Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Athens, Georgia
| | - Deshan Li
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yunzhou Wu
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
20
|
Yurchenko KS, Glushchenko AV, Gulyaeva MA, Bi Y, Chen J, Shi W, Adamenko LS, Shestopalov AM. Intratumoral Virotherapy with Wild-Type Newcastle Disease Virus in Carcinoma Krebs-2 Cancer Model. Viruses 2021; 13:v13040552. [PMID: 33806229 PMCID: PMC8067130 DOI: 10.3390/v13040552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 12/22/2022] Open
Abstract
The results of experimental and clinical trials of the agents based on oncolytic Newcastle disease virus (NDV) strains provided hope for the development of virotherapy as a promising method for treating human tumors. However, the mechanism of the antitumor effect of NDV and realization of its cytotoxic potential in a cancer cell remains to be elucidated. In the current work, we have studied the antitumor effect of NDV in a syngeneic model of mouse Krebs-2 carcinoma treated with intratumoral injections of a wild-type strain NDV/Altai/pigeon/770/2011. Virological methods were used for preparation of a virus-containing sample. Colorimetric MTS assay was used to assess the viability of Krebs-2 tumor cells infected with a viral strain in vitro. In vivo virotherapy was performed in eight-week-old male BALB/c mice treated with serial intratumoral injections of NDV in an experimental model of Krebs-2 solid carcinoma. Changes in the tumor nodes of Krebs-2 carcinoma after virotherapy were visualized by MRI and immunohistological staining. Light microscopy examination, immunohistochemical and morphometric analyses have shown that intratumoral viral injections contribute to the inhibition of tumor growth, appearance of necrosis-like changes in the tumor tissue and the antiangiogenic effect of the virus. It has been established that a course of intratumoral virotherapy with NDV/Altai/pigeon/770/2011 strain in a mouse Krebs-2 carcinoma resulted in increased destructive changes in the tumor tissue, in the volume density of necrotic foci and numerical density of endothelial cells expressing CD34 and VEGFR. These results indicate that intratumoral NDV injection reduces tumor progression of an aggressive tumor.
Collapse
Affiliation(s)
- Kseniya S. Yurchenko
- FRC of Fundamental and Translational Medicine, Eurasian Institute of Zoonotic Infections, Timakova Street 2, 630117 Novosibirsk, Russia; (A.V.G.); (M.A.G.); (L.S.A.); (A.M.S.)
- Correspondence:
| | - Alexandra V. Glushchenko
- FRC of Fundamental and Translational Medicine, Eurasian Institute of Zoonotic Infections, Timakova Street 2, 630117 Novosibirsk, Russia; (A.V.G.); (M.A.G.); (L.S.A.); (A.M.S.)
| | - Marina A. Gulyaeva
- FRC of Fundamental and Translational Medicine, Eurasian Institute of Zoonotic Infections, Timakova Street 2, 630117 Novosibirsk, Russia; (A.V.G.); (M.A.G.); (L.S.A.); (A.M.S.)
- Faculty of Natural Sciences, Novosibirsk State University, Pirogova Street 2, 630090 Novosibirsk, Russia
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China;
| | - Jianjun Chen
- Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiaohongshan, Wuhan 430071, China;
| | - Weifeng Shi
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China;
| | - Lyubov S. Adamenko
- FRC of Fundamental and Translational Medicine, Eurasian Institute of Zoonotic Infections, Timakova Street 2, 630117 Novosibirsk, Russia; (A.V.G.); (M.A.G.); (L.S.A.); (A.M.S.)
| | - Alexander M. Shestopalov
- FRC of Fundamental and Translational Medicine, Eurasian Institute of Zoonotic Infections, Timakova Street 2, 630117 Novosibirsk, Russia; (A.V.G.); (M.A.G.); (L.S.A.); (A.M.S.)
| |
Collapse
|
21
|
Zhang B, Wang X, Cheng P. Remodeling of Tumor Immune Microenvironment by Oncolytic Viruses. Front Oncol 2021; 10:561372. [PMID: 33680911 PMCID: PMC7934618 DOI: 10.3389/fonc.2020.561372] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 12/30/2020] [Indexed: 02/05/2023] Open
Abstract
Oncolytic viruses (OVs) are potential antitumor agents with unique therapeutic mechanisms. They possess the ability of direct oncolysis and the induction of antitumor immunity. OV can be genetically engineered to potentiate antitumor efficacy by remodeling the tumor immune microenvironment. The present mini review mainly describes the effect of OVs on remodeling of the tumor immune microenvironment and explores the mechanism of regulation of the host immune system and the promotion of the immune cells to destroy carcinoma cells by OVs. Furthermore, this article focuses on the utilization of OVs as vectors for the delivery of immunomodulatory cytokines or antibodies.
Collapse
Affiliation(s)
- Bin Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xilei Wang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Cheng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Combining vanadyl sulfate with Newcastle disease virus potentiates rapid innate immune-mediated regression with curative potential in murine cancer models. MOLECULAR THERAPY-ONCOLYTICS 2021; 20:306-324. [PMID: 33614913 PMCID: PMC7868934 DOI: 10.1016/j.omto.2021.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 01/16/2021] [Indexed: 02/08/2023]
Abstract
The avian paramyxovirus, Newcastle disease virus (NDV), is a promising oncolytic agent that has been shown to be safe and effective in a variety of pre-clinical cancer models and human clinical trials. NDV preferentially replicates in tumor cells due to signaling defects in apoptotic and antiviral pathways acquired during the transformation process and is a potent immunostimulatory agent. However, when used as a monotherapy NDV lacks the ability to consistently generate durable remissions. Here we investigate the use of viral sensitizer-mediated combination therapy to enhance the anti-neoplastic efficacy of NDV. Intratumoral injection of vanadyl sulfate, a pan-inhibitor of protein tyrosine phosphatases, in combination with NDV significantly increased the number and activation status of natural killer (NK) cells in the tumor microenvironment, concomitant with increased expression of interferon-β, granulocyte-macrophage colony-stimulating factor, and monocyte chemoattractant protein-1, leading to rapid tumor regression and long-term cures in mice bearing syngeneic B16-F10 melanomas. The anti-tumor efficacy of this combination therapy was abrogated when NK cells were depleted and when interferon-β expression was transiently suppressed. Tumor-specific CD8+ T cell responses were not detected, nor were mice whose tumors regressed protected from re-challenge. This suggested efficacy of the combination therapy predominantly relied on the innate immune system. Importantly, efficacy was not limited to melanoma; it was also demonstrated in a murine prostate cancer model. Taken together, these results suggest that combining NDV with vanadyl sulfate potentiates an innate immune response that can potentiate rapid clearance of tumors, with type I interferon signaling and NK cells being important mechanisms of action.
