1
|
Ueda Y, Omiya S, Pinney J, Bylicky MA, Aryankalayil MJ. Liver quad culture chip as a model for radiation injury research. Sci Rep 2025; 15:12414. [PMID: 40216867 PMCID: PMC11992238 DOI: 10.1038/s41598-025-96140-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
Both cancer patients receiving radiotherapy and civilians in a mass casualty nuclear event may suffer from radiation induced damage to organ systems. Radiation induced liver disease (RILD) can cause acute and long-term organ dysfunction that potentially leads to death. The objective of this study was to ascertain the validity of a liver quad-culture chip, a micro-physiological system comprising primary human hepatocytes and non-parenchymal cells (NPCs), including liver sinusoidal endothelial cells, hepatic stellate cells (HSCs), and Kupffer cells, as a model for RILD. The radiation exposure to the chip model resulted in DNA damage and cellular senescence of hepatocytes and NPCs. We observed metabolic dysfunction, inflammation, endothelial dysfunction, and HSCs activation. Whole genome sequencing revealed gene alterations in pathways relevant to RILD, as well as the potential efficacy of N-acetylcysteine amide (NACA) against RILD. NACA exhibited the capacity to mitigate DNA damage and cellular senescence and decreased the impact of radiation exposure on other pathophysiological changes. CDKN1A and miR-34a-5p were validated as useful radiation response and treatment efficacy biomarkers. These findings highlight the potential of the liver quad-culture chip as an effective model for investigating the microenvironment in RILD and for evaluating the efficacy of therapeutic countermeasures and biomarkers.
Collapse
Affiliation(s)
- Yuki Ueda
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, 10 Center Drive, Room B3B406, Bethesda, MD, 20892, USA
| | - Satoshi Omiya
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, 10 Center Drive, Room B3B406, Bethesda, MD, 20892, USA
| | | | - Michelle A Bylicky
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, 10 Center Drive, Room B3B406, Bethesda, MD, 20892, USA
| | - Molykutty J Aryankalayil
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, 10 Center Drive, Room B3B406, Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
Tang P, Wei F, Qiao W, Chen X, Ji C, Yang W, Zhang X, Chen S, Wu Y, Jiang M, Ma C, Shen W, Dong Q, Cao H, Xie M, Cai Z, Xu L, Shi J, Dong N, Chen J, Wang N. Engineering aortic valves via transdifferentiating fibroblasts into valvular endothelial cells without using viruses or iPS cells. Bioact Mater 2025; 45:181-200. [PMID: 39651397 PMCID: PMC11625219 DOI: 10.1016/j.bioactmat.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/30/2024] [Accepted: 11/14/2024] [Indexed: 12/11/2024] Open
Abstract
The technology of induced pluripotent stem cells (iPSCs) has enabled the conversion of somatic cells into primitive undifferentiated cells via reprogramming. This approach provides possibilities for cell replacement therapies and drug screening, but the potential risk of tumorigenesis hampers its further development and in vivo application. How to generate differentiated cells such as valvular endothelial cells (VECs) has remained a major challenge. Utilizing a combinatorial strategy of selective soluble chemicals, cytokines and substrate stiffness modulation, mouse embryonic fibroblasts are directly and efficiently transdifferentiated into induced aortic endothelial cell-like cells (iAECs), or human primary adult fibroblasts are transdifferentiated into induced valvular endothelial cell-like cells (hiVECs), without expressing pluripotency stem cell markers. These iAECs and hiVECs express VEC-associated genes and proteins and VEC-specific marker NFATC1 and are functional in culture and on decellularized porcine aortic valves, like mouse aortic endothelial cells or human primary aortic valvular endothelial cells. The iAECs and hiVECs seeded on decellularized porcine aortic valves stay intact and express VEC-associated proteins for 60 days after grafting into abdominal aorta of immune-compromised rats. In contrast, induced pluripotent stem cells (iPSCs) are less efficient in differentiating into VEC-like cells and pluripotency marker Nanog is expressed in a small subpopulation of iPSC-derived VEC-like cells that generate teratomas in SCID mice whereas hiVECs derived from transdifferentiation do not generate teratomas in vivo. Our findings highlight an approach to efficiently convert fibroblasts into iAECs and hiVECs and seed them onto decellularized aortic valves for safely generating autologous tissue-engineered aortic valves without using viruses or first reprogramming the cells into pluripotent stem cells.
Collapse
Affiliation(s)
- Peng Tang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Fuxiang Wei
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Weihua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xing Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chenyang Ji
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Wanzhi Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xinyu Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Sihan Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yanyan Wu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Mingxing Jiang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Chenyu Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Weiqiang Shen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Qi Dong
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Hong Cao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Minghui Xie
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ziwen Cai
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Junwei Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Ning Wang
- Institute for Mechanobiology, Department of Bioengineering, College of Engineering, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
3
|
Qian Y, Chen H, Miao P, Ma R, Lu B, Hu C, Fan R, Xu B, Chen B. Integrated Identification and Immunotherapy Response Analysis of the Prognostic Signature Associated With m6A, Cuproptosis-Related, Ferroptosis-Related lncRNA in Endometrial Cancer. Cancer Rep (Hoboken) 2024; 7:e70009. [PMID: 39324703 PMCID: PMC11425647 DOI: 10.1002/cnr2.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/23/2024] [Accepted: 08/10/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND Endometrial cancer (EC) stands as the predominant gynecological malignancy impacting the female reproductive system on a global scale. N6-methyladenosine, cuproptosis- and ferroptosis-related biomarker is beneficial to the prognostic of tumor patients. Nevertheless, the correlation between m6A-modified lncRNAs and ferroptosis, copper-induced apoptosis in the initiation and progression of EC remains unexplored in existing literature. AIMS In this study, based on bioinformatics approach, we identified lncRNAs co-expressing with cuproptosis-, ferroptosis-, m6A- related lncRNAs from expression data of EC. By constructing the prognosis model in EC, we screened hub lncRNA signatures affecting prognosis of EC patients. Furthermore, the guiding value of m6A-modified ferroptosis-related lncRNA (mfrlncRNA) features was assessed in terms of prognosis, immune microenvironment, and drug sensitivity. METHOD Our research harnessed gene expression data coupled with clinical insights derived from The Cancer Genome Atlas (TCGA) collection. To forge prognostic models, we adopted five machine learning approaches, assessing their efficacy through C-index and time-independent ROC analysis. We pinpointed prognostic indicators using the LASSO Cox regression approach. Moreover, we delved into the biological and immunological implications of the discovered lncRNA prognostic signatures. RESULTS The survival rate for the low-risk group was markedly higher than that for the high-risk group, as evidenced by a significant log-rank test (p < 0.001). The LASSO Cox regression model yielded concordance indices of 0.76 for the training set and 0.77 for the validation set, indicating reliable prognostic accuracy. Enrichment analysis of gene functions linked the identified signature predominantly to endopeptidase inhibitor activity, highlighting the signature's potential implications. Additionally, immune function and drug density emphasized the importance of early diagnosis in EC. CONCLUSION Five hub lncRNAs in EC were identified through constructing the prognosis model. Those genes might be potential biomarkers to provide valuable reference for targeted therapy and prognostic assessment of EC.
Collapse
Affiliation(s)
- Yongkang Qian
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, China
| | - Hualing Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, China
| | - Pengcheng Miao
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, China
| | - Rongji Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, China
| | - Beier Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, China
| | - Chenhua Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, China
| | - Ru Fan
- Medical Statistics and Analysis Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Biyun Xu
- Medical Statistics and Analysis Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Bingwei Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
4
|
Caporali A, Anwar M, Devaux Y, Katare R, Martelli F, Srivastava PK, Pedrazzini T, Emanueli C. Non-coding RNAs as therapeutic targets and biomarkers in ischaemic heart disease. Nat Rev Cardiol 2024; 21:556-573. [PMID: 38499868 DOI: 10.1038/s41569-024-01001-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 03/20/2024]
Abstract
The adult heart is a complex, multicellular organ that is subjected to a series of regulatory stimuli and circuits and has poor reparative potential. Despite progress in our understanding of disease mechanisms and in the quality of health care, ischaemic heart disease remains the leading cause of death globally, owing to adverse cardiac remodelling, leading to ischaemic cardiomyopathy and heart failure. Therapeutic targets are urgently required for the protection and repair of the ischaemic heart. Moreover, personalized clinical biomarkers are necessary for clinical diagnosis, medical management and to inform the individual response to treatment. Non-coding RNAs (ncRNAs) deeply influence cardiovascular functions and contribute to communication between cells in the cardiac microenvironment and between the heart and other organs. As such, ncRNAs are candidates for translation into clinical practice. However, ncRNA biology has not yet been completely deciphered, given that classes and modes of action have emerged only in the past 5 years. In this Review, we discuss the latest discoveries from basic research on ncRNAs and highlight both the clinical value and the challenges underscoring the translation of these molecules as biomarkers and therapeutic regulators of the processes contributing to the initiation, progression and potentially the prevention or resolution of ischaemic heart disease and heart failure.
Collapse
Affiliation(s)
- Andrea Caporali
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Maryam Anwar
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Luxembourg, Luxemburg
| | - Rajesh Katare
- Department of Physiology, HeartOtago, University of Otago, Dunedin, New Zealand
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy
| | | | - Thierry Pedrazzini
- Experimental Cardiology Unit, Division of Cardiology, Department of Cardiovascular Medicine, University of Lausanne Medical School, Lausanne, Switzerland
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK
- British Heart Foundation Centre of Research Excellence, King's College London, London, UK
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
5
|
Tapia A, Liu X, Malhi NK, Yuan D, Chen M, Southerland KW, Luo Y, Chen ZB. Role of long noncoding RNAs in diabetes-associated peripheral arterial disease. Cardiovasc Diabetol 2024; 23:274. [PMID: 39049097 PMCID: PMC11271017 DOI: 10.1186/s12933-024-02327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease that heightens the risks of many vascular complications, including peripheral arterial disease (PAD). Various types of cells, including but not limited to endothelial cells (ECs), vascular smooth muscle cells (VSMCs), and macrophages (MΦs), play crucial roles in the pathogenesis of DM-PAD. Long non-coding RNAs (lncRNAs) are epigenetic regulators that play important roles in cellular function, and their dysregulation in DM can contribute to PAD. This review focuses on the developing field of lncRNAs and their emerging roles in linking DM and PAD. We review the studies investigating the role of lncRNAs in crucial cellular processes contributing to DM-PAD, including those in ECs, VSMCs, and MΦ. By examining the intricate molecular landscape governed by lncRNAs in these relevant cell types, we hope to shed light on the roles of lncRNAs in EC dysfunction, inflammatory responses, and vascular remodeling contributing to DM-PAD. Additionally, we provide an overview of the research approach and methodologies, from identifying disease-relevant lncRNAs to characterizing their molecular and cellular functions in the context of DM-PAD. We also discuss the potential of leveraging lncRNAs in the diagnosis and therapeutics for DM-PAD. Collectively, this review provides a summary of lncRNA-regulated cell functions contributing to DM-PAD and highlights the translational potential of leveraging lncRNA biology to tackle this increasingly prevalent and complex disease.
Collapse
Affiliation(s)
- Alonso Tapia
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, 91010, USA
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Xuejing Liu
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Naseeb Kaur Malhi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Dongqiang Yuan
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Muxi Chen
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Kevin W Southerland
- Division of Vascular and Endovascular Surgery, Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Yingjun Luo
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Zhen Bouman Chen
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, 91010, USA.
