1
|
Pividori M, Sadeeq S, Krishnan A, Stranger BE, Gignoux CR. Uncovering hidden gene-trait patterns through biclustering analysis of the UK Biobank. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.08.622657. [PMID: 39605717 PMCID: PMC11601405 DOI: 10.1101/2024.11.08.622657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The growing availability of genome-wide association studies (GWAS) and large-scale biobanks provides an unprecedented opportunity to explore the genetic basis of complex traits and diseases. However, with this vast amount of data comes the challenge of interpreting numerous associations across thousands of traits, especially given the high polygenicity and pleiotropy underlying complex phenotypes. Traditional clustering methods, which identify global patterns in data, lack the resolution to capture overlapping associations relevant to subsets of traits or genes. Consequently, there is a critical need for innovative analytic approaches capable of revealing local, biologically meaningful patterns that could advance our understanding of trait comorbidities and gene-trait interactions. Here, we applied BiBit, a biclustering algorithm, to transcriptome-wide association study (TWAS) results from PhenomeXcan, a large resource of gene-trait associations derived from the UK Biobank. BiBit allows simultaneous grouping of traits and genes, identifying biclusters that represent local, overlapping associations. Our analyses uncovered biologically interpretable patterns, including asthma-related biclusters enriched for immune-related gene sets, connections between eye traits and blood pressure, and associations between dietary traits, high cholesterol, and specific loci on chromosome 19. These biclusters highlight gene-trait relationships and patterns of trait co-occurrence that may otherwise be obscured by traditional methods. Our findings demonstrate that biclustering can provide a nuanced view of the genetic architecture of complex traits, offering insights into pleiotropy and disease mechanisms. By enabling the exploration of complex, overlapping patterns within biobank-scale datasets, this approach provides a valuable framework for advancing research on genetic associations, comorbidities, and polygenic traits.
Collapse
Affiliation(s)
- Milton Pividori
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Suraju Sadeeq
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Arjun Krishnan
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Barbara E. Stranger
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Christopher R. Gignoux
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
2
|
Findlay AR. Dominantly inherited muscle disorders: understanding their complexity and exploring therapeutic approaches. Dis Model Mech 2024; 17:dmm050720. [PMID: 39501809 PMCID: PMC11574355 DOI: 10.1242/dmm.050720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
Treatments for disabling and life-threatening hereditary muscle disorders are finally close to becoming a reality. Research has thus far focused primarily on recessive forms of muscle disease. The gene replacement strategies that are commonly employed for recessive, loss-of-function disorders are not readily translatable to most dominant myopathies owing to the presence of a normal chromosome in each nucleus, hindering the development of novel treatments for these dominant disorders. This is largely due to their complex, heterogeneous disease mechanisms that require unique therapeutic approaches. However, as viral and RNA interference-based therapies enter clinical use, key tools are now in place to develop treatments for dominantly inherited disorders of muscle. This article will review what is known about dominantly inherited disorders of muscle, specifically their genetic basis, how mutations lead to disease, and the pathomechanistic implications for therapeutic approaches.
Collapse
Affiliation(s)
- Andrew R Findlay
- Washington University Saint Louis, Neuromuscular Disease Center, 660 S. Euclid Ave., St Louis, MO 63110, USA
| |
Collapse
|
3
|
Falcetta D, Quirim S, Cocchiararo I, Chabry F, Théodore M, Stiefvater A, Lin S, Tintignac L, Ivanek R, Kinter J, Rüegg MA, Sinnreich M, Castets P. CaMKIIβ deregulation contributes to neuromuscular junction destabilization in Myotonic Dystrophy type I. Skelet Muscle 2024; 14:11. [PMID: 38769542 PMCID: PMC11106974 DOI: 10.1186/s13395-024-00345-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Myotonic Dystrophy type I (DM1) is the most common muscular dystrophy in adults. Previous reports have highlighted that neuromuscular junctions (NMJs) deteriorate in skeletal muscle from DM1 patients and mouse models thereof. However, the underlying pathomechanisms and their contribution to muscle dysfunction remain unknown. METHODS We compared changes in NMJs and activity-dependent signalling pathways in HSALR and Mbnl1ΔE3/ΔE3 mice, two established mouse models of DM1. RESULTS Muscle from DM1 mouse models showed major deregulation of calcium/calmodulin-dependent protein kinases II (CaMKIIs), which are key activity sensors regulating synaptic gene expression and acetylcholine receptor (AChR) recycling at the NMJ. Both mouse models exhibited increased fragmentation of the endplate, which preceded muscle degeneration. Endplate fragmentation was not accompanied by changes in AChR turnover at the NMJ. However, the expression of synaptic genes was up-regulated in mutant innervated muscle, together with an abnormal accumulation of histone deacetylase 4 (HDAC4), a known target of CaMKII. Interestingly, denervation-induced increase in synaptic gene expression and AChR turnover was hampered in DM1 muscle. Importantly, CaMKIIβ/βM overexpression normalized endplate fragmentation and synaptic gene expression in innervated Mbnl1ΔE3/ΔE3 muscle, but it did not restore denervation-induced synaptic gene up-regulation. CONCLUSIONS Our results indicate that CaMKIIβ-dependent and -independent mechanisms perturb synaptic gene regulation and muscle response to denervation in DM1 mouse models. Changes in these signalling pathways may contribute to NMJ destabilization and muscle dysfunction in DM1 patients.
Collapse
Affiliation(s)
- Denis Falcetta
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva, CH-1211, Switzerland
- Neuromuscular Research Group, Departments of Neurology and Biomedicine, University and University Hospital Basel, Klingelbergstrasse 50/70, Basel, CH-4056, Switzerland
- Biozentrum, University of Basel, Spitalstrasse 41, Basel, CH-4056, Switzerland
| | - Sandrine Quirim
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva, CH-1211, Switzerland
| | - Ilaria Cocchiararo
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva, CH-1211, Switzerland
| | - Florent Chabry
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva, CH-1211, Switzerland
| | - Marine Théodore
- Neuromuscular Research Group, Departments of Neurology and Biomedicine, University and University Hospital Basel, Klingelbergstrasse 50/70, Basel, CH-4056, Switzerland
| | - Adeline Stiefvater
- Neuromuscular Research Group, Departments of Neurology and Biomedicine, University and University Hospital Basel, Klingelbergstrasse 50/70, Basel, CH-4056, Switzerland
| | - Shuo Lin
- Biozentrum, University of Basel, Spitalstrasse 41, Basel, CH-4056, Switzerland
| | - Lionel Tintignac
- Neuromuscular Research Group, Departments of Neurology and Biomedicine, University and University Hospital Basel, Klingelbergstrasse 50/70, Basel, CH-4056, Switzerland
| | - Robert Ivanek
- Department of Biomedicine, University Hospital and University of Basel, Hebelstrasse 20, Basel, CH-4053, Switzerland
- Swiss Institute of Bioinformatics, Hebelstrasse 20, Basel, CH-4053, Switzerland
| | - Jochen Kinter
- Neuromuscular Research Group, Departments of Neurology and Biomedicine, University and University Hospital Basel, Klingelbergstrasse 50/70, Basel, CH-4056, Switzerland
| | - Markus A Rüegg
- Biozentrum, University of Basel, Spitalstrasse 41, Basel, CH-4056, Switzerland
| | - Michael Sinnreich
- Neuromuscular Research Group, Departments of Neurology and Biomedicine, University and University Hospital Basel, Klingelbergstrasse 50/70, Basel, CH-4056, Switzerland
| | - Perrine Castets
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva, CH-1211, Switzerland.
| |
Collapse
|
4
|
Zambon AA, Falzone YM, Bolino A, Previtali SC. Molecular mechanisms and therapeutic strategies for neuromuscular diseases. Cell Mol Life Sci 2024; 81:198. [PMID: 38678519 PMCID: PMC11056344 DOI: 10.1007/s00018-024-05229-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/14/2024] [Accepted: 04/07/2024] [Indexed: 05/01/2024]
Abstract
Neuromuscular diseases encompass a heterogeneous array of disorders characterized by varying onset ages, clinical presentations, severity, and progression. While these conditions can stem from acquired or inherited causes, this review specifically focuses on disorders arising from genetic abnormalities, excluding metabolic conditions. The pathogenic defect may primarily affect the anterior horn cells, the axonal or myelin component of peripheral nerves, the neuromuscular junction, or skeletal and/or cardiac muscles. While inherited neuromuscular disorders have been historically deemed not treatable, the advent of gene-based and molecular therapies is reshaping the treatment landscape for this group of condition. With the caveat that many products still fail to translate the positive results obtained in pre-clinical models to humans, both the technological development (e.g., implementation of tissue-specific vectors) as well as advances on the knowledge of pathogenetic mechanisms form a collective foundation for potentially curative approaches to these debilitating conditions. This review delineates the current panorama of therapies targeting the most prevalent forms of inherited neuromuscular diseases, emphasizing approved treatments and those already undergoing human testing, offering insights into the state-of-the-art interventions.
Collapse
Affiliation(s)
- Alberto Andrea Zambon
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Institute for Experimental Neurology, Inspe, Milan, Italy
- Neurology Department, San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Yuri Matteo Falzone
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Institute for Experimental Neurology, Inspe, Milan, Italy
- Neurology Department, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Bolino
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Institute for Experimental Neurology, Inspe, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Stefano Carlo Previtali
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Institute for Experimental Neurology, Inspe, Milan, Italy.
- Neurology Department, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
5
|
Puwanant A, Živković SA, Clemens PR. Muscular dystrophy. NEUROBIOLOGY OF BRAIN DISORDERS 2023:147-164. [DOI: 10.1016/b978-0-323-85654-6.00055-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
De Serres-Bérard T, Ait Benichou S, Jauvin D, Boutjdir M, Puymirat J, Chahine M. Recent Progress and Challenges in the Development of Antisense Therapies for Myotonic Dystrophy Type 1. Int J Mol Sci 2022; 23:13359. [PMID: 36362145 PMCID: PMC9657934 DOI: 10.3390/ijms232113359] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 08/01/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a dominant genetic disease in which the expansion of long CTG trinucleotides in the 3' UTR of the myotonic dystrophy protein kinase (DMPK) gene results in toxic RNA gain-of-function and gene mis-splicing affecting mainly the muscles, the heart, and the brain. The CUG-expanded transcripts are a suitable target for the development of antisense oligonucleotide (ASO) therapies. Various chemical modifications of the sugar-phosphate backbone have been reported to significantly enhance the affinity of ASOs for RNA and their resistance to nucleases, making it possible to reverse DM1-like symptoms following systemic administration in different transgenic mouse models. However, specific tissue delivery remains to be improved to achieve significant clinical outcomes in humans. Several strategies, including ASO conjugation to cell-penetrating peptides, fatty acids, or monoclonal antibodies, have recently been shown to improve potency in muscle and cardiac tissues in mice. Moreover, intrathecal administration of ASOs may be an advantageous complementary administration route to bypass the blood-brain barrier and correct defects of the central nervous system in DM1. This review describes the evolution of the chemical design of antisense oligonucleotides targeting CUG-expanded mRNAs and how recent advances in the field may be game-changing by forwarding laboratory findings into clinical research and treatments for DM1 and other microsatellite diseases.