Collapse
|
23
|
Miri SM, Ebrahimzadeh MS, Abdolalipour E, Yazdi M, Hosseini Ravandi H, Ghaemi A. Synergy between hemagglutinin 2 (HA2) subunit of influenza fusogenic membrane glycoprotein and oncolytic Newcastle disease virus suppressed tumor growth and further enhanced by Immune checkpoint PD-1 blockade. Cancer Cell Int 2020; 20:380. [PMID: 32782438 PMCID: PMC7412675 DOI: 10.1186/s12935-020-01476-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/20/2020] [Accepted: 08/01/2020] [Indexed: 12/18/2022] Open
Abstract
Background Newcastle disease virus (NDV) has shown noticeable oncolytic properties, especially against cervical cancer. However, in order to improve the spread rate and oncotoxicity of the virus, employment of other therapeutic reagents would be helpful. It has been shown that some viral fusogenic membrane glycoproteins (FMGs) could facilitate viral propagation and increase the infection rate of tumor cells by oncolytic viruses. Additionally, immune checkpoint blockade has widely been investigated for its anti-tumor effects against several types of cancers. Here, we investigated for the first time whether the incorporation of influenza hemagglutinin-2 (HA2) FMG could improve the oncolytic characteristics of NDV against cervical cancer. Next, we added anti-PD-1 mAb to our therapeutic recipe to assess the complementary role of immune checkpoint blockade in curbing tumor progression. Methods For this purpose, TC-1 tumor cells were injected into the mice models and treatment with NDV, iNDV, HA2, NDV-HA2, iNDV-HA2 began 10 days after tumor challenge and was repeated at day 17. In addition, PD-1 blockade was conducted by injection of anti-PD-1 mAb at days 9 and 16. Two weeks after the last treatment, sample mice were sacrificed and treatment efficacy was evaluated through immunological and immunohistochemical analysis. Moreover, tumors condition was monitored weekly for 6 weeks intervals and the tumor volume was measured and compared within different groups. Results The results of co-treatment with NDV and HA2 gene revealed that these agents act synergistically to induce antitumor immune responses against HPV-associated carcinoma by enhancement of E7-specific lymphocyte proliferation, inducement of CD8+ T cell cytotoxicity responses, increase in splenic cytokines and granzyme B, decrease in immunosuppressive cytokines and E6 oncogene expression, and upregulation of apoptotic proteins expression, in comparison with control groups. Moreover, incorporation of PD-1 blockade as the third side of our suggested therapy led to noticeable regression in tumor size and augmentation of cytokine responses. Conclusions The invaluable results of synergy between NDV virotherapy and HA2 gene therapy suggest that tumor-selective cell killing by oncolytic NDV can be enhanced by combining with FMG gene therapy. Moreover, the adjunction of the PD-1 blockade proves that checkpoint blockade can be considered as an effective complementary therapy for the treatment of cervical cancer.
Collapse
Affiliation(s)
| | | | - Elahe Abdolalipour
- Department of Virology, Pasteur Institute of Iran, P.O.Box: 1316943551, Tehran, Iran
| | - Mahsa Yazdi
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Amir Ghaemi
- Department of Virology, Pasteur Institute of Iran, P.O.Box: 1316943551, Tehran, Iran
| |
Collapse
|
24
|
Mondal M, Guo J, He P, Zhou D. Recent advances of oncolytic virus in cancer therapy. Hum Vaccin Immunother 2020; 16:2389-2402. [PMID: 32078405 DOI: 10.1080/21645515.2020.1723363] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Oncolytic viruses have been taking the front stage in biological therapy for cancer recently. The first and most potent virus to be used in oncolytic virotherapy is human adenovirus. Recently, ongoing extensive research has suggested that other viruses like herpes simplex virus (HSV) and measles virus can also be considered as potential candidates in cancer therapy. An HSV-based oncolytic virus, T-VEC, has completed phase Ш clinical trial and has been approved by the U.S. Food and Drug Administration (FDA) for use in biological cancer therapy. Moreover, the vaccine strain of the measles virus has shown impressive results in pre-clinical and clinical trials. Considering their therapeutic efficacy, safety, and reduced side effects, the use of such engineered viruses in biological cancer therapy has the potential to establish a milestone in cancer research. In this review, we summarize the recent clinical advances in the use of oncolytic viruses in biological therapy for cancer. Additionally, this review evaluates the potential viral candidates for their benefits and shortcomings and sheds light on the future prospects.
Collapse
Affiliation(s)
- Moumita Mondal
- Joint Center for Infection and Immunity, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University , Guangzhou, China.,Vaccine Research Center, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences , Shanghai, China
| | - Jingao Guo
- Vaccine Research Center, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences , Shanghai, China
| | - Ping He
- Joint Center for Infection and Immunity, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University , Guangzhou, China
| | - Dongming Zhou
- Vaccine Research Center, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences , Shanghai, China
| |
Collapse
|
25
|
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of cancer death globally, mainly due to lack of effective treatments – a problem that gene therapy is poised to solve. Successful gene therapy requires safe and efficient delivery vectors, and recent advances in both viral and nonviral vectors have made an important impact on HCC gene therapy delivery. This review explores how adenoviral, retroviral and adeno-associated viral vectors have been modified to increase safety and delivery capacity, highlighting studies and clinical trials using these vectors for HCC gene therapy. Nanoparticles, liposomes, exosomes and virosomes are also featured in their roles as HCC gene delivery vectors. Finally, new discoveries in gene editing technology and their impacts on HCC gene therapy are discussed.
Collapse
|
26
|
Abstract
Oncolytic virotherapy uses replication-competent virus as a means of treating cancer. Whereas this field has shown great promise as a viable treatment method, the limited spread of these viruses throughout the tumor microenvironment remains a major challenge. To overcome this issue, researchers have begun looking at syncytia formation as a novel method of increasing viral spread. Several naturally occurring fusogenic viruses have been shown to possess strong oncolytic potential and have since been studied to gain insight into how this process benefits oncolytic virotherapy. Whereas these naturally fusogenic viruses have been beneficial, there are still challenges associated with their regular use. Because of this, engineered/recombinant fusogenic viruses have also been created that enhance nonfusogenic oncolytic viruses with the beneficial property of syncytia formation. The purpose of this review is to examine the existing body of literature on syncytia formation in oncolytics and offer direction for potential future studies.
Collapse
Affiliation(s)
- Chase Burton
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Eric Bartee
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
27
|
Schirrmacher V, van Gool S, Stuecker W. Breaking Therapy Resistance: An Update on Oncolytic Newcastle Disease Virus for Improvements of Cancer Therapy. Biomedicines 2019; 7:E66. [PMID: 31480379 PMCID: PMC6783952 DOI: 10.3390/biomedicines7030066] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022] Open
Abstract
Resistance to therapy is a major obstacle to cancer treatment. It may exist from the beginning, or it may develop during therapy. The review focusses on oncolytic Newcastle disease virus (NDV) as a biological agent with potential to break therapy resistance. This avian virus combines, upon inoculation into non-permissive hosts such as human, 12 described anti-neoplastic effects with 11 described immune stimulatory properties. Fifty years of clinical application of NDV give witness to the high safety profile of this biological agent. In 2015, an important milestone was achieved, namely the successful production of NDV according to Good Manufacturing Practice (GMP). Based on this, IOZK in Cologne, Germany, obtained a GMP certificate for the production of a dendritic cell vaccine loaded with tumor antigens from a lysate of patient-derived tumor cells together with immunological danger signals from NDV for intracutaneous application. This update includes single case reports and retrospective analyses from patients treated at IOZK. The review also presents future perspectives, including the concept of in situ vaccination and the combination of NDV or other oncolytic viruses with checkpoint inhibitors.