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
6
|
Mostafa SM, Wang L, Tian B, Graber J, Moore C. Transcriptomic analysis reveals regulation of adipogenesis via long non-coding RNA, alternative splicing, and alternative polyadenylation. Sci Rep 2024; 14:16964. [PMID: 39043790 PMCID: PMC11266407 DOI: 10.1038/s41598-024-67648-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024] Open
Abstract
Obesity is characterized by dysregulated adipogenesis that leads to increased number and/or size of adipocytes. Understanding the molecular mechanisms governing adipogenesis is therefore key to designing therapeutic interventions against obesity. In our study, we analyzed 3'-end sequencing data that we generated from human preadipocytes and adipocytes, as well as previously published RNA-seq datasets, to elucidate mechanisms of regulation via long non-coding RNA (lncRNA), alternative splicing (AS) and alternative polyadenylation (APA). We discovered lncRNAs that have not been previously characterized but may be key regulators of white adipogenesis. We also detected 100 AS events and, using motif enrichment analysis, identified RNA binding proteins (RBPs) that could mediate exon skipping-the most prevalent AS event. In addition, we show that usage of alternative poly(A) sites in introns or 3'-UTRs of key adipogenesis genes leads to isoform diversity, which can have significant biological consequences on differentiation efficiency. We also identified RBPs that may modulate APA and defined how 3'-UTR APA can regulate gene expression through gain or loss of specific microRNA binding sites. Taken together, our bioinformatics-based analysis reveals potential therapeutic avenues for obesity through manipulation of lncRNA levels and the profile of mRNA isoforms via alternative splicing and polyadenylation.
Collapse
Affiliation(s)
- Salwa Mohd Mostafa
- Graduate School of Biomedical Sciences and Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Luyang Wang
- Gene Expression and Regulation Program, and Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Bin Tian
- Gene Expression and Regulation Program, and Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Joel Graber
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME, 04609, USA
| | - Claire Moore
- Graduate School of Biomedical Sciences and Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA, 02111, USA.
| |
Collapse
|
7
|
Villareal LB, Xue X. The emerging role of hypoxia and environmental factors in inflammatory bowel disease. Toxicol Sci 2024; 198:169-184. [PMID: 38200624 PMCID: PMC10964750 DOI: 10.1093/toxsci/kfae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and debilitating disorder characterized by inflammation of the gastrointestinal tract. Despite extensive research, the exact cause of IBD remains unknown, hampering the development of effective therapies. However, emerging evidence suggests that hypoxia, a condition resulting from inadequate oxygen supply, plays a crucial role in intestinal inflammation and tissue damage in IBD. Hypoxia-inducible factors (HIFs), transcription factors that regulate the cellular response to low oxygen levels, have gained attention for their involvement in modulating inflammatory processes and maintaining tissue homeostasis. The two most studied HIFs, HIF-1α and HIF-2α, have been implicated in the development and progression of IBD. Toxicological factors encompass a wide range of environmental and endogenous agents, including dietary components, microbial metabolites, and pollutants. These factors can profoundly influence the hypoxic microenvironment within the gut, thereby exacerbating the course of IBD and fostering the progression of colitis-associated colorectal cancer. This review explores the regulation of hypoxia signaling at the molecular, microenvironmental, and environmental levels, investigating the intricate interplay between toxicological factors and hypoxic signaling in the context of IBD, focusing on its most concerning outcomes: intestinal fibrosis and colorectal cancer.
Collapse
Affiliation(s)
- Luke B Villareal
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Xiang Xue
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
8
|
Jalink EA, Schonk AW, Boon RA, Juni RP. Non-coding RNAs in the pathophysiology of heart failure with preserved ejection fraction. Front Cardiovasc Med 2024; 10:1300375. [PMID: 38259314 PMCID: PMC10800550 DOI: 10.3389/fcvm.2023.1300375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is the largest unmet clinical need in cardiovascular medicine. Despite decades of research, the treatment option for HFpEF is still limited, indicating our ongoing incomplete understanding on the underlying molecular mechanisms. Non-coding RNAs, comprising of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are non-protein coding RNA transcripts, which are implicated in various cardiovascular diseases. However, their role in the pathogenesis of HFpEF is unknown. Here, we discuss the role of miRNAs, lncRNAs and circRNAs that are involved in the pathophysiology of HFpEF, namely microvascular dysfunction, inflammation, diastolic dysfunction and cardiac fibrosis. We interrogated clinical evidence and dissected the molecular mechanisms of the ncRNAs by looking at the relevant in vivo and in vitro models that mimic the co-morbidities in patients with HFpEF. Finally, we discuss the potential of ncRNAs as biomarkers and potential novel therapeutic targets for future HFpEF treatment.
Collapse
Affiliation(s)
- Elisabeth A. Jalink
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, Netherlands
| | - Amber W. Schonk
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, Netherlands
| | - Reinier A. Boon
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, Netherlands
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
- German Centre for Cardiovascular Research, Partner Site Frankfurt Rhein/Main, Frankfurt, Germany
| | - Rio P. Juni
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, Netherlands
| |
Collapse
|
9
|
Jimenez SA, Piera-Velazquez S. Cellular Transdifferentiation: A Crucial Mechanism of Fibrosis in Systemic Sclerosis. Curr Rheumatol Rev 2024; 20:388-404. [PMID: 37921216 DOI: 10.2174/0115733971261932231025045400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/13/2023] [Accepted: 07/27/2023] [Indexed: 11/04/2023]
Abstract
Systemic Sclerosis (SSc) is a systemic autoimmune disease of unknown etiology with a highly complex pathogenesis that despite extensive investigation is not completely understood. The clinical and pathologic manifestations of the disease result from three distinct processes: 1) Severe and frequently progressive tissue fibrosis causing exaggerated and deleterious accumulation of interstitial collagens and other extracellular matrix molecules in the skin and various internal organs; 2) extensive fibroproliferative vascular lesions affecting small arteries and arterioles causing tissue ischemic alterations; and 3) cellular and humoral immunity abnormalities with the production of numerous autoantibodies, some with very high specificity for SSc. The fibrotic process in SSc is one of the main causes of disability and high mortality of the disease. Owing to its essentially universal presence and the severity of its clinical effects, the mechanisms involved in the development and progression of tissue fibrosis have been extensively investigated, however, despite intensive investigation, the precise molecular mechanisms have not been fully elucidated. Several recent studies have suggested that cellular transdifferentiation resulting in the phenotypic conversion of various cell types into activated myofibroblasts may be one important mechanism. Here, we review the potential role that cellular transdifferentiation may play in the development of severe and often progressive tissue fibrosis in SSc.
Collapse
Affiliation(s)
- Sergio A Jimenez
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University, Philadelphia 19107, USA
| | - Sonsoles Piera-Velazquez
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University, Philadelphia 19107, USA
| |
Collapse
|
10
|
Ouyang S, Zhou ZX, Liu HT, Ren Z, Liu H, Deng NH, Tian KJ, Zhou K, Xie HL, Jiang ZS. LncRNA-mediated Modulation of Endothelial Cells: Novel Progress in the Pathogenesis of Coronary Atherosclerotic Disease. Curr Med Chem 2024; 31:1251-1264. [PMID: 36788688 DOI: 10.2174/0929867330666230213100732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/06/2022] [Accepted: 11/17/2022] [Indexed: 02/16/2023]
Abstract
Coronary atherosclerotic disease (CAD) is a common cardiovascular disease and an important cause of death. Moreover, endothelial cells (ECs) injury is an early pathophysiological feature of CAD, and long noncoding RNAs (lncRNAs) can modulate gene expression. Recent studies have shown that lncRNAs are involved in the pathogenesis of CAD, especially by regulating ECs. In this review, we summarize the novel progress of lncRNA-modulated ECs in the pathogenesis of CAD, including ECs proliferation, migration, adhesion, angiogenesis, inflammation, apoptosis, autophagy, and pyroptosis. Thus, as lncRNAs regulate ECs in CAD, lncRNAs will provide ideal and novel targets for the diagnosis and drug therapy of CAD.
Collapse
Affiliation(s)
- Shao Ouyang
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang 421001, China
- Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, Department of Cardiovascular Medicine, Hengyang Medical School, The Second Affiliated Hospital, Clinical Medicine Research Center of Arteriosclerotic Disease of Hunan Province, University of South China, Hunan 421001, China
| | - Zhi-Xiang Zhou
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang 421001, China
| | - Hui-Ting Liu
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang 421001, China
| | - Zhong Ren
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang 421001, China
| | - Huan Liu
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang 421001, China
| | - Nian-Hua Deng
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang 421001, China
| | - Kai-Jiang Tian
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang 421001, China
| | - Kun Zhou
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang 421001, China
| | - Hai-Lin Xie
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang 421001, China
| | - Zhi-Sheng Jiang
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang 421001, China
| |
Collapse
|
11
|
Malhi NK, Southerland KW, Lai L, Chen ZB. Epigenetic Regulation of Angiogenesis in Peripheral Artery Disease. Methodist Debakey Cardiovasc J 2023; 19:47-57. [PMID: 38028966 PMCID: PMC10655766 DOI: 10.14797/mdcvj.1294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 12/01/2023] Open
Abstract
Peripheral arterial disease (PAD) represents a global health concern with a rising prevalence attributed to factors such as obesity, diabetes, aging, and smoking. Among patients with PAD, chronic limb-threatening ischemia (CLTI) is the most severe manifestation, associated with substantial morbidity and mortality. While revascularization remains the primary therapy for CLTI, not all patients are candidates for such interventions, highlighting the need for alternative approaches. Impaired angiogenesis, the growth of new blood vessels, is a central feature of PAD, and despite decades of research, effective clinical treatments remain elusive. Epigenetics, the study of heritable changes in gene expression, has gained prominence in understanding PAD pathogenesis. Here, we explore the role of epigenetic regulation in angiogenesis within the context of PAD, with a focus on long non-coding RNAs and fibroblast-endothelial cell transdifferentiation. Additionally, we discuss the interplay between metabolic control and epigenetic regulation, providing insights into potential novel therapeutic avenues for improving PAD treatments. This review aims to offer a concise update on the application of epigenetics in angiogenesis and PAD research, inspiring further investigations in this promising field.
Collapse
Affiliation(s)
| | | | - Li Lai
- Houston Methodist Research Institute, Houston, Texas, US
| | | |
Collapse
|
12
|
Hussain MS, Afzal O, Gupta G, Altamimi ASA, Almalki WH, Alzarea SI, Kazmi I, Kukreti N, Gupta S, Sulakhiya K, Singh SK, Dua K. Probing the links: Long non-coding RNAs and NF-κB signalling in atherosclerosis. Pathol Res Pract 2023; 249:154773. [PMID: 37647827 DOI: 10.1016/j.prp.2023.154773] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease that involves the accumulation of lipids and immune cells in the arterial wall. NF-kB signaling is a key regulator of inflammation and is known to play a critical role in atherosclerosis. Recent studies have shown that lncRNAs can regulate NF-kB and contribute to the development and progression of atherosclerosis. Preliminary findings reveal significant alterations in the expression of specific lncRNAs in atherosclerotic lesions compared to healthy arterial tissue. Experimental evidence suggests that these dysregulated lncRNAs can influence the NF-kB pathway. By unravelling the crosstalk between lncRNAs and NF-kB signaling, this review aims to enhance our understanding of the molecular mechanisms underlying atherosclerosis. Identifying novel therapeutic targets and diagnostic markers may lead to developing interventions and management strategies for this prevalent cardiovascular disease. This review summarizes the current knowledge on the role of lncRNAs in NF-kB signaling in atherosclerosis and highlights their potential as therapeutic targets for this disease.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017 Jaipur, Rajasthan, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura 302017, Jaipur, India; Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India.
| | | | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Saurabh Gupta
- Chameli Devi Institute of Pharmacy, Department of Pharmacology, Indore, Madhya Pradesh, India
| | - Kunjbihari Sulakhiya
- Neuro Pharmacology Research Laboratory (NPRL), Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
13
|
Marques IS, Tavares V, Neto BV, Mota INR, Pereira D, Medeiros R. Long Non-Coding RNAs in Venous Thromboembolism: Where Do We Stand? Int J Mol Sci 2023; 24:12103. [PMID: 37569483 PMCID: PMC10418965 DOI: 10.3390/ijms241512103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Venous thromboembolism (VTE), a common condition in Western countries, is a cardiovascular disorder that arises due to haemostatic irregularities, which lead to thrombus generation inside veins. Even with successful treatment, the resulting disease spectrum of complications considerably affects the patient's quality of life, potentially leading to death. Cumulative data indicate that long non-coding RNAs (lncRNAs) may have a role in VTE pathogenesis. However, the clinical usefulness of these RNAs as biomarkers and potential therapeutic targets for VTE management is yet unclear. Thus, this article reviewed the emerging evidence on lncRNAs associated with VTE and with the activity of the coagulation system, which has a central role in disease pathogenesis. Until now, ten lncRNAs have been implicated in VTE pathogenesis, among which MALAT1 is the one with more evidence. Meanwhile, five lncRNAs have been reported to affect the expression of TFPI2, an important anticoagulant protein, but none with a described role in VTE development. More investigation in this field is needed as lncRNAs may help dissect VTE pathways, aiding in disease prediction, prevention and treatment.
