1
|
Ebermann C, Müller S. Engineering of Small Ribozymes Acting on RNA: What is Needed to Make a New Function Work with an Existing Catalyst? Chembiochem 2025; 26:e202500213. [PMID: 40295187 PMCID: PMC12118343 DOI: 10.1002/cbic.202500213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/28/2025] [Accepted: 04/28/2025] [Indexed: 04/30/2025]
Abstract
The engineering of nucleic acids has been a longstanding objective in research, with the field gaining significant attention following the discovery of ribozymes in the early 1980s. Numerous nucleic acid catalysts have been developed to catalyze a wide range of reactions, and the structures of ribozymes have been modified to allow allosteric regulation by an external cofactor. All these constructs hold considerable promise for applications in biosensors for medical and environmental diagnostics, as well as in molecular tools for regulating cellular processes. In addition to the development of nucleic acid enzymes through in vitro selection, rational design offers a robust strategy for engineering ribozymes with customized properties. The structures and mechanisms of numerous nucleic acid catalysts have been thoroughly elucidated, making structural modulation a viable approach for designing their functional properties. Rational design necessitates the consideration of several parameters, and a range of tools is available to guide sequence design. This review discusses sequence, structural, and functional design, primarily using the example of the hairpin ribozyme, to highlight the challenges and opportunities of rational nucleic acid enzyme engineering.
Collapse
Affiliation(s)
- Constanze Ebermann
- Institute of BiochemistryUniversity of GreifswaldFelix‐Hausdorff‐Str. 417489GreifswaldGermany
| | - Sabine Müller
- Institute of BiochemistryUniversity of GreifswaldFelix‐Hausdorff‐Str. 417489GreifswaldGermany
| |
Collapse
|
2
|
Khadake RM, Arora V, Gupta P, Rode AB. Harnessing Synthetic Riboswitches for Tunable Gene Regulation in Mammalian Cells. Chembiochem 2025; 26:e202401015. [PMID: 39995098 DOI: 10.1002/cbic.202401015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 02/26/2025]
Abstract
RNA switches regulated by specific inducer molecules have become a powerful synthetic biology tool for precise gene regulation in mammalian systems. The engineered RNA switches can be integrated with natural RNA-mediated gene regulatory functions as a modular and customizable approach to probe and control cellular behavior. RNA switches have been used to advance synthetic biology applications, including gene therapy, bio-production, and cellular reprogramming. This review explores recent progress in the design and functional implementation of synthetic riboswitches in mammalian cells based on diverse RNA regulation mechanisms by highlighting recent studies and emerging technologies. We also discuss challenges such as off-target effects, system stability, and ligand delivery in complex biological environments. In conclusion, this review emphasizes the potential of synthetic riboswitches as a platform for customizable gene regulation in diverse biomedical applications.
Collapse
Affiliation(s)
- Rushikesh M Khadake
- Laboratory of Synthetic Biology, Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad Rd, Faridabad (NCR Delhi), Haryana, 121001
| | - Vaani Arora
- Laboratory of Synthetic Biology, Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad Rd, Faridabad (NCR Delhi), Haryana, 121001
| | - Payal Gupta
- Laboratory of Synthetic Biology, Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad Rd, Faridabad (NCR Delhi), Haryana, 121001
| | - Ambadas B Rode
- Laboratory of Synthetic Biology, Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad Rd, Faridabad (NCR Delhi), Haryana, 121001
| |
Collapse
|
3
|
Gurazada SGR, Kennedy HM, Braatz RD, Mehrman SJ, Polson SW, Rombel IT. HEK-omics: The promise of omics to optimize HEK293 for recombinant adeno-associated virus (rAAV) gene therapy manufacturing. Biotechnol Adv 2025; 79:108506. [PMID: 39708987 DOI: 10.1016/j.biotechadv.2024.108506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/14/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Gene therapy is poised to transition from niche to mainstream medicine, with recombinant adeno-associated virus (rAAV) as the vector of choice. However, robust, scalable, industrialized production is required to meet demand and provide affordable patient access, which has not yet materialized. Closing the chasm between demand and supply requires innovation in biomanufacturing to achieve the essential step change in rAAV product yield and quality. Omics provides a rich source of mechanistic knowledge that can be applied to HEK293, the most commonly used cell line for rAAV production. In this review, the findings from a growing number of diverse studies that apply genomics, epigenomics, transcriptomics, proteomics, and metabolomics to HEK293 bioproduction are explored. Learnings from CHO-omics, application of omics approaches to improve CHO bioproduction, provide a framework to explore the potential of "HEK-omics" as a multi-omics-informed approach providing actionable mechanistic insights for improved transient and stable production of rAAV and other recombinant products in HEK293.
Collapse
Affiliation(s)
- Sai Guna Ranjan Gurazada
- Center for Bioinformatics and Computational Biology, Department of Computer and Information Sciences, University of Delaware, Newark, DE, United States
| | | | - Richard D Braatz
- Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Steven J Mehrman
- Johnson & Johnson, J&J Innovative Medicine, Spring House, PA, United States
| | - Shawn W Polson
- Center for Bioinformatics and Computational Biology, Department of Computer and Information Sciences, University of Delaware, Newark, DE, United States.
| | | |
Collapse
|
4
|
Donohue N, Li S, Boi S, Rainbow-Fletcher A, Barron N. Production of an Oncolytic Adeno-Associated Virus Containing the Pro-Apoptotic TRAIL Gene Can Be Improved by shRNA Interference. Int J Mol Sci 2025; 26:567. [PMID: 39859285 PMCID: PMC11766350 DOI: 10.3390/ijms26020567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/19/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
Recombinant Adeno-associated virus (rAAV) is a popular vector for treating genetic diseases caused by absent or defective genes. rAAVs can be produced that contain a therapeutic transgene, i.e., a correct copy of the affected gene, which is then delivered into target cells. A further application of rAAV is to deliver pro-apoptotic genes such as TNF-related apoptosis-inducing ligand (TRAIL) into cancer cells, leading to tumor regression. However, rAAV production is expensive and insufficient yields may hinder wide-spread adoption especially in systemic conditions. During rAAV production, the therapeutic transgene may be expressed in the producer cell line, and in the case of an oncolytic gene, this would likely lead to cell death thus reducing rAAV yields. Here we demonstrate that expression of TRAIL during rAAV production in HEK293F cells negatively impacts rAAV yield. A shRNA-based strategy was developed to suppress the expression of TRAIL in rAAV-producing cells specifically during the production process. Incorporating a TRAIL-targeting shRNA expression cassette within the backbone of the rAAV genome-encoding plasmid during triple-transfection of HEK293F cells reduced transgene expression and led to a 60% increase in the yield of rAAV-TRAIL compared to controls.
Collapse
Affiliation(s)
- Nicholas Donohue
- National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, A94 X099 Dublin, Ireland
| | - Simeng Li
- National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, A94 X099 Dublin, Ireland
| | - Stefano Boi
- National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, A94 X099 Dublin, Ireland
| | | | - Niall Barron
- National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, A94 X099 Dublin, Ireland
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| |
Collapse
|
5
|
Blahetek G, Mayer C, Zuber J, Lenter M, Strobel B. Suppression of toxic transgene expression by optimized artificial miRNAs increases AAV vector yields in HEK-293 cells. Mol Ther Methods Clin Dev 2024; 32:101280. [PMID: 39015407 PMCID: PMC11250862 DOI: 10.1016/j.omtm.2024.101280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/07/2024] [Indexed: 07/18/2024]
Abstract
Adeno-associated virus (AAV) vectors have become the leading platform for gene delivery in both preclinical research and therapeutic applications, making the production of high-titer AAV preparations essential. To date, most AAV-based studies use constitutive promoters (e.g., CMV, CAG), which are also active in human embryonic kidney (HEK)-293 producer cells, thus leading to the expression of the transgene already during production. Depending on the transgene's function, this might negatively impact producer cell performance and result in decreased AAV vector yields. Here, we evaluated a panel of diverse microRNA (miRNA)-based shRNA designs to identify a highly potent artificial miRNA for the transient suppression of transgenes during AAV production. Our results demonstrate that insertion of miRNA target sites into the 3' UTR of the transgene and simultaneous expression of the corresponding miRNA from the 3' UTR of conventional AAV production plasmids (rep/cap, pHelper) enabled efficient silencing of toxic transgene expression, thereby increasing AAV vector yields up to 240-fold. This strategy not only allows to maintain the traditional triple-transfection protocol, but also represents a universally applicable approach to suppress toxic transgenes, thereby boosting vector yields with so far unprecedented efficiency.
Collapse
Affiliation(s)
- Gina Blahetek
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Christine Mayer
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Medical University of Vienna, Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Martin Lenter
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Benjamin Strobel
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| |
Collapse
|
6
|
Liu H, Zhang Y, Yip M, Ren L, Liang J, Chen X, Liu N, Du A, Wang J, Chang H, Oh H, Zhou C, Xing R, Xu M, Guo P, Gessler D, Xie J, Tai PW, Gao G, Wang D. Producing high-quantity and high-quality recombinant adeno-associated virus by low-cis triple transfection. Mol Ther Methods Clin Dev 2024; 32:101230. [PMID: 38558570 PMCID: PMC10979107 DOI: 10.1016/j.omtm.2024.101230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
Recombinant adeno-associated virus (rAAV)-based gene therapy is entering clinical and commercial stages at an unprecedented pace. Triple transfection of HEK293 cells is currently the most widely used platform for rAAV manufacturing. Here, we develop low-cis triple transfection that decreases transgene plasmid use by 10- to 100-fold and overcomes several major limitations associated with standard triple transfection. This new method improves packaging of yield-inhibiting transgenes by up to 10-fold, and generates rAAV batches with reduced plasmid backbone contamination that otherwise cannot be eliminated in downstream processing. When tested in mice and compared with rAAV produced by standard triple transfection, low-cis rAAV shows comparable or superior potency and results in diminished plasmid backbone DNA and RNA persistence in tissue. Mechanistically, low-cis triple transfection relies on the extensive replication of transgene cassette (i.e., inverted terminal repeat-flanked vector DNA) in HEK293 cells during production phase. This cost-effective method can be easily implemented and is widely applicable to producing rAAV of high quantity, purity, and potency.