Collapse
Affiliation(s)
| | - Stefaan van Gool
- Immune-Oncological Center Cologne (IOZK), D-50674 Cologne, Germany
| | | |
Collapse
|
28
|
Xu X, Yi C, Yang X, Xu J, Sun Q, Liu Y, Zhao L. Tumor Cells Modified with Newcastle Disease Virus Expressing IL-24 as a Cancer Vaccine. MOLECULAR THERAPY-ONCOLYTICS 2019; 14:213-221. [PMID: 31338417 PMCID: PMC6630061 DOI: 10.1016/j.omto.2019.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/04/2019] [Indexed: 12/24/2022]
Abstract
Interleukin-24 (IL-24) is a promising agent for cancer immunotherapy that induces apoptosis of tumor cells and enhances T cell activation and function. In order to improve the antitumor activity induced by Newcastle disease virus (NDV)-modified tumor vaccine, we generated a recombinant NDV expressing IL-24 using reverse genetics. Irradiated tumor cells infected with LX/IL-24 showed stable IL-24 expression. The cytotoxicity assay showed that LX/IL-24-infected murine melanoma cells significantly enhanced the antitumor immune response in vitro. Then, the antitumor effects of virus-infected tumor cells were examined in the murine tumor models. LX/IL-24-infected tumor cells exhibited strong antitumor effects both in prophylaxis and therapeutic models. LX/IL-24-infected tumor cells increased infiltration of CD4+ T cells and CD8+ T cells in tumor sites, and the antitumor activity of the tumor vaccine modified with LX/IL-24 was dependent on CD8+ T cells. Taken together, our data well illustrates that LX/IL-24-modified tumor cells are a promising agent for cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaojing Xu
- College of Basic Medicine and Biological Sciences, Medical Department, Soochow University, 215123 Suzhou, China
| | - Cheng Yi
- College of Basic Medicine and Biological Sciences, Medical Department, Soochow University, 215123 Suzhou, China
| | - Xiaoqin Yang
- College of Basic Medicine and Biological Sciences, Medical Department, Soochow University, 215123 Suzhou, China
| | - Jianwei Xu
- National Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique, Center for Tissue Engineering and Stem Cell Research, Guizhou Province Key Laboratory of Regenerative Medicine, Guizhou Medical University, 550004 Guiyang, Guizhou, China.,Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guiyang, Guizhou, China
| | - Qing Sun
- Laboratory of Animal Infectious Diseases, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China.,Virus Research Unit, Department of Microbiology and Immunology, School of Medicine, University of Otago, Dunedin, New Zealand
| | - Yonghao Liu
- Institute of Blood and Marrow Transplantation, Department of Hematology, Collaborative Innovation Center of Hematology, the First Affiliated Hospital of Soochow University, 215123 Suzhou, People's Republic of China
| | - Lixiang Zhao
- College of Basic Medicine and Biological Sciences, Medical Department, Soochow University, 215123 Suzhou, China
| |
Collapse
|
29
|
A Novel Chimeric Oncolytic Virus Vector for Improved Safety and Efficacy as a Platform for the Treatment of Hepatocellular Carcinoma. J Virol 2018; 92:JVI.01386-18. [PMID: 30232179 DOI: 10.1128/jvi.01386-18] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/12/2018] [Indexed: 11/20/2022] Open
Abstract
Oncolytic viruses represent an exciting new aspect of the evolving field of cancer immunotherapy. We have engineered a novel hybrid vector comprising vesicular stomatitis virus (VSV) and Newcastle disease virus (NDV), named recombinant VSV-NDV (rVSV-NDV), wherein the VSV backbone is conserved but its glycoprotein has been replaced by the hemagglutinin-neuraminidase (HN) and the modified, hyperfusogenic fusion (F) envelope proteins of recombinant NDV. In comparison to wild-type VSV, which kills cells through a classical cytopathic effect, the recombinant virus is able to induce tumor-specific syncytium formation, allowing efficient cell-to-cell spread of the virus and a rapid onset of immunogenic cell death. Furthermore, the glycoprotein exchange substantially abrogates the off-target effects in brain and liver tissue associated with wild-type VSV, resulting in a markedly enhanced safety profile, even in immune-deficient NOD.CB17-prkdcscid/NCrCrl (NOD-SCID) mice, which are highly susceptible to wild-type VSV. Although NDV causes severe pathogenicity in its natural avian hosts, the incorporation of the envelope proteins in the chimeric rVSV-NDV vector is avirulent in embryonated chicken eggs. Finally, systemic administration of rVSV-NDV in orthotopic hepatocellular carcinoma (HCC)-bearing immune-competent mice resulted in significant survival prolongation. This strategy, therefore, combines the beneficial properties of the rapidly replicating VSV platform with the highly efficient spread and immunogenic cell death of a fusogenic virus without risking the safety and environmental threats associated with either parental vector. Taking the data together, rVSV-NDV represents an attractive vector platform for clinical translation as a safe and effective oncolytic virus.IMPORTANCE The therapeutic efficacy of oncolytic viral therapy often comes as a tradeoff with safety, such that potent vectors are often associated with toxicity, while safer viruses tend to have attenuated therapeutic effects. Despite promising preclinical data, the development of VSV as a clinical agent has been substantially hampered by the fact that severe neurotoxicity and hepatotoxicity have been observed in rodents and nonhuman primates in response to treatment with wild-type VSV. Although NDV has been shown to have an attractive safety profile in humans and to have promising oncolytic effects, its further development has been severely restricted due to the environmental risks that it poses. The hybrid rVSV-NDV vector, therefore, represents an extremely promising vector platform in that it has been rationally designed to be safe, with respect to both the recipient and the environment, while being simultaneously effective, both through its direct oncolytic actions and through induction of immunogenic cell death.