Collapse
Affiliation(s)
- Inês Soares Marques
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Dep., Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; (I.S.M.); (V.T.); (B.V.N.); (I.N.R.M.)
- Faculty of Sciences of University of Porto (FCUP), 4169-007 Porto, Portugal
| | - Valéria Tavares
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Dep., Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; (I.S.M.); (V.T.); (B.V.N.); (I.N.R.M.)
- Faculty of Medicine of University of Porto (FMUP), 4200-072 Porto, Portugal
- Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Beatriz Vieira Neto
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Dep., Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; (I.S.M.); (V.T.); (B.V.N.); (I.N.R.M.)
- Research Department, Portuguese League Against Cancer (NRNorte), 4200-172 Porto, Portugal
| | - Inês N. R. Mota
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Dep., Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; (I.S.M.); (V.T.); (B.V.N.); (I.N.R.M.)
- Faculty of Sciences of University of Porto (FCUP), 4169-007 Porto, Portugal
| | - Deolinda Pereira
- Oncology Department, Portuguese Institute of Oncology of Porto (IPOP), 4200-072 Porto, Portugal;
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Dep., Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; (I.S.M.); (V.T.); (B.V.N.); (I.N.R.M.)
- Faculty of Medicine of University of Porto (FMUP), 4200-072 Porto, Portugal
- Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Research Department, Portuguese League Against Cancer (NRNorte), 4200-172 Porto, Portugal
- Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal
| |
Collapse
|
14
|
Lou C, Li T. Long non-coding RNA SENCR alleviates endothelial-to-mesenchymal transition via targeting miR-126a. Arch Med Sci 2023; 19:180-188. [PMID: 36817675 PMCID: PMC9897100 DOI: 10.5114/aoms.2020.97991] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/21/2019] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Long non-coding RNAs (lncRNAs) constitute a growing class of non-coding genes with diverse cellular function. Recent studies have reported that lncRNA smooth muscle and endothelial cell-enriched (SENCR) was associated with the phenotype switch of vascular smooth muscle cells and participated in vascular homeostasis. However, the potential role of SENCR in endothelial-to-mesenchymal transition (EndMT) and the underlying mechanism remain unknown. MATERIAL AND METHODS Human carotid plaque samples and human coronary endothelial cells (HACECs) were collected to examine the expression of SENCR. Quantitative PCR and immunoblots were performed to evaluate the expression of SENCR and miR-126a in HACECs in response to TGF-β1 and transfected with small interfering RNA. RESULTS We found that SENCR was significantly decreased in carotid plaques as compared to normal carotids. Knockdown of SENCR in HACECs aggravated the expression of smooth muscle markers α-SMA and calponin induced by TGF-β1 but repressed the expression of endothelial markers platelet/endothelial cell adhesion molecule 1 (PECAM1) and VE-cadherin down-regulated by TGF-β1. Through bioinformatic analysis and Luciferase assay, miR-126a was identified as the direct target of SENCR. Further mechanistic experiments revealed that overexpression of miR-126a bound to the 3'UTR region of SMURF2 and inhibited the expression of SMURF2, which was considered as the negative regulator of TGF-β/Smad signaling. Finally, overexpression of miR-126a did not restore the decreased expression of the smooth muscle markers α-SMA and calponin under the condition of SMURF2 depletion, suggesting that the effect of miR-126a on EndMT progression is SMURF2 dependent. CONCLUSIONS SENCR alleviates TGF-β-induced EndMT and sponges miR-126a expression via direct inhibition of the negative regulator of TGF-β/Smad signaling SMURF2.
Collapse
Affiliation(s)
- Chuang Lou
- Department of Cardiology, AnKang Hospital of Traditional Chinese Medicine, Ankang, China
| | - Tao Li
- Department of Cardiology, AnKang Hospital of Traditional Chinese Medicine, Ankang, China
| |
Collapse
|
15
|
Efovi D, Xiao Q. Noncoding RNAs in Vascular Cell Biology and Restenosis. BIOLOGY 2022; 12:24. [PMID: 36671717 PMCID: PMC9855655 DOI: 10.3390/biology12010024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
In-stent restenosis (ISR), characterised by ≥50% re-narrowing of the target vessel, is a common complication following stent implantation and remains a significant challenge to the long-term success of angioplasty procedures. Considering the global burden of cardiovascular diseases, improving angioplasty patient outcomes remains a key priority. Noncoding RNAs (ncRNAs) including microRNA (miRNA), long noncoding RNA (lncRNA) and circular RNA (circRNA) have been extensively implicated in vascular cell biology and ISR through multiple, both distinct and overlapping, mechanisms. Vascular smooth muscle cells, endothelial cells and macrophages constitute the main cell types involved in the multifactorial pathophysiology of ISR. The identification of critical regulators exemplified by ncRNAs in all these cell types and processes makes them an exciting therapeutic target in the field of restenosis. In this review, we will comprehensively explore the potential functions and underlying molecular mechanisms of ncRNAs in vascular cell biology in the context of restenosis, with an in-depth focus on vascular cell dysfunction during restenosis development and progression. We will also discuss the diagnostic biomarker and therapeutic target potential of ncRNAs in ISR. Finally, we will discuss the current shortcomings, challenges, and perspectives toward the clinical application of ncRNAs.
Collapse
Affiliation(s)
- Denis Efovi
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Qingzhong Xiao
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
- Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
16
|
Gareev I, Kudriashov V, Sufianov A, Begliarzade S, Ilyasova T, Liang Y, Beylerli O. The role of long non-coding RNA ANRIL in the development of atherosclerosis. Noncoding RNA Res 2022; 7:212-216. [PMID: 36157350 PMCID: PMC9467859 DOI: 10.1016/j.ncrna.2022.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/22/2022] [Accepted: 09/01/2022] [Indexed: 11/28/2022] Open
Abstract
Atherosclerosis is an important pathological basis of coronary heart disease, and the antisense non-coding RNA in the INK4 locus (ANRIL) is located in the genetically susceptible segment with the strongest correlation with it - the short arm 2 region 1 of chromosome 9 (Chr9p21). ANRIL can produce linear, circular and other transcripts through different transcriptional splicing methods, which can regulate the proliferation and apoptosis of related cells and closely related to the development of atherosclerotic plaques. Linear ANRIL can regulate proliferation of vascular smooth muscle cells (VSMCs) in plaques by chromatin modification, as well as affecting on proliferation and the apoptosis of macrophages at the transcriptional level; circular ANRIL can affect on proliferation and apoptosis of VSMCs by chromatin modification as well as interfering with rRNA maturation. In this review we describe the evolutionary characteristics of ANRIL, the formation and structure of transcripts, and the mechanism by which each transcript regulates the proliferation and apoptosis of vascular cells and then participates in atherosclerosis.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Educational and Scientific Institute of Neurosurgery, Рeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
| | | | - Albert Sufianov
- Educational and Scientific Institute of Neurosurgery, Рeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation.,Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Sema Begliarzade
- Republican Clinical Perinatal Center, Republic of Bashkortostan, 450106, Russia
| | - Tatiana Ilyasova
- Department of Internal Diseases, Bashkir State Medical University, Republic of Bashkortostan, Ufa, 450008, Russia
| | - Yanchao Liang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Ozal Beylerli
- Educational and Scientific Institute of Neurosurgery, Рeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
| |
Collapse
|
17
|
Ageeli EA, Attallah SM, Mohamed MH, Almars AI, Kattan SW, Toraih EA, Fawzy MS, Darwish MK. Migration/Differentiation-Associated LncRNA SENCR rs12420823*C/T: A Novel Gene Variant Can Predict Survival and Recurrence in Patients with Breast Cancer. Genes (Basel) 2022; 13:1996. [PMID: 36360233 PMCID: PMC9690295 DOI: 10.3390/genes13111996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 09/04/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have key roles in tumor development and the progress of many cancers, including breast cancer (BC). This study aimed to explore for the first time the association of the migration/differentiation-associated lncRNA SENCR rs12420823C/T variant with BC risk and prognosis. Genotyping was carried out for 203 participants (110 patients and 93 controls) using the TaqMan allelic discrimination technique. The corresponding clinicopathological data, including the recurrence/survival times, were analyzed with the different genotypes. After adjustment by age and risk factors, the T/T genotype carrier patients were more likely to develop BC under homozygote comparison (T/T vs. C/C: OR = 8.33, 95% CI = 2.44-25.0, p = 0.001), dominant (T/T-C/T vs. C/C: OR = 3.70, 95% CI = 1.72-8.33, p = 0.027), and recessive (T/T vs. C/T-C/C: OR = 2.17, 95% CI = 1.08-4.55, p < 0.001) models. Multivariate logistic regression analysis showed that the T/T genotype carriers were more likely to be triple-negative sub-type (OR = 2.66, 95% CI = 1.02-6.95, p = 0.046), at a higher risk of recurrence (OR = 3.57, 95% CI = 1.33-9.59, p = 0.012), and had short survival times (OR = 3.9, 95% CI = 1.52-10.05, p = 0.005). Moreover, Cox regression analysis supported their twofold increased risk of recurrence (HR = 2.14, 95% CI = 1.27-3.59, p = 0.004). Furthermore, the predictive nomogram confirmed the high weight for SENCR rs12420823*T/T and C/T genotypes in predicting recurrence within the first year. The Kaplan-Meier survival curve demonstrated low disease-free survival (T/T: 12.5 ± 1.16 months and C/T: 15.9 ± 0.86 months versus C/C: 22.3 ± 0.61 months, p < 0.001). In conclusion, the LncRNA SENCR rs12420823*C/T may be associated with an increased risk of BC in women and could be a promising genetic variant for predicting recurrence and survival.
Collapse
Affiliation(s)
- Essam Al Ageeli
- Department of Clinical Biochemistry (Medical Genetics), Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia
| | - Samy M. Attallah
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Department of Clinical Pathology, King Fahad Armed Forces Hospital, Jeddah 23311, Saudi Arabia
| | - Marwa Hussein Mohamed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Amany I. Almars
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shahad W. Kattan
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu 46411, Saudi Arabia
| | - Eman A. Toraih
- Division of Endocrine and Oncologic Surgery, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Genetics Unit, Department of Histology and Cell Biology, Suez Canal University, Ismailia 41522, Egypt
| | - Manal S. Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 1321, Saudi Arabia
| | - Marwa K. Darwish
- Chemistry Department (Biochemistry Branch), Faculty of Science, Suez University, Ismailia 41522, Egypt
- Department of Medical Laboratories Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwaiiyah 19257, Saudi Arabia
| |
Collapse
|
18
|
Zhang J, Deng J, Ding R, Yuan J, Liu J, Zhao X, Wu T, Jia J, Cheng X. Identification of pyroptosis-related genes and long non-coding RNAs signatures in osteosarcoma. Cancer Cell Int 2022; 22:322. [PMID: 36244998 PMCID: PMC9575257 DOI: 10.1186/s12935-022-02729-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
Osteosarcoma is a highly malignant tumor, with very high disability and fatality rates. However, the overall prognosis is not optimistic. Pyroptosis is a newly discovered cell death modality accompanied by inflammation, which is closely related to varieties of cancers. In this study, the RNA-seq data were downloaded from public databases, the differences in the expression of the pyroptosis-related genes (PRGs) were identified, and the six PRGs signature was established through the univariate and LASSO Cox analysis. The patients were grouped according to the PRGs signature, and the prognosis between the two groups was further compared. In addition, a ten pyroptosis-related lncRNAs (PRLs) prognostic signature was also constructed. Through functional analysis of the differentially expressed genes (DEGs), the immune-related pathways were found to be enriched. The Pearson correlation analysis showed a strong correlation between the pyroptosis-related biomarkers. Finally, we identified a promising biomarker, CHMP4C, which is highly expressed in osteosarcoma. Overexpression of CHMP4C promoted the proliferation, migration and invasion of the osteosarcoma cell. Our results thus provide new evidence for exploring prognostic biomarkers and therapeutic targets of osteosarcoma.