Collapse
Affiliation(s)
- Hao Liu
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Yue Zhang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Mitchell Yip
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Lingzhi Ren
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jialing Liang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Xiupeng Chen
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Nan Liu
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Ailing Du
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jiaming Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Hao Chang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Hyejin Oh
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Chen Zhou
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Ruxiao Xing
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Mengyao Xu
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Peiyi Guo
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Dominic Gessler
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Phillip W.L. Tai
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Dan Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
7
|
Coplan L, Zhang Z, Ragone N, Reeves J, Rodriguez A, Shevade A, Bak H, Tustian AD. High-yield recombinant adeno-associated viral vector production by multivariate optimization of bioprocess and transfection conditions. Biotechnol Prog 2024; 40:e3445. [PMID: 38450973 DOI: 10.1002/btpr.3445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 03/08/2024]
Abstract
Recombinant adeno-associated viral vectors (rAAVs) are one of the most used vehicles for gene therapy, with five rAAV therapeutics commercially approved by the FDA. To improve product yield, we optimized the suspension production process of rAAV8 vectors carrying a proprietary transgene using a commercially available transfection reagent, FectoVIR-AAV. Using a miniaturized automated 250 mL scale bioreactor system, we generated models of vector genome (vg) titer, capsid (cp) titer, and Vg:Cp percentage from two multivariate design of experiment studies, one centered around bioreactor operating parameters, and another based on the transfection conditions. Using the optimized process returned from these models, the vector genome titer from the bioreactor was improved to beyond 1 × 1012 vg/mL. Five critical parameters were identified that had large effects on the pre-purification vector quantity-the transfection pH, production pH, complexation time, viable cell density at transfection, and transfection reagent to DNA ratio. The optimized process was further assessed for its performance extending to six AAV serotypes, namely AAV1, AAV2, AAV5, AAV6, AAV8, and AAV9 carrying a transgene encoding for green fluorescent protein (GFP). Five of the six serotypes returned higher vector genome titers than the control condition. These data suggest that the choice of transfection reagent is a major factor in improving vector yield. The multivariate design of experiment approach is a powerful way to optimize production processes, and the optimized process from one AAV vector can to some extent be generalized to other serotypes and transgenes to accelerate development timelines of new programs.
Collapse
Affiliation(s)
- Louis Coplan
- Preclinical Manufacturing and Process Development, Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland, USA
| | - Zhe Zhang
- Preclinical Manufacturing and Process Development, Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | - Nicole Ragone
- Research Operations, Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | - John Reeves
- Preclinical Manufacturing and Process Development, Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | - Audrey Rodriguez
- Preclinical Manufacturing and Process Development, Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | - Aishwarya Shevade
- Preclinical Manufacturing and Process Development, Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | - Hanne Bak
- Preclinical Manufacturing and Process Development, Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | - Andrew D Tustian
- Preclinical Manufacturing and Process Development, Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| |
Collapse
|
8
|
Eisenhut P, Marx N, Borsi G, Papež M, Ruggeri C, Baumann M, Borth N. Manipulating gene expression levels in mammalian cell factories: An outline of synthetic molecular toolboxes to achieve multiplexed control. N Biotechnol 2024; 79:1-19. [PMID: 38040288 DOI: 10.1016/j.nbt.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/06/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Mammalian cells have developed dedicated molecular mechanisms to tightly control expression levels of their genes where the specific transcriptomic signature across all genes eventually determines the cell's phenotype. Modulating cellular phenotypes is of major interest to study their role in disease or to reprogram cells for the manufacturing of recombinant products, such as biopharmaceuticals. Cells of mammalian origin, for example Chinese hamster ovary (CHO) and Human embryonic kidney 293 (HEK293) cells, are most commonly employed to produce therapeutic proteins. Early genetic engineering approaches to alter their phenotype have often been attempted by "uncontrolled" overexpression or knock-down/-out of specific genetic factors. Many studies in the past years, however, highlight that rationally regulating and fine-tuning the strength of overexpression or knock-down to an optimum level, can adjust phenotypic traits with much more precision than such "uncontrolled" approaches. To this end, synthetic biology tools have been generated that enable (fine-)tunable and/or inducible control of gene expression. In this review, we discuss various molecular tools used in mammalian cell lines and group them by their mode of action: transcriptional, post-transcriptional, translational and post-translational regulation. We discuss the advantages and disadvantages of using these tools for each cell regulatory layer and with respect to cell line engineering approaches. This review highlights the plethora of synthetic toolboxes that could be employed, alone or in combination, to optimize cellular systems and eventually gain enhanced control over the cellular phenotype to equip mammalian cell factories with the tools required for efficient production of emerging, more difficult-to-express biologics formats.
Collapse
Affiliation(s)
- Peter Eisenhut
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria
| | - Nicolas Marx
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria.
| | - Giulia Borsi
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Maja Papež
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria; BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Caterina Ruggeri
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Martina Baumann
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria
| | - Nicole Borth
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria; BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
9
|
Lu M, Lee Z, Hu WS. Multi-omics kinetic analysis of recombinant adeno-associated virus production by plasmid transfection of HEK293 cells. Biotechnol Prog 2024; 40:e3428. [PMID: 38289617 DOI: 10.1002/btpr.3428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/06/2023] [Accepted: 12/27/2023] [Indexed: 04/19/2024]
Abstract
Recombinant adeno-associated virus (rAAV) is among the most commonly used vectors for gene therapy. It is commonly produced by transfection of HEK293 cells with three plasmids each containing the vector genome including gene of interest (GOI), helper functions, and rep and cap genes for genome replication and capsid formation. To meet the potential clinical needs, the productivity of the production system needs to be enhanced. A better process characterization of the production system will further advance our insights into ways to enhance productivity. Here, we employed transcriptomic analysis to quantify the dynamics of different isoforms of viral transcripts and to assess the shift of cellular physiology, and deployed targeted proteomic analysis for absolute quantification of viral proteins and tandem mass tags (TMTs) for assessing cellular responses at the protein level. Functional analysis at transcriptome and proteome levels identified defense and immune response, unfolded protein response, p53 signaling as enriched. The small molecule additive intervention study based on functional analysis showed the potential of such omics-guided productivity enhancement. Together, multi-omics analysis advanced understanding of rAAV production and provided insight into enhancing rAAV production by plasmid transfection.
Collapse
Affiliation(s)
- Min Lu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Zion Lee
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
10
|
Takahashi K, Galloway KE. RNA-based controllers for engineering gene and cell therapies. Curr Opin Biotechnol 2024; 85:103026. [PMID: 38052131 PMCID: PMC11214845 DOI: 10.1016/j.copbio.2023.103026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 12/07/2023]
Abstract
Engineered RNA-based genetic controllers provide compact, tunable, post-transcriptional gene regulation. As RNA devices are generally small, these devices are portable to DNA and RNA viral vectors. RNA tools have recently expanded to allow reading and editing of endogenous RNAs for profiling and programming of transcriptional states. With their expanded capabilities and highly compact, modular, and programmable nature, RNA-based controllers will support greater safety, efficacy, and performance in gene and cell-based therapies. In this review, we highlight RNA-based controllers and their potential as user-guided and autonomous systems for control of gene and cell-based therapies.
Collapse
Affiliation(s)
- Kei Takahashi
- Department of Chemical Engineering, MIT, 25 Ames St., Cambridge, MA 02139, USA
| | - Kate E Galloway
- Department of Chemical Engineering, MIT, 25 Ames St., Cambridge, MA 02139, USA.
| |
Collapse
|
11
|
Lu M, Lee Z, Lin YC, Irfanullah I, Cai W, Hu WS. Enhancing the production of recombinant adeno-associated virus in synthetic cell lines through systematic characterization. Biotechnol Bioeng 2024; 121:341-354. [PMID: 37749931 DOI: 10.1002/bit.28562] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
Recombinant adeno-associated virus (rAAV) is among the most commonly used in vivo gene delivery vehicles and has seen a number of successes in clinical application. Current manufacturing processes of rAAV employ multiple plasmid transfection or rely on virus infection and face challenges in scale-up. A synthetic biology approach was taken to generate stable cell lines with integrated genetic modules, which produced rAAV upon induction albeit at a low productivity. To identify potential factors that restrained the productivity, we systematically characterized virus production kinetics through targeted quantitative proteomics and various physical assays of viral components. We demonstrated that reducing the excessive expression of gene of interest by its conditional expression greatly increased the productivity of these synthetic cell lines. Further enhancement was gained by optimizing induction profiles and alleviating proteasomal degradation of viral capsid protein by the addition of proteasome inhibitors. Altogether, these enhancements brought the productivity close to traditional multiple plasmid transfection. The rAAV produced had comparable full particle contents as those produced by conventional transient plasmid transfection. The present work exemplified the versatility of our synthetic biology-based viral vector production platform and its potential for plasmid- and virus-free rAAV manufacturing.