Collapse
|
30
|
Fusogenic Viruses in Oncolytic Immunotherapy. Cancers (Basel) 2018; 10:cancers10070216. [PMID: 29949934 PMCID: PMC6070779 DOI: 10.3390/cancers10070216] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 01/09/2023] Open
Abstract
Oncolytic viruses are under intense development and have earned their place among the novel class of cancer immunotherapeutics that are changing the face of cancer therapy. Their ability to specifically infect and efficiently kill tumor cells, while breaking immune tolerance and mediating immune responses directed against the tumor, make oncolytic viruses highly attractive candidates for immunotherapy. Increasing evidence indicates that a subclass of oncolytic viruses, which encodes for fusion proteins, could outperform non-fusogenic viruses, both in their direct oncolytic potential, as well as their immune-stimulatory properties. Tumor cell infection with these viruses leads to characteristic syncytia formation and cell death due to fusion, as infected cells become fused with neighboring cells, which promotes intratumoral spread of the infection and releases additional immunogenic signals. In this review, we discuss the potential of fusogenic oncolytic viruses as optimal candidates to enhance immunotherapy and initiate broad antitumor responses. We provide an overview of the cytopathic mechanism of syncytia formation through viral-mediated expression of fusion proteins, either endogenous or engineered, and their benefits for cancer therapy. Growing evidence indicates that fusogenicity could be an important feature to consider in the design of optimal oncolytic virus platforms for combinatorial oncolytic immunotherapy.
Collapse
|
31
|
Matveeva OV, Kochneva GV, Zainutdinov SS, Ilyinskaya GV, Chumakov PM. Oncolytic Paramyxoviruses: Mechanism of Action, Preclinical and Clinical Studies. Mol Biol 2018. [DOI: 10.1134/s002689331803010x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Oncolytic effect of wild-type Newcastle disease virus isolates in cancer cell lines in vitro and in vivo on xenograft model. PLoS One 2018; 13:e0195425. [PMID: 29621357 PMCID: PMC5886573 DOI: 10.1371/journal.pone.0195425] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/21/2018] [Indexed: 01/23/2023] Open
Abstract
Oncolyic virotherapy is one of the modern experimental techniques to treat human cancers. Here we studied the antitumor activity of wild-type Newcastle disease virus (NDV) isolates from Russian migratory birds. We showed that NDV could selectively kill malignant cells without affecting healthy cells. We evaluated the oncolytic effect of 44 NDV isolates in 4 histogenetically different human cell lines (HCT116, HeLa, A549, MCF7). The safety of the isolates was also tested in normal peripheral blood mononuclear (PBMC) cells. The viability of tumor cell lines after incubation with NDV isolates was evaluated by MTT. All cell lines, except for normal PBMC primary cells, had different degrees of susceptibility to NDV infection. Seven NDV strains had the highest oncolytic activity, and some NDV strains demonstrated oncolytic selectivity for different cell lines. In vivo, we described the intratumoral activity of NDV/Altai/pigeon/770/2011 against subcutaneous non-small cell lung carcinoma using xenograft SCID mice model. All animals were responsive to therapy. Histology confirmed therapy-induced destructive changes and growing necrotic bulk density in tumor tissue. Our findings indicate that wild-type NDV strains selectively kill tumor cells with no effect on healthy PBMC cells, and intratumoral virotherapy with NDV suppresses the subcutaneous tumor growth in SCID mice.
Collapse
|
33
|
Yokoda R, Nagalo BM, Arora M, Egan JB, Bogenberger JM, DeLeon TT, Zhou Y, Ahn DH, Borad MJ. Oncolytic virotherapy in upper gastrointestinal tract cancers. Oncolytic Virother 2018; 7:13-24. [PMID: 29616200 PMCID: PMC5870634 DOI: 10.2147/ov.s161397] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Upper gastrointestinal tract malignancies are among the most challenging cancers with regard to response to treatment and prognosis. Cancers of the esophagus, stomach, pancreas, liver, and biliary tree have dismal 5-year survival, and very modest improvements in this rate have been made in recent times. Oncolytic viruses are being developed to address these malignancies, with a focus on high safety profiles and low off-target toxicities. Each viral platform has evolved to enhance oncolytic potency and the clinical response to either single-agent viral therapy or combined viral treatment with radiotherapy and chemotherapy. A panel of genomic alterations, chimeric proteins, and pseudotyped capsids are the breakthroughs for vector success. This article revisits developments for each viral platform to each tumor type, in an attempt to achieve maximum tumor selectivity. From the bench to clinical trials, the scope of this review is to highlight the beginnings of translational oncolytic virotherapy research in upper gastrointestinal tract malignancies and provide a bioengineering perspective of the most promising platforms.
Collapse
Affiliation(s)
- Raquel Yokoda
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Bolni M Nagalo
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Mansi Arora
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Jan B Egan
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - James M Bogenberger
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Thomas T DeLeon
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Yumei Zhou
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Daniel H Ahn
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Mitesh J Borad
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ.,Department of Molecular Medicine, Center for Individualized Medicine, Mayo Clinic, Rochester, MN.,Department of Oncology, Mayo Clinic Cancer Center, Phoenix, AZ, USA
| |
Collapse
|
34
|
Xu X, Sun Q, Mei Y, Liu Y, Zhao L. Newcastle disease virus co-expressing interleukin 7 and interleukin 15 modified tumor cells as a vaccine for cancer immunotherapy. Cancer Sci 2018; 109:279-288. [PMID: 29224228 PMCID: PMC5797827 DOI: 10.1111/cas.13468] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/01/2017] [Accepted: 12/06/2017] [Indexed: 12/18/2022] Open
Abstract
Interleukin 15 (IL15) and IL7 are two cytokines essential for T cell development and homeostasis. In order to improve the antitumor activity by Newcastle disease virus (NDV)-modified tumor vaccine, we generated a recombinant NDV co-expressing IL15 and IL7 (LX/IL(15+7)) through incorporation of a 2A self-processing peptide into IL15 and IL7 using reverse genetics. B16 cells infected with LX/IL(15+7) expressed both IL15 and IL7 stably. The cytotoxicity assay showed that murine melanoma cells modified with LX/IL(15+7) could significantly enhance the antitumor immune response in vitro. Then, the antitumor effects of tumor vaccine modified with recombinant virus were tested in the murine tumor models. We observed strong antitumor responses induced by LX/IL(15+7)-modified tumor cells both in prophylaxis and therapeutic models. Although the tumor-infiltrating CD4+ T cells and CD8+ T cells were both increased, the antitumor activity of the tumor vaccine modified with LX/IL(15+7) was dependent on CD8+ T cells. Taken together, our data strongly indicated that tumor vaccine modified with NDV strain LX/IL(15+7) is a promising agent for cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaojing Xu
- College of Basic Medicine and Biological Sciences, Medical Department, Soochow University, Suzhou, China