Collapse
|
19
|
Yu W, Huo H, You Z, Lu R, Yao T, Huang J. Identification of cuproptosis-associated IncRNAs signature and establishment of a novel nomogram for prognosis of stomach adenocarcinoma. Front Genet 2022; 13:982888. [PMID: 36160008 PMCID: PMC9504471 DOI: 10.3389/fgene.2022.982888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/16/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose: Stomach adenocarcinoma (STAD) is one of the common cancers globally. Cuproptosis is a newly identified cell death pattern. The role of cuproptosis-associated lncRNAs in STAD is unknown. Methods: STAD patient data from TCGA were used to identify prognostic lncRNAs by Cox regression and LASSO. A nomogram was constructed to predict patient survival. The biological profiles were evaluated through GO and KEGG. Results: We identified 298 cuproptosis-related lncRNAs and 13 survival-related lncRNAs. Patients could be categorized into either high risk group or low risk group with 9-lncRNA risk model with significantly different survival time (p < 0.001). ROC curve and nomogram confirmed the 9-lncRNA risk mode had good prediction capability. Patients in the lower risk score had high gene mutation burden. We also found that patients in the two groups might respond differently to immune checkpoint inhibitors and some anti-tumor compounds. Conclusion: The nomogram with 9-lncRNA may help guide treatment of STAD. Future clinical studies are necessary to verify the nomogram.
Collapse
Affiliation(s)
- Wei Yu
- Department of Pharmacy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Hongqi Huo
- Nuclear Medicine Department, HanDan Central Hospital, Handan, China
- *Correspondence: Tianci Yao, ; Hongqi Huo, ; Jing Huang,
| | - Zhixin You
- Nuclear Medicine Department, HanDan Central Hospital, Handan, China
| | - Rong Lu
- Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, Xiamen Key Laboratory of Genetic Testing, School of Medicine, Xiamen University, Xiamen, China
| | - Tianci Yao
- Department of Pharmacy, The First Affiliated Hospital of Xiamen University, Xiamen, China
- *Correspondence: Tianci Yao, ; Hongqi Huo, ; Jing Huang,
| | - Jing Huang
- Department of Pharmacy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- *Correspondence: Tianci Yao, ; Hongqi Huo, ; Jing Huang,
| |
Collapse
|
20
|
Nadhan R, Isidoro C, Song YS, Dhanasekaran DN. Signaling by LncRNAs: Structure, Cellular Homeostasis, and Disease Pathology. Cells 2022; 11:2517. [PMID: 36010595 PMCID: PMC9406440 DOI: 10.3390/cells11162517] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 12/11/2022] Open
Abstract
The cellular signaling network involves co-ordinated regulation of numerous signaling molecules that aid the maintenance of cellular as well as organismal homeostasis. Aberrant signaling plays a major role in the pathophysiology of many diseases. Recent studies have unraveled the superfamily of long non-coding RNAs (lncRNAs) as critical signaling nodes in diverse signaling networks. Defective signaling by lncRNAs is emerging as a causative factor underlying the pathophysiology of many diseases. LncRNAs have been shown to be involved in the multiplexed regulation of diverse pathways through both genetic and epigenetic mechanisms. They can serve as decoys, guides, scaffolds, and effector molecules to regulate cell signaling. In comparison with the other classes of RNAs, lncRNAs possess unique structural modifications that contribute to their diversity in modes of action within the nucleus and cytoplasm. In this review, we summarize the structure and function of lncRNAs as well as their vivid mechanisms of action. Further, we provide insights into the role of lncRNAs in the pathogenesis of four major disease paradigms, namely cardiovascular diseases, neurological disorders, cancers, and the metabolic disease, diabetes mellitus. This review serves as a succinct treatise that could open windows to investigate the role of lncRNAs as novel therapeutic targets.
Collapse
Affiliation(s)
- Revathy Nadhan
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ciro Isidoro
- Laboratory of Molecular Pathology and NanoBioImaging, Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Yong Sang Song
- Department of Obstetrics and Gynecology, Cancer Research Institute, College of Medicine, Seoul National University, Seoul 151-921, Korea
| | - Danny N. Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
21
|
Decoding microRNA drivers in Atherosclerosis. Biosci Rep 2022; 42:231479. [PMID: 35758143 PMCID: PMC9289798 DOI: 10.1042/bsr20212355] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/17/2022] [Accepted: 06/26/2022] [Indexed: 11/17/2022] Open
Abstract
An estimated 97% of the human genome consists of non-protein-coding sequences. As our understanding of genome regulation improves, this has led to the characterization of a diverse array of non-coding RNAs (ncRNA). Among these, micro-RNAs (miRNAs) belong to the short ncRNA class (22–25 nucleotides in length), with approximately 2500 miRNA genes encoded within the human genome. From a therapeutic perspective, there is interest in exploiting miRNA as biomarkers of disease progression and response to treatments, as well as miRNA mimics/repressors as novel medicines. miRNA have emerged as an important class of RNA master regulators with important roles identified in the pathogenesis of atherosclerotic cardiovascular disease. Atherosclerosis is characterized by a chronic inflammatory build-up, driven largely by low-density lipoprotein cholesterol accumulation within the artery wall and vascular injury, including endothelial dysfunction, leukocyte recruitment and vascular remodelling. Conventional therapy focuses on lifestyle interventions, blood pressure-lowering medications, high-intensity statin therapy and antiplatelet agents. However, a significant proportion of patients remain at increased risk of cardiovascular disease. This continued cardiovascular risk is referred to as residual risk. Hence, a new drug class targeting atherosclerosis could synergise with existing therapies to optimise outcomes. Here, we review our current understanding of the role of ncRNA, with a focus on miRNA, in the development and progression of atherosclerosis, highlighting novel biological mechanisms and therapeutic avenues.
Collapse
|
22
|
Ghanam AR, Bryant WB, Miano JM. Of mice and human-specific long noncoding RNAs. Mamm Genome 2022; 33:281-292. [PMID: 35106622 PMCID: PMC8806012 DOI: 10.1007/s00335-022-09943-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/10/2022] [Indexed: 01/05/2023]
Abstract
The number of human LncRNAs has now exceeded all known protein-coding genes. Most studies of human LncRNAs have been conducted in cell culture systems where various mechanisms of action have been worked out. On the other hand, efforts to elucidate the function of human LncRNAs in an in vivo setting have been limited. In this brief review, we highlight some strengths and weaknesses of studying human LncRNAs in the mouse. Special consideration is given to bacterial artificial chromosome transgenesis and genome editing. The integration of these technical innovations offers an unprecedented opportunity to complement and extend the expansive literature of cell culture models for the study of human LncRNAs. Two different examples of how BAC transgenesis and genome editing can be leveraged to gain insight into human LncRNA regulation and function in mice are presented: the random integration of a vascular cell-enriched LncRNA and a targeted approach for a new LncRNA immediately upstream of the ACE2 gene, which encodes the receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent underlying the coronavirus disease-19 (COVID-19) pandemic.
Collapse
Affiliation(s)
- Amr R Ghanam
- Vascular Biology Center, Department of Medicine, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, CL-3060, Augusta, GA, 30912, USA
| | - William B Bryant
- Vascular Biology Center, Department of Medicine, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, CL-3060, Augusta, GA, 30912, USA
| | - Joseph M Miano
- Vascular Biology Center, Department of Medicine, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, CL-3060, Augusta, GA, 30912, USA.
| |
Collapse
|
23
|
Song Y, Wang T, Mu C, Gui W, Deng Y, Ma R. LncRNA SENCR overexpression attenuated the proliferation, migration and phenotypic switching of vascular smooth muscle cells in aortic dissection via the miR-206/myocardin axis. Nutr Metab Cardiovasc Dis 2022; 32:1560-1570. [PMID: 35351345 DOI: 10.1016/j.numecd.2022.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND AIMS Smooth muscle and endothelial cell-enriched migration/differentiation-associated lncRNA (SENCR) has been reported to be associated with some cardiovascular diseases; however, its function and exact molecular mechanism in aortic dissection (AD) remain undefined. Thus, we investigated the effects of SENCR on AD and its potential mechanisms. METHODS AND RESULTS SENCR expression in aortic media specimens from AD patients was detected by quantitative real-time PCR (qPCR). The roles of SENCR in vascular smooth muscle cell (VMSC) proliferation and migration as well as in the regulation of contractile phenotype genes were studied using CCK-8, wound healing, Transwell, qPCR and Western blot assays. Dual-luciferase reporter assays were performed to identify the regulatory correlation between SENCR, miR-206 and myocardin. Furthermore, mouse AD models were constructed with ApoE-/- mice, and the effect of upregulated SENCR on phenotypic switching in the AD model was detected using hematoxylin and eosin (H&E) staining and immunohistochemistry (IHC) assays. SENCR overexpression inhibited VSMC proliferation, migration and synthetic phenotype-related gene expression; decreased miR-206 expression; increased myocardin expression; and suppressed rupture of the aortic media in mice. SENCR knockdown had the opposite effects. Our results further suggested that miR-206 upregulation could reverse the inhibitory roles of SENCR upregulation and that myocardin upregulation could restore the function of SENCR upregulation in VSMCs. Dual-luciferase reporter assays confirmed that SENCR regulated miR-206, which directly targeted myocardin in VSMCs. CONCLUSION SENCR overexpression suppressed VMSC proliferation and migration, maintained the contractile phenotype and suppressed aortic dilatation via the miR-206/myocardin axis.
Collapse
Affiliation(s)
- Yi Song
- Department of Extracorporeal Circulation, Fuwai Yunnan Cardiovascular Hospital, Kunming, 650102, China
| | - Tao Wang
- Department of Cardiothoracic Surgery, The First People's Hospital of Kunming, Kunming, 650034, China
| | - Chunjie Mu
- Department of Cardiovascular Surgery, Fuwai Yunnan Cardiovascular Hospital, Kunming, 650102, China
| | - Wenting Gui
- Department of Cardiovascular Surgery, Fuwai Yunnan Cardiovascular Hospital, Kunming, 650102, China
| | - Yao Deng
- Department of Cardiovascular Surgery, Fuwai Yunnan Cardiovascular Hospital, Kunming, 650102, China
| | - Runwei Ma
- Department of Cardiovascular Surgery, Fuwai Yunnan Cardiovascular Hospital, Kunming, 650102, China.
| |
Collapse
|
24
|
Shen Q, Zhou H, Zhang M, Wu R, Wang L, Wang Y, Chen J. Super enhancer-LncRNA SENCR promoted cisplatin resistance and growth of NSCLC through upregulating FLI1. J Clin Lab Anal 2022; 36:e24460. [PMID: 35500152 PMCID: PMC9169188 DOI: 10.1002/jcla.24460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/13/2022] [Accepted: 04/10/2022] [Indexed: 01/21/2023] Open
Abstract
Background Super enhancer‐lncRNA smooth muscle and endothelial cell‐enriched migration/differentiation‐associated lncRNA (SENCR) were highly overexpressed in cisplatin‐resistant A549/DDP cells, while the mechanism was unclear. Methods SE‐lncRNA SENCR and FLI1 mRNA expression in A549/DDP cell, LAD tissues were detected. SENCR knockdown of A549/DDP cell and SENCR overexpression of cisplatin‐sensitive A549 cell were constructed. Experiments of cell‐confirmed function of SENCR and the correlation between SENCR and FLI1 were validated. Results The expression of SENCR and FLI1 mRNA in A549/DDP cell were both upregulated and mainly localized in the nucleus. Compared with DDP‐sensitive tissues with disease relief, SENCR expression was higher in DDP‐resistant tissues with disease progression from LAD. Knockdown of SENCR in A549/DDP reduced proliferation ability and cisplatin resistance, consistent with the decreased levels of proteins PCNA, MDMX, and P‐gp. Besides, whatever without cisplatin or with 2 μg/ml cisplatin, knockdown of SENCR reduced the migration, invasion, and colony formation abilities of A549/DDP cell and promoted apoptosis. However, when SENCR was overexpressed in A549 cell, all above results were reversed. Mechanistically, FLI1 expression was reduced after knocking down SENCR, while overexpressing SENCR increased FLI1 expression. Conclusion SE‐LncRNA SENCR was upregulated in A549/DDP, which could promote cisplatin resistance and growth of NSCLC cell through upregulating FLI1 expression.