Collapse
Affiliation(s)
- Thiéry De Serres-Bérard
- CERVO Research Center, Institut Universitaire en Santé Mentale de Québec, Quebec City, QC G1J 2G3, Canada
| | - Siham Ait Benichou
- LOEX, CHU de Québec-Université Laval Research Center, Quebec City, QC G1J 1Z4, Canada
| | - Dominic Jauvin
- CERVO Research Center, Institut Universitaire en Santé Mentale de Québec, Quebec City, QC G1J 2G3, Canada
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY 11209, USA
- Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Science University, New York, NY 11203, USA
- Department of Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Jack Puymirat
- LOEX, CHU de Québec-Université Laval Research Center, Quebec City, QC G1J 1Z4, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Mohamed Chahine
- CERVO Research Center, Institut Universitaire en Santé Mentale de Québec, Quebec City, QC G1J 2G3, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
7
|
Molecular Therapies for Myotonic Dystrophy Type 1: From Small Drugs to Gene Editing. Int J Mol Sci 2022; 23:ijms23094622. [PMID: 35563013 PMCID: PMC9101876 DOI: 10.3390/ijms23094622] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy affecting many different body tissues, predominantly skeletal and cardiac muscles and the central nervous system. The expansion of CTG repeats in the DM1 protein-kinase (DMPK) gene is the genetic cause of the disease. The pathogenetic mechanisms are mainly mediated by the production of a toxic expanded CUG transcript from the DMPK gene. With the availability of new knowledge, disease models, and technical tools, much progress has been made in the discovery of altered pathways and in the potential of therapeutic intervention, making the path to the clinic a closer reality. In this review, we describe and discuss the molecular therapeutic strategies for DM1, which are designed to directly target the CTG genomic tract, the expanded CUG transcript or downstream signaling molecules.
Collapse
|
8
|
Soltanzadeh P. Myotonic Dystrophies: A Genetic Overview. Genes (Basel) 2022; 13:367. [PMID: 35205411 PMCID: PMC8872148 DOI: 10.3390/genes13020367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
Myotonic dystrophies (DM) are the most common muscular dystrophies in adults, which can affect other non-skeletal muscle organs such as the heart, brain and gastrointestinal system. There are two genetically distinct types of myotonic dystrophy: myotonic dystrophy type 1 (DM1) and myotonic dystrophy type 2 (DM2), both dominantly inherited with significant overlap in clinical manifestations. DM1 results from CTG repeat expansions in the 3'-untranslated region (3'UTR) of the DMPK (dystrophia myotonica protein kinase) gene on chromosome 19, while DM2 is caused by CCTG repeat expansions in intron 1 of the CNBP (cellular nucleic acid-binding protein) gene on chromosome 3. Recent advances in genetics and molecular biology, especially in the field of RNA biology, have allowed better understanding of the potential pathomechanisms involved in DM. In this review article, core clinical features and genetics of DM are presented followed by a discussion on the current postulated pathomechanisms and therapeutic approaches used in DM, including the ones currently in human clinical trial phase.
Collapse
Affiliation(s)
- Payam Soltanzadeh
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
9
|
Liu J, Guo ZN, Yan XL, Yang Y, Huang S. Brain Pathogenesis and Potential Therapeutic Strategies in Myotonic Dystrophy Type 1. Front Aging Neurosci 2021; 13:755392. [PMID: 34867280 PMCID: PMC8634727 DOI: 10.3389/fnagi.2021.755392] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy that affects multiple systems including the muscle and heart. The mutant CTG expansion at the 3'-UTR of the DMPK gene causes the expression of toxic RNA that aggregate as nuclear foci. The foci then interfere with RNA-binding proteins, affecting hundreds of mis-spliced effector genes, leading to aberrant alternative splicing and loss of effector gene product functions, ultimately resulting in systemic disorders. In recent years, increasing clinical, imaging, and pathological evidence have indicated that DM1, though to a lesser extent, could also be recognized as true brain diseases, with more and more researchers dedicating to develop novel therapeutic tools dealing with it. In this review, we summarize the current advances in the pathogenesis and pathology of central nervous system (CNS) deficits in DM1, intervention measures currently being investigated are also highlighted, aiming to promote novel and cutting-edge therapeutic investigations.
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Zhen-Ni Guo
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Xiu-Li Yan
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
| | - Yi Yang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Shuo Huang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| |
Collapse
|
10
|
Hanoun S, Sun Y, Ebrahimi F, Ghasemi M. Speech and language abnormalities in myotonic dystrophy: An overview. J Clin Neurosci 2021; 96:212-220. [PMID: 34789418 DOI: 10.1016/j.jocn.2021.10.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/30/2021] [Accepted: 10/24/2021] [Indexed: 12/26/2022]
Abstract
Myotonic dystrophy (DM) is an autosomal dominant neuromuscular and multisystem disease that is divided into two types, DM1 and DM2, according to mutations in DMPK and CNBP genes, respectively. DM patients may manifest with various speech and language abnormalities. In this review, we had an overview on speech and language abnormalities in both DM1 and DM2. Our literature search highlights that irrespective of age, all DM patients (i.e. congenital, juvenile, and adult onset DM1 as well as DM2 patients) exhibit various degrees of speech impairments. These problems are related to both cognitive dysfunction (e.g. difficulties in written and spoken language) and bulbar/vocal muscles weakness and myotonia. DM1 adult patients have also a significant decrease in speech rate and performance due to myotonia and flaccid dysarthria, which can improve with warming up. Weakness, tiredness, and hypotonia of oral and velopharyngeal muscles can cause flaccid dysarthria. Hearing impairment also plays a role in affecting speech recognition in DM2. A better understanding of different aspects of speech and language abnormalities in DM patients may provide better characterization of these abnormalities as markers that can be potentially used as outcome measures in natural history studies or clinical trials.
Collapse
Affiliation(s)
- Sakhaa Hanoun
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA; Department of Medicine, Al-Quds University, Jerusalem, Palestine
| | - Yuyao Sun
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Farzad Ebrahimi
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA; Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
11
|
Alexander MS, Hightower RM, Reid AL, Bennett AH, Iyer L, Slonim DK, Saha M, Kawahara G, Kunkel LM, Kopin AS, Gupta VA, Kang PB, Draper I. hnRNP L is essential for myogenic differentiation and modulates myotonic dystrophy pathologies. Muscle Nerve 2021; 63:928-940. [PMID: 33651408 DOI: 10.1002/mus.27216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION RNA-binding proteins (RBPs) play an important role in skeletal muscle development and disease by regulating RNA splicing. In myotonic dystrophy type 1 (DM1), the RBP MBNL1 (muscleblind-like) is sequestered by toxic CUG repeats, leading to missplicing of MBNL1 targets. Mounting evidence from the literature has implicated other factors in the pathogenesis of DM1. Herein we sought to evaluate the functional role of the splicing factor hnRNP L in normal and DM1 muscle cells. METHODS Co-immunoprecipitation assays using hnRNPL and MBNL1 expression constructs and splicing profiling in normal and DM1 muscle cell lines were performed. Zebrafish morpholinos targeting hnrpl and hnrnpl2 were injected into one-cell zebrafish for developmental and muscle analysis. In human myoblasts downregulation of hnRNP L was achieved with shRNAi. Ascochlorin administration to DM1 myoblasts was performed and expression of the CUG repeats, DM1 splicing biomarkers, and hnRNP L expression levels were evaluated. RESULTS Using DM1 patient myoblast cell lines we observed the formation of abnormal hnRNP L nuclear foci within and outside the expanded CUG repeats, suggesting a role for this factor in DM1 pathology. We showed that the antiviral and antitumorigenic isoprenoid compound ascochlorin increased MBNL1 and hnRNP L expression levels. Drug treatment of DM1 muscle cells with ascochlorin partially rescued missplicing of established early biomarkers of DM1 and improved the defective myotube formation displayed by DM1 muscle cells. DISCUSSION Together, these studies revealed that hnRNP L can modulate DM1 pathologies and is a potential therapeutic target.
Collapse
Affiliation(s)
- Matthew S Alexander
- Division of Neurology, Department of Pediatrics, University of Alabama at Birmingham and Children's of Alabama, Birmingham, Alabama, USA.,Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rylie M Hightower
- Division of Neurology, Department of Pediatrics, University of Alabama at Birmingham and Children's of Alabama, Birmingham, Alabama, USA.,Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Andrea L Reid
- Division of Neurology, Department of Pediatrics, University of Alabama at Birmingham and Children's of Alabama, Birmingham, Alabama, USA
| | - Alexis H Bennett
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lakshmanan Iyer
- Department of Neuroscience, Tufts University, Boston, Massachusetts, USA
| | - Donna K Slonim
- Department of Computer Science, Tufts University, Medford, Massachusetts, USA
| | - Madhurima Saha
- Division of Pediatric Neurology, Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Genri Kawahara
- Department of Pathophysiology, Tokyo Medical University, Tokyo, Japan
| | - Louis M Kunkel
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Alan S Kopin
- Department of Medicine, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Vandana A Gupta
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Peter B Kang
- Division of Pediatric Neurology, Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida, USA.,Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, USA.,Department of Neurology, University of Florida College of Medicine, Gainesville, Florida, USA.,Genetics Institute and Myology Institute, University of Florida, Gainesville, Florida, USA.,Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, Minnesota, USA.,Neurology Department, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Isabelle Draper
- Department of Medicine, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Weskamp K, Olwin BB, Parker R. Post-Transcriptional Regulation in Skeletal Muscle Development, Repair, and Disease. Trends Mol Med 2020; 27:469-481. [PMID: 33384234 DOI: 10.1016/j.molmed.2020.12.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022]
Abstract
Skeletal muscle formation is a complex process that requires tight spatiotemporal control of key myogenic factors. Emerging evidence suggests that RNA processing is crucial for the regulation of these factors, and that multiple post-transcriptional regulatory pathways work dependently and independently of one another to enable precise control of transcripts throughout muscle development and repair. Moreover, disruption of these pathways is implicated in neuromuscular disease, and the recent development of RNA-mediated therapies shows enormous promise in the treatment of these disorders. We discuss the overlapping post-transcriptional regulatory pathways that mediate muscle development, how these pathways are disrupted in neuromuscular disorders, and advances in RNA-mediated therapies that present a novel approach to the treatment of these diseases.
Collapse
Affiliation(s)
- Kaitlin Weskamp
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA.
| | - Bradley B Olwin
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Roy Parker
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
13
|
Zhang N, Bewick B, Xia G, Furling D, Ashizawa T. A CRISPR-Cas13a Based Strategy That Tracks and Degrades Toxic RNA in Myotonic Dystrophy Type 1. Front Genet 2020; 11:594576. [PMID: 33362853 PMCID: PMC7758406 DOI: 10.3389/fgene.2020.594576] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Cas13a, an effector of type VI CRISPR-Cas systems, is an RNA guided RNase with multiplexing and therapeutic potential. This study employs the Leptotrichia shahii (Lsh) Cas13a and a repeat-based CRISPR RNA (crRNA) to track and eliminate toxic RNA aggregates in myotonic dystrophy type 1 (DM1) – a neuromuscular disease caused by CTG expansion in the DMPK gene. We demonstrate that LshCas13a cleaves CUG repeat RNA in biochemical assays and reduces toxic RNA load in patient-derived myoblasts. As a result, LshCas13a reverses the characteristic adult-to-embryonic missplicing events in several key genes that contribute to DM1 phenotype. The deactivated LshCas13a can further be repurposed to track RNA-rich organelles within cells. Our data highlights the reprogrammability of LshCas13a and the possible use of Cas13a to target expanded repeat sequences in microsatellite expansion diseases.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, United States
| | - Brittani Bewick
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, United States
| | - Guangbin Xia
- Indiana University School of Medicine, Fort Wayne, IN, United States
| | - Denis Furling
- Institut National de la Sante et de la Recherche Medicale (INSERM), Centre de Recherche en Myologie (CRM), Association Institut de Myologie, Sorbonne Université, Paris, France
| | - Tetsuo Ashizawa
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
14
|
Castro AF, Loureiro JR, Bessa J, Silveira I. Antisense Transcription across Nucleotide Repeat Expansions in Neurodegenerative and Neuromuscular Diseases: Progress and Mysteries. Genes (Basel) 2020; 11:E1418. [PMID: 33261024 PMCID: PMC7760973 DOI: 10.3390/genes11121418] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Unstable repeat expansions and insertions cause more than 30 neurodegenerative and neuromuscular diseases. Remarkably, bidirectional transcription of repeat expansions has been identified in at least 14 of these diseases. More remarkably, a growing number of studies has been showing that both sense and antisense repeat RNAs are able to dysregulate important cellular pathways, contributing together to the observed clinical phenotype. Notably, antisense repeat RNAs from spinocerebellar ataxia type 7, myotonic dystrophy type 1, Huntington's disease and frontotemporal dementia/amyotrophic lateral sclerosis associated genes have been implicated in transcriptional regulation of sense gene expression, acting either at a transcriptional or posttranscriptional level. The recent evidence that antisense repeat RNAs could modulate gene expression broadens our understanding of the pathogenic pathways and adds more complexity to the development of therapeutic strategies for these disorders. In this review, we cover the amazing progress made in the understanding of the pathogenic mechanisms associated with repeat expansion neurodegenerative and neuromuscular diseases with a focus on the impact of antisense repeat transcription in the development of efficient therapies.