| | - Qing Sun
- Laboratory of Animal Infectious Diseases, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Virus Research Unit, Department of Microbiology and Immunology, School of Medicine, University of Otago, Dunedin, New Zealand
| | - Yu Mei
- Immunology Programme, Life Sciences Institute and Department of Microbiology and Immunology, National University of Singapore, Singapore City, Singapore
| | - Yonghao Liu
- Institute of Blood and Marrow Transplantation, Department of Hematology, Collaborative Innovation Center of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lixiang Zhao
- College of Basic Medicine and Biological Sciences, Medical Department, Soochow University, Suzhou, China
| |
Collapse
|
35
|
Sahu SK, Kumar M. Application of Oncolytic Virus as a Therapy of Cancer. Microb Biotechnol 2018. [DOI: 10.1007/978-981-10-7140-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
36
|
Evaluation of the oncolytic potential of R 2B Mukteshwar vaccine strain of Newcastle disease virus (NDV) in a colon cancer cell line (SW-620). Arch Virol 2017; 162:2705-2713. [PMID: 28578522 DOI: 10.1007/s00705-017-3411-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 04/06/2017] [Indexed: 01/21/2023]
Abstract
Virotherapy is emerging as an alternative treatment of cancer. Among the candidate oncolytic viruses (OVs), Newcastle disease virus (NDV) has emerged as a promising non-engineered OV. In the present communication, we explored the oncolytic potential of R2B Mukteshwar strain of NDV using SW-620 colon cancer cells. SW-620 cells were xenografted in nude mice and after evaluation of the safety profile, 1 x 107 plaque forming units (PFU) of NDV were inoculated as virotherapeutic agent via the intratumoral (I/T) and intravenous (I/V) route. Tumor growth inhibition was compared with their respective control groups by gross volume and histopathological evaluation. Antibody titer and virus survival were measured by hemagglutination inhibition (HI)/serum neutralization test (SNT) and real-time PCR, respectively. During the safety trial, the test strain did not produce any abnormal symptoms nor weight loss in BALB/c mice. Significant tumor lytic activity was evident when viruses were injected via the I/T route. There was a 43 and 57% tumor growth inhibition on absolute and relative tumor volume basis, respectively, compared with mock control. On the same basis, the I/V route treatment resulted in 40 and 16% of inhibition, respectively. Histopathological examination revealed that the virus caused apoptosis, followed by necrosis, but immune cell infiltration was not remarkable. The virus survived in 2/2 mice until day 10 and in 3/6 mice by day 19, with both routes of administration. Anti-NDV antibodies were generated at moderate level and the titer reached a maximum of 1:32 and 1:64 via the I/T and I/V routes, respectively. In conclusion, the test NDV strain was found to be safe and showed oncolytic activity against the SW-620 cell line in mice.
Collapse
|
37
|
Replication and Oncolytic Activity of an Avian Orthoreovirus in Human Hepatocellular Carcinoma Cells. Viruses 2017; 9:v9040090. [PMID: 28441762 PMCID: PMC5408696 DOI: 10.3390/v9040090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 12/13/2022] Open
Abstract
Oncolytic viruses are cancer therapeutics with promising outcomes in pre-clinical and clinical settings. Animal viruses have the possibility to avoid pre-existing immunity in humans, while being safe and immunostimulatory. We isolated an avian orthoreovirus (ARV-PB1), and tested it against a panel of hepatocellular carcinoma cells. We found that ARV-PB1 replicated well and induced strong cytopathic effects. It was determined that one mechanism of cell death was through syncytia formation, resulting in apoptosis and induction of interferon stimulated genes (ISGs). As hepatitis C virus (HCV) is a major cause of hepatocellular carcinoma worldwide, we investigated the effect of ARV-PB1 against cells already infected with this virus. Both HCV replicon-containing and infected cells supported ARV-PB1 replication and underwent cytolysis. Finally, we generated in silico models to compare the structures of human reovirus- and ARV-PB1-derived S1 proteins, which are the primary targets of neutralizing antibodies. Tertiary alignments confirmed that ARV-PB1 differs from its human homolog, suggesting that immunity to human reoviruses would not be a barrier to its use. Therefore, ARV-PB1 can potentially expand the repertoire of oncolytic viruses for treatment of human hepatocellular carcinoma and other malignancies.
Collapse
|
38
|
Yoo SY, Badrinath N, Woo HY, Heo J. Oncolytic Virus-Based Immunotherapies for Hepatocellular Carcinoma. Mediators Inflamm 2017; 2017:5198798. [PMID: 28512387 PMCID: PMC5415860 DOI: 10.1155/2017/5198798] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/08/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma is highly refractory cancer which is resistant to conventional chemotherapy and radiotherapy, carrying a dismal prognosis. Although many anticancer drugs have been developed for treating HCC, sorafenib is the only effective treatment, but it only prolongs survival duration for about 3 months. Recently, oncolytic virotherapy has shown promising results in treating HCCs and the effects can be more enhanced by adopting immune modulatory molecules. This review discusses the current status of treating HCC and the effective strategy of oncolytic virus-based immunotherapy for the treatment of HCCs.
Collapse
Affiliation(s)
- So Young Yoo
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
- Department of Internal Medicine, College of Medicine, Pusan National University and Medical Research Institute, Yangsan 50612, Republic of Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
| | - Narayanasamy Badrinath
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| | - Hyun Young Woo
- Department of Internal Medicine, College of Medicine, Pusan National University and Medical Research Institute, Yangsan 50612, Republic of Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
| | - Jeong Heo
- Department of Internal Medicine, College of Medicine, Pusan National University and Medical Research Institute, Yangsan 50612, Republic of Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
| |
Collapse
|
39
|
Xu X, Sun Q, Yu X, Zhao L. Rescue of nonlytic Newcastle Disease Virus (NDV) expressing IL-15 for cancer immunotherapy. Virus Res 2017; 233:35-41. [PMID: 28286036 DOI: 10.1016/j.virusres.2017.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 01/28/2017] [Accepted: 03/01/2017] [Indexed: 02/05/2023]
Abstract
In order to test and enhance the antitumor activity against mice melanoma by NDV-modified tumor vaccine, a recombinant NDV expressing IL-15 (LX/(IL-15)) was generated by reverse genetics. Then, the expression level and biological activity of IL-15 were examined. Our results showed that mice tumor cell lines infected with LX/(IL-15) expressed IL-15 at a high level, and that expressed IL-15 was biologically active. Expression kinetics demonstrated that the highest expression level of IL-15 was at 48h post infection. The cytotoxicity assay showed that murine melanoma cells modified with LX/(IL-15) could significantly enhance the antitumor immune response in vitro. In vivo study also showed that murine melanoma cells modified with LX/(IL-15) could prevent melanoma growth in mice. Taken together, our data strongly indicated that recombinant LX/(IL-15) is a promising agent for cancer immunotherapy both for human and animal.