Collapse
Affiliation(s)
- Qiang Shen
- First People's Hospital of Linping District, Hangzhou, China
| | - Huixin Zhou
- Department of Laboratory Medicine, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Zhejiang, China
| | - Meijuan Zhang
- Department of Laboratory Medicine, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Zhejiang, China
| | - Ruihao Wu
- Department of Laboratory Medicine, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Zhejiang, China
| | - Liangxing Wang
- First People's Hospital of Linping District, Hangzhou, China
| | - Yumin Wang
- Department of Respiratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jie Chen
- Department of Intensive Care Unit, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
25
|
Jebari-Benslaiman S, Galicia-García U, Larrea-Sebal A, Olaetxea JR, Alloza I, Vandenbroeck K, Benito-Vicente A, Martín C. Pathophysiology of Atherosclerosis. Int J Mol Sci 2022; 23:ijms23063346. [PMID: 35328769 PMCID: PMC8954705 DOI: 10.3390/ijms23063346] [Citation(s) in RCA: 403] [Impact Index Per Article: 134.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/12/2022] [Accepted: 03/18/2022] [Indexed: 11/26/2022] Open
Abstract
Atherosclerosis is the main risk factor for cardiovascular disease (CVD), which is the leading cause of mortality worldwide. Atherosclerosis is initiated by endothelium activation and, followed by a cascade of events (accumulation of lipids, fibrous elements, and calcification), triggers the vessel narrowing and activation of inflammatory pathways. The resultant atheroma plaque, along with these processes, results in cardiovascular complications. This review focuses on the different stages of atherosclerosis development, ranging from endothelial dysfunction to plaque rupture. In addition, the post-transcriptional regulation and modulation of atheroma plaque by microRNAs and lncRNAs, the role of microbiota, and the importance of sex as a crucial risk factor in atherosclerosis are covered here in order to provide a global view of the disease.
Collapse
Affiliation(s)
- Shifa Jebari-Benslaiman
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48940 Leioa, Bizkaia, Spain; (S.J.-B.); (I.A.); (K.V.)
- Biofisika Institute (UPV/EHU, CSIC), Barrio Sarriena s/n., 48940 Leioa, Bizkaia, Spain; (U.G.-G.); (A.L.-S.)
| | - Unai Galicia-García
- Biofisika Institute (UPV/EHU, CSIC), Barrio Sarriena s/n., 48940 Leioa, Bizkaia, Spain; (U.G.-G.); (A.L.-S.)
- Fundación Biofisika Bizkaia, Barrio Sarriena s/n., 48940 Leioa, Bizkaia, Spain
| | - Asier Larrea-Sebal
- Biofisika Institute (UPV/EHU, CSIC), Barrio Sarriena s/n., 48940 Leioa, Bizkaia, Spain; (U.G.-G.); (A.L.-S.)
- Fundación Biofisika Bizkaia, Barrio Sarriena s/n., 48940 Leioa, Bizkaia, Spain
| | | | - Iraide Alloza
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48940 Leioa, Bizkaia, Spain; (S.J.-B.); (I.A.); (K.V.)
- Inflammation & Biomarkers Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Bizkaia, Spain
| | - Koen Vandenbroeck
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48940 Leioa, Bizkaia, Spain; (S.J.-B.); (I.A.); (K.V.)
- Inflammation & Biomarkers Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Bizkaia, Spain
| | - Asier Benito-Vicente
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48940 Leioa, Bizkaia, Spain; (S.J.-B.); (I.A.); (K.V.)
- Biofisika Institute (UPV/EHU, CSIC), Barrio Sarriena s/n., 48940 Leioa, Bizkaia, Spain; (U.G.-G.); (A.L.-S.)
- Correspondence: (A.B.-V.); (C.M.); Tel.: +34-946-01-2741 (C.M.)
| | - César Martín
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48940 Leioa, Bizkaia, Spain; (S.J.-B.); (I.A.); (K.V.)
- Biofisika Institute (UPV/EHU, CSIC), Barrio Sarriena s/n., 48940 Leioa, Bizkaia, Spain; (U.G.-G.); (A.L.-S.)
- Correspondence: (A.B.-V.); (C.M.); Tel.: +34-946-01-2741 (C.M.)
| |
Collapse
|
26
|
Guo Y, Xie Y, Luo Y. The Role of Long Non-Coding RNAs in the Tumor Immune Microenvironment. Front Immunol 2022; 13:851004. [PMID: 35222443 PMCID: PMC8863945 DOI: 10.3389/fimmu.2022.851004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 01/24/2022] [Indexed: 02/05/2023] Open
Abstract
Tumorigenesis is a complicated process caused by successive genetic and epigenetic alterations. The past decades demonstrated that the immune system affects tumorigenesis, tumor progression, and metastasis. Although increasing immunotherapies are revealed, only a tiny proportion of them are effective. Long non-coding RNAs (lncRNAs) are a class of single-stranded RNA molecules larger than 200 nucleotides and are essential in the molecular network of oncology and immunology. Increasing researches have focused on the connection between lncRNAs and cancer immunotherapy. However, the in-depth mechanisms are still elusive. In this review, we outline the latest studies on the functions of lncRNAs in the tumor immune microenvironment. Via participating in various biological processes such as neutrophil recruitment, macrophage polarization, NK cells cytotoxicity, and T cells functions, lncRNAs regulate tumorigenesis, tumor invasion, epithelial-mesenchymal transition (EMT), and angiogenesis. In addition, we reviewed the current understanding of the relevant strategies for targeting lncRNAs. LncRNAs-based therapeutics may represent promising approaches in serving as prognostic biomarkers or potential therapeutic targets in cancer, providing ideas for future research and clinical application on cancer diagnosis and therapies.
Collapse
Affiliation(s)
- Yingli Guo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yajuan Xie
- Department of Orthodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yao Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
27
|
Mangum K, Gallagher K, Davis FM. The Role of Epigenetic Modifications in Abdominal Aortic Aneurysm Pathogenesis. Biomolecules 2022; 12:biom12020172. [PMID: 35204673 PMCID: PMC8961599 DOI: 10.3390/biom12020172] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 02/06/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening disease associated with high morbidity and mortality in the setting of acute rupture. Recently, advances in surgical and endovascular repair of AAA have been achieved; however, pharmaceutical therapies to prevent AAA expansion and rupture remain lacking. This highlights an ongoing need to improve the understanding the pathological mechanisms that initiate formation, maintain growth, and promote rupture of AAA. Over the past decade, epigenetic modifications, such as DNA methylation, posttranslational histone modifications, and non-coding RNA, have emerged as important regulators of cellular function. Accumulating studies reveal the importance of epigenetic enzymes in the dynamic regulation of key signaling pathways that alter cellular phenotypes and have emerged as major intracellular players in a wide range of biological processes. In this review, we discuss the roles and implications of epigenetic modifications in AAA animal models and their relevance to human AAA pathology.
Collapse
|
28
|
Mabeta P, Hull R, Dlamini Z. LncRNAs and the Angiogenic Switch in Cancer: Clinical Significance and Therapeutic Opportunities. Genes (Basel) 2022; 13:152. [PMID: 35052495 PMCID: PMC8774855 DOI: 10.3390/genes13010152] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 02/05/2023] Open
Abstract
Angiogenesis is one of the hallmarks of cancer, and the establishment of new blood vessels is vital to allow for a tumour to grow beyond 1-2 mm in size. The angiogenic switch is the term given to the point where the number or activity of the pro-angiogenic factors exceeds that of the anti-angiogenic factors, resulting in the angiogenic process proceeding, giving rise to new blood vessels accompanied by increased tumour growth, metastasis, and potential drug resistance. Long noncoding ribonucleic acids (lncRNAs) have been found to play a role in the angiogenic switch by regulating gene expression, transcription, translation, and post translation modification. In this regard they play both anti-angiogenic and pro-angiogenic roles. The expression levels of the pro-angiogenic lncRNAs have been found to correlate with patient survival. These lncRNAs are also potential drug targets for the development of therapies that will inhibit or modify tumour angiogenesis. Here we review the roles of lncRNAs in regulating the angiogenic switch. We cover specific examples of both pro and anti-angiogenic lncRNAs and discuss their potential use as both prognostic biomarkers and targets for the development of future therapies.
Collapse
Affiliation(s)
- Peace Mabeta
- Angiogenesis Laboratory, Department of Physiology, Faculty of Health Sciences, University of Pretoria, Hatfield 0028, South Africa
- SAMRC Precision Oncology Research Unit (PORU), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa;
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa;
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa;
| |
Collapse
|
29
|
Indoxyl Sulfate Elevated Lnc-SLC15A1-1 Upregulating CXCL10/CXCL8 Expression in High-Glucose Endothelial Cells by Sponging MicroRNAs. Toxins (Basel) 2021; 13:toxins13120873. [PMID: 34941711 PMCID: PMC8709190 DOI: 10.3390/toxins13120873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/28/2021] [Accepted: 12/04/2021] [Indexed: 11/28/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality in diabetes mellitus (DM). Immunomodulatory dysfunction is a primary feature of DM, and the emergence of chronic kidney disease (CKD) in DM abruptly increases CVD mortality compared with DM alone. Endothelial injury and the accumulation of uremic toxins in the blood of DM/CKD patients are known mechanisms for the pathogenesis of CVD. However, the molecular factors that cause this disproportional increase in CVD in the DM/CKD population are still unknown. Since long non-protein-coding RNAs (lncRNAs) play an important role in regulating multiple cellular functions, we used human endothelial cells treated with high glucose to mimic DM and with the uremic toxin indoxyl sulfate (IS) to mimic the endothelial injury associated with CKD. Differentially expressed lncRNAs in these conditions were analyzed by RNA sequencing. We discovered that lnc-SLC15A1-1 expression was significantly increased upon IS treatment in comparison with high glucose alone, and then cascaded the signal of chemokines CXCL10 and CXCL8 via sponging miR-27b, miR-297, and miR-150b. This novel pathway might be responsible for the endothelial inflammation implicated in augmenting CVD in DM/CKD and could be a therapeutic target with future clinical applications.
Collapse
|
30
|
Emerging role of long non-coding RNAs in endothelial dysfunction and their molecular mechanisms. Biomed Pharmacother 2021; 145:112421. [PMID: 34798473 DOI: 10.1016/j.biopha.2021.112421] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are the novel class of transcripts involved in transcriptional, post-transcriptional, translational, and post-translational regulation of physiology and the pathology of diseases. Studies have evidenced that the impairment of endothelium is a critical event in the pathogenesis of atherosclerosis and its complications. Endothelial dysfunction is characterized by an imbalance in vasodilation and vasoconstriction, oxidative stress, proinflammatory factors, and nitric oxide bioavailability. Disruption of the endothelial barrier permeability, the first step in developing atherosclerotic lesions is a consequence of endothelial dysfunction. Though several factors interfere with the normal functioning of the endothelium, intrinsic epigenetic mechanisms governing endothelial function are regulated by lncRNAs and perturbations contribute to the pathogenesis of the disease. This review comprehensively addresses the biogenesis of lncRNA and molecular mechanisms underlying and regulation in endothelial function. An insight correlating lncRNAs and endothelial dysfunction-associated diseases can positively impact the development of novel biomarkers and therapeutic targets in endothelial dysfunction-associated diseases and treatment strategies.