Collapse
Affiliation(s)
- Min Lu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Zion Lee
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yu-Chieh Lin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ibrahim Irfanullah
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Wen Cai
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
12
|
Wu Y, Zhu L, Zhang Y, Xu W. Multidimensional Applications and Challenges of Riboswitches in Biosensing and Biotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304852. [PMID: 37658499 DOI: 10.1002/smll.202304852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/15/2023] [Indexed: 09/03/2023]
Abstract
Riboswitches have received significant attention over the last two decades for their multiple functionalities and great potential for applications in various fields. This article highlights and reviews the recent advances in biosensing and biotherapy. These fields involve a wide range of applications, such as food safety detection, environmental monitoring, metabolic engineering, live cell imaging, wearable biosensors, antibacterial drug targets, and gene therapy. The discovery, origin, and optimization of riboswitches are summarized to help readers better understand their multidimensional applications. Finally, this review discusses the multidimensional challenges and development of riboswitches in order to further expand their potential for novel applications.
Collapse
Affiliation(s)
- Yifan Wu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Yangzi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| |
Collapse
|
13
|
Kläge D, Müller E, Hartig JS. A comparative survey of the influence of small self-cleaving ribozymes on gene expression in human cell culture. RNA Biol 2024; 21:1-11. [PMID: 38146121 PMCID: PMC10761166 DOI: 10.1080/15476286.2023.2296203] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/27/2023] Open
Abstract
Self-cleaving ribozymes are versatile tools for synthetic biologists when it comes to controlling gene expression. Up to date, 12 different classes are known, and over the past decades more and more details about their structure, cleavage mechanisms and natural environments have been uncovered. However, when these motifs are applied to mammalian gene expression constructs, the outcome can often be unexpected. A variety of factors, such as surrounding sequences and positioning of the ribozyme influences the activity and hence performance of catalytic RNAs. While some information about the efficiency of individual ribozymes (each tested in specific contexts) is known, general trends obtained from standardized, comparable experiments are lacking, complicating decisions such as which ribozyme to choose and where to insert it into the target mRNA. In many cases, application-specific optimization is required, which can be very laborious. Here, we systematically compared different classes of ribozymes within the 3'-UTR of a given reporter gene. We then examined position-dependent effects of the best-performing ribozymes. Moreover, we tested additional variants of already widely used hammerhead ribozymes originating from various organisms. We were able to identify functional structures suited for aptazyme design and generated highly efficient hammerhead ribozyme variants originating from the human genome. The present dataset will aide decisions about how to apply ribozymes for affecting gene expression as well as for developing ribozyme-based switches for controlling gene expression in human cells.
Collapse
Affiliation(s)
- Dennis Kläge
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany
| | - Elisabeth Müller
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany
| | - Jörg S. Hartig
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany
| |
Collapse
|
14
|
Weklak D, Tisborn J, Mangold MH, Scheu R, Wodrich H, Hagedorn C, Jönsson F, Kreppel F. Insights from the Construction of Adenovirus-Based Vaccine Candidates against SARS-CoV-2: Expecting the Unexpected. Viruses 2023; 15:2155. [PMID: 38005833 PMCID: PMC10675337 DOI: 10.3390/v15112155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
To contain the spread of the SARS-CoV-2 pandemic, rapid development of vaccines was required in 2020. Rational design, international efforts, and a lot of hard work yielded the market approval of novel SARS-CoV-2 vaccines based on diverse platforms such as mRNA or adenovirus vectors. The great success of these technologies, in fact, contributed significantly to control the pandemic. Consequently, most scientific literature available in the public domain discloses the results of clinical trials and reveals data of efficaciousness. However, a description of processes and rationales that led to specific vaccine design is only partially available, in particular for adenovirus vectors, even though it could prove helpful for future developments. Here, we disclose our insights from the endeavors to design compatible functional adenoviral vector platform expression cassettes for the SARS-CoV-2 spike protein. We observed that contextualizing genes from an ssRNA virus into a DNA virus provides significant challenges. Besides affecting physical titers, expression cassette design of adenoviral vaccine candidates can affect viral propagation and spike protein expression. Splicing of mRNAs was affected, and fusogenicity of the spike protein in ACE2-overexpressing cells was enhanced when the ER retention signal was deleted.
Collapse
Affiliation(s)
- Denice Weklak
- Chair of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58453 Witten, Germany; (D.W.); (J.T.); (M.H.M.); (R.S.); (C.H.)
| | - Julian Tisborn
- Chair of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58453 Witten, Germany; (D.W.); (J.T.); (M.H.M.); (R.S.); (C.H.)
| | - Maurin Helen Mangold
- Chair of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58453 Witten, Germany; (D.W.); (J.T.); (M.H.M.); (R.S.); (C.H.)
| | - Raphael Scheu
- Chair of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58453 Witten, Germany; (D.W.); (J.T.); (M.H.M.); (R.S.); (C.H.)
| | - Harald Wodrich
- Microbiologie Fondamentale et Pathogénicité, MFP CNRS UMR 5234, Université de Bordeaux, 33076 Bordeaux, France;
| | - Claudia Hagedorn
- Chair of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58453 Witten, Germany; (D.W.); (J.T.); (M.H.M.); (R.S.); (C.H.)
| | - Franziska Jönsson
- Chair of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58453 Witten, Germany; (D.W.); (J.T.); (M.H.M.); (R.S.); (C.H.)
| | - Florian Kreppel
- Chair of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58453 Witten, Germany; (D.W.); (J.T.); (M.H.M.); (R.S.); (C.H.)
| |
Collapse
|
15
|
Fu Q, Polanco A, Lee YS, Yoon S. Critical challenges and advances in recombinant adeno-associated virus (rAAV) biomanufacturing. Biotechnol Bioeng 2023; 120:2601-2621. [PMID: 37126355 DOI: 10.1002/bit.28412] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/27/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023]
Abstract
Gene therapy is a promising therapeutic approach for genetic and acquired diseases nowadays. Among DNA delivery vectors, recombinant adeno-associated virus (rAAV) is one of the most effective and safest vectors used in commercial drugs and clinical trials. However, the current yield of rAAV biomanufacturing lags behind the necessary dosages for clinical and commercial use, which embodies a concentrated reflection of low productivity of rAAV from host cells, difficult scalability of the rAAV-producing bioprocess, and high levels of impurities materialized during production. Those issues directly impact the price of gene therapy medicine in the market, limiting most patients' access to gene therapy. In this context, the current practices and several critical challenges associated with rAAV gene therapy bioprocesses are reviewed, followed by a discussion of recent advances in rAAV-mediated gene therapy and other therapeutic biological fields that could improve biomanufacturing if these advances are integrated effectively into the current systems. This review aims to provide the current state-of-the-art technology and perspectives to enhance the productivity of rAAV while reducing impurities during production of rAAV.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Biomedical Engineering and Biotechnology, The University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Ashli Polanco
- Department of Chemical Engineering, The University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Yong Suk Lee
- Department of Pharmaceutical Sciences, The University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Seongkyu Yoon
- Department of Chemical Engineering, The University of Massachusetts Lowell, Lowell, Massachusetts, USA
| |
Collapse
|
16
|
Whiteley Z, Massaro G, Gkogkos G, Gavriilidis A, Waddington SN, Rahim AA, Craig DQM. Microfluidic production of nanogels as alternative triple transfection reagents for the manufacture of adeno-associated virus vectors. NANOSCALE 2023; 15:5865-5876. [PMID: 36866741 DOI: 10.1039/d2nr06401d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Adeno-associated viral vectors (AAVs) have proved a mainstay in gene therapy, owing to their remarkable transduction efficiency and safety profile. Their production, however, remains challenging in terms of yield, the cost-effectiveness of manufacturing procedures and large-scale production. In this work, we present nanogels produced by microfluidics as a novel alternative to standard transfection reagents such as polyethylenimine-MAX (PEI-MAX) for the production of AAV vectors with comparable yields. Nanogels were formed at pDNA weight ratios of 1 : 1 : 2 and 1 : 1 : 3, of pAAV cis-plasmid, pDG9 capsid trans-plasmid and pHGTI helper plasmid respectively, where vector yields at a small scale showed no significant difference to those of PEI-MAX. Weight ratios of 1 : 1 : 2 showed overall higher titers than 1 : 1 : 3, where nanogels with nitrogen/phosphate ratios of 5 and 10 produced yields of ≈8.8 × 108 vg mL-1 and ≈8.1 × 108 vg mL-1 respectively compared to ≈1.1 × 109 vg mL-1 for PEI-MAX. In larger scale production, optimised nanogels produced AAV at a titer of ≈7.4 × 1011 vg mL-1, showing no statistical difference from that of PEI-MAX at ≈1.2 × 1012 vg mL-1, indicating that equivalent titers can be achieved with easy-to-implement microfluidic technology at comparably lower costs than traditional reagents.
Collapse
Affiliation(s)
- Zoe Whiteley
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| | - Giulia Massaro
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Georgios Gkogkos
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Asterios Gavriilidis
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Simon N Waddington
- Institute for Women's Health, University College London, 84-84 Chenies Mews, London, WC1E 6HU, UK
- MRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa
| | - Ahad A Rahim
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Duncan Q M Craig
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| |
Collapse
|
17
|
Shitik EM, Shalik IK, Yudkin DV. AAV- based vector improvements unrelated to capsid protein modification. Front Med (Lausanne) 2023; 10:1106085. [PMID: 36817775 PMCID: PMC9935841 DOI: 10.3389/fmed.2023.1106085] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Recombinant adeno-associated virus (rAAV) is the leading platform for delivering genetic constructs in vivo. To date, three AAV-based gene therapeutic agents have been approved by the FDA and are used in clinical practice. Despite the distinct advantages of gene therapy development, it is clear that AAV vectors need to be improved. Enhancements in viral vectors are mainly associated with capsid protein modifications. However, there are other structures that significantly affect the AAV life cycle and transduction. The Rep proteins, in combination with inverted terminal repeats (ITRs), determine viral genome replication, encapsidation, etc. Moreover, transgene cassette expression in recombinant variants is directly related to AAV production and transduction efficiency. This review discusses the ways to improve AAV vectors by modifying ITRs, a transgene cassette, and the Rep proteins.