Collapse
Affiliation(s)
- Ana F. Castro
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.F.C.); (J.R.L.)
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
- ICBAS, Universidade do Porto, 4050-313 Porto, Portugal
| | - Joana R. Loureiro
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.F.C.); (J.R.L.)
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
| | - José Bessa
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
- Vertebrate Development and Regeneration Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Isabel Silveira
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.F.C.); (J.R.L.)
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
| |
Collapse
|
15
|
Chu Y, Hu J, Liang H, Kanchwala M, Xing C, Beebe W, Bowman CB, Gong X, Corey DR, Mootha VV. Analyzing pre-symptomatic tissue to gain insights into the molecular and mechanistic origins of late-onset degenerative trinucleotide repeat disease. Nucleic Acids Res 2020; 48:6740-6758. [PMID: 32463444 PMCID: PMC7337964 DOI: 10.1093/nar/gkaa422] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/02/2020] [Accepted: 05/11/2020] [Indexed: 12/17/2022] Open
Abstract
How genetic defects trigger the molecular changes that cause late-onset disease is important for understanding disease progression and therapeutic development. Fuchs' endothelial corneal dystrophy (FECD) is an RNA-mediated disease caused by a trinucleotide CTG expansion in an intron within the TCF4 gene. The mutant intronic CUG RNA is present at one-two copies per cell, posing a challenge to understand how a rare RNA can cause disease. Late-onset FECD is a uniquely advantageous model for studying how RNA triggers disease because: (i) Affected tissue is routinely removed during surgery; (ii) The expanded CTG mutation is one of the most prevalent disease-causing mutations, making it possible to obtain pre-symptomatic tissue from eye bank donors to probe how gene expression changes precede disease; and (iii) The affected tissue is a homogeneous single cell monolayer, facilitating accurate transcriptome analysis. Here, we use RNA sequencing (RNAseq) to compare tissue from individuals who are pre-symptomatic (Pre_S) to tissue from patients with late stage FECD (FECD_REP). The abundance of mutant repeat intronic RNA in Pre_S and FECD_REP tissue is elevated due to increased half-life in a corneal cells. In Pre_S tissue, changes in splicing and extracellular matrix gene expression foreshadow the changes observed in advanced disease and predict the activation of the fibrosis pathway and immune system seen in late-stage patients. The absolute magnitude of splicing changes is similar in pre-symptomatic and late stage tissue. Our data identify gene candidates for early drivers of disease and biomarkers that may represent diagnostic and therapeutic targets for FECD. We conclude that changes in alternative splicing and gene expression are observable decades prior to the diagnosis of late-onset trinucleotide repeat disease.
Collapse
Affiliation(s)
- Yongjun Chu
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiaxin Hu
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hanquan Liang
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mohammed Kanchwala
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | - Xin Gong
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9057, USA
| | - David R Corey
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - V Vinod Mootha
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9057, USA
| |
Collapse
|
16
|
Fautsch MP, Wieben ED, Baratz KH, Bhattacharyya N, Sadan AN, Hafford-Tear NJ, Tuft SJ, Davidson AE. TCF4-mediated Fuchs endothelial corneal dystrophy: Insights into a common trinucleotide repeat-associated disease. Prog Retin Eye Res 2020; 81:100883. [PMID: 32735996 PMCID: PMC7988464 DOI: 10.1016/j.preteyeres.2020.100883] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/24/2020] [Accepted: 07/04/2020] [Indexed: 12/13/2022]
Abstract
Fuchs endothelial corneal dystrophy (FECD) is a common cause for heritable visual loss in the elderly. Since the first description of an association between FECD and common polymorphisms situated within the transcription factor 4 (TCF4) gene, genetic and molecular studies have implicated an intronic CTG trinucleotide repeat (CTG18.1) expansion as a causal variant in the majority of FECD patients. To date, several non-mutually exclusive mechanisms have been proposed that drive and/or exacerbate the onset of disease. These mechanisms include (i) TCF4 dysregulation; (ii) toxic gain-of-function from TCF4 repeat-containing RNA; (iii) toxic gain-of-function from repeat-associated non-AUG dependent (RAN) translation; and (iv) somatic instability of CTG18.1. However, the relative contribution of these proposed mechanisms in disease pathogenesis is currently unknown. In this review, we summarise research implicating the repeat expansion in disease pathogenesis, define the phenotype-genotype correlations between FECD and CTG18.1 expansion, and provide an update on research tools that are available to study FECD as a trinucleotide repeat expansion disease. Furthermore, ongoing international research efforts to develop novel CTG18.1 expansion-mediated FECD therapeutics are highlighted and we provide a forward-thinking perspective on key unanswered questions that remain in the field. FECD is a common, age-related corneal dystrophy. The majority of cases are associated with expansion of a CTG repeat (CTG18.1). FECD is the most common trinucleotide repeat expansion disease in humans. Evidence supports multiple molecular mechanisms underlying the pathophysiology. Novel CTG18.1-targeted therapeutics are in development.
Collapse
Affiliation(s)
- Michael P Fautsch
- Department of Ophthalmology, 200 1st St SW, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Eric D Wieben
- Department of Biochemistry and Molecular Biology, 200 1st St SW, Mayo Clinic, Rochester, MN, USA.
| | - Keith H Baratz
- Department of Ophthalmology, 200 1st St SW, Mayo Clinic, Rochester, MN, 55905, USA.
| | | | - Amanda N Sadan
- University College London Institute of Ophthalmology, London, ECIV 9EL, UK.
| | | | - Stephen J Tuft
- University College London Institute of Ophthalmology, London, ECIV 9EL, UK; Moorfields Eye Hospital, London, EC1V 2PD, UK.
| | - Alice E Davidson
- University College London Institute of Ophthalmology, London, ECIV 9EL, UK.
| |
Collapse
|
17
|
Klein AF, Varela MA, Arandel L, Holland A, Naouar N, Arzumanov A, Seoane D, Revillod L, Bassez G, Ferry A, Jauvin D, Gourdon G, Puymirat J, Gait MJ, Furling D, Wood MJ. Peptide-conjugated oligonucleotides evoke long-lasting myotonic dystrophy correction in patient-derived cells and mice. J Clin Invest 2020; 129:4739-4744. [PMID: 31479430 PMCID: PMC6819114 DOI: 10.1172/jci128205] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/01/2019] [Indexed: 01/28/2023] Open
Abstract
Antisense oligonucleotides (ASOs) targeting pathologic RNAs have shown promising therapeutic corrections for many genetic diseases including myotonic dystrophy (DM1). Thus, ASO strategies for DM1 can abolish the toxic RNA gain-of-function mechanism caused by nucleus-retained mutant DMPK (DM1 protein kinase) transcripts containing CUG expansions (CUGexps). However, systemic use of ASOs for this muscular disease remains challenging due to poor drug distribution to skeletal muscle. To overcome this limitation, we test an arginine-rich Pip6a cell-penetrating peptide and show that Pip6a-conjugated morpholino phosphorodiamidate oligomer (PMO) dramatically enhanced ASO delivery into striated muscles of DM1 mice following systemic administration in comparison with unconjugated PMO and other ASO strategies. Thus, low-dose treatment with Pip6a-PMO-CAG targeting pathologic expansions is sufficient to reverse both splicing defects and myotonia in DM1 mice and normalizes the overall disease transcriptome. Moreover, treated DM1 patient–derived muscle cells showed that Pip6a-PMO-CAG specifically targets mutant CUGexp-DMPK transcripts to abrogate the detrimental sequestration of MBNL1 splicing factor by nuclear RNA foci and consequently MBNL1 functional loss, responsible for splicing defects and muscle dysfunction. Our results demonstrate that Pip6a-PMO-CAG induces long-lasting correction with high efficacy of DM1-associated phenotypes at both molecular and functional levels, and strongly support the use of advanced peptide conjugates for systemic corrective therapy in DM1.
Collapse
Affiliation(s)
- Arnaud F Klein
- Sorbonne Université, Inserm, Association Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Miguel A Varela
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, United Kingdom.,Department of Paediatrics, John Radcliffe Hospital, and.,MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, United Kingdom
| | - Ludovic Arandel
- Sorbonne Université, Inserm, Association Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Ashling Holland
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, United Kingdom.,Department of Paediatrics, John Radcliffe Hospital, and.,MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, United Kingdom
| | - Naira Naouar
- Sorbonne Université, Inserm, Association Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Andrey Arzumanov
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, United Kingdom.,Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - David Seoane
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, United Kingdom.,Department of Paediatrics, John Radcliffe Hospital, and.,MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, United Kingdom
| | - Lucile Revillod
- Sorbonne Université, Inserm, Association Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Guillaume Bassez
- Sorbonne Université, Inserm, Association Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Arnaud Ferry
- Sorbonne Université, Inserm, Association Institut de Myologie, Centre de Recherche en Myologie, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Dominic Jauvin
- Unit of Human Genetics, Hôpital de l'Enfant-Jésus, CHU Research Center, Quebec, Canada
| | - Genevieve Gourdon
- Sorbonne Université, Inserm, Association Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Jack Puymirat
- Unit of Human Genetics, Hôpital de l'Enfant-Jésus, CHU Research Center, Quebec, Canada
| | - Michael J Gait
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Denis Furling
- Sorbonne Université, Inserm, Association Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Matthew Ja Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, United Kingdom.,Department of Paediatrics, John Radcliffe Hospital, and.,MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Yadava RS, Yu Q, Mandal M, Rigo F, Bennett CF, Mahadevan MS. Systemic therapy in an RNA toxicity mouse model with an antisense oligonucleotide therapy targeting a non-CUG sequence within the DMPK 3'UTR RNA. Hum Mol Genet 2020; 29:1440-1453. [PMID: 32242217 PMCID: PMC7268549 DOI: 10.1093/hmg/ddaa060] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/19/2020] [Accepted: 03/30/2020] [Indexed: 12/17/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1), the most common adult muscular dystrophy, is an autosomal dominant disorder caused by an expansion of a (CTG)n tract within the 3' untranslated region (3'UTR) of the dystrophia myotonica protein kinase (DMPK) gene. Mutant DMPK mRNAs are toxic, present in nuclear RNA foci and correlated with a plethora of RNA splicing defects. Cardinal features of DM1 are myotonia and cardiac conduction abnormalities. Using transgenic mice, we have demonstrated that expression of the mutant DMPK 3'UTR is sufficient to elicit these features of DM1. Here, using these mice, we present a study of systemic treatment with an antisense oligonucleotide (ASO) (ISIS 486178) targeted to a non-CUG sequence within the 3'UTR of DMPK. RNA foci and DMPK 3'UTR mRNA levels were reduced in both the heart and skeletal muscles. This correlated with improvements in several splicing defects in skeletal and cardiac muscles. The treatment reduced myotonia and this correlated with increased Clcn1 expression. Furthermore, functional testing showed improvements in treadmill running. Of note, we demonstrate that the ASO treatment reversed the cardiac conduction abnormalities, and this correlated with restoration of Gja5 (connexin 40) expression in the heart. This is the first time that an ASO targeting a non-CUG sequence within the DMPK 3'UTR has demonstrated benefit on the key DM1 phenotypes of myotonia and cardiac conduction defects. Our data also shows for the first time that ASOs may be a viable option for treating cardiac pathology in DM1.