Collapse
Affiliation(s)
- Xiaojing Xu
- College of Basic Medicine and Biological Sciences, Medical Department, Soochow University, 215123 Suzhou, People's Republic of China
| | - Qing Sun
- Laboratory of Animal Infectious Diseases, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, People's Republic of China; Virus Research Unit, Department of Microbiology and Immunology, School of Medicine, University of Otago, New Zealand
| | - Xiao Yu
- College of Basic Medicine and Biological Sciences, Medical Department, Soochow University, 215123 Suzhou, People's Republic of China
| | - Lixiang Zhao
- College of Basic Medicine and Biological Sciences, Medical Department, Soochow University, 215123 Suzhou, People's Republic of China.
| |
Collapse
|
40
|
Ginting TE, Suryatenggara J, Christian S, Mathew G. Proinflammatory response induced by Newcastle disease virus in tumor and normal cells. Oncolytic Virother 2017; 6:21-30. [PMID: 28293547 PMCID: PMC5345992 DOI: 10.2147/ov.s123292] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose To investigate the specific role of immune responses induced by lentogenic Newcastle disease virus (NDV) for its antitumor effect. Materials and methods NDV LaSota strain was used to infect the following human cells: non-small cell lung carcinoma (A549), glioblastoma (U87MG and T98G), mammary gland adenocarcinoma (MCF7 and MDA-MB-453), hepatocellular carcinoma (Huh7), transformed embryonic kidney cells (HEK293), primary monocytes, lung fibroblast (HF19), skin fibroblast (NB1RGB) and rat astroglia (RCR-1) at 0.001 multiplicity of infection. NDV-induced cytotoxicity and expression of proinflammatory cytokines were analyzed using 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide assay and multiplex enzyme-linked immunosorbent assay, respectively. Results Tumor cells (A549, U87MG, T98G, Huh7, MDA-MB-453, and MCF7) showed viability of <44%, while normal cell lines HEK293, NB1RGB, and RCR-1 showed 84%, 73%, and 69% viability at 72 hours postinfection, respectively. Proinflammatory cytokine profiling showed that NDV mainly induced the secretion of interferon (IFN)-α, IFN-β, and IFN-λ in tumor cells and only IFN-λ in normal cells. In addition, NDV infection induced the production of interleukin (IL)-6 in most cells. Conclusion Our findings suggest a new perspective regarding the role of IFN-λ and IL-6 in the mechanism of tumor selectivity and oncolysis of NDV.
Collapse
Affiliation(s)
- Teridah Ernala Ginting
- Division of Immunology, Mochtar Riady Institute for Nanotechnology and Medical Science Group, University of Pelita Harapan, Tangerang, Indonesia
| | - Jeremiah Suryatenggara
- Division of Immunology, Mochtar Riady Institute for Nanotechnology and Medical Science Group, University of Pelita Harapan, Tangerang, Indonesia
| | - Salomo Christian
- Division of Immunology, Mochtar Riady Institute for Nanotechnology and Medical Science Group, University of Pelita Harapan, Tangerang, Indonesia
| | - George Mathew
- Division of Immunology, Mochtar Riady Institute for Nanotechnology and Medical Science Group, University of Pelita Harapan, Tangerang, Indonesia
| |
Collapse
|
41
|
He J, Pan Z, Tian G, Liu X, Liu Y, Guo X, An Y, Song L, Wu H, Cao H, Yu D, Che R, Xu P, Rasoul LM, Li D, Yin J. Newcastle disease virus chimeras expressing the Hemagglutinin- Neuraminidase protein of mesogenic strain exhibits an enhanced anti-hepatoma efficacy. Virus Res 2016; 221:23-9. [DOI: 10.1016/j.virusres.2016.04.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 04/05/2016] [Accepted: 04/27/2016] [Indexed: 01/31/2023]
|
42
|
Buijs PRA, Verhagen JHE, van Eijck CHJ, van den Hoogen BG. Oncolytic viruses: From bench to bedside with a focus on safety. Hum Vaccin Immunother 2016; 11:1573-84. [PMID: 25996182 DOI: 10.1080/21645515.2015.1037058] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Oncolytic viruses are a relatively new class of anti-cancer immunotherapy agents. Several viruses have undergone evaluation in clinical trials in the last decades, and the first agent is about to be approved to be used as a novel cancer therapy modality. In the current review, an overview is presented on recent (pre)clinical developments in the field of oncolytic viruses that have previously been or currently are being evaluated in clinical trials. Special attention is given to possible safety issues like toxicity, environmental shedding, mutation and reversion to wildtype virus.
Collapse
Key Words
- CAR, Coxsackie Adenovirus receptor
- CD, cytosine deaminase
- CEA, carcinoembryonic antigen
- CVA, Coxsackievirus type A
- DAF, decay accelerating factor
- DNA, DNA
- EEV, extracellular enveloped virus
- EGF, epidermal growth factor
- EGF-R, EGF receptor
- EMA, European Medicines Agency
- FDA, Food and Drug Administration
- GBM, glioblastoma multiforme
- GM-CSF, granulocyte-macrophage colony-stimulating factor
- HA, hemagglutinin
- HAdV, Human (mast)adenovirus
- HER2, human epidermal growth factor receptor 2
- HSV, herpes simplex virus
- ICAM-1, intercellular adhesion molecule 1
- IFN, interferon
- IRES, internal ribosome entry site
- KRAS, Kirsten rat sarcoma viral oncogene homolog
- Kb, kilobase pairs
- MeV, Measles virus
- MuLV, Murine leukemia virus
- NDV, Newcastle disease virus
- NIS, sodium/iodide symporter
- NSCLC, non-small cell lung carcinoma
- OV, oncolytic virus
- PEG, polyethylene glycol
- PKR, protein kinase R
- PV, Polio virus
- RCR, replication competent retrovirus
- RCT, randomized controlled trial
- RGD, arginylglycylaspartic acid (Arg-Gly-Asp)
- RNA, ribonucleic acid
- Rb, retinoblastoma
- SVV, Seneca Valley virus
- TGFα, transforming growth factor α
- VGF, Vaccinia growth factor
- VSV, Vesicular stomatitis virus
- VV, Vaccinia virus
- cancer
- crHAdV, conditionally replicating HAdV
- dsDNA, double stranded DNA
- dsRNA, double stranded RNA
- environment
- hIFNβ, human IFN β
- immunotherapy
- mORV, Mammalian orthoreovirus
- mORV-T3D, mORV type 3 Dearing
- oHSV, oncolytic HSV
- oncolytic virotherapy
- oncolytic virus
- rdHAdV, replication-deficient HAdV
- review
- safety
- shedding
- ssRNA, single stranded RNA
- tk, thymidine kinase
Collapse
Affiliation(s)
- Pascal R A Buijs
- a Department of Surgery; Erasmus MC; University Medical Center ; Rotterdam , The Netherlands
| | | | | | | |
Collapse
|
43
|
Altomonte J, Muñoz-Álvarez KA, Shinozaki K, Baumgartner C, Kaissis G, Braren R, Ebert O. Transarterial Administration of Oncolytic Viruses for Locoregional Therapy of Orthotopic HCC in Rats. J Vis Exp 2016. [PMID: 27167921 DOI: 10.3791/53757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a disease with limited treatment options and poor prognosis. In recent years, oncolytic virotherapies have proven themselves to be potentially powerful tools to fight malignancy. Due to the unique dual blood supply in the liver, it is possible to apply therapies locally to orthotopic liver tumors, which are predominantly fed by arterial blood flow. We have previously demonstrated that hepatic arterial delivery of oncolytic viruses results in safe and efficient transduction efficiency of multifocal HCC lesions, resulting in significant prolongation of survival in immune competent rats. This procedure closely mimics the application of transarterial embolization in patients, which is the standard palliative care provided to many HCC patients. The ability to administer tumor therapies through the hepatic artery in rats allows for a highly sophisticated preclinical model for evaluating novel viral vectors under development. Here we describe the detailed protocol for microdissection of the hepatic artery for infusion of oncolytic virus vectors to treat orthotopic HCC.