Collapse
|
31
|
Fasolo F, Jin H, Winski G, Chernogubova E, Pauli J, Winter H, Li DY, Glukha N, Bauer S, Metschl S, Wu Z, Koschinsky ML, Reilly M, Pelisek J, Kempf W, Eckstein HH, Soehnlein O, Matic L, Hedin U, Bäcklund A, Bergmark C, Paloschi V, Maegdefessel L. Long Noncoding RNA MIAT Controls Advanced Atherosclerotic Lesion Formation and Plaque Destabilization. Circulation 2021; 144:1567-1583. [PMID: 34647815 PMCID: PMC8570347 DOI: 10.1161/circulationaha.120.052023] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Supplemental Digital Content is available in the text. Long noncoding RNAs (lncRNAs) are important regulators of biological processes involved in vascular tissue homeostasis and disease development. The present study assessed the functional contribution of the lncRNA myocardial infarction-associated transcript (MIAT) to atherosclerosis and carotid artery disease.
Collapse
Affiliation(s)
- Francesca Fasolo
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany (F.F., J. Pauli, H.W., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel).,German Center for Cardiovascular Research (DZHK), Berlin, Germany; partner site Munich Heart Alliance (F.F., J. Pauli, H.W., F.F., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel)
| | - Hong Jin
- Department of Medicine (H.J., G.W., E.C., A.B.), Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Medicine and Surgery (H.J., L. Matic, U.H., C.B., L. Maegdefessel), Karolinska Institutet, Stockholm, Sweden
| | - Greg Winski
- Department of Medicine (H.J., G.W., E.C., A.B.), Karolinska Institutet, Stockholm, Sweden
| | - Ekaterina Chernogubova
- Department of Medicine (H.J., G.W., E.C., A.B.), Karolinska Institutet, Stockholm, Sweden
| | - Jessica Pauli
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany (F.F., J. Pauli, H.W., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel).,German Center for Cardiovascular Research (DZHK), Berlin, Germany; partner site Munich Heart Alliance (F.F., J. Pauli, H.W., F.F., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel)
| | - Hanna Winter
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany (F.F., J. Pauli, H.W., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel).,German Center for Cardiovascular Research (DZHK), Berlin, Germany; partner site Munich Heart Alliance (F.F., J. Pauli, H.W., F.F., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel)
| | - Daniel Y Li
- Department of Cardiology, Columbia University Medical Center, New York, NY (D.Y.L., M.R.)
| | - Nadiya Glukha
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany (F.F., J. Pauli, H.W., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel).,German Center for Cardiovascular Research (DZHK), Berlin, Germany; partner site Munich Heart Alliance (F.F., J. Pauli, H.W., F.F., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel)
| | - Sabine Bauer
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany (F.F., J. Pauli, H.W., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel).,German Center for Cardiovascular Research (DZHK), Berlin, Germany; partner site Munich Heart Alliance (F.F., J. Pauli, H.W., F.F., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel)
| | - Susanne Metschl
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany (F.F., J. Pauli, H.W., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel).,German Center for Cardiovascular Research (DZHK), Berlin, Germany; partner site Munich Heart Alliance (F.F., J. Pauli, H.W., F.F., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel)
| | - Zhiyuan Wu
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany (F.F., J. Pauli, H.W., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel).,German Center for Cardiovascular Research (DZHK), Berlin, Germany; partner site Munich Heart Alliance (F.F., J. Pauli, H.W., F.F., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel)
| | | | - Muredach Reilly
- Department of Cardiology, Columbia University Medical Center, New York, NY (D.Y.L., M.R.)
| | - Jaroslav Pelisek
- Department of Vascular Surgery, University Hospital Zurich, Switzerland (J. Pelisek)
| | - Wolfgang Kempf
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany (F.F., J. Pauli, H.W., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel).,German Center for Cardiovascular Research (DZHK), Berlin, Germany; partner site Munich Heart Alliance (F.F., J. Pauli, H.W., F.F., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel)
| | - Hans-Henning Eckstein
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany (F.F., J. Pauli, H.W., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel).,German Center for Cardiovascular Research (DZHK), Berlin, Germany; partner site Munich Heart Alliance (F.F., J. Pauli, H.W., F.F., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel)
| | - Oliver Soehnlein
- Department of Experimental Pathology, Westphalian Wilhelms University, Munster, Germany (O.S.).,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (O.S.).,Institute for Cardiovascular Prevention, Ludwig Maximilian University of Munich, Germany (O.S.)
| | - Ljubica Matic
- Department of Molecular Medicine and Surgery (H.J., L. Matic, U.H., C.B., L. Maegdefessel), Karolinska Institutet, Stockholm, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery (H.J., L. Matic, U.H., C.B., L. Maegdefessel), Karolinska Institutet, Stockholm, Sweden
| | - Alexandra Bäcklund
- Department of Medicine (H.J., G.W., E.C., A.B.), Karolinska Institutet, Stockholm, Sweden
| | - Claes Bergmark
- Department of Molecular Medicine and Surgery (H.J., L. Matic, U.H., C.B., L. Maegdefessel), Karolinska Institutet, Stockholm, Sweden
| | - Valentina Paloschi
- German Center for Cardiovascular Research (DZHK), Berlin, Germany; partner site Munich Heart Alliance (F.F., J. Pauli, H.W., F.F., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel)
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany (F.F., J. Pauli, H.W., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel).,German Center for Cardiovascular Research (DZHK), Berlin, Germany; partner site Munich Heart Alliance (F.F., J. Pauli, H.W., F.F., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel).,Department of Molecular Medicine and Surgery (H.J., L. Matic, U.H., C.B., L. Maegdefessel), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
32
|
Zhuo X, Bai K, Wang Y, Liu P, Xi W, She J, Liu J. Long-chain noncoding RNA-GAS5/hsa-miR-138-5p attenuates high glucose-induced cardiomyocyte damage by targeting CYP11B2. Biosci Rep 2021; 41:BSR20202232. [PMID: 33682891 PMCID: PMC8485392 DOI: 10.1042/bsr20202232] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Diabetic cardiomyopathy (DCM) is one of the complications experienced by patients with diabetes. In recent years, long noncoding RNAs (lncRNAs) have been investigated because of their role in the progression of various diseases, including DCM. The purpose of the present study was to explore the role of lncRNA GAS5 in high glucose (HG)-induced cardiomyocyte injury and apoptosis. MATERIALS AND METHODS We constructed HG-induced AC16 cardiomyocytes and a streptozotocin (STZ)-induced rat diabetes model. GAS5 was overexpressed and knocked out at the cellular level, and GAS5 was knocked down by lentiviruses at the animal level to observe its effect on myocardial injury. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression of GAS5. Cell proliferation and apoptosis after GAS5 knockout were detected by CCK-8, TUNEL, and flow cytometry assays. ELISA was used to detect the changes in myocardial enzyme content in cells and animal myocardial tissues during the action of GAS5 on myocardial injury. RESULTS GAS5 expression was up-regulated in HG-treated AC16 cardiomyocytes and the rat diabetic myocardial injury model. The down-regulation of GAS5 could inhibit HG-induced myocardial damage. This work proved that the down-regulation of GAS5 could reverse cardiomyocyte injury and apoptosis by targeting miR-138 to down-regulate CYP11B2. CONCLUSION We confirmed for the first time that the down-regulation of GAS5 could reverse CYP11B2 via the miR-138 axis to reverse HG-induced cardiomyocyte injury. This research might provide a new direction for explaining the developmental mechanism of DCM and potential targets for the treatment of myocardial injury.
Collapse
Affiliation(s)
- Xiaozhen Zhuo
- Department of Cardiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Kai Bai
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Yingxian Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Peining Liu
- Department of Cardiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Wen Xi
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Jianqing She
- Department of Cardiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Junhui Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| |
Collapse
|
33
|
Mohammad HMF, Abdelghany AA, Al Ageeli E, Kattan SW, Hassan R, Toraih EA, Fawzy MS, Mokhtar N. Long Non-Coding RNAs Gene Variants as Molecular Markers for Diabetic Retinopathy Risk and Response to Anti-VEGF Therapy. Pharmgenomics Pers Med 2021; 14:997-1014. [PMID: 34429633 PMCID: PMC8374537 DOI: 10.2147/pgpm.s322463] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/12/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) play essential roles in molecular diagnosis and therapeutic response in several diseases. PURPOSE For the first time, we aimed to evaluate the association of four lncRNAs TUG1 (rs7284767G/A), MIAT (rs1061540T/C), MALAT1 (rs3200401C/T), and SENCR (rs12420823C/T) variants with susceptibility to diabetic retinopathy (DR), disease severity, and early therapeutic response to intravitreous anti-vascular endothelial growth factor aflibercept therapy. PATIENTS AND METHODS This case-control study enrolled 126 adult patients with type 2 diabetes. TaqMan assays using Real-Time PCR were run for genotyping. Multivariable regression analyses were applied to assess the role of each polymorphism after the adjustment of covariates. RESULTS Carriers of TUG1 A/G and MIAT T/C and C/C genotypes were more likely to develop DR [OR=3.15 (95% CI=1.15-8.64), and OR=4.31 (95% CI=1.78-10.47)], while MALAT1 T/C conferred protection (OR=0.40, 95% CI=0.16-0.99). For TUG1, MALAT1, MIAT, and SENCR genotype combinations, GTCT and GCCC had a higher disease risk (P=0.012). For disease severity, MIAT T/T homozygosity was associated with higher DR grade [33.3% (T/T) vs 10% (C/C) and 4.2% (C/T) carriers, P=0.012]. Otherwise, patients with the SENCR T variant exhibited better pre-treatment best-corrected visual acuity level (p=0.021). Following aflibercept administration, carrying the TUG1 A or MIAT T/C was associated with a poor therapeutic response (OR=5.02, 95% CI=1.60-15.76, and OR=10.23, 95% CI=1.51-69.15, respectively). CONCLUSION The lncRNAs TUG1 (rs7284767G/A) and MIAT (rs1061540T/C) were associated with increased DR susceptibility and poor response to aflibercept treatment, while MALAT1 (rs3200401C/T) conferred protection to DR. These genetic determinants could be useful in DR risk stratification and pharmacogenetics after validation in large-scale studies.
Collapse
Affiliation(s)
- Hala M F Mohammad
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Central Laboratory, Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Ahmed A Abdelghany
- Department of Ophthalmology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Essam Al Ageeli
- Department of Clinical Biochemistry (Medical Genetics), Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Shahad W Kattan
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu, Saudi Arabia
| | - Ranya Hassan
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Eman A Toraih
- Department of Surgery, Tulane University, School of Medicine, New Orleans, LA, USA
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Manal S Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Naglaa Mokhtar
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
34
|
Rey F, Urrata V, Gilardini L, Bertoli S, Calcaterra V, Zuccotti GV, Cancello R, Carelli S. Role of long non-coding RNAs in adipogenesis: State of the art and implications in obesity and obesity-associated diseases. Obes Rev 2021; 22:e13203. [PMID: 33443301 PMCID: PMC8244036 DOI: 10.1111/obr.13203] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 12/14/2022]
Abstract
Obesity is an evolutionary, chronic, and relapsing disease that consists of a pathological accumulation of adipose tissue able to increase morbidity for high blood pressure, type 2 diabetes, metabolic syndrome, and obstructive sleep apnea in adults, children, and adolescents. Despite intense research over the last 20 years, obesity remains today a disease with a complex and multifactorial etiology. Recently, long non-coding RNAs (lncRNAs) are emerging as interesting new regulators as different lncRNAs have been found to play a role in early and late phases of adipogenesis and to be implicated in obesity-associated complications onset. In this review, we discuss the most recent advances on the role of lncRNAs in adipocyte biology and in obesity-associated complications. Indeed, more and more researchers are focusing on investigating the underlying roles that these molecular modulators could play. Even if a significant number of evidence is correlation-based, with lncRNAs being differentially expressed in a specific disease, recent works are now focused on deeply analyzing how lncRNAs can effectively modulate the disease pathogenesis onset and progression. LncRNAs possibly represent new molecular markers useful in the future for both the early diagnosis and a prompt clinical management of patients with obesity.