Collapse
Affiliation(s)
- Ramesh S Yadava
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Qing Yu
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Mahua Mandal
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Frank Rigo
- Ionis Pharmaceuticals Inc., Carlsbad, CA 90210, USA
| | | | - Mani S Mahadevan
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
19
|
Bogomazova AN, Eremeev AV, Pozmogova GE, Lagarkova MA. The Role of Mutant RNA in the Pathogenesis of Huntington’s Disease and Other Polyglutamine Diseases. Mol Biol 2019. [DOI: 10.1134/s0026893319060037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Increased Muscleblind levels by chloroquine treatment improve myotonic dystrophy type 1 phenotypes in in vitro and in vivo models. Proc Natl Acad Sci U S A 2019; 116:25203-25213. [PMID: 31754023 DOI: 10.1073/pnas.1820297116] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a life-threatening and chronically debilitating neuromuscular disease caused by the expansion of a CTG trinucleotide repeat in the 3' UTR of the DMPK gene. The mutant RNA forms insoluble structures capable of sequestering RNA binding proteins of the Muscleblind-like (MBNL) family, which ultimately leads to phenotypes. In this work, we demonstrate that treatment with the antiautophagic drug chloroquine was sufficient to up-regulate MBNL1 and 2 proteins in Drosophila and mouse (HSALR) models and patient-derived myoblasts. Extra Muscleblind was functional at the molecular level and improved splicing events regulated by MBNLs in all disease models. In vivo, chloroquine restored locomotion, rescued average cross-sectional muscle area, and extended median survival in DM1 flies. In HSALR mice, the drug restored muscular strength and histopathology signs and reduced the grade of myotonia. Taken together, these results offer a means to replenish critically low MBNL levels in DM1.
Collapse
|
21
|
Baroni A, Neaga I, Delbosc N, Wells M, Verdy L, Ansseau E, Vanden Eynde JJ, Belayew A, Bodoki E, Oprean R, Hambye S, Blankert B. Bioactive Aliphatic Polycarbonates Carrying Guanidinium Functions: An Innovative Approach for Myotonic Dystrophy Type 1 Therapy. ACS OMEGA 2019; 4:18126-18135. [PMID: 31720515 PMCID: PMC6843715 DOI: 10.1021/acsomega.9b02034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Dystrophia myotonica type 1 (DM1) results from nuclear sequestration of splicing factors by a messenger RNA (mRNA) harboring a large (CUG) n repeat array transcribed from the causal (CTG) n DNA amplification. Several compounds were previously shown to bind the (CUG) n RNA and release the splicing factors. We now investigated for the first time the interaction of an aliphatic polycarbonate carrying guanidinium functions to DM1 DNA/RNA model probes by affinity capillary electrophoresis. The apparent association constants (K a) were in the range described for reference compounds such as pentamidine. Further macromolecular engineering could improve association specificity. The polymer presented no toxicity in cell culture at concentrations of 1.6-100.0 μg/mL as evaluated both by MTT and real-time monitoring xCELLigence method. These promising results may lay the foundation for a new branch of potential therapeutic agents for DM1.
Collapse
Affiliation(s)
- Alexandra Baroni
- Laboratory
of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy,
Research Institute for Health Sciences and Technology, Laboratory of Molecular
Biology, Faculty of Medicine and Pharmacy, Research Institute for
Health Sciences and Technology, and Laboratory of Organic Chemistry, Faculty of
Sciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium
- Laboratory
of Polymeric and Composite Materials, Center of Innovation and Research
in Materials and Polymers (CIRMAP), University
of Mons. 20 Place du Parc, 7000 Mons, Belgium
| | - Ioan Neaga
- Laboratory
of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy,
Research Institute for Health Sciences and Technology, Laboratory of Molecular
Biology, Faculty of Medicine and Pharmacy, Research Institute for
Health Sciences and Technology, and Laboratory of Organic Chemistry, Faculty of
Sciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium
- Analytical
Chemistry Department, “Iuliu Haţieganu”
University of Medicine and Pharmacy, 4, Louis Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Nicolas Delbosc
- Laboratory
of Polymeric and Composite Materials, Center of Innovation and Research
in Materials and Polymers (CIRMAP), University
of Mons. 20 Place du Parc, 7000 Mons, Belgium
| | - Mathilde Wells
- Laboratory
of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy,
Research Institute for Health Sciences and Technology, Laboratory of Molecular
Biology, Faculty of Medicine and Pharmacy, Research Institute for
Health Sciences and Technology, and Laboratory of Organic Chemistry, Faculty of
Sciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Laetitia Verdy
- Laboratory
of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy,
Research Institute for Health Sciences and Technology, Laboratory of Molecular
Biology, Faculty of Medicine and Pharmacy, Research Institute for
Health Sciences and Technology, and Laboratory of Organic Chemistry, Faculty of
Sciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Eugénie Ansseau
- Laboratory
of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy,
Research Institute for Health Sciences and Technology, Laboratory of Molecular
Biology, Faculty of Medicine and Pharmacy, Research Institute for
Health Sciences and Technology, and Laboratory of Organic Chemistry, Faculty of
Sciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Jean Jacques Vanden Eynde
- Laboratory
of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy,
Research Institute for Health Sciences and Technology, Laboratory of Molecular
Biology, Faculty of Medicine and Pharmacy, Research Institute for
Health Sciences and Technology, and Laboratory of Organic Chemistry, Faculty of
Sciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Alexandra Belayew
- Laboratory
of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy,
Research Institute for Health Sciences and Technology, Laboratory of Molecular
Biology, Faculty of Medicine and Pharmacy, Research Institute for
Health Sciences and Technology, and Laboratory of Organic Chemistry, Faculty of
Sciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Ede Bodoki
- Analytical
Chemistry Department, “Iuliu Haţieganu”
University of Medicine and Pharmacy, 4, Louis Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Radu Oprean
- Analytical
Chemistry Department, “Iuliu Haţieganu”
University of Medicine and Pharmacy, 4, Louis Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Stéphanie Hambye
- Laboratory
of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy,
Research Institute for Health Sciences and Technology, Laboratory of Molecular
Biology, Faculty of Medicine and Pharmacy, Research Institute for
Health Sciences and Technology, and Laboratory of Organic Chemistry, Faculty of
Sciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Bertrand Blankert
- Laboratory
of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy,
Research Institute for Health Sciences and Technology, Laboratory of Molecular
Biology, Faculty of Medicine and Pharmacy, Research Institute for
Health Sciences and Technology, and Laboratory of Organic Chemistry, Faculty of
Sciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| |
Collapse
|
22
|
A CTG repeat-selective chemical screen identifies microtubule inhibitors as selective modulators of toxic CUG RNA levels. Proc Natl Acad Sci U S A 2019; 116:20991-21000. [PMID: 31570586 DOI: 10.1073/pnas.1901893116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A CTG repeat expansion in the DMPK gene is the causative mutation of myotonic dystrophy type 1 (DM1). Transcription of the expanded CTG repeat produces toxic gain-of-function CUG RNA, leading to disease symptoms. A screening platform that targets production or stability of the toxic CUG RNA in a selective manner has the potential to provide new biological and therapeutic insights. A DM1 HeLa cell model was generated that stably expresses a toxic r(CUG)480 and an analogous r(CUG)0 control from DMPK and was used to measure the ratio-metric level of r(CUG)480 versus r(CUG)0. This DM1 HeLa model recapitulates pathogenic hallmarks of DM1, including CUG ribonuclear foci and missplicing of pre-mRNA targets of the muscleblind (MBNL) alternative splicing factors. Repeat-selective screening using this cell line led to the unexpected identification of multiple microtubule inhibitors as hits that selectively reduce r(CUG)480 levels and partially rescue MBNL-dependent missplicing. These results were validated by using the Food and Drug Administration-approved clinical microtubule inhibitor colchicine in DM1 mouse and primary patient cell models. The mechanism of action was found to involve selective reduced transcription of the CTG expansion that we hypothesize to involve the LINC (linker of nucleoskeleton and cytoskeleton) complex. The unanticipated identification of microtubule inhibitors as selective modulators of toxic CUG RNA opens research directions for this form of muscular dystrophy and may shed light on the biology of CTG repeat expansion and inform therapeutic avenues. This approach has the potential to identify modulators of expanded repeat-containing gene expression for over 30 microsatellite expansion disorders.
Collapse
|
23
|
Czubak K, Taylor K, Piasecka A, Sobczak K, Kozlowska K, Philips A, Sedehizadeh S, Brook JD, Wojciechowska M, Kozlowski P. Global Increase in Circular RNA Levels in Myotonic Dystrophy. Front Genet 2019; 10:649. [PMID: 31428124 PMCID: PMC6689976 DOI: 10.3389/fgene.2019.00649] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/19/2019] [Indexed: 12/24/2022] Open
Abstract
Splicing aberrations induced as a consequence of the sequestration of muscleblind-like splicing factors on the dystrophia myotonica protein kinase transcript, which contains expanded CUG repeats, present a major pathomechanism of myotonic dystrophy type 1 (DM1). As muscleblind-like factors may also be important factors involved in the biogenesis of circular RNAs (circRNAs), we hypothesized that the level of circRNAs would be decreased in DM1. To test this hypothesis, we selected 20 well-validated circRNAs and analyzed their levels in several experimental systems (e.g., cell lines, DM muscle tissues, and a mouse model of DM1) using droplet digital PCR assays. We also explored the global level of circRNAs using two RNA-Seq datasets of DM1 muscle samples. Contrary to our original hypothesis, our results consistently showed a global increase in circRNA levels in DM1, and we identified numerous circRNAs that were increased in DM1. We also identified many genes (including muscle-specific genes) giving rise to numerous (>10) circRNAs. Thus, this study is the first to show an increase in global circRNA levels in DM1. We also provided preliminary results showing the association of circRNA level with muscle weakness and alternative splicing changes that are biomarkers of DM1 severity.