Collapse
Affiliation(s)
| | | | | | | | - Georgios Kaissis
- Institute for Diagnostic and Interventional Radiology, Klinikum rechts der Isar der TU München
| | - Rickmer Braren
- Institute for Diagnostic and Interventional Radiology, Klinikum rechts der Isar der TU München
| | - Oliver Ebert
- II. Medizinische Klinik, Klinikum rechts der Isar der TU München
| |
Collapse
|
44
|
Oncolysis by paramyxoviruses: preclinical and clinical studies. MOLECULAR THERAPY-ONCOLYTICS 2015; 2:S2372-7705(16)30019-5. [PMID: 26640815 PMCID: PMC4667943 DOI: 10.1038/mto.2015.17] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Preclinical studies demonstrate that a broad spectrum of human malignant cells can be killed by oncolytic paramyxoviruses, which include cells of ecto-, endo-, and mesodermal origin. In clinical trials, significant reduction in size or even complete elimination of primary tumors and established metastases are reported. Different routes of viral administration (intratumoral, intravenous, intradermal, intraperitoneal, or intrapleural), and single- versus multiple-dose administration schemes have been explored. The reported side effects are grade 1 and 2, with the most common among them being mild fever. Some advantages in using paramyxoviruses as oncolytic agents versus representatives of other viral families exist. The cytoplasmic replication results in a lack of host genome integration and recombination, which makes paramyxoviruses safer and more attractive candidates for widely used therapeutic oncolysis in comparison with retroviruses or some DNA viruses. The list of oncolytic paramyxovirus representatives includes attenuated measles virus (MV), mumps virus (MuV), low pathogenic Newcastle disease (NDV), and Sendai (SeV) viruses. Metastatic cancer cells frequently overexpress on their surface some molecules that can serve as receptors for MV, MuV, NDV, and SeV. This promotes specific viral attachment to the malignant cell, which is frequently followed by specific viral replication. The paramyxoviruses are capable of inducing efficient syncytium-mediated lyses of cancer cells and elicit strong immunomodulatory effects that dramatically enforce anticancer immune surveillance. In general, preclinical studies and phase 1–3 clinical trials yield very encouraging results and warrant continued research of oncolytic paramyxoviruses as a particularly valuable addition to the existing panel of cancer-fighting approaches.
Collapse
|
45
|
Schirrmacher V. Oncolytic Newcastle disease virus as a prospective anti-cancer therapy. A biologic agent with potential to break therapy resistance. Expert Opin Biol Ther 2015; 15:1757-71. [PMID: 26436571 DOI: 10.1517/14712598.2015.1088000] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Oncolytic viruses (OVs) selectively replicate in tumor cells and cause cancer cell death. Most OVs in clinical studies are genetically engineered. In contrast, the avian Newcastle disease virus (NDV) is a naturally oncolytic RNA virus. While anti-viral immunity is considered a major problem in achieving maximal tumor cell killing by OVs, this review discusses the importance of NDV immunogenic cell death (ICD) and how anti-viral immune responses can be integrated to induce maximal post-oncolytic T-cell-mediated anti-tumor immunity. Since replication of NDV is independent of host cell DNA replication (which is the target of many cytostatic drugs and radiotherapy) and because of other findings, oncolytic NDV is a candidate agent to break therapy resistance of tumor cells. AREAS COVERED Properties of this avian paramyxovirus are summarized with special emphasis to its anti-neoplastic and immune-stimulatory properties. The review then discusses prospective anti-cancer therapies, including treatments with NDV alone, and combinations with an autologous NDV-modified tumor cell vaccine or with a viral oncolysate pulsed dendritic cell vaccine. Various combinatorial approaches between these and with other modalities are also reviewed. EXPERT OPINION Post-oncolytic anti-tumor immunity based on ICD is in the expert's opinion of greater importance for long-term therapeutic effects than maximal tumor cell killing. Of the various combinatorial approaches discussed, the most promising and feasible for clinical practice appears to be the combination of systemic NDV pre-treatment with anti-tumor vaccination.
Collapse
Affiliation(s)
- Volker Schirrmacher
- a Immunological and Oncological Center (IOZK), Tumor Immunology , Hohenstaufenring 30-32, D-50674 Köln, Cologne, Germany
| |
Collapse
|
46
|
|
47
|
Ren G, Tian G, Liu Y, He J, Gao X, Yu Y, Liu X, Zhang X, Sun T, Liu S, Yin J, Li D. Recombinant Newcastle Disease Virus Encoding IL-12 and/or IL-2 as Potential Candidate for Hepatoma Carcinoma Therapy. Technol Cancer Res Treat 2015; 15:NP83-94. [PMID: 26303327 DOI: 10.1177/1533034615601521] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 07/01/2015] [Indexed: 11/15/2022] Open
Abstract
Interleukins as immunomodulators are promising therapeutic agents for cancer therapy. Previous studies showed that there was an improved antitumor immunity in tumor-bearing mice using recombinant Newcastle disease virus carrying for interleukin-2. Interleukin-12 is a promising antitumor cytokine too. So we investigated and compared the antitumor effect of genetically engineered Newcastle disease virus strains expressing both interleukin-12 and/or interleukin-2 (rClone30-interleukin-2, rClone30-interleukin-12, and rClone30-interleukin-12-interleukin-2). In vitro studies showed that rClone30s could efficiently infect tumor cells and express interleukin-12 and/or interleukin-2. 3-(4,5-Dimethylthiazol-2-y)-2,5-diphenyl-tetrazolium bromide results showed rClone30s possessed strong cytotoxic activities against multiple tumor cell lines (U251, HepG2, A549, and Hela). Animal studies showed that rClone30-interleukin-12-interleukin-2 was more effective in inhibition of murine hepatoma carcinoma tumors, with the mean tumor volume (day 14) of 141.70 mm(3) comparing 165.67 mm(3) of rClone30-interleukin-12 group, 210.47 mm(3) of rClone30-interleukin-2 group, 574.70 mm(3) of rClone30 group, and 1206.83 mm(3) of phosphate-buffered saline group. Moreover, the rClone30-interleukin-12-interleukin-2 treated mice secreted more interferon γ (333.518 pg/mL) and its downstream cytokine interferon-γ induced protein 10 (16.006 pg/mL) in tumor than the rClone30-interleukin-12 group (interferon γ: 257.548 pg/mL; interferon-γ induced protein 10: 13.601 pg/mL), rClone30-interleukin2 group (interferon γ: 124.601 pg/mL; interferon-γ induced protein 10: 9.779 pg/mL), or rClone30 group (interferon γ: 48.630 pg/mL; interferon-γ induced protein 10:1.650 pg/mL). For the survival study, rClone30-interleukin12-interleukin2 increased the survival rate (12 of 16) of the tumor-bearing mice versus 11 of 16 in rClone30-interleukin-12 group, 10 of 16 in rClone30-interleukin-2 group, 7 of 16 in Clone30 group, and 0/16 in phosphate-buffered saline group, respectively. To determine whether the mice treated with recombinant virus developed protective immune response, the mice were rechallenged with the same tumor cells. The results showed that viral-treated mice were significantly protected from rechallenge. These results suggest that expressing both interleukin-2 and/or interleukin-12 could be ideal approaches to enhance the antitumor ability of Newcastle disease virus, and rClone30-interleukin-12-interleukin-2 is slightly superior over rClone30-interleukin-12 and rClone30-interleukin-2 alone.