Collapse
|
18
|
Kumar A, Baldia A, Rajput D, Kateriya S, Babu V, Dubey KK. Multiomics and optobiotechnological approaches for the development of microalgal strain for production of aviation biofuel and biorefinery. BIORESOURCE TECHNOLOGY 2023; 369:128457. [PMID: 36503094 DOI: 10.1016/j.biortech.2022.128457] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Demand and consumption of fossil fuels is increasing daily, and oil reserves are depleting. Technological developments are required towards developing sustainable renewable energy sources and microalgae are emerging as a potential candidate for various application-driven research. Molecular understanding attained through omics and system biology approach empowering researchers to modify various metabolic pathways of microalgal system for efficient extraction of biofuel and important biomolecules. This review furnish insight into different "advanced approaches" like optogenetics, systems biology and multi-omics for enhanced production of FAS (Fatty Acid Synthesis) and lipids in microalgae and their associated challenges. These new approaches would be helpful in the path of developing microalgae inspired technological platforms for optobiorefinery, which could be explored as source material to produce biofuels and other valuable bio-compounds on a large scale.
Collapse
Affiliation(s)
- Akshay Kumar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Anshu Baldia
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Deepanshi Rajput
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Suneel Kateriya
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Vikash Babu
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Kashyap Kumar Dubey
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
19
|
Time and phenotype-dependent transcriptome analysis in AAV-TGFβ1 and Bleomycin-induced lung fibrosis models. Sci Rep 2022; 12:12190. [PMID: 35842487 PMCID: PMC9288451 DOI: 10.1038/s41598-022-16344-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/08/2022] [Indexed: 11/19/2022] Open
Abstract
We have previously established a novel mouse model of lung fibrosis based on Adeno-associated virus (AAV)-mediated pulmonary overexpression of TGFβ1. Here, we provide an in-depth characterization of phenotypic and transcriptomic changes (mRNA and miRNA) in a head-to-head comparison with Bleomycin-induced lung injury over a 4-week disease course. The analyses delineate the temporal state of model-specific and commonly altered pathways, thereby providing detailed insights into the processes underlying disease development. They further guide appropriate model selection as well as interventional study design. Overall, Bleomycin-induced fibrosis resembles a biphasic process of acute inflammation and subsequent transition into fibrosis (with partial resolution), whereas the TGFβ1-driven model is characterized by pronounced and persistent fibrosis with concomitant inflammation and an equally complex disease phenotype as observed upon Bleomycin instillation. Finally, based on an integrative approach combining lung function data, mRNA/miRNA profiles, their correlation and miRNA target predictions, we identify putative drug targets and miRNAs to be explored as therapeutic candidates for fibrotic diseases. Taken together, we provide a comprehensive analysis and rich data resource based on RNA-sequencing, along with a strategy for transcriptome-phenotype coupling. The results will be of value for TGFβ research, drug discovery and biomarker identification in progressive fibrosing interstitial lung diseases.
Collapse
|
20
|
Dykstra PB, Kaplan M, Smolke CD. Engineering synthetic RNA devices for cell control. Nat Rev Genet 2022; 23:215-228. [PMID: 34983970 PMCID: PMC9554294 DOI: 10.1038/s41576-021-00436-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2021] [Indexed: 12/16/2022]
Abstract
The versatility of RNA in sensing and interacting with small molecules, proteins and other nucleic acids while encoding genetic instructions for protein translation makes it a powerful substrate for engineering biological systems. RNA devices integrate cellular information sensing, processing and actuation of specific signals into defined functions and have yielded programmable biological systems and novel therapeutics of increasing sophistication. However, challenges centred on expanding the range of analytes that can be sensed and adding new mechanisms of action have hindered the full realization of the field's promise. Here, we describe recent advances that address these limitations and point to a significant maturation of synthetic RNA-based devices.
Collapse
Affiliation(s)
- Peter B. Dykstra
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Matias Kaplan
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Christina D. Smolke
- Department of Bioengineering, Stanford University, Stanford, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA.,
| |
Collapse
|
21
|
Ran G, Feng XL, Xie YL, Zheng QY, Guo PP, Yang M, Feng YL, Ling C, Zhu LQ, Zhong C. The use of miR122 and its target sequence in adeno-associated virus-mediated trichosanthin gene therapy. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2021; 19:515-525. [PMID: 34538767 DOI: 10.1016/j.joim.2021.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Plant-derived cytotoxic transgene expression, such as trichosanthin (tcs), regulated by recombinant adeno-associated virus (rAAV) vector is a promising cancer gene therapy. However, the cytotoxic transgene can hamper the vector production in the rAAV producer cell line, human embryonic kidney (HEK293) cells. Here, we explored microRNA-122 (miR122) and its target sequence to limit the expression of the cytotoxic gene in the rAAV producer cells. METHODS A miR122 target (122T) sequence was incorporated into the 3' untranslated region of the tcs cDNA sequence. The firefly luciferase (fluc) transgene was used as an appropriate control. Cell line HEK293-mir122 was generated by the lentiviral vector-mediated genome integration of the mir122 gene in parental HEK293 cells. The effects of miR122 overexpression on cell growth, transgene expression, and rAAV production were determined. RESULTS The presence of 122T sequence significantly reduced transgene expression in the miR122-enriched Huh7 cell line (in vitro), fresh human hepatocytes (ex vivo), and mouse liver (in vivo). Also, the normal liver physiology was unaffected by delivery of 122T sequence by rAAV vectors. Compared with the parental cells, the miR122-overexpressing HEK293-mir122 cell line showed similar cell growth rate and expression of transgene without 122T, as well as the ability to produce liver-targeting rAAV vectors. Fascinatingly, the yield of rAAV vectors carrying the tcs-122T gene was increased by 77.7-fold in HEK293-mir122 cells. Moreover, the tcs-122T-containing rAAV vectors significantly reduced the proliferation of hepatocellular carcinoma cells without affecting the normal liver cells. CONCLUSION HEK293-mir122 cells along with the 122T sequence provide a potential tool to attenuate the cytotoxic transgene expression, such as tcs, during rAAV vector production.
Collapse
Affiliation(s)
- Gai Ran
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China; Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL 32611, USA
| | - Xi-Lin Feng
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Yi-Lin Xie
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Qing-Yun Zheng
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Peng-Peng Guo
- Department of Traditional Chinese Medicine, Chinese People's Liberation Army 971 Hospital, Qingdao 266071, Shandong Province, China
| | - Ming Yang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Ying-Lu Feng
- Department of Traditional Chinese Medicine, Chinese People's Liberation Army 971 Hospital, Qingdao 266071, Shandong Province, China
| | - Chen Ling
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China; Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL 32611, USA
| | - Li-Qing Zhu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Chen Zhong
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China.
| |
Collapse
|
22
|
|
23
|
Tickner ZJ, Farzan M. Riboswitches for Controlled Expression of Therapeutic Transgenes Delivered by Adeno-Associated Viral Vectors. Pharmaceuticals (Basel) 2021; 14:ph14060554. [PMID: 34200913 PMCID: PMC8230432 DOI: 10.3390/ph14060554] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
Vectors developed from adeno-associated virus (AAV) are powerful tools for in vivo transgene delivery in both humans and animal models, and several AAV-delivered gene therapies are currently approved for clinical use. However, AAV-mediated gene therapy still faces several challenges, including limited vector packaging capacity and the need for a safe, effective method for controlling transgene expression during and after delivery. Riboswitches, RNA elements which control gene expression in response to ligand binding, are attractive candidates for regulating expression of AAV-delivered transgene therapeutics because of their small genomic footprints and non-immunogenicity compared to protein-based expression control systems. In addition, the ligand-sensing aptamer domains of many riboswitches can be exchanged in a modular fashion to allow regulation by a variety of small molecules, proteins, and oligonucleotides. Riboswitches have been used to regulate AAV-delivered transgene therapeutics in animal models, and recently developed screening and selection methods allow rapid isolation of riboswitches with novel ligands and improved performance in mammalian cells. This review discusses the advantages of riboswitches in the context of AAV-delivered gene therapy, the subsets of riboswitch mechanisms which have been shown to function in human cells and animal models, recent progress in riboswitch isolation and optimization, and several examples of AAV-delivered therapeutic systems which might be improved by riboswitch regulation.
Collapse
Affiliation(s)
- Zachary J. Tickner
- Department of Immunology and Microbiology, the Scripps Research Institute, Jupiter, FL 33458, USA;
- Correspondence:
| | - Michael Farzan
- Department of Immunology and Microbiology, the Scripps Research Institute, Jupiter, FL 33458, USA;
- Emmune, Inc., Jupiter, FL 33458, USA
| |
Collapse
|
24
|
Brayshaw LL, Martinez-Fleites C, Athanasopoulos T, Southgate T, Jespers L, Herring C. The role of small molecules in cell and gene therapy. RSC Med Chem 2021; 12:330-352. [PMID: 34046619 PMCID: PMC8130622 DOI: 10.1039/d0md00221f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/25/2020] [Indexed: 01/22/2023] Open
Abstract
Cell and gene therapies have achieved impressive results in the treatment of rare genetic diseases using gene corrected stem cells and haematological cancers using chimeric antigen receptor T cells. However, these two fields face significant challenges such as demonstrating long-term efficacy and safety, and achieving cost-effective, scalable manufacturing processes. The use of small molecules is a key approach to overcome these barriers and can benefit cell and gene therapies at multiple stages of their lifecycle. For example, small molecules can be used to optimise viral vector production during manufacturing or used in the clinic to enhance the resistance of T cell therapies to the immunosuppressive tumour microenvironment. Here, we review current uses of small molecules in cell and gene therapy and highlight opportunities for medicinal chemists to further consolidate the success of cell and gene therapies.