Collapse
Affiliation(s)
- Karol Czubak
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Katarzyna Taylor
- Laboratory of Gene Therapy, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Agnieszka Piasecka
- Laboratory of Gene Therapy, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Krzysztof Sobczak
- Laboratory of Gene Therapy, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Katarzyna Kozlowska
- European Center for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Anna Philips
- European Center for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Saam Sedehizadeh
- Queen’s Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - J. David Brook
- Queen’s Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Marzena Wojciechowska
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Queen’s Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Piotr Kozlowski
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
24
|
Jenquin JR, Yang H, Huigens RW, Nakamori M, Berglund JA. Combination Treatment of Erythromycin and Furamidine Provides Additive and Synergistic Rescue of Mis-Splicing in Myotonic Dystrophy Type 1 Models. ACS Pharmacol Transl Sci 2019; 2:247-263. [PMID: 31485578 DOI: 10.1021/acsptsci.9b00020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is a multi-systemic disease that presents with clinical symptoms including myotonia, cardiac dysfunction and cognitive impairment. DM1 is caused by a CTG expansion in the 3' UTR of the DMPK gene. The transcribed expanded CUG repeat RNA sequester the muscleblind-like (MBNL) and up-regulate the CUG-BP Elav-like (CELF) families of RNA-binding proteins leading to global mis-regulation of RNA processing and altered gene expression. Currently, there are no disease-targeting treatments for DM1. Given the multi-step pathogenic mechanism, combination therapies targeting different aspects of the disease mechanism may be a viable therapeutic approach. Here, as proof-of-concept, we studied a combination of two previously characterized small molecules, erythromycin and furamidine, in two DM1 models. In DM1 patient-derived myotubes, rescue of mis-splicing was observed with little to no cell toxicity. In a DM1 mouse model, a combination of erythromycin and the prodrug of furamidine (pafuramidine), administered orally, displayed both additive and synergistic mis-splicing rescue. Gene expression was only modestly affected and over 40 % of the genes showing significant expression changes were rescued back toward WT expression levels. Further, the combination treatment partially rescued the myotonia phenotype in the DM1 mouse. This combination treatment showed a high degree of mis-splicing rescue coupled with low off-target gene expression changes. These results indicate that combination therapies are a promising therapeutic approach for DM1.
Collapse
Affiliation(s)
- Jana R Jenquin
- Department of Biochemistry & Molecular Biology, Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA
| | - Hongfen Yang
- Department of Medicinal Chemistry, Center for Natural Products Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Robert W Huigens
- Department of Medicinal Chemistry, Center for Natural Products Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Masayuki Nakamori
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - J Andrew Berglund
- Department of Biochemistry & Molecular Biology, Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA.,Department of Biological Sciences, RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, New York, 12222, USA
| |
Collapse
|
25
|
Manta A, Stouth DW, Xhuti D, Chi L, Rebalka IA, Kalmar JM, Hawke TJ, Ljubicic V. Chronic exercise mitigates disease mechanisms and improves muscle function in myotonic dystrophy type 1 mice. J Physiol 2019; 597:1361-1381. [PMID: 30628727 DOI: 10.1113/jp277123] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 01/04/2019] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Myotonic dystrophy type 1 (DM1), the second most common muscular dystrophy and most prevalent adult form of muscular dystrophy, is characterized by muscle weakness, wasting and myotonia. A microsatellite repeat expansion mutation results in RNA toxicity and dysregulation of mRNA processing, which are the primary downstream causes of the disorder. Recent studies with DM1 participants demonstrate that exercise is safe, enjoyable and elicits benefits in muscle strength and function; however, the molecular mechanisms of exercise adaptation in DM1 are undefined. Our results demonstrate that 7 weeks of volitional running wheel exercise in a pre-clinical DM1 mouse model resulted in significantly improved motor performance, muscle strength and endurance, as well as reduced myotonia. At the cellular level, chronic physical activity attenuated RNA toxicity, liberated Muscleblind-like 1 protein from myonuclear foci and improved mRNA alternative splicing. ABSTRACT Myotonic dystrophy type 1 (DM1) is a trinucleotide repeat expansion neuromuscular disorder that is most prominently characterized by skeletal muscle weakness, wasting and myotonia. Chronic physical activity is safe and satisfying, and can elicit functional benefits such as improved strength and endurance in DM1 patients, but the underlying cellular basis of exercise adaptation is undefined. Our purpose was to examine the mechanisms of exercise biology in DM1. Healthy, sedentary wild-type (SED-WT) mice, as well as sedentary human skeletal actin-long repeat animals, a murine model of DM1 myopathy (SED-DM1), and DM1 mice with volitional access to a running wheel for 7 weeks (EX-DM1), were utilized. Chronic exercise augmented strength and endurance in vivo and in situ in DM1 mice. These alterations coincided with normalized measures of myopathy, as well as increased mitochondrial content. Electromyography revealed a 70-85% decrease in the duration of myotonic discharges in muscles from EX-DM1 compared to SED-DM1 animals. The exercise-induced enhancements in muscle function corresponded at the molecular level with mitigated spliceopathy, specifically the processing of bridging integrator 1 and muscle-specific chloride channel (CLC-1) transcripts. CLC-1 protein content and sarcolemmal expression were lower in SED-DM1 versus SED-WT animals, but they were similar between SED-WT and EX-DM1 groups. Chronic exercise also attenuated RNA toxicity, as indicated by reduced (CUG)n foci-positive myonuclei and sequestered Muscleblind-like 1 (MBNL1). Our data indicate that chronic exercise-induced physiological improvements in DM1 occur in concert with mitigated primary downstream disease mechanisms, including RNA toxicity, MBNL1 loss-of-function, and alternative mRNA splicing.
Collapse
Affiliation(s)
- Alexander Manta
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Derek W Stouth
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Donald Xhuti
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Leon Chi
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Irena A Rebalka
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Jayne M Kalmar
- Department of Kinesiology & Physical Education, Wilfred Laurier University, Waterloo, ON, Canada, N2L 3C5
| | - Thomas J Hawke
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Vladimir Ljubicic
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada, L8S 4K1
| |
Collapse
|
26
|
Hu J, Shen X, Rigo F, Prakash TP, Mootha VV, Corey DR. Duplex RNAs and ss-siRNAs Block RNA Foci Associated with Fuchs' Endothelial Corneal Dystrophy. Nucleic Acid Ther 2019; 29:73-81. [PMID: 30676271 DOI: 10.1089/nat.2018.0764] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Fuchs' endothelial corneal dystrophy (FECD) leads to vision loss and is one of the most common inherited eye diseases. Corneal transplants are the only curative treatment available, and there is a major unmet need for treatments that are less invasive and independent of donor tissue. Most cases of FECD are associated with an expanded CUG repeat within the intronic region of TCF4 and the mutant RNA has been implicated as the cause of the disease. We previously presented preliminary data suggesting that single-stranded antisense oligonucleotides (ASOs) can inhibit CUG RNA foci in patient-derived cells and tissue. We now show that duplex RNAs and single-stranded silencing RNAs (ss-siRNAs) reduce the number of cells with foci and the number of foci per cells. Potencies are similar to those that are achieved with chemically modified ASOs designed to block foci. These data widen the potential for synthetic nucleic acids to be used to treat a widely prevalent and debilitating disease.
Collapse
Affiliation(s)
- Jiaxin Hu
- 1 Department of Pharmacology and Biochemistry, UT Southwestern Medical Center at Dallas, Dallas, Texas
| | - Xiulong Shen
- 1 Department of Pharmacology and Biochemistry, UT Southwestern Medical Center at Dallas, Dallas, Texas
| | - Frank Rigo
- 2 Ionis Pharmaceuticals, Carlsbad, California
| | | | - V Vinod Mootha
- 3 Department of Ophthalmology, UT Southwestern Medical Center, Dallas, Texas.,4 McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, Texas
| | - David R Corey
- 1 Department of Pharmacology and Biochemistry, UT Southwestern Medical Center at Dallas, Dallas, Texas
| |
Collapse
|
27
|
Myotonic Dystrophy: an RNA Toxic Gain of Function Tauopathy? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1184:207-216. [PMID: 32096040 DOI: 10.1007/978-981-32-9358-8_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Myotonic dystrophies (DM) are rare inherited neuromuscular disorders linked to microsatellite unstable expansions in non-coding regions of ubiquitously expressed genes. The DMPK and ZNF9/CNBP genes which mutations are responsible for DM1 and DM2 respectively. DM are multisystemic disorders with brain affection and cognitive deficits. Brain lesions consisting of neurofibrillary tangles are often observed in DM1 and DM2 brain. Neurofibrillary tangles (NFT) made of aggregates of hyper and abnormally phosphorylated isoforms of Tau proteins are neuropathological lesions common to more than 20 neurological disorders globally referred to as Tauopathies. Although NFT are observed in DM1 and DM2 brain, the question of whether DM1 and DM2 are Tauopathies remains a matter of debate. In the present review, several pathophysiological processes including, missplicing, nucleocytoplasmic transport disruption, RAN translation which are common mechanisms implicated in neurodegenerative diseases will be described. Together, these processes including the missplicing of Tau are providing evidence that DM1 and DM2 are not solely muscular diseases but that their brain affection component share many similarities with Tauopathies and other neurodegenerative diseases. Understanding DM1 and DM2 pathophysiology is therefore valuable to more globally understand other neurodegenerative diseases such as Tauopathies but also frontotemporal lobar neurodegeneration and amyotrophic lateral sclerosis.
Collapse
|
28
|
Non-invasive monitoring of alternative splicing outcomes to identify candidate therapies for myotonic dystrophy type 1. Nat Commun 2018; 9:5227. [PMID: 30531949 PMCID: PMC6286378 DOI: 10.1038/s41467-018-07517-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 11/07/2018] [Indexed: 01/16/2023] Open
Abstract
During drug development, tissue samples serve as indicators of disease activity and pharmacodynamic responses. Reliable non-invasive measures of drug target engagement will facilitate identification of promising new treatments. Here we develop and validate a novel bi-transgenic mouse model of myotonic dystrophy type 1 (DM1) in which expression of either DsRed or GFP is determined by alternative splicing of an upstream minigene that is mis-regulated in DM1. Using a novel in vivo fluorescence spectroscopy system, we show that quantitation of the DsRed/GFP ratio provides an accurate estimation of splicing outcomes in muscle tissue of live mice that nearly doubles throughput over conventional fluorescence imaging techniques. Serial in vivo spectroscopy measurements in mice treated with a C16 fatty acid ligand conjugated antisense (LICA) oligonucleotide reveal a dose-dependent therapeutic response within seven days, confirm a several-week duration of action, and demonstrate a two-fold greater target engagement as compared to the unconjugated parent oligonucleotide.
Collapse
|
29
|
Abstract
Myotonic dystrophy is an autosomal dominant muscular dystrophy not only associated with muscle weakness, atrophy, and myotonia but also prominent multisystem involvement. There are 2 similar, but distinct, forms of myotonic dystrophy; type 1 is caused by a CTG repeat expansion in the DMPK gene, and type 2 is caused by a CCTG repeat expansion in the CNBP gene. Type 1 is associated with distal limb, neck flexor, and bulbar weakness and results in different phenotypic subtypes with variable onset from congenital to very late-onset as well as variable signs and symptoms. The classically described adult-onset form is the most common. In contrast, myotonic dystrophy type 2 is adult-onset or late-onset, has proximal predominant muscle weakness, and generally has less severe multisystem involvement. In both forms of myotonic dystrophy, the best characterized disease mechanism is a RNA toxic gain-of-function during which RNA repeats form nuclear foci resulting in sequestration of RNA-binding proteins and, therefore, dysregulated splicing of premessenger RNA. There are currently no disease-modifying therapies, but clinical surveillance, preventative measures, and supportive treatments are used to reduce the impact of muscular impairment and other systemic involvement including cataracts, cardiac conduction abnormalities, fatigue, central nervous system dysfunction, respiratory weakness, dysphagia, and endocrine dysfunction. Exciting preclinical progress has been made in identifying a number of potential strategies including genome editing, small molecule therapeutics, and antisense oligonucleotide-based therapies to target the pathogenesis of type 1 and type 2 myotonic dystrophies at the DNA, RNA, or downstream target level.