Collapse
Affiliation(s)
- Guiping Ren
- College of Life Science, Northeast Agricultural University, Xiangfang District, Harbin, China Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin, China
| | - Guiyou Tian
- College of Life Science, Northeast Agricultural University, Xiangfang District, Harbin, China
| | - Yunye Liu
- College of Life Science, Northeast Agricultural University, Xiangfang District, Harbin, China
| | - Jinjiao He
- College of Life Science, Northeast Agricultural University, Xiangfang District, Harbin, China
| | - Xinyu Gao
- College of Life Science, Northeast Agricultural University, Xiangfang District, Harbin, China
| | - Yinhang Yu
- College of Life Science, Northeast Agricultural University, Xiangfang District, Harbin, China
| | - Xin Liu
- College of Life Science, Northeast Agricultural University, Xiangfang District, Harbin, China
| | - Xu Zhang
- College of Life Science, Northeast Agricultural University, Xiangfang District, Harbin, China
| | - Tian Sun
- College of Life Science, Northeast Agricultural University, Xiangfang District, Harbin, China
| | - Shuangqing Liu
- College of Life Science, Northeast Agricultural University, Xiangfang District, Harbin, China
| | - Jiechao Yin
- College of Life Science, Northeast Agricultural University, Xiangfang District, Harbin, China
| | - Deshan Li
- College of Life Science, Northeast Agricultural University, Xiangfang District, Harbin, China Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin, China
| |
Collapse
|
48
|
Matveeva OV, Guo ZS, Shabalina SA, Chumakov PM. Oncolysis by paramyxoviruses: multiple mechanisms contribute to therapeutic efficiency. Mol Ther Oncolytics 2015; 2:15011. [PMID: 26640816 PMCID: PMC4667958 DOI: 10.1038/mto.2015.11] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/08/2015] [Accepted: 05/14/2015] [Indexed: 12/12/2022] Open
Abstract
Oncolytic paramyxoviruses include some strains of Measles, Mumps, Newcastle disease, and Sendai viruses. All these viruses are well equipped for promoting highly specific and efficient malignant cell death, which can be direct and/or immuno-mediated. A number of proteins that serve as natural receptors for oncolytic paramyxoviruses are frequently overexpressed in malignant cells. Therefore, the preferential interaction of paramyxoviruses with malignant cells rather than with normal cells is promoted. Due to specific genetic defects of cancer cells in the interferon (IFN) and apoptotic pathways, viral replication has the potential to be promoted specifically in tumors. Viral mediation of syncytium formation (a polykaryonic structure) promotes intratumoral paramyxo-virus replication and spreading, without exposure to host neutralizing antibodies. So, two related processes: efficient intratumoral infection spread as well as the consequent mass malignant cell death, both are enhanced. In general, the paramyxoviruses elicit strong anticancer innate and adaptive immune responses by triggering multiple danger signals. The paramyxoviruses are powerful inducers of IFN and other immuno-stimulating cytokines. These viruses efficiently promote anticancer activity of natural killer cells, dendritic cells, and cytotoxic T lymphocytes. Moreover, a neuraminidase (sialidase), a component of the viral envelope of Newcastle Disease, Mumps, and Sendai viruses, can cleave sialic acids on the surface of malignant cells thereby unmasking cancer antigens and exposing them to the immune system. These multiple mechanisms contribute to therapeutic efficacy of oncolytic paramyxovi-ruses and are responsible for encouraging results in preclinical and clinical studies.
Collapse
Affiliation(s)
- Olga V Matveeva
- Biopolymer Design LLC, Acton, Massachusetts, USA
- Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - Zong S Guo
- Division of Surgical Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | - Svetlana A Shabalina
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter M Chumakov
- Engelhardt Institute of Molecular Biology, Moscow, Russia
- Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
49
|
Jebar AH, Vile RG, Melcher AA, Griffin S, Selby PJ, Errington-Mais F. Progress in clinical oncolytic virus-based therapy for hepatocellular carcinoma. J Gen Virol 2015; 96:1533-50. [DOI: 10.1099/vir.0.000098] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
50
|
Recombinant Immunomodulating Lentogenic or Mesogenic Oncolytic Newcastle Disease Virus for Treatment of Pancreatic Adenocarcinoma. Viruses 2015; 7:2980-98. [PMID: 26110582 PMCID: PMC4488723 DOI: 10.3390/v7062756] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/07/2015] [Accepted: 06/08/2015] [Indexed: 12/18/2022] Open
Abstract
Oncolytic Newcastle disease virus (NDV) might be a promising new therapeutic agent for the treatment of pancreatic cancer. We evaluated recombinant NDVs (rNDVs) expressing interferon (rNDV-hIFNβ-F0) or an IFN antagonistic protein (rNDV-NS1-F0), as well as rNDV with increased virulence (rNDV-F3aa) for oncolytic efficacy in human pancreatic adenocarcinoma cells. Expression of additional proteins did not hamper virus replication or cytotoxic effects on itself. However, expression of interferon, but not NS1, resulted in loss of multicycle replication. Conversely, increasing the virulence (rNDV-F3aa) resulted in enhanced replication of the virus. Type I interferon was produced in high amounts by all tumor cells inoculated with rNDV-hIFNβ-F0, while inoculation with rNDV-NS1-F0 resulted in a complete block of interferon production in most cells. Inoculation of human pancreatic adenocarcinoma cells with rNDV-F3aa caused markedly more cytotoxicity compared to rNDV-F0, while inoculation with rNDV-hIFNβ-F0 and rNDV-NS1-F0 induced cytotoxic effects comparable to those induced by the parental rNDV-F0. Evaluation in vivo using mice bearing subcutaneous pancreatic cancer xenografts revealed that only intratumoral injection with rNDV-F3aa resulted in regression of tumors. We conclude that although lentogenic rNDVs harboring proteins that modulate the type I interferon pathway proteins do have an oncolytic effect, a more virulent mesogenic rNDV might be needed to improve oncolytic efficacy.
Collapse
|