Collapse
Affiliation(s)
- Lewis L Brayshaw
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Carlos Martinez-Fleites
- Protein Degradation Group, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Takis Athanasopoulos
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Thomas Southgate
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Laurent Jespers
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Christopher Herring
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| |
Collapse
|
25
|
Spöring M, Boneberg R, Hartig JS. Aptamer-Mediated Control of Polyadenylation for Gene Expression Regulation in Mammalian Cells. ACS Synth Biol 2020; 9:3008-3018. [PMID: 33108164 DOI: 10.1021/acssynbio.0c00222] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Small aptamer-based regulatory devices can be designed to control a range of RNA-dependent cellular processes and emerged as promising tools for fine-tuning gene expression in synthetic biology. Here, we design a conceptually new riboswitch device that allows for the conditional regulation of polyadenylation. By making use of ligand-induced sequence occlusion, the system efficiently controls the accessibility of the eukaryotic polyadenylation signal. Undesirable 3'-extended read-through products are counteracted by the downstream insertion of a microRNA target site. We demonstrate the modularity of the system with regard to sensor aptamers and polyadenylation signals used and combine the newly designed riboswitch with well-known aptazymes to yield superior composite systems. In addition, we show that the switches can be used to control alternative polyadenylation. The presented genetic switches require very little coding space and can be easily optimized by rational adjustments of the thermodynamic stability. The polyadenylation riboswitch extends the repertoire of RNA-based regulators and opens new possibilities for the generation of complex synthetic circuits.
Collapse
Affiliation(s)
- Maike Spöring
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Ronja Boneberg
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Jörg S. Hartig
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| |
Collapse
|
26
|
Strobel B, Düchs MJ, Blazevic D, Rechtsteiner P, Braun C, Baum-Kroker KS, Schmid B, Ciossek T, Gottschling D, Hartig JS, Kreuz S. A Small-Molecule-Responsive Riboswitch Enables Conditional Induction of Viral Vector-Mediated Gene Expression in Mice. ACS Synth Biol 2020; 9:1292-1305. [PMID: 32427483 DOI: 10.1021/acssynbio.9b00410] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adeno-associated viral (AAV) vector-mediated gene therapy holds great potential for future medical applications. However, to facilitate safer and broader applicability and to enable patient-centric care, therapeutic protein expression should be controllable, ideally by an orally administered drug. The use of protein-based systems is considered rather undesirable, due to potential immunogenicity and the limited coding space of AAV. Ligand-dependent riboswitches, in contrast, are small and characterized by an attractive mode-of-action based on mRNA-self-cleavage, independent of coexpressed foreign protein. While a promising approach, switches available to date have only shown moderate potency in animals. In particular, ON-switches that induce transgene expression upon ligand administration so far have achieved rather disappointing results. Here we present the utilization of the previously described tetracycline-dependent ribozyme K19 for controlling AAV-mediated transgene expression in mice. Using this tool switch, we provide first proof for the feasibility of clinically desired key features, including multiorgan functionality, potent regulation (up to 15-fold induction), reversibility, and the possibility to fine-tune and repeatedly induce expression. The systematic assessment of ligand and reporter protein plasma levels further enabled the characterization of pharmacokinetic-pharmacodynamic relationships. Thus, our results strongly support future efforts to develop engineered riboswitches for applications in clinical gene therapy.
Collapse
Affiliation(s)
- Benjamin Strobel
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, 88397, Germany
| | - Matthias J. Düchs
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, 88397, Germany
| | - Dragica Blazevic
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, 88397, Germany
| | - Philipp Rechtsteiner
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, 88397, Germany
| | - Clemens Braun
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, 88397, Germany
| | - Katja S. Baum-Kroker
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, 88397, Germany
| | - Bernhard Schmid
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, 88397, Germany
| | - Thomas Ciossek
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, 88397, Germany
| | - Dirk Gottschling
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, 88397, Germany
| | - Jörg S. Hartig
- Department of Chemistry, University of Konstanz, Konstanz, 78464, Germany
| | - Sebastian Kreuz
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, 88397, Germany
| |
Collapse
|
27
|
Zhao H, Lee KJ, Daris M, Lin Y, Wolfe T, Sheng J, Plewa C, Wang S, Meisen WH. Creation of a High-Yield AAV Vector Production Platform in Suspension Cells Using a Design-of-Experiment Approach. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:312-320. [PMID: 32671134 PMCID: PMC7334306 DOI: 10.1016/j.omtm.2020.06.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/29/2020] [Indexed: 12/26/2022]
Abstract
Recombinant adeno-associated virus (rAAV) vectors are a leading gene delivery platform, but vector manufacturing remains a challenge. New methods are needed to increase rAAV yields and reduce costs. Past efforts to improve rAAV production have focused on optimizing a single variable at a time, but this approach does not account for the interactions of multiple factors that contribute to vector generation. Here, we utilized a design-of-experiment (DOE) methodology to optimize rAAV production in a HEK293T suspension cell system. We simultaneously varied the transgene, packaging, and helper plasmid ratios, the total DNA concentration, and the cell density to systematically evaluate the impact of each variable across 52 conditions. The results revealed a unique set of parameters with a lower concentration of transgene plasmid, a higher concentration of packaging plasmid, and a higher cell density than previously described protocols. Using this DOE-optimized protocol, we achieved unpurified yields approaching 3 × 1014 viral genomes (VGs)/L of cell culture. Additionally, we incorporated polyethylene glycol (PEG)-based virus precipitation, pH-mediated protein removal, and affinity chromatography to our downstream processing, enabling average purified yields of >1 × 1014 VGs/L for rAAV-EGFPs across 13 serotypes and capsid variants.
Collapse
Affiliation(s)
- Huiren Zhao
- Genome Analysis Unit, Amgen Research, South San Francisco, CA, USA
| | - Ki-Jeong Lee
- Genome Analysis Unit, Amgen Research, South San Francisco, CA, USA
| | - Mark Daris
- Genome Analysis Unit, Amgen Research, South San Francisco, CA, USA
| | - Yun Lin
- Genome Analysis Unit, Amgen Research, South San Francisco, CA, USA
| | - Thomas Wolfe
- Genome Analysis Unit, Amgen Research, South San Francisco, CA, USA
| | - Jackie Sheng
- Genome Analysis Unit, Amgen Research, South San Francisco, CA, USA
| | - Cherylene Plewa
- Genome Analysis Unit, Amgen Research, South San Francisco, CA, USA
| | - Songli Wang
- Genome Analysis Unit, Amgen Research, South San Francisco, CA, USA
| | - W Hans Meisen
- Genome Analysis Unit, Amgen Research, South San Francisco, CA, USA
| |
Collapse
|
28
|
Golabi F, Mehdizadeh Aghdam E, Shamsi M, Sedaaghi MH, Barzegar A, Hejazi MS. Classification of seed members of five riboswitch families as short sequences based on the features extracted by Block Location-Based Feature Extraction (BLBFE) method. ACTA ACUST UNITED AC 2020; 11:101-109. [PMID: 33842280 PMCID: PMC8022236 DOI: 10.34172/bi.2021.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 03/12/2020] [Accepted: 03/20/2020] [Indexed: 11/09/2022]
Abstract
Introduction: Riboswitches are short regulatory elements generally found in the untranslated regions of prokaryotes' mRNAs and classified into several families. Due to the binding possibility between riboswitches and antibiotics, their usage as engineered regulatory elements and also their evolutionary contribution, the need for bioinformatics tools of riboswitch detection is increasing. We have previously introduced an alignment independent algorithm for the identification of frequent sequential blocks in the families of riboswitches. Herein, we report the application of block location-based feature extraction strategy (BLBFE), which uses the locations of detected blocks on riboswitch sequences as features for classification of seed sequences. Besides, mono- and dinucleotide frequencies, k-mer, DAC, DCC, DACC, PC-PseDNC-General and SC-PseDNC-General methods as some feature extraction strategies were investigated. Methods: The classifiers of the Decision tree, KNN, LDA, and Naïve Bayes, as well as k-fold cross-validation, were employed for all methods of feature extraction to compare their performances based on the criteria of accuracy, sensitivity, specificity, and f-score performance measures. Results: The outcome of the study showed that the BLBFE strategy classified the riboswitches indicating 87.65% average correct classification rate (CCR). Moreover, the performance of the proposed feature extraction method was confirmed with average values of 94.31%, 85.01%, 95.45% and 85.38% for accuracy, sensitivity, specificity, and f-score, respectively. Conclusion: Our result approved the performance of the BLBFE strategy in the classification and discrimination of the riboswitch groups showing remarkable higher values of CCR, accuracy, sensitivity, specificity and f-score relative to previously studied feature extraction methods.
Collapse
Affiliation(s)
- Faegheh Golabi
- Genomic Signal Processing Laboratory, Faculty of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran.,Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elnaz Mehdizadeh Aghdam
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mousa Shamsi
- Genomic Signal Processing Laboratory, Faculty of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran
| | | | - Abolfazl Barzegar
- Research Institute of Bioscience and Biotechnology, University of Tabriz, Tabriz, Iran
| | - Mohammad Saeid Hejazi
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
29
|
Guimaro MC, Afione SA, Tanaka T, Chiorini JA. Rescue of Adeno-Associated Virus Production by shRNA Cotransfection. Hum Gene Ther 2020; 31:1068-1073. [PMID: 32174180 DOI: 10.1089/hum.2019.249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Adeno-associated virus (AAV) vector technology is rapidly advancing and becoming not only the leading vector platform in the field of gene therapy but also a useful tool for functional genomic studies of novel proteins. As most vectors utilize constitutive promoters, this results in transgene expression during production. Depending on the transgene product, this could induce proapoptotic, cytostatic, or other unknown effects that interfere with producer cell function and, therefore, reduce viral vector yield. This can be a major limitation when trying to characterize poorly described genes. We describe the novel use of shRNA encoding plasmids cotransfected during packaging to limit the expression of the cytotoxic transgene product. This allowed the production of an otherwise unpackageable vector. The approach is simple, versatile, does not require modification of the vector plasmid, and should be easily adaptable to almost any transgene with minimal cost.