Collapse
Affiliation(s)
- Samantha LoRusso
- Department of Neurology, The Ohio State University, 395 West 12th Avenue, Columbus, OH, 43210, USA
| | - Benjamin Weiner
- The Ohio State University College of Medicine, The Ohio State University, 370 West 9th Avenue, Columbus, OH, 43210, USA
| | - W David Arnold
- Department of Neurology, The Ohio State University, 395 West 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
30
|
RNA-mediated therapies in myotonic dystrophy. Drug Discov Today 2018; 23:2013-2022. [PMID: 30086404 DOI: 10.1016/j.drudis.2018.08.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/25/2018] [Accepted: 08/01/2018] [Indexed: 12/29/2022]
Abstract
Myotonic dystrophy 1 (DM1) is a multisystemic neuromuscular disease caused by a dominantly inherited 'CTG' repeat expansion in the gene encoding DM Protein Kinase (DMPK). The repeats are transcribed into mRNA, which forms hairpins and binds with high affinity to the Muscleblind-like (MBNL) family of proteins, sequestering them from their normal function. The loss of function of MBNL proteins causes numerous downstream effects, primarily the appearance of nuclear foci, mis-splicing, and ultimately myotonia and other clinical symptoms. Antisense and other RNA-mediated technologies have been applied to target toxic-repeat mRNA transcripts to restore MBNL protein function in DM1 models, such as cells and mice, and in humans. This technique has had promising results in DM1 therapeutics by alleviating pathogenic phenotypes.
Collapse
|
31
|
Braz SO, Acquaire J, Gourdon G, Gomes-Pereira M. Of Mice and Men: Advances in the Understanding of Neuromuscular Aspects of Myotonic Dystrophy. Front Neurol 2018; 9:519. [PMID: 30050493 PMCID: PMC6050950 DOI: 10.3389/fneur.2018.00519] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 06/12/2018] [Indexed: 12/26/2022] Open
Abstract
Intensive effort has been directed toward the modeling of myotonic dystrophy (DM) in mice, in order to reproduce human disease and to provide useful tools to investigate molecular and cellular pathogenesis and test efficient therapies. Mouse models have contributed to dissect the multifaceted impact of the DM mutation in various tissues, cell types and in a pleiotropy of pathways, through the expression of toxic RNA transcripts. Changes in alternative splicing, transcription, translation, intracellular RNA localization, polyadenylation, miRNA metabolism and phosphorylation of disease intermediates have been described in different tissues. Some of these events have been directly associated with specific disease symptoms in the skeletal muscle and heart of mice, offering the molecular explanation for individual disease phenotypes. In the central nervous system (CNS), however, the situation is more complex. We still do not know how the molecular abnormalities described translate into CNS dysfunction, nor do we know if the correction of individual molecular events will provide significant therapeutic benefits. The variability in model design and phenotypes described so far requires a thorough and critical analysis. In this review we discuss the recent contributions of mouse models to the understanding of neuromuscular aspects of disease, therapy development, and we provide a reflective assessment of our current limitations and pressing questions that remain unanswered.
Collapse
Affiliation(s)
- Sandra O Braz
- Laboratory CTGDM, INSERM UMR1163, Paris, France.,Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Julien Acquaire
- Laboratory CTGDM, INSERM UMR1163, Paris, France.,Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Geneviève Gourdon
- Laboratory CTGDM, INSERM UMR1163, Paris, France.,Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Mário Gomes-Pereira
- Laboratory CTGDM, INSERM UMR1163, Paris, France.,Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| |
Collapse
|
32
|
Matloka M, Klein AF, Rau F, Furling D. Cells of Matter- In Vitro Models for Myotonic Dystrophy. Front Neurol 2018; 9:361. [PMID: 29875732 PMCID: PMC5974047 DOI: 10.3389/fneur.2018.00361] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/03/2018] [Indexed: 12/17/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1 also known as Steinert disease) is a multisystemic disorder mainly characterized by myotonia, progressive muscle weakness and wasting, cognitive impairments, and cardiac defects. This autosomal dominant disease is caused by the expression of nuclear retained RNAs containing pathologic expanded CUG repeats that alter the function of RNA-binding proteins in a tissue-specific manner, leading ultimately to neuromuscular dysfunction and clinical symptoms. Although considerable knowledge has been gathered on myotonic dystrophy since its first description, the development of novel relevant disease models remains of high importance to investigate pathophysiologic mechanisms and to assess new therapeutic approaches. In addition to animal models, in vitro cell cultures provide a unique resource for both fundamental and translational research. This review discusses how cellular models broke ground to decipher molecular basis of DM1 and describes currently available cell models, ranging from exogenous expression of the CTG tracts to variable patients' derived cells.
Collapse
Affiliation(s)
| | | | | | - Denis Furling
- Sorbonne Université, INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| |
Collapse
|
33
|
López-Morató M, Brook JD, Wojciechowska M. Small Molecules Which Improve Pathogenesis of Myotonic Dystrophy Type 1. Front Neurol 2018; 9:349. [PMID: 29867749 PMCID: PMC5968088 DOI: 10.3389/fneur.2018.00349] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/30/2018] [Indexed: 12/30/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy in adults for which there is currently no treatment. The pathogenesis of this autosomal dominant disorder is associated with the expansion of CTG repeats in the 3'-UTR of the DMPK gene. DMPK transcripts with expanded CUG repeats (CUGexpDMPK) are retained in the nucleus forming multiple discrete foci, and their presence triggers a cascade of toxic events. Thus far, most research emphasis has been on interactions of CUGexpDMPK with the muscleblind-like (MBNL) family of splicing factors. These proteins are sequestered by the expanded CUG repeats of DMPK RNA leading to their functional depletion. As a consequence, abnormalities in many pathways of RNA metabolism, including alternative splicing, are detected in DM1. To date, in vitro and in vivo efforts to develop therapeutic strategies for DM1 have mostly been focused on targeting CUGexpDMPK via reducing their expression and/or preventing interactions with MBNL1. Antisense oligonucleotides targeted to the CUG repeats in the DMPK transcripts are of particular interest due to their potential capacity to discriminate between mutant and normal transcripts. However, a growing number of reports describe alternative strategies using small molecule chemicals acting independently of a direct interaction with CUGexpDMPK. In this review, we summarize current knowledge about these chemicals and we describe the beneficial effects they caused in different DM1 experimental models. We also present potential mechanisms of action of these compounds and pathways they affect which could be considered for future therapeutic interventions in DM1.
Collapse
Affiliation(s)
- Marta López-Morató
- Queen’s Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - John David Brook
- Queen’s Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Marzena Wojciechowska
- Queen’s Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Polish Academy of Sciences, Department of Molecular Genetics, Institute of Bioorganic Chemistry, Poznan, Poland
| |
Collapse
|
34
|
Thomas JD, Oliveira R, Sznajder ŁJ, Swanson MS. Myotonic Dystrophy and Developmental Regulation of RNA Processing. Compr Physiol 2018; 8:509-553. [PMID: 29687899 PMCID: PMC11323716 DOI: 10.1002/cphy.c170002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Myotonic dystrophy (DM) is a multisystemic disorder caused by microsatellite expansion mutations in two unrelated genes leading to similar, yet distinct, diseases. DM disease presentation is highly variable and distinguished by differences in age-of-onset and symptom severity. In the most severe form, DM presents with congenital onset and profound developmental defects. At the molecular level, DM pathogenesis is characterized by a toxic RNA gain-of-function mechanism that involves the transcription of noncoding microsatellite expansions. These mutant RNAs disrupt key cellular pathways, including RNA processing, localization, and translation. In DM, these toxic RNA effects are predominantly mediated through the modulation of the muscleblind-like and CUGBP and ETR-3-like factor families of RNA binding proteins (RBPs). Dysfunction of these RBPs results in widespread RNA processing defects culminating in the expression of developmentally inappropriate protein isoforms in adult tissues. The tissue that is the focus of this review, skeletal muscle, is particularly sensitive to mutant RNA-responsive perturbations, as patients display a variety of developmental, structural, and functional defects in muscle. Here, we provide a comprehensive overview of DM1 and DM2 clinical presentation and pathology as well as the underlying cellular and molecular defects associated with DM disease onset and progression. Additionally, fundamental aspects of skeletal muscle development altered in DM are highlighted together with ongoing and potential therapeutic avenues to treat this muscular dystrophy. © 2018 American Physiological Society. Compr Physiol 8:509-553, 2018.
Collapse
Affiliation(s)
- James D. Thomas
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Ruan Oliveira
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Łukasz J. Sznajder
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Maurice S. Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
35
|
Zhang F, Bodycombe NE, Haskell KM, Sun YL, Wang ET, Morris CA, Jones LH, Wood LD, Pletcher MT. A flow cytometry-based screen identifies MBNL1 modulators that rescue splicing defects in myotonic dystrophy type I. Hum Mol Genet 2018; 26:3056-3068. [PMID: 28535287 PMCID: PMC5886090 DOI: 10.1093/hmg/ddx190] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 05/08/2017] [Indexed: 11/17/2022] Open
Abstract
Myotonic dystrophy Type 1 (DM1) is a rare genetic disease caused by the expansion of CTG trinucleotide repeats ((CTG)exp) in the 3' untranslated region of the DMPK gene. The repeat transcripts sequester the RNA binding protein Muscleblind-like protein 1 (MBNL1) and hamper its normal function in pre-mRNA splicing. Overexpressing exogenous MBNL1 in the DM1 mouse model has been shown to rescue the splicing defects and reverse myotonia. Although a viable therapeutic strategy, pharmacological modulators of MBNL1 expression have not been identified. Here, we engineered a ZsGreen tag into the endogenous MBNL1 locus in HeLa cells and established a flow cytometry-based screening system to identify compounds that increase MBNL1 level. The initial screen of small molecule compound libraries identified more than thirty hits that increased MBNL1 expression greater than double the baseline levels. Further characterization of two hits revealed that the small molecule HDAC inhibitors, ISOX and vorinostat, increased MBNL1 expression in DM1 patient-derived fibroblasts and partially rescued the splicing defect caused by (CUG)exp repeats in these cells. These findings demonstrate the feasibility of this flow-based cytometry screen to identify both small molecule compounds and druggable targets for MBNL1 upregulation.
Collapse
Affiliation(s)
| | - Nicole E Bodycombe
- Medicine Design, Worldwide Research and Development, Pfizer, Cambridge, MA 02139, USA
| | - Keith M Haskell
- Pharmacokinetics, Dynamics and Metabolism - New Chemical Entities, Worldwide Research and Development, Pfizer, CT 06340, USA
| | | | - Eric T Wang
- Center for Neurogenetics, University of Florida, Gainesville, FL 32610, USA
| | | | - Lyn H Jones
- Medicine Design, Worldwide Research and Development, Pfizer, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
36
|
Cywoniuk P, Taylor K, Sznajder ŁJ, Sobczak K. Hybrid splicing minigene and antisense oligonucleotides as efficient tools to determine functional protein/RNA interactions. Sci Rep 2017; 7:17587. [PMID: 29242583 PMCID: PMC5730568 DOI: 10.1038/s41598-017-17816-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/01/2017] [Indexed: 12/16/2022] Open
Abstract
Alternative splicing is a complex process that provides a high diversity of proteins from a limited number of protein-coding genes. It is governed by multiple regulatory factors, including RNA-binding proteins (RBPs), that bind to specific RNA sequences embedded in a specific structure. The ability to predict RNA-binding regions recognized by RBPs using whole-transcriptome approaches can deliver a multitude of data, including false-positive hits. Therefore, validation of the global results is indispensable. Here, we report the development of an efficient and rapid approach based on a modular hybrid minigene combined with antisense oligonucleotides to enable verification of functional RBP-binding sites within intronic and exonic sequences of regulated pre-mRNA. This approach also provides valuable information regarding the regulatory properties of pre-mRNA, including the RNA secondary structure context. We also show that the developed approach can be used to effectively identify or better characterize the inhibitory properties of potential therapeutic agents for myotonic dystrophy, which is caused by sequestration of specific RBPs, known as muscleblind-like proteins, by mutated RNA with expanded CUG repeats.