Collapse
Affiliation(s)
- Federica Rey
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy.,Pediatric Clinical Research Center Fondazione "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| | - Valentina Urrata
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy.,Pediatric Clinical Research Center Fondazione "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| | - Luisa Gilardini
- Obesity Unit-Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Simona Bertoli
- Obesity Unit-Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy.,International Center for the Assessment of Nutritional Status (ICANS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Valeria Calcaterra
- Pediatrics and Adolescentology Unit, Department of Internal Medicine, University of Pavia, Pavia, Italy.,Department of Pediatrics, Children's Hospital "V. Buzzi", Milan, Italy
| | - Gian Vincenzo Zuccotti
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy.,Pediatric Clinical Research Center Fondazione "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy.,Department of Pediatrics, Children's Hospital "V. Buzzi", Milan, Italy
| | - Raffaella Cancello
- Obesity Unit-Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Stephana Carelli
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy.,Pediatric Clinical Research Center Fondazione "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| |
Collapse
|
35
|
Zhang C, Niu K, Lian P, Hu Y, Shuai Z, Gao S, Ge S, Xu T, Xiao Q, Chen Z. Pathological Bases and Clinical Application of Long Noncoding RNAs in Cardiovascular Diseases. Hypertension 2021; 78:16-29. [PMID: 34058852 DOI: 10.1161/hypertensionaha.120.16752] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Increasing evidence has suggested that noncoding RNAs (ncRNAs) have vital roles in cardiovascular tissue homeostasis and diseases. As a main subgroup of ncRNAs, long ncRNAs (lncRNAs) have been reported to play important roles in lipid metabolism, inflammation, vascular injury, and angiogenesis. They have also been implicated in many human diseases including atherosclerosis, arterial remodeling, hypertension, myocardial injury, cardiac remodeling, and heart failure. Importantly, it was reported that lncRNAs were dysregulated in the development and progression of cardiovascular diseases (CVDs). A variety of studies have demonstrated that lncRNAs could influence gene expression at transcription, post-transcription, translation, and post-translation level. Particularly, emerging evidence has confirmed that the crosstalk among lncRNAs, mRNA, and miRNAs is an important underlying regulatory mechanism of lncRNAs. Nevertheless, the biological functions and molecular mechanisms of lncRNAs in CVDs have not been fully explored yet. In this review, we will comprehensively summarize the main findings about lncRNAs and CVDs, highlighting the most recent discoveries in the field of lncRNAs and their pathophysiological functions in CVDs, with the aim of dissecting the intrinsic association between lncRNAs and common risk factors of CVDs including hypertension, high glucose, and high fat. Finally, the potential of lncRNAs functioning as the biomarkers, therapeutic targets, as well as specific diagnostic and prognostic indicators of CVDs will be discussed in this review.
Collapse
Affiliation(s)
- Chengxin Zhang
- From the Department of Cardiovascular Surgery, First Affiliated Hospital of Anhui Medical University, P.R. China (C.Z., Z.S., S. Ge, Q.X.)
| | - Kaiyuan Niu
- Clinical Pharmacology, William Harvey Research Institute (WHRI), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (K.N., Q.X.)
- Department of Otolaryngology, the third affiliated hospital of Anhui Medical University, China (K.N.)
| | - Panpan Lian
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, P.R. China (P.L.)
| | - Ying Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, P.R. China (Y.H., T.X.)
| | - Ziqiang Shuai
- From the Department of Cardiovascular Surgery, First Affiliated Hospital of Anhui Medical University, P.R. China (C.Z., Z.S., S. Ge, Q.X.)
| | - Shan Gao
- Department of Pharmacology, Basic Medical College, Anhui Medical University, P.R. China (S. Gao, Q.X.)
| | - Shenglin Ge
- From the Department of Cardiovascular Surgery, First Affiliated Hospital of Anhui Medical University, P.R. China (C.Z., Z.S., S. Ge, Q.X.)
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, P.R. China (Y.H., T.X.)
| | - Qingzhong Xiao
- From the Department of Cardiovascular Surgery, First Affiliated Hospital of Anhui Medical University, P.R. China (C.Z., Z.S., S. Ge, Q.X.)
- Clinical Pharmacology, William Harvey Research Institute (WHRI), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (K.N., Q.X.)
- Department of Pharmacology, Basic Medical College, Anhui Medical University, P.R. China (S. Gao, Q.X.)
| | - Zhaolin Chen
- Division of Life Sciences and Medicine, Department of Pharmacy, The First Affiliated Hospital of USTC, University of Science and Technology of China, Anhui Provincial Hospital, P.R. China (Z.C.)
| |
Collapse
|
36
|
Sehgal P, Mathew S, Sivadas A, Ray A, Tanwar J, Vishwakarma S, Ranjan G, Shamsudheen KV, Bhoyar RC, Pateria A, Leonard E, Lalwani M, Vats A, Pappuru RR, Tyagi M, Jakati S, Sengupta S, B K B, Chakrabarti S, Kaur I, Motiani RK, Scaria V, Sivasubbu S. LncRNA VEAL2 regulates PRKCB2 to modulate endothelial permeability in diabetic retinopathy. EMBO J 2021; 40:e107134. [PMID: 34180064 PMCID: PMC8327952 DOI: 10.15252/embj.2020107134] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/16/2021] [Accepted: 05/21/2021] [Indexed: 12/29/2022] Open
Abstract
Long non‐coding RNAs (lncRNAs) are emerging as key regulators of endothelial cell function. Here, we investigated the role of a novel vascular endothelial‐associated lncRNA (VEAL2) in regulating endothelial permeability. Precise editing of veal2 loci in zebrafish (veal2gib005Δ8/+) induced cranial hemorrhage. In vitro and in vivo studies revealed that veal2 competes with diacylglycerol for interaction with protein kinase C beta‐b (Prkcbb) and regulates its kinase activity. Using PRKCB2 as bait, we identified functional ortholog of veal2 in humans from HUVECs and named it as VEAL2. Overexpression and knockdown of VEAL2 affected tubulogenesis and permeability in HUVECs. VEAL2 was differentially expressed in choroid tissue in eye and blood from patients with diabetic retinopathy, a disease where PRKCB2 is known to be hyperactivated. Further, VEAL2 could rescue the effects of PRKCB2‐mediated turnover of endothelial junctional proteins thus reducing hyperpermeability in hyperglycemic HUVEC model of diabetic retinopathy. Based on evidence from zebrafish and hyperglycemic HUVEC models and diabetic retinopathy patients, we report a hitherto unknown VEAL2 lncRNA‐mediated regulation of PRKCB2, for modulating junctional dynamics and maintenance of endothelial permeability.
Collapse
Affiliation(s)
- Paras Sehgal
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Samatha Mathew
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Ambily Sivadas
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Arjun Ray
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Jyoti Tanwar
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India.,Laboratory of Calciomics and Systemic Pathophysiology, Regional Center for Biotechnology, Faridabad, India
| | - Sushma Vishwakarma
- Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India
| | - Gyan Ranjan
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - K V Shamsudheen
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Rahul C Bhoyar
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Abhishek Pateria
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Elvin Leonard
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Mukesh Lalwani
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Archana Vats
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Rajeev R Pappuru
- Kannuri Santhamma Centre for Retina and Vitreous, L V Prasad Eye Institute, Hyderabad, India
| | - Mudit Tyagi
- Kannuri Santhamma Centre for Retina and Vitreous, L V Prasad Eye Institute, Hyderabad, India
| | - Saumya Jakati
- Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India
| | - Shantanu Sengupta
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Binukumar B K
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | | | - Inderjeet Kaur
- Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India
| | - Rajender K Motiani
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Center for Biotechnology, Faridabad, India
| | - Vinod Scaria
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Sridhar Sivasubbu
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
37
|
Zhang M, Hamblin MH, Yin KJ. Long non-coding RNAs mediate cerebral vascular pathologies after CNS injuries. Neurochem Int 2021; 148:105102. [PMID: 34153353 DOI: 10.1016/j.neuint.2021.105102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/12/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
Central nervous system (CNS) injuries are one of the leading causes of morbidity and mortality worldwide, accompanied with high medical costs and a decreased quality of life. Brain vascular disorders are involved in the pathological processes of CNS injuries and might play key roles for their recovery and prognosis. Recently, increasing evidence has shown that long non-coding RNAs (lncRNAs), which comprise a very heterogeneous group of non-protein-coding RNAs greater than 200 nucleotides, have emerged as functional mediators in the regulation of vascular homeostasis under pathophysiological conditions. Remarkably, lncRNAs can regulate gene transcription and translation, thus interfering with gene expression and signaling pathways by different mechanisms. Hence, a deeper insight into the function and regulatory mechanisms of lncRNAs following CNS injury, especially cerebrovascular-related lncRNAs, could help in establishing potential therapeutic strategies to improve or inhibit neurological disorders. In this review, we highlight recent advancements in understanding of the role of lncRNAs and their application in mediating cerebrovascular pathologies after CNS injury.
Collapse
Affiliation(s)
- Mengqi Zhang
- Pittsburgh Institute of Brain Disorders & Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Milton H Hamblin
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue SL-83, New Orleans, LA, 70112, USA
| | - Ke-Jie Yin
- Pittsburgh Institute of Brain Disorders & Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
38
|
Abstract
The prevalence of peripheral arterial disease (PAD) in the United States exceeds 10 million people, and PAD is a significant cause of morbidity and mortality across the globe. PAD is typically caused by atherosclerotic obstructions in the large arteries to the leg(s). The most common clinical consequences of PAD include pain on walking (claudication), impaired functional capacity, pain at rest, and loss of tissue integrity in the distal limbs that may lead to lower extremity amputation. Patients with PAD also have higher than expected rates of myocardial infarction, stroke, and cardiovascular death. Despite advances in surgical and endovascular procedures, revascularization procedures may be suboptimal in relieving symptoms, and some patients with PAD cannot be treated because of comorbid conditions. In some cases, relieving obstructive disease in the large conduit arteries does not assure complete limb salvage because of severe microvascular disease. Despite several decades of investigational efforts, medical therapies to improve perfusion to the distal limb are of limited benefit. Whereas recent studies of anticoagulant (eg, rivaroxaban) and intensive lipid lowering (such as PCSK9 [proprotein convertase subtilisin/kexin type 9] inhibitors) have reduced major cardiovascular and limb events in PAD populations, chronic ischemia of the limb remains largely resistant to medical therapy. Experimental approaches to improve limb outcomes have included the administration of angiogenic cytokines (either as recombinant protein or as gene therapy) as well as cell therapy. Although early angiogenesis and cell therapy studies were promising, these studies lacked sufficient control groups and larger randomized clinical trials have yet to achieve significant benefit. This review will focus on what has been learned to advance medical revascularization for PAD and how that information might lead to novel approaches for therapeutic angiogenesis and arteriogenesis for PAD.
Collapse
Affiliation(s)
- Brian H Annex
- Vascular Biology Center, Department of Medicine, Medical College of Georgia, Augusta University (B.H.A.)
| | - John P Cooke
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX (J.P.C.)
| |
Collapse
|
39
|
Chen M, Guo Y, Sun Z, Meng X. Long non-coding RNA SENCR alleviates hypoxia/reoxygenation-induced cardiomyocyte apoptosis and inflammatory response by sponging miR-1. Cardiovasc Diagn Ther 2021; 11:707-715. [PMID: 34295697 DOI: 10.21037/cdt-20-1037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/21/2021] [Indexed: 12/14/2022]
Abstract
Background Myocardial cell apoptosis is one of the main reasons for the occurrence of acute myocardial infarction (AMI). The role of smooth muscle and endothelial cell enriched migration/differentiation-associated lncRNA (SENCR) in the cardiomyocyte apoptosis induced by hypoxia/reoxygenation (H/R) injury and its potential mechanism were investigated in this study to provide a novel biomarker for the development of AMI. Methods The expression levels of SENCR in the serum of AMI patients and non-AMI patients with chest pain (control) were detected by qRT-PCR. The function of SENCR in the cardiomyocyte apoptosis and inflammatory response induced by H/R injury was evaluated by MTT, cell apoptosis, and ELISA assay, respectively. The mechanism underlying the function of SENCR was investigated with the luciferase reporter assay. Results SENCR was significantly downregulated in AMI compared with the control volunteers, which showed negative correlations with the cardiac troponin I (cTnI) and creatine kinase-MB (CK-MB) level of patients. The H/R injury-induced cell apoptosis and inflammatory response in cardiomyocytes, which were attenuated by the overexpression of SENCR. The expression of miR-1 was suppressed by the overexpression of SENCR, while the overexpression of miR-1 could alleviate the cell apoptosis, enhance cell viability, and attenuate inflammatory response in cardiomyocyte. SENCR reversed H/R-induced myocardial cell injury by regulating the expression of miR-1. Conclusions SENCR was correlated with the clinicopathological features of patients and was revealed to alleviate the cardiomyocyte apoptosis and inflammatory response induced by H/R injury via sponging miR-1.