Collapse
Affiliation(s)
- Maria C Guimaro
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Sandra A Afione
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Tsutomu Tanaka
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - John A Chiorini
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
30
|
Strobel B, Zuckschwerdt K, Zimmermann G, Mayer C, Eytner R, Rechtsteiner P, Kreuz S, Lamla T. Standardized, Scalable, and Timely Flexible Adeno-Associated Virus Vector Production Using Frozen High-Density HEK-293 Cell Stocks and CELLdiscs. Hum Gene Ther Methods 2020; 30:23-33. [PMID: 30693792 PMCID: PMC6388714 DOI: 10.1089/hgtb.2018.228] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Adeno-associated virus (AAV) vectors currently represent the most attractive platform for viral gene therapy and are also valuable research tools to study gene function or establish disease models. Consequently, many academic labs, core facilities, and biotech/pharma companies meanwhile produce AAVs for research and early clinical development. Whereas fast, universal protocols for vector purification (downstream processing) are available, AAV production using adherent HEK-293 cells still requires time-consuming passaging and extensive culture expansion before transfection. Moreover, most scalable culture platforms require special equipment or extensive method development. To tackle these limitations in upstream processing, this study evaluated frozen high-density cell stocks as a ready-to-seed source of producer cells, and further investigated the multilayered CELLdisc culture system for upscaling. The results demonstrate equal AAV productivity using frozen cell stock–derived cultures compared to conventionally cultured cells, as well as scalability using CELLdiscs. Thus, by directly seeding freshly thawed cells into CELLdiscs, AAV production can be easily upscaled and efficiently standardized to low-passage, high-viability cells in a timely flexible manner, potentially dismissing time-consuming routine cell culture work. In conjunction with a further optimized iodixanol protocol, this process enabled supply to a large-animal study with two high-yield AAV2 capsid variant batches (0.6–1.2 × 1015 vector genomes) in as little as 4 weeks.
Collapse
Affiliation(s)
- Benjamin Strobel
- 1 Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Kai Zuckschwerdt
- 2 Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Gudrun Zimmermann
- 2 Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Christine Mayer
- 2 Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Ruth Eytner
- 2 Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Philipp Rechtsteiner
- 1 Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Sebastian Kreuz
- 1 Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Thorsten Lamla
- 2 Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| |
Collapse
|
31
|
Strobel B, Spöring M, Klein H, Blazevic D, Rust W, Sayols S, Hartig JS, Kreuz S. High-throughput identification of synthetic riboswitches by barcode-free amplicon-sequencing in human cells. Nat Commun 2020; 11:714. [PMID: 32024835 PMCID: PMC7002664 DOI: 10.1038/s41467-020-14491-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 01/14/2020] [Indexed: 11/10/2022] Open
Abstract
Synthetic riboswitches mediating ligand-dependent RNA cleavage or splicing-modulation represent elegant tools to control gene expression in various applications, including next-generation gene therapy. However, due to the limited understanding of context-dependent structure-function relationships, the identification of functional riboswitches requires large-scale-screening of aptamer-effector-domain designs, which is hampered by the lack of suitable cellular high-throughput methods. Here we describe a fast and broadly applicable method to functionally screen complex riboswitch libraries (~1.8 × 104 constructs) by cDNA-amplicon-sequencing in transiently transfected and stimulated human cells. The self-barcoding nature of each construct enables quantification of differential mRNA levels without additional pre-selection or cDNA-manipulation steps. We apply this method to engineer tetracycline- and guanine-responsive ON- and OFF-switches based on hammerhead, hepatitis-delta-virus and Twister ribozymes as well as U1-snRNP polyadenylation-dependent RNA devices. In summary, our method enables fast and efficient high-throughput riboswitch identification, thereby overcoming a major hurdle in the development cascade for therapeutically applicable gene switches.
Collapse
Affiliation(s)
- Benjamin Strobel
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Maike Spöring
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Holger Klein
- Computational Biology & Genomics, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Dragica Blazevic
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Werner Rust
- Computational Biology & Genomics, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Sergi Sayols
- Computational Biology & Genomics, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Jörg S Hartig
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Sebastian Kreuz
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany.
| |
Collapse
|
32
|
Mustafina K, Fukunaga K, Yokobayashi Y. Design of Mammalian ON-Riboswitches Based on Tandemly Fused Aptamer and Ribozyme. ACS Synth Biol 2020; 9:19-25. [PMID: 31820936 DOI: 10.1021/acssynbio.9b00371] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Self-cleaving ribozymes engineered to be activated or inhibited by a small molecule binding to an RNA aptamer inserted within a ribozyme (aptazymes) have proven to be useful for controlling gene expression in living cells. In mammalian cells, an aptazyme embedded in the 5' or 3' untranslated region of an mRNA functions as a synthetic riboswitch to chemically regulate gene expression. However, the variety of aptazyme architectures and the ribozyme scaffolds that have been used for mammalian riboswitches has been limited. In particular, fewer synthetic riboswitches that activate gene expression in response to a small molecule (ON-switches) in mammalian cells have been reported compared to OFF-switches. In this work, we developed mammalian riboswitches that function as guanine-activated ON-switches based on a novel aptazyme architecture in which an aptamer and a ribozyme are fused in tandem. The riboswitch performance was optimized by fine-tuning the stability of a critical stem that controls the ribozyme structure and function, yielding switches with ON/OFF ratios greater than 6.0. Our new aptazyme architecture expands the RNA device toolbox for controlling gene expression in mammalian cells.
Collapse
Affiliation(s)
- Kamila Mustafina
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904 0495, Japan
| | - Keisuke Fukunaga
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904 0495, Japan
| | - Yohei Yokobayashi
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904 0495, Japan
| |
Collapse
|
33
|
Spöring M, Finke M, Hartig JS. Aptamers in RNA-based switches of gene expression. Curr Opin Biotechnol 2019; 63:34-40. [PMID: 31811992 DOI: 10.1016/j.copbio.2019.11.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 01/25/2023]
Abstract
The ability to control gene expression via small molecule effectors is important in basic research as well as in future gene therapy applications. Although transcription factor-based systems are widely used, they are not well suited for certain applications due to a lack of functionality, limited available coding space, and potential immunogenicity of the regulatory proteins. RNA-based switches fill this gap since they can be designed to respond to effector compounds utilizing ligand-sensing aptamers. These systems are very modular since the aptamer can be combined with a variety of different expression platforms. RNA-based switches have been constructed that allow for controlling gene expression in diverse contexts. Here we discuss latest developments and applications of aptamer-based gene expression switches in eukaryotes.
Collapse
Affiliation(s)
- Maike Spöring
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany; Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Monika Finke
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany; Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Jörg S Hartig
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany; Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| |
Collapse
|
34
|
Mao X, Li Q, Zuo X, Fan C. Catalytic Nucleic Acids for Bioanalysis. ACS APPLIED BIO MATERIALS 2019; 3:2674-2685. [PMID: 35025402 DOI: 10.1021/acsabm.9b00928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiuhai Mao
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chunhai Fan
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
35
|
Takahashi K, Yokobayashi Y. Reversible Gene Regulation in Mammalian Cells Using Riboswitch-Engineered Vesicular Stomatitis Virus Vector. ACS Synth Biol 2019; 8:1976-1982. [PMID: 31415142 DOI: 10.1021/acssynbio.9b00177] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Synthetic riboswitches based on small molecule-responsive self-cleaving ribozymes (aptazymes) embedded in the untranslated regions (UTRs) allow chemical control of gene expression in mammalian cells. In this work, we used a guanine-responsive aptazyme to control transgene expression from a replication-incompetent vesicular stomatitis virus (VSV) vector. VSV is a nonsegmented, negative-sense, cytoplasmic RNA virus that replicates without DNA intermediates, and its applications for vaccines and oncolytic viral therapy are being explored. By inserting the guanine-activated ribozyme in the 3' UTRs of viral genes and transgenes, GFP expression from the VSV vector in mammalian cells was repressed by as much as 26.8-fold in the presence of guanine. Furthermore, we demonstrated reversible regulation of a transgene (secreted NanoLuc) by adding and withdrawing guanine from the medium over the course of 12 days. In summary, our riboswitch-controlled VSV vector allows robust, long-term, and reversible regulation of gene expression in mammalian cells without the risk of undesirable genomic integration.
Collapse
Affiliation(s)
- Kei Takahashi
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904 0495, Japan
| | - Yohei Yokobayashi
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904 0495, Japan
| |
Collapse
|
36
|
Pinto C, Silva G, Ribeiro AS, Oliveira M, Garrido M, Bandeira VS, Nascimento A, Coroadinha AS, Peixoto C, Barbas A, Paredes J, Brito C, Alves PM. Evaluation of AAV-mediated delivery of shRNA to target basal-like breast cancer genetic vulnerabilities. J Biotechnol 2019; 300:70-77. [PMID: 31150679 DOI: 10.1016/j.jbiotec.2019.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 02/07/2023]
Abstract
Adeno-associated viral vectors (AAV) for gene therapy applications are gaining momentum, with more therapies moving into later stages of clinical development and towards market approval, namely for cancer therapy. The development of cytotoxic vectors is often hampered by side effects arising when non-target cells are infected, and their production can be hindered by toxic effects of the transgene on the producing cell lines. In this study, we evaluated the potential of rAAV-mediated delivery of short hairpin RNAs (shRNA) to target basal-like breast cancer genetic vulnerabilities. Our results show that by optimizing the stoichiometry of the plasmids upon transfection and time of harvest, it is possible to increase the viral titers and quality. All rAAV-shRNA vectors obtained efficiently transduced the BLBC cell lines MDA-MB-468 and HCC1954. In MDA-MB-468, transduction with rAAV-shRNA vector targeting PSMA2 was associated with significant decrease in cell viability and apoptosis induction. Importantly, rAAV2-PSMA2 also slowed tumor growth in a BLBC mouse xenograft model, thus potentially representing a therapeutic strategy against this type of cancer.