Collapse
Affiliation(s)
- Piotr Cywoniuk
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614, Poznan, Poland
| | - Katarzyna Taylor
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614, Poznan, Poland
| | - Łukasz J Sznajder
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614, Poznan, Poland.,Center for NeuroGenetics and the Genetics Institute, Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida,, Gainesville, Florida, 32610-3610, USA
| | - Krzysztof Sobczak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614, Poznan, Poland.
| |
Collapse
|
37
|
Abstract
Muscleblind-like (MBNL) proteins bind to hundreds of pre- and mature mRNAs to regulate their alternative splicing, alternative polyadenylation, stability and subcellular localization. Once MBNLs are withheld from transcript regulation, cellular machineries generate products inapt for precise embryonal/adult developmental tasks and myotonic dystrophy, a devastating multi-systemic genetic disorder, develops. We have recently demonstrated that all three MBNL paralogs are capable of fine-tuning cellular content of one of the three MBNL paralogs, MBNL1, by binding to the first coding exon (e1) of its pre-mRNA. Intriguingly, this autoregulatory feedback loop grounded on alternative splicing of e1 appears to play a crucial role in delaying the onset of myotonic dystrophy. Here, we describe this process in the context of other autoregulatory and regulatory loops that maintain the content and diverse functions of MBNL proteins at optimal level in health and disease, thus supporting the overall cellular homeostasis.
Collapse
Affiliation(s)
- Patryk Konieczny
- a Department of Gene Expression , Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University , Poland
| | - Ewa Stepniak-Konieczna
- a Department of Gene Expression , Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University , Poland
| | - Krzysztof Sobczak
- a Department of Gene Expression , Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University , Poland
| |
Collapse
|
38
|
Rohilla KJ, Gagnon KT. RNA biology of disease-associated microsatellite repeat expansions. Acta Neuropathol Commun 2017; 5:63. [PMID: 28851463 PMCID: PMC5574247 DOI: 10.1186/s40478-017-0468-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/22/2017] [Indexed: 12/13/2022] Open
Abstract
Microsatellites, or simple tandem repeat sequences, occur naturally in the human genome and have important roles in genome evolution and function. However, the expansion of microsatellites is associated with over two dozen neurological diseases. A common denominator among the majority of these disorders is the expression of expanded tandem repeat-containing RNA, referred to as xtrRNA in this review, which can mediate molecular disease pathology in multiple ways. This review focuses on the potential impact that simple tandem repeat expansions can have on the biology and metabolism of RNA that contain them and underscores important gaps in understanding. Merging the molecular biology of repeat expansion disorders with the current understanding of RNA biology, including splicing, transcription, transport, turnover and translation, will help clarify mechanisms of disease and improve therapeutic development.
Collapse
|
39
|
Thornton CA, Wang E, Carrell EM. Myotonic dystrophy: approach to therapy. Curr Opin Genet Dev 2017; 44:135-140. [PMID: 28376341 PMCID: PMC5447481 DOI: 10.1016/j.gde.2017.03.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/25/2017] [Accepted: 03/13/2017] [Indexed: 01/16/2023]
Abstract
Myotonic dystrophy (DM) is a dominantly-inherited genetic disorder affecting skeletal muscle, heart, brain, and other organs. DM type 1 is caused by expansion of a CTG triplet repeat in DMPK, whereas DM type 2 is caused by expansion of a CCTG tetramer repeat in CNBP. In both cases the DM mutations lead to expression of dominant-acting RNAs. Studies of RNA toxicity have now revealed novel mechanisms and new therapeutic targets. Preclinical data have suggested that RNA dominance is responsive to therapeutic intervention and that DM therapy can be approached at several different levels. Here we review recent efforts to alleviate RNA toxicity in DM.
Collapse
Affiliation(s)
- Charles A Thornton
- Department of Neurology, University of Rochester, Rochester 14642, NY, United States.
| | - Eric Wang
- Department of Molecular Genetics & Microbiology, Center for NeuroGenetics, University of Florida, Gainesville, FL, United States
| | - Ellie M Carrell
- Department of Neurology, University of Rochester, Rochester 14642, NY, United States
| |
Collapse
|
40
|
Biomolecular diagnosis of myotonic dystrophy type 2: a challenging approach. J Neurol 2017; 264:1705-1714. [PMID: 28550479 DOI: 10.1007/s00415-017-8504-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/02/2017] [Indexed: 01/23/2023]
Abstract
Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are the most common adult form of muscular dystrophy, characterized by autosomal dominant progressive myopathy, myotonia, and multiorgan involvement. The onset and symptoms of the myotonic dystrophies are diverse, complicating their diagnoses and limiting a comprehensive approach to their clinical care. Diagnostic delay in DM2 is due not only to the heterogeneous phenotype and the aspecific onset but also to the unfamiliarity with the disorder by most clinicians. Moreover, the DM2 diagnostic odyssey is complicated by the difficulties to develop an accurate, robust, and cost-effective method for a routine molecular assay. The aim of this review is to underline by challenging approach the diagnostic limits and pitfalls that could results in failure to recognize the presence of DM2 disease. Understanding and preventing delays in DM2 diagnosis may facilitate family planning, improve symptom management in the short term, and facilitate more specific treatment in the long term.
Collapse
|
41
|
Urbanek MO, Fiszer A, Krzyzosiak WJ. Reduction of Huntington's Disease RNA Foci by CAG Repeat-Targeting Reagents. Front Cell Neurosci 2017; 11:82. [PMID: 28400719 PMCID: PMC5368221 DOI: 10.3389/fncel.2017.00082] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/09/2017] [Indexed: 12/14/2022] Open
Abstract
In several human polyglutamine diseases caused by expansions of CAG repeats in the coding sequence of single genes, mutant transcripts are detained in nuclear RNA foci. In polyglutamine disorders, unlike other repeat-associated diseases, both RNA and proteins exert pathogenic effects; therefore, decreases of both RNA and protein toxicity need to be addressed in proposed treatments. A variety of oligonucleotide-based therapeutic approaches have been developed for polyglutamine diseases, but concomitant assays for RNA foci reduction are lacking. Here, we show that various types of oligonucleotide-based reagents affect RNA foci number in Huntington’s disease cells. We analyzed the effects of reagents targeting either CAG repeat tracts or specific HTT sequences in fibroblasts derived from patients. We tested reagents that either acted as translation blockers or triggered mRNA degradation via the RNA interference pathway or RNase H activation. We also analyzed the effect of chemical modifications of CAG repeat-targeting siRNAs on their efficiency in the foci decline. Our results suggest that the decrease of RNA foci number may be considered as a readout of treatment outcomes for oligonucleotide reagents.
Collapse
Affiliation(s)
- Martyna O Urbanek
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry Polish Academy of Sciences Poznan, Poland
| | - Agnieszka Fiszer
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry Polish Academy of Sciences Poznan, Poland
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry Polish Academy of Sciences Poznan, Poland
| |
Collapse
|
42
|
Błaszczyk L, Rypniewski W, Kiliszek A. Structures of RNA repeats associated with neurological diseases. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28130835 DOI: 10.1002/wrna.1412] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 10/25/2016] [Accepted: 11/12/2016] [Indexed: 01/04/2023]
Abstract
All RNA molecules possess a 'propensity' to fold into complex secondary and tertiary structures. Although they are composed of only four types of nucleotides, they show an enormous structural richness which reflects their diverse functions in the cell. However, in some cases the folding of RNA can have deleterious consequences. Aberrantly expanded, repeated RNA sequences can exhibit gain-of-function abnormalities and become pathogenic, giving rise to many incurable neurological diseases. Most RNA repeats form long hairpin structures whose stem consists of noncanonical base pairs interspersed among Watson-Crick pairs. The expanded hairpins have an ability to sequester important proteins and form insoluble nuclear foci. The RNA pathology, common to many repeat disorders, has drawn attention to the structures of the RNA repeats. In this review, we summarize secondary structure probing and crystallographic studies of disease-related RNA repeat sequences. We discuss the unique structural features which can contribute to the pathogenic properties of the repeated runs. In addition, we present the newest reports concerning structural data linked to therapeutic approaches. WIREs RNA 2017, 8:e1412. doi: 10.1002/wrna.1412 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Leszek Błaszczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Wojciech Rypniewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Agnieszka Kiliszek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
43
|
Brockhoff M, Rion N, Chojnowska K, Wiktorowicz T, Eickhorst C, Erne B, Frank S, Angelini C, Furling D, Rüegg MA, Sinnreich M, Castets P. Targeting deregulated AMPK/mTORC1 pathways improves muscle function in myotonic dystrophy type I. J Clin Invest 2017; 127:549-563. [PMID: 28067669 DOI: 10.1172/jci89616] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/17/2016] [Indexed: 12/13/2022] Open
Abstract
Myotonic dystrophy type I (DM1) is a disabling multisystemic disease that predominantly affects skeletal muscle. It is caused by expanded CTG repeats in the 3'-UTR of the dystrophia myotonica protein kinase (DMPK) gene. RNA hairpins formed by elongated DMPK transcripts sequester RNA-binding proteins, leading to mis-splicing of numerous pre-mRNAs. Here, we have investigated whether DM1-associated muscle pathology is related to deregulation of central metabolic pathways, which may identify potential therapeutic targets for the disease. In a well-characterized mouse model for DM1 (HSALR mice), activation of AMPK signaling in muscle was impaired under starved conditions, while mTORC1 signaling remained active. In parallel, autophagic flux was perturbed in HSALR muscle and in cultured human DM1 myotubes. Pharmacological approaches targeting AMPK/mTORC1 signaling greatly ameliorated muscle function in HSALR mice. AICAR, an AMPK activator, led to a strong reduction of myotonia, which was accompanied by partial correction of misregulated alternative splicing. Rapamycin, an mTORC1 inhibitor, improved muscle relaxation and increased muscle force in HSALR mice without affecting splicing. These findings highlight the involvement of AMPK/mTORC1 deregulation in DM1 muscle pathophysiology and may open potential avenues for the treatment of this disease.
Collapse
|
44
|
Rzuczek SG, Southern MR, Disney MD. Studying a Drug-like, RNA-Focused Small Molecule Library Identifies Compounds That Inhibit RNA Toxicity in Myotonic Dystrophy. ACS Chem Biol 2015; 10:2706-15. [PMID: 26414664 DOI: 10.1021/acschembio.5b00430] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There are many RNA targets in the transcriptome to which small molecule chemical probes and lead therapeutics are desired. However, identifying compounds that bind and modulate RNA function in cellulo is difficult. Although rational design approaches have been developed, they are still in their infancies and leave many RNAs "undruggable". In an effort to develop a small molecule library that is biased for binding RNA, we computationally identified "drug-like" compounds from screening collections that have favorable properties for binding RNA and for suitability as lead drugs. As proof-of-concept, this collection was screened for binding to and modulating the cellular dysfunction of the expanded repeating RNA (r(CUG)(exp)) that causes myotonic dystrophy type 1. Hit compounds bind the target in cellulo, as determined by the target identification approach Competitive Chemical Cross-Linking and Isolation by Pull-down (C-ChemCLIP), and selectively improve several disease-associated defects. The best compounds identified from our 320-member library are more potent in cellulo than compounds identified by high-throughput screening (HTS) campaigns against this RNA. Furthermore, the compound collection has a higher hit rate (9% compared to 0.01-3%), and the bioactive compounds identified are not charged; thus, RNA can be "drugged" with compounds that have favorable pharmacological properties. Finally, this RNA-focused small molecule library may serve as a useful starting point to identify lead "drug-like" chemical probes that affect the biological (dys)function of other RNA targets by direct target engagement.
Collapse
Affiliation(s)
- Suzanne G. Rzuczek
- Department
of Chemistry and ‡Translational Research Institute, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #3A1, Jupiter, Florida 33458, United States
| | - Mark R. Southern
- Department
of Chemistry and ‡Translational Research Institute, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #3A1, Jupiter, Florida 33458, United States
| | - Matthew D. Disney
- Department
of Chemistry and ‡Translational Research Institute, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #3A1, Jupiter, Florida 33458, United States
| |
Collapse
|
45
|
Nakamori M, Taylor K, Mochizuki H, Sobczak K, Takahashi MP. Oral administration of erythromycin decreases RNA toxicity in myotonic dystrophy. Ann Clin Transl Neurol 2015; 3:42-54. [PMID: 26783549 PMCID: PMC4704483 DOI: 10.1002/acn3.271] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/04/2015] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE Myotonic dystrophy type 1 (DM1) is caused by the expansion of a CTG repeat in the 3' untranslated region of DMPK. The transcripts containing an expanded CUG repeat (CUG (exp)) result in a toxic gain-of-function by forming ribonuclear foci that sequester the alternative splicing factor muscleblind-like 1 (MBNL1). Although several small molecules reportedly ameliorate RNA toxicity, none are ready for clinical use because of the lack of safety data. Here, we undertook a drug-repositioning screen to identify a safe and effective small molecule for upcoming clinical trials of DM1. METHODS We examined the potency of small molecules in inhibiting the interaction between CUG (exp) and MBNL1 by in vitro sequestration and fluorescent titration assays. We studied the effect of lead compounds in DM1 model cells by evaluating foci reduction and splicing rescue. We also tested their effects on missplicing and myotonia in DM1 model mice. RESULTS Of the 20 FDA-approved small molecules tested, erythromycin showed the highest affinity to CUG (exp) and a capacity to inhibit its binding to MBNL1. Erythromycin decreased foci formation and rescued missplicing in DM1 cell models. Both systemic and oral administration of erythromycin in the DM1 model mice showed splicing reversal and improvement of myotonia with no toxicity. Long-term oral administration of erythromycin at the dose used in humans also improved the splicing abnormality in the DM1 model mice. INTERPRETATION Oral erythromycin treatment, which has been widely used in humans with excellent tolerability, may be a promising therapy for DM1.
Collapse
Affiliation(s)
- Masayuki Nakamori
- Department of Neurology Osaka University Graduate School of Medicine Osaka Japan
| | - Katarzyna Taylor
- Department of Gene Expression Institute of Molecular Biology and Biotechnology Adam Mickiewicz University Posnan Poland
| | - Hideki Mochizuki
- Department of Neurology Osaka University Graduate School of Medicine Osaka Japan
| | - Krzysztof Sobczak
- Department of Gene Expression Institute of Molecular Biology and Biotechnology Adam Mickiewicz University Posnan Poland
| | - Masanori P Takahashi
- Department of Neurology Osaka University Graduate School of Medicine Osaka Japan
| |
Collapse
|
46
|
Urbanek MO, Krzyzosiak WJ. RNA FISH for detecting expanded repeats in human diseases. Methods 2015; 98:115-123. [PMID: 26615955 DOI: 10.1016/j.ymeth.2015.11.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/18/2015] [Accepted: 11/21/2015] [Indexed: 12/14/2022] Open
Abstract
RNA fluorescence in situ hybridization (FISH) is a widely used technique for detecting transcripts in fixed cells and tissues. Many variants of RNA FISH have been proposed to increase signal strength, resolution and target specificity. The current variants of this technique facilitate the detection of the subcellular localization of transcripts at a single molecule level. Among the applications of RNA FISH are studies on nuclear RNA foci in diseases resulting from the expansion of tri-, tetra-, penta- and hexanucleotide repeats present in different single genes. The partial or complete retention of mutant transcripts forming RNA aggregates within the nucleoplasm has been shown in multiple cellular disease models and in the tissues of patients affected with these atypical mutations. Relevant diseases include, among others, myotonic dystrophy type 1 (DM1) with CUG repeats, Huntington's disease (HD) and spinocerebellar ataxia type 3 (SCA3) with CAG repeats, fragile X-associated tremor/ataxia syndrome (FXTAS) with CGG repeats, myotonic dystrophy type 2 (DM2) with CCUG repeats, amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD) with GGGGCC repeats and spinocerebellar ataxia type 32 (SCA32) with GGCCUG. In this article, we summarize the results obtained with FISH to examine RNA nuclear inclusions. We provide a detailed protocol for detecting RNAs containing expanded CAG and CUG repeats in different cellular models, including fibroblasts, lymphoblasts, induced pluripotent stem cells and murine and human neuronal progenitors. We also present the results of the first single-molecule FISH application in a cellular model of polyglutamine disease.
Collapse
Affiliation(s)
- Martyna O Urbanek
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland.
| |
Collapse
|
47
|
Hu J, Liu J, Li L, Gagnon KT, Corey DR. Engineering Duplex RNAs for Challenging Targets: Recognition of GGGGCC/CCCCGG Repeats at the ALS/FTD C9orf72 Locus. ACTA ACUST UNITED AC 2015; 22:1505-1511. [PMID: 26584779 DOI: 10.1016/j.chembiol.2015.09.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/22/2015] [Accepted: 09/24/2015] [Indexed: 12/14/2022]
Abstract
A GGGGCC expansion within an intronic region of the C9orf72 gene forms RNA foci that are associated with one-third of familial amyotrophic lateral sclerosis and one-quarter of frontotemporal dementia. The C9orf72 locus also expresses an antisense transcript with a CCCCGG expansion that forms foci and may contribute to disease. Synthetic agents that bind these hexanucleotide repeats and block foci would be leads for therapeutic discovery. We have engineered duplex RNAs to enable them to recognize difficult C/G targets. Recognition inhibits foci formed by both GGGGCC and CCCCGG RNA. Our findings show that a single duplex RNA can be used to recognize both disease-related C9orf72 transcripts. More broadly, we extend RNAi to previously inaccessible C/G sequences and provide another example of target recognition in human cells by nuclear RNAi.
Collapse
Affiliation(s)
- Jiaxin Hu
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA
| | - Jing Liu
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA
| | - Liande Li
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA
| | - Keith T Gagnon
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, IL 62901, USA
| | - David R Corey
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA.
| |
Collapse
|
48
|
Iachettini S, Valaperta R, Marchesi A, Perfetti A, Cuomo G, Fossati B, Vaienti L, Costa E, Meola G, Cardani R. Tibialis anterior muscle needle biopsy and sensitive biomolecular methods: a useful tool in myotonic dystrophy type 1. Eur J Histochem 2015; 59:2562. [PMID: 26708183 PMCID: PMC4698615 DOI: 10.4081/ejh.2015.2562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/25/2015] [Accepted: 10/03/2015] [Indexed: 01/30/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a neuromuscular disorder caused by a CTG repeat expansion in 3'UTR of DMPK gene. This mutation causes accumulation of toxic RNA in nuclear foci leading to splicing misregulation of specific genes. In view of future clinical trials with antisense oligonucleotides in DM1 patients, it is important to set up sensitive and minimally-invasive tools to monitor the efficacy of treatments on skeletal muscle. A tibialis anterior (TA) muscle sample of about 60 mg was obtained from 5 DM1 patients and 5 healthy subjects through a needle biopsy. A fragment of about 40 mg was used for histological examination and a fragment of about 20 mg was used for biomolecular analysis. The TA fragments obtained with the minimally-invasive needle biopsy technique is enough to perform all the histopathological and biomolecular evaluations useful to monitor a clinical trial on DM1 patients.
Collapse
|
49
|
Koscianska E, Witkos TM, Kozlowska E, Wojciechowska M, Krzyzosiak WJ. Cooperation meets competition in microRNA-mediated DMPK transcript regulation. Nucleic Acids Res 2015; 43:9500-18. [PMID: 26304544 PMCID: PMC4627076 DOI: 10.1093/nar/gkv849] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 08/10/2015] [Indexed: 02/07/2023] Open
Abstract
The fundamental role of microRNAs (miRNAs) in the regulation of gene expression has been well-established, but many miRNA-driven regulatory mechanisms remain elusive. In the present study, we demonstrate that miRNAs regulate the expression of DMPK, the gene mutated in myotonic dystrophy type 1 (DM1), and we provide insight regarding the concerted effect of the miRNAs on the DMPK target. Specifically, we examined the binding of several miRNAs to the DMPK 3′ UTR using luciferase assays. We validated the interactions between the DMPK transcript and the conserved miR-206 and miR-148a. We suggest a possible cooperativity between these two miRNAs and discuss gene targeting by miRNA pairs that vary in distance between their binding sites and expression profiles. In the same luciferase reporter system, we showed miR-15b/16 binding to the non-conserved CUG repeat tract present in the DMPK transcript and that the CUG-repeat-binding miRNAs might also act cooperatively. Moreover, we detected miR-16 in cytoplasmic foci formed by exogenously expressed RNAs with expanded CUG repeats. Therefore, we propose that the expanded CUGs may serve as a target for concerted regulation by miRNAs and may also act as molecular sponges for natural miRNAs with CAG repeats in their seed regions, thereby affecting their physiological functions.
Collapse
Affiliation(s)
- Edyta Koscianska
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Tomasz M Witkos
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Emilia Kozlowska
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Marzena Wojciechowska
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
50
|
Bisset DR, Stepniak-Konieczna EA, Zavaljevski M, Wei J, Carter GT, Weiss MD, Chamberlain JR. Therapeutic impact of systemic AAV-mediated RNA interference in a mouse model of myotonic dystrophy. Hum Mol Genet 2015; 24:4971-83. [PMID: 26082468 DOI: 10.1093/hmg/ddv219] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/08/2015] [Indexed: 01/22/2023] Open
Abstract
RNA interference (RNAi) offers a promising therapeutic approach for dominant genetic disorders that involve gain-of-function mechanisms. One candidate disease for RNAi therapy application is myotonic dystrophy type 1 (DM1), which results from toxicity of a mutant mRNA. DM1 is caused by expansion of a CTG repeat in the 3' UTR of the DMPK gene. The expression of DMPK mRNA containing an expanded CUG repeat (CUG(exp)) leads to defects in RNA biogenesis and turnover. We designed miRNA-based RNAi hairpins to target the CUG(exp) mRNA in the human α-skeletal muscle actin long-repeat (HSA(LR)) mouse model of DM1. RNAi expression cassettes were delivered to HSA(LR) mice using recombinant adeno-associated viral (rAAV) vectors injected intravenously as a route to systemic gene therapy. Vector delivery significantly reduced disease pathology in muscles of the HSA(LR) mice, including a reduction in the CUG(exp) mRNA, a reduction in myotonic discharges, a shift toward adult pre-mRNA splicing patterns, reduced myofiber hypertrophy and a decrease in myonuclear foci containing the CUG(exp) mRNA. Significant reversal of hallmarks of DM1 in the rAAV RNAi-treated HSA(LR) mice indicate that defects characteristic of DM1 can be mitigated with a systemic RNAi approach targeting the nuclei of terminally differentiated myofibers. Efficient rAAV-mediated delivery of RNAi has the potential to provide a long-term therapy for DM1 and other dominant muscular dystrophies.
Collapse
Affiliation(s)
| | | | | | - Jessica Wei
- Division of Medical Genetics, Department of Medicine
| | | | - Michael D Weiss
- Department of Neurology, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|