Collapse
Affiliation(s)
- Catarina Pinto
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Gabriela Silva
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal.
| | - Ana S Ribeiro
- Bayer Portugal, Carnaxide, Portugal; i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
| | - Mónica Oliveira
- Bayer Portugal, Carnaxide, Portugal; i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
| | - Manuel Garrido
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal.
| | - Vanessa S Bandeira
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal.
| | - André Nascimento
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal.
| | - Ana Sofia Coroadinha
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Cristina Peixoto
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Ana Barbas
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Bayer Portugal, Carnaxide, Portugal.
| | - Joana Paredes
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr Roberto Frias s/n, Porto, Portugal.
| | - Catarina Brito
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
37
|
Stifel J, Spöring M, Hartig JS. Expanding the toolbox of synthetic riboswitches with guanine-dependent aptazymes. Synth Biol (Oxf) 2019; 4:ysy022. [PMID: 32995528 PMCID: PMC7445771 DOI: 10.1093/synbio/ysy022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 12/18/2022] Open
Abstract
Artificial riboswitches based on ribozymes serve as versatile tools for ligand-dependent gene expression regulation. Advantages of these so-called aptazymes are their modular architecture and the comparably little coding space they require. A variety of aptamer-ribozyme combinations were constructed in the past 20 years and the resulting aptazymes were applied in diverse contexts in prokaryotic and eukaryotic systems. Most in vivo functional aptazymes are OFF-switches, while ON-switches are more advantageous regarding potential applications in e.g. gene therapy vectors. We developed new ON-switching aptazymes in the model organism Escherichia coli and in mammalian cell culture using the intensely studied guanine-sensing xpt aptamer. Utilizing a high-throughput screening based on fluorescence-activated cell sorting in bacteria we identified up to 9.2-fold ON-switches and OFF-switches with a dynamic range up to 32.7-fold. For constructing ON-switches in HeLa cells, we used a rational design approach based on existing tetracycline-sensitive ON-switches. We discovered that communication modules responding to tetracycline are also functional in the context of guanine aptazymes, demonstrating a high degree of modularity. Here, guanine-responsive ON-switches with a four-fold dynamic range were designed. Summarizing, we introduce a series of novel guanine-dependent ribozyme switches operative in bacteria and human cell culture that significantly broaden the existing toolbox.
Collapse
Affiliation(s)
- Julia Stifel
- Department of Chemistry, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany
| | - Maike Spöring
- Department of Chemistry, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany
| | - Jörg Steffen Hartig
- Department of Chemistry, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany
| |
Collapse
|
38
|
A Comparison of Inducible Gene Expression Platforms: Implications for Recombinant Adeno-Associated Virus (rAAV) Vector-Mediated Ocular Gene Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1185:79-83. [PMID: 31884592 DOI: 10.1007/978-3-030-27378-1_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The ability to temporally control levels of a therapeutic protein in vivo is vital for the development of safe and efficacious gene therapy treatments for autosomal dominant or complex retinal diseases, where uncontrolled transgene overexpression may lead to deleterious off-target effects and accelerated disease progression. While numerous platforms exist that allow for modulation of gene expression levels - ranging from inducible promoters to destabilizing domains - many have drawbacks that make them less than ideal for use in recombinant adeno-associated virus (rAAV) vectors, which over the past two decades have become the mainstay technology for mediating gene delivery to the retina. Herein, we discuss the advantages and disadvantages of three major gene expression platforms with regard to their suitability for ocular gene therapy applications.
Collapse
|
39
|
Lin MW, Tseng YW, Shen CC, Hsu MN, Hwu JR, Chang CW, Yeh CJ, Chou MY, Wu JC, Hu YC. Synthetic switch-based baculovirus for transgene expression control and selective killing of hepatocellular carcinoma cells. Nucleic Acids Res 2018; 46:e93. [PMID: 29905834 PMCID: PMC6125686 DOI: 10.1093/nar/gky447] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/04/2018] [Accepted: 05/31/2018] [Indexed: 12/13/2022] Open
Abstract
Baculovirus (BV) holds promise as a vector for anticancer gene delivery to combat the most common liver cancer-hepatocellular carcinoma (HCC). However, in vivo BV administration inevitably results in BV entry into non-HCC normal cells, leaky anticancer gene expression and possible toxicity. To improve the safety, we employed synthetic biology to engineer BV for transgene expression regulation. We first uncovered that miR-196a and miR-126 are exclusively expressed in HCC and normal cells, respectively, which allowed us to engineer a sensor based on distinct miRNA expression signature. We next assembled a synthetic switch by coupling the miRNA sensor and RNA binding protein L7Ae for translational repression, and incorporated the entire device into a single BV. The recombinant BV efficiently entered HCC and normal cells and enabled cis-acting transgene expression control, by turning OFF transgene expression in normal cells while switching ON transgene expression in HCC cells. Using pro-apoptotic hBax as the transgene, the switch-based BV selectively killed HCC cells in separate culture and mixed culture of HCC and normal cells. These data demonstrate the potential of synthetic switch-based BV to distinguish HCC and non-HCC normal cells for selective transgene expression control and killing of HCC cells.
Collapse
Affiliation(s)
- Mei-Wei Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Yen-Wen Tseng
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Che Shen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Mu-Nung Hsu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Jih-Ru Hwu
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan
| | - Chin-Wei Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Chung-Ju Yeh
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Min-Yuan Chou
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Jaw-Ching Wu
- Medical Research Department, Taipei Veterans General Hospital, Taipei Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
40
|
Development of an inducible anti-VEGF rAAV gene therapy strategy for the treatment of wet AMD. Sci Rep 2018; 8:11763. [PMID: 30082848 PMCID: PMC6079038 DOI: 10.1038/s41598-018-29726-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/16/2018] [Indexed: 12/15/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is a key mediator in the development and progression of choroidal neovascularization (CNV) in patients with wet age-related macular degeneration (AMD). As a consequence, current treatment strategies typically focus on the administration of anti-VEGF agents, such as Aflibercept (Eylea), that inhibit VEGF function. While this approach is largely successful at counteracting CNV progression, the treatment can require repetitive (i.e. monthly) intravitreal injections of the anti-VEGF agent throughout the patient’s lifetime, imposing a substantial financial and medical burden on the patient. Moreover, repetitive injection of anti-VEGF agents over a period of years may encourage progression of retinal and choroidal atrophy in patients with AMD, leading to a decrease in visual acuity. Herein, we have developed a single-injection recombinant adeno-associated virus (rAAV)-based gene therapy treatment for wet AMD that prevents CNV formation through inducible over-expression of Eylea. First, we demonstrate that by incorporating riboswitch elements into the rAAV expression cassette allows protein expression levels to be modulated in vivo through oral supplementation on an activating ligand (e.g. tetracycline). We subsequently utilized this technology to modulate the intraocular concentration of Eylea following rAAV delivery, leading to nearly complete (p = 0.0008) inhibition of clinically significant CNV lesions in an established mouse model of wet AMD. The results shown in this study pave the way for the development of a personalized gene therapy strategy for the treatment of wet AMD that is substantially less invasive and more clinically adaptable than the current treatment paradigm of repetitive bolus injections of anti-VEGF agents.
Collapse
|
41
|
AAVvector-mediated in vivo reprogramming into pluripotency. Nat Commun 2018; 9:2651. [PMID: 29985406 PMCID: PMC6037684 DOI: 10.1038/s41467-018-05059-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 05/14/2018] [Indexed: 12/19/2022] Open
Abstract
In vivo reprogramming of somatic cells into induced pluripotent stem cells (iPSC) holds vast potential for basic research and regenerative medicine. However, it remains hampered by a need for vectors to express reprogramming factors (Oct-3/4, Klf4, Sox2, c-Myc; OKSM) in selected organs. Here, we report OKSM delivery vectors based on pseudotyped Adeno-associated virus (AAV). Using the AAV-DJ capsid, we could robustly reprogram mouse embryonic fibroblasts with low vector doses. Swapping to AAV8 permitted to efficiently reprogram somatic cells in adult mice by intravenous vector delivery, evidenced by hepatic or extra-hepatic teratomas and iPSC in the blood. Notably, we accomplished full in vivo reprogramming without c-Myc. Most iPSC generated in vitro or in vivo showed transcriptionally silent, intronic or intergenic vector integration, likely reflecting the increased host genome accessibility during reprogramming. Our approach crucially advances in vivo reprogramming technology, and concurrently facilitates investigations into the mechanisms and consequences of AAV persistence. In vivo reprogramming of somatic cells is hampered by the need for vectors to express the OKSM factors in selected organs. Here the authors report new AAV-based vectors capable of in vivo reprogramming at low doses.
Collapse
|
42
|
Rossetti M, Porchetta A. Allosterically regulated DNA-based switches: From design to bioanalytical applications. Anal Chim Acta 2018; 1012:30-41. [PMID: 29475471 DOI: 10.1016/j.aca.2017.12.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/10/2017] [Accepted: 12/28/2017] [Indexed: 02/07/2023]
Abstract
DNA-based switches are structure-switching biomolecules widely employed in different bioanalytical applications. Of particular interest are DNA-based switches whose activity is regulated through the use of allostery. Allostery is a naturally occurring mechanism in which ligand binding induces the modulation and fine control of a connected biomolecule function as a consequence of changes in concentration of the effector. Through this general mechanism, many different allosteric DNA-based switches able to respond in a highly controlled way at the presence of a specific molecular effector have been engineered. Here, we discuss how to design allosterically regulated DNA-based switches and their applications in the field of molecular sensing, diagnostic and drug release.
Collapse
Affiliation(s)
- Marianna Rossetti
- Chemistry Department, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Alessandro Porchetta
- Chemistry Department, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy.
| |
Collapse
|
43
|
Reid CA, Boye SL, Hauswirth WW, Lipinski DM. miRNA-mediated post-transcriptional silencing of transgenes leads to increased adeno-associated viral vector yield and targeting specificity. Gene Ther 2017; 24:462-469. [DOI: 10.1038/gt.2017.50] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 06/05/2017] [Accepted: 06/08/2017] [Indexed: 12/21/2022]
|
44
|
Maunder HE, Wright J, Kolli BR, Vieira CR, Mkandawire TT, Tatoris S, Kennedy V, Iqball S, Devarajan G, Ellis S, Lad Y, Clarkson NG, Mitrophanous KA, Farley DC. Enhancing titres of therapeutic viral vectors using the transgene repression in vector production (TRiP) system. Nat Commun 2017; 8:14834. [PMID: 28345582 PMCID: PMC5378976 DOI: 10.1038/ncomms14834] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/03/2017] [Indexed: 12/28/2022] Open
Abstract
A key challenge in the field of therapeutic viral vector/vaccine manufacturing is maximizing production. For most vector platforms, the ‘benchmark' vector titres are achieved with inert reporter genes. However, expression of therapeutic transgenes can often adversely affect vector titres due to biological effects on cell metabolism and/or on the vector virion itself. Here, we exemplify the novel ‘Transgene Repression In vector Production' (TRiP) system for the production of both RNA- and DNA-based viral vectors. The TRiP system utilizes a translational block of one or more transgenes by employing the bacterial tryptophan RNA-binding attenuation protein (TRAP), which binds its target RNA sequence close to the transgene initiation codon. We report enhancement of titres of lentiviral vectors expressing Cyclo-oxygenase-2 by 600-fold, and adenoviral vectors expressing the pro-apoptotic gene Bax by >150,000-fold. The TRiP system is transgene-independent and will be a particularly useful platform in the clinical development of viral vectors expressing problematic transgenes. The maximum titre of therapeutic viral vectors can be adversely affected by the encoded transgene. Here the authors repress transgene expression in producing cells by employing the tryptophan RNA-binding attenuation protein and show that it improves titre of RNA- and DNA-based viral vectors expressing toxic transgenes.
Collapse
Affiliation(s)
- H E Maunder
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - J Wright
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - B R Kolli
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - C R Vieira
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - T T Mkandawire
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - S Tatoris
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - V Kennedy
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - S Iqball
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - G Devarajan
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - S Ellis
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - Y Lad
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - N G Clarkson
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - K A Mitrophanous
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - D C Farley
- Research Department, Oxford BioMedica Ltd., Windrush Court, Transport Way, Oxford OX4 6LT, UK
| |
Collapse
|
45
|
Felletti M, Hartig JS. Ligand-dependent ribozymes. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27687155 DOI: 10.1002/wrna.1395] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/12/2016] [Accepted: 08/23/2016] [Indexed: 12/20/2022]
Abstract
The discovery of catalytic RNA (ribozymes) more than 30 years ago significantly widened the horizon of RNA-based functions in natural systems. Similarly to the activity of protein enzymes that are often modulated by the presence of an interaction partner, some examples of naturally occurring ribozymes are influenced by ligands that can either act as cofactors or allosteric modulators. Recent discoveries of new and widespread ribozyme motifs in many different genetic contexts point toward the existence of further ligand-dependent RNA catalysts. In addition to the presence of ligand-dependent ribozymes in nature, researchers have engineered ligand dependency into natural and artificial ribozymes. Because RNA functions can often be assembled in a truly modular way, many different systems have been obtained utilizing different ligand-sensing domains and ribozyme activities in diverse applications. We summarize the occurrence of ligand-dependent ribozymes in nature and the many examples realized by researchers that engineered ligand-dependent catalytic RNA motifs. We will also highlight methods for obtaining ligand dependency as well as discuss the many interesting applications of ligand-controlled catalytic RNAs. WIREs RNA 2017, 8:e1395. doi: 10.1002/wrna.1395 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Michele Felletti
- Department of Chemistry and Konstanz Research School of Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Jörg S Hartig
- Department of Chemistry and Konstanz Research School of Chemical Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
46
|
Mehdizadeh Aghdam E, Hejazi MS, Barzegar A. Riboswitches: From living biosensors to novel targets of antibiotics. Gene 2016; 592:244-59. [PMID: 27432066 DOI: 10.1016/j.gene.2016.07.035] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 07/11/2016] [Accepted: 07/14/2016] [Indexed: 12/24/2022]
Abstract
Riboswitches are generally located in 5'-UTR region of mRNAs and specifically bind small ligands. Following ligand binding, gene expression is controlled mostly by transcription termination, translation inhibition or mRNA degradation processes. More than 30 classes of known riboswitches have been identified by now. Most riboswitches consist of an aptamer domain and an expression platform. The aptamer domain of each class of riboswitch is a conserved structure and stabilizes specific structures of the expression platforms through binding to specific compounds. In this review, we are highlighting most aspects of riboswitch research including the novel riboswitch discoveries, routine methods for discovering and investigating riboswitches along with newly discovered classes and mechanistic principles of riboswitch-mediated gene expression control. Moreover, we will give an overview about the potential of riboswitches as therapeutic targets for antibiotic design and also their utilization as biosensors for molecular detection.
Collapse
Affiliation(s)
- Elnaz Mehdizadeh Aghdam
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Saeid Hejazi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Barzegar
- Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz, Iran; The School of Advanced Biomedical Sciences (SABS), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
47
|
Mohamed A, Johnston RN, Shmulevitz M. Potential for Improving Potency and Specificity of Reovirus Oncolysis with Next-Generation Reovirus Variants. Viruses 2015; 7:6251-78. [PMID: 26633466 PMCID: PMC4690860 DOI: 10.3390/v7122936] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 11/10/2015] [Accepted: 11/18/2015] [Indexed: 12/16/2022] Open
Abstract
Viruses that specifically replicate in tumor over normal cells offer promising cancer therapies. Oncolytic viruses (OV) not only kill the tumor cells directly; they also promote anti-tumor immunotherapeutic responses. Other major advantages of OVs are that they dose-escalate in tumors and can be genetically engineered to enhance potency and specificity. Unmodified wild type reovirus is a propitious OV currently in phase I–III clinical trials. This review summarizes modifications to reovirus that may improve potency and/or specificity during oncolysis. Classical genetics approaches have revealed reovirus variants with improved adaptation towards tumors or with enhanced ability to establish specific steps of virus replication and cell killing among transformed cells. The recent emergence of a reverse genetics system for reovirus has provided novel strategies to fine-tune reovirus proteins or introduce exogenous genes that could promote oncolytic activity. Over the next decade, these findings are likely to generate better-optimized second-generation reovirus vectors and improve the efficacy of oncolytic reotherapy.
Collapse
Affiliation(s)
- Adil Mohamed
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | - Randal N Johnston
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Maya Shmulevitz
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
48
|
Lee CH, Han SR, Lee SW. Therapeutic Applications of Aptamer-Based Riboswitches. Nucleic Acid Ther 2015; 26:44-51. [PMID: 26539634 DOI: 10.1089/nat.2015.0570] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aptamers bind to their targets with high affinity and specificity through structure-based complementarity, instead of sequence complementarity that is used by most of the oligonucleotide-based therapeutics. This property has been exploited in using aptamers as multifunctional therapeutic units, by attaching them to therapeutic drugs, nanoparticles, or imaging agents, or as direct molecular decoys for inducing loss-of-function or gain-of-function of targets. One of the most interesting fields of aptamer application is their development as molecular sensors to regulate artificial riboswitches. Naturally, the riboswitches sense small-molecule metabolites and respond by regulating the expression of the corresponding metabolic genes. Riboswitches are cis-acting RNA structures that consist of the sensing (aptamer) and the regulating (expression platform) domains. In principle, diverse riboswitches can be engineered and applied to control different steps of gene expression in bacterial species as well as eukaryotes, by simply replacing aptamers against various endogenous and/or exogenous targets. Although these engineered aptamer-based riboswitches are recently gaining attention, it is clear that aptamer-based riboswitches have a potential for next-generation therapeutics against various diseases because of their controllability, specificity, and modularity in regulating gene expression through various cellular processes, including transcription, splicing, stability, RNA interference, and translation. In this review, we provide a summary of the recently developed and engineered aptamer-based riboswitches focusing on their therapeutic availability and further discuss their clinical potential.
Collapse
Affiliation(s)
- Chang Ho Lee
- Department of Molecular Biology, Institute of Nanosensor and Biotechnology, and Research Institute of Advanced Omics, Dankook University , Yongin, Republic of Korea
| | - Seung Ryul Han
- Department of Molecular Biology, Institute of Nanosensor and Biotechnology, and Research Institute of Advanced Omics, Dankook University , Yongin, Republic of Korea
| | - Seong-Wook Lee
- Department of Molecular Biology, Institute of Nanosensor and Biotechnology, and Research Institute of Advanced Omics, Dankook University , Yongin, Republic of Korea
| |
Collapse
|