Collapse
Affiliation(s)
- Minghe Chen
- Second Department of Cardiology, Changle People's Hospital, Weifang, China
| | - Yini Guo
- First Department of Cardiology, Changle People's Hospital, Weifang, China
| | - Zongli Sun
- Second Department of Cardiology, Changle People's Hospital, Weifang, China
| | - Xiangjiang Meng
- Second Department of Cardiology, Changle People's Hospital, Weifang, China
| |
Collapse
|
40
|
Cai Z, Huang J, Yang J, Pan B, Wang W, Ou Y, Wang X, Yang P. LncRNA SENCR suppresses abdominal aortic aneurysm formation by inhibiting smooth muscle cells apoptosis and extracellular matrix degradation. Bosn J Basic Med Sci 2021; 21:323-330. [PMID: 32903173 PMCID: PMC8112567 DOI: 10.17305/bjbms.2020.4994] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/27/2020] [Indexed: 12/16/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a progressive chronic dilatation of the abdominal aorta without effective medical treatment. This study aims to clarify the potential of long non-coding RNA SENCR as a treatment target in AAA. Angiotensin II (Ang-II) was used to establish AAA model in vitro and in vivo. Reverse transcription quantitative PCR and western blot were performed to measure the expression of SENCR and proteins, respectively. Annexin V-FITC/PI double staining was carried out to detect the apoptotic rate in vascular smooth muscle cells (VSMCs), and cell apoptosis in aortic tissues was determined by TUNEL staining. Besides, hematoxylin and eosin and Elastica van Gieson staining were performed for histological analysis of aortic tissues. SENCR was downregulated in AAA tissues and Ang-II-stimulated VSMCs. Overexpression of SENCR could inhibit Ang-II-induced VSMC apoptosis, while inhibition of SENCR facilitated Ang-II-induced VSMC apoptosis. Moreover, the expression of matrix metalloproteinase (MMP)-2 and MMP-9 in Ang-II-induced VSMCs was reduced following SENCR overexpression, while tissue inhibitor of metalloproteinases 1 (TIMP-1) expression was increased. In vivo, overexpression of SENCR improved the pathological change in aortic tissues and the damage in arterial wall elastic fibers induced by Ang-II, as well as suppressed Ang-II-induced cell apoptosis and extracellular matrix degradation. Overall, SENCR was decreased in AAA. Overexpression of SENCR inhibited AAA formation via inhibition of VSMC apoptosis and extracellular matrix degradation. We provided a reliable evidence for SENCR acting as a potential target for AAA treatment.
Collapse
Affiliation(s)
- Zhou Cai
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Jianhua Huang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Junxiao Yang
- Department of Orthopedics, Xiangya Hospital Central South University, Changsha, China
| | - Baihong Pan
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Wei Wang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Yangyang Ou
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Xianwei Wang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Pu Yang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| |
Collapse
|
41
|
Terwilliger ZS, Ryan TE, Goldberg EJ, Schmidt CA, Yamaguchi DJ, Karnekar R, Brophy P, Green TD, Zeczycki TN, Mac Gabhann F, Annex BH, McClung JM. Racial differences in the limb skeletal muscle transcriptional programs of patients with critical limb ischemia. Vasc Med 2021; 26:247-258. [PMID: 33685287 DOI: 10.1177/1358863x20983918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Critical limb ischemia (CLI) is the most severe manifestation of peripheral artery disease (PAD) and is characterized by high rates of morbidity and mortality. As with most severe cardiovascular disease manifestations, Black individuals disproportionately present with CLI. Accordingly, there remains a clear need to better understand the reasons for this discrepancy and to facilitate personalized therapeutic options specific for this population. Gastrocnemius muscle was obtained from White and Black healthy adult volunteers and patients with CLI for whole transcriptome shotgun sequencing (WTSS) and enrichment analysis was performed to identify alterations in specific Reactome pathways. When compared to their race-matched healthy controls, both White and Black patients with CLI demonstrated similar reductions in nuclear and mitochondrial encoded genes and mitochondrial oxygen consumption across multiple substrates, indicating a common bioenergetic paradigm associated with amputation outcomes regardless of race. Direct comparisons between tissues of White and Black patients with CLI revealed hemostasis, extracellular matrix organization, platelet regulation, and vascular wall interactions to be uniquely altered in limb muscles of Black individuals. Among traditional vascular growth factor signaling targets, WTSS revealed only Tie1 to be significantly altered from White levels in Black limb muscle tissues. Quantitative reverse transcription polymerase chain reaction validation of select identified targets verified WTSS directional changes and supports reductions in MMP9 and increases in NUDT4P1 and GRIK2 as unique to limb muscles of Black patients with CLI. This represents a critical first step in better understanding the transcriptional program similarities and differences between Black and White patients in the setting of amputations related to CLI and provides a promising start for therapeutic development in this population.
Collapse
Affiliation(s)
- Zoe S Terwilliger
- Diabetes and Obesity Institute, East Carolina University, Brody Medical Center, Greenville, NC, USA.,Department of Physiology, East Carolina University, Brody Medical Center, Greenville, NC, USA
| | - Terence E Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Emma J Goldberg
- Diabetes and Obesity Institute, East Carolina University, Brody Medical Center, Greenville, NC, USA.,Department of Physiology, East Carolina University, Brody Medical Center, Greenville, NC, USA
| | - Cameron A Schmidt
- Diabetes and Obesity Institute, East Carolina University, Brody Medical Center, Greenville, NC, USA.,Department of Physiology, East Carolina University, Brody Medical Center, Greenville, NC, USA
| | - Dean J Yamaguchi
- Department of Cardiovascular Sciences, East Carolina University, Brody Medical Center, Greenville, NC, USA.,Division of Surgery, East Carolina University, Brody Medical Center, Greenville, NC, USA
| | - Reema Karnekar
- Diabetes and Obesity Institute, East Carolina University, Brody Medical Center, Greenville, NC, USA.,Department of Physiology, East Carolina University, Brody Medical Center, Greenville, NC, USA
| | - Patricia Brophy
- Diabetes and Obesity Institute, East Carolina University, Brody Medical Center, Greenville, NC, USA
| | - Thomas D Green
- Diabetes and Obesity Institute, East Carolina University, Brody Medical Center, Greenville, NC, USA.,Department of Physiology, East Carolina University, Brody Medical Center, Greenville, NC, USA
| | - Tonya N Zeczycki
- Diabetes and Obesity Institute, East Carolina University, Brody Medical Center, Greenville, NC, USA.,Department of Biochemistry, East Carolina University, Brody Medical Center, Greenville, NC, USA
| | - Feilim Mac Gabhann
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Brian H Annex
- Department of Medicine, Medical College of Georgia, Augusta, GA, USA.,Vascular Biology Center, Medical College of Georgia, Augusta, GA, USA
| | - Joseph M McClung
- Diabetes and Obesity Institute, East Carolina University, Brody Medical Center, Greenville, NC, USA.,Department of Physiology, East Carolina University, Brody Medical Center, Greenville, NC, USA.,Department of Cardiovascular Sciences, East Carolina University, Brody Medical Center, Greenville, NC, USA
| |
Collapse
|
42
|
Spiroski AM, Sanders R, Meloni M, McCracken IR, Thomson A, Brittan M, Gray GA, Baker AH. The Influence of the LINC00961/SPAAR Locus Loss on Murine Development, Myocardial Dynamics, and Cardiac Response to Myocardial Infarction. Int J Mol Sci 2021; 22:ijms22020969. [PMID: 33478078 PMCID: PMC7835744 DOI: 10.3390/ijms22020969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/07/2021] [Accepted: 01/14/2021] [Indexed: 01/14/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have structural and functional roles in development and disease. We have previously shown that the LINC00961/SPAAR (small regulatory polypeptide of amino acid response) locus regulates endothelial cell function, and that both the lncRNA and micropeptide counter-regulate angiogenesis. To assess human cardiac cell SPAAR expression, we mined a publicly available scRNSeq dataset and confirmed LINC00961 locus expression and hypoxic response in a murine endothelial cell line. We investigated post-natal growth and development, basal cardiac function, the cardiac functional response, and tissue-specific response to myocardial infarction. To investigate the influence of the LINC00961/SPAAR locus on longitudinal growth, cardiac function, and response to myocardial infarction, we used a novel CRISPR/Cas9 locus knockout mouse line. Data mining suggested that SPAAR is predominantly expressed in human cardiac endothelial cells and fibroblasts, while murine LINC00961 expression is hypoxia-responsive in mouse endothelial cells. LINC00961–/– mice displayed a sex-specific delay in longitudinal growth and development, smaller left ventricular systolic and diastolic areas and volumes, and greater risk area following myocardial infarction compared with wildtype littermates. These data suggest the LINC00961/SPAAR locus contributes to cardiac endothelial cell and fibroblast function and hypoxic response, growth and development, and basal cardiovascular function in adulthood.
Collapse
Affiliation(s)
- Ana-Mishel Spiroski
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; (A.-M.S.); (R.S.); (M.M.); (I.R.M.); (M.B.); (G.A.G.)
| | - Rachel Sanders
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; (A.-M.S.); (R.S.); (M.M.); (I.R.M.); (M.B.); (G.A.G.)
| | - Marco Meloni
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; (A.-M.S.); (R.S.); (M.M.); (I.R.M.); (M.B.); (G.A.G.)
| | - Ian R. McCracken
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; (A.-M.S.); (R.S.); (M.M.); (I.R.M.); (M.B.); (G.A.G.)
| | - Adrian Thomson
- Edinburgh Preclinical Imaging, Edinburgh Preclinical Imaging, BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK;
| | - Mairi Brittan
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; (A.-M.S.); (R.S.); (M.M.); (I.R.M.); (M.B.); (G.A.G.)
| | - Gillian A. Gray
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; (A.-M.S.); (R.S.); (M.M.); (I.R.M.); (M.B.); (G.A.G.)
| | - Andrew H. Baker
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; (A.-M.S.); (R.S.); (M.M.); (I.R.M.); (M.B.); (G.A.G.)
- Correspondence: ; Tel.: +44-0131-24-26728
| |
Collapse
|
43
|
Long Non-Coding RNAs (lncRNAs) in Cardiovascular Disease Complication of Type 2 Diabetes. Diagnostics (Basel) 2021; 11:diagnostics11010145. [PMID: 33478141 PMCID: PMC7835902 DOI: 10.3390/diagnostics11010145] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
The discovery of non-coding RNAs (ncRNAs) has opened a new paradigm to use ncRNAs as biomarkers to detect disease progression. Long non-coding RNAs (lncRNA) have garnered the most attention due to their specific cell-origin and their existence in biological fluids. Type 2 diabetes patients will develop cardiovascular disease (CVD) complications, and CVD remains the top risk factor for mortality. Understanding the lncRNA roles in T2D and CVD conditions will allow the future use of lncRNAs to detect CVD complications before the symptoms appear. This review aimed to discuss the roles of lncRNAs in T2D and CVD conditions and their diagnostic potential as molecular biomarkers for CVD complications in T2D.
Collapse
|
44
|
Groeneweg KE, Au YW, Duijs JMGJ, Florijn BW, van Kooten C, de Fijter JW, Reinders MEJ, van Zonneveld AJ, Bijkerk R. Diabetic nephropathy alters circulating long noncoding RNA levels that normalize following simultaneous pancreas-kidney transplantation. Am J Transplant 2020; 20:3451-3461. [PMID: 32353171 PMCID: PMC7754299 DOI: 10.1111/ajt.15961] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 01/25/2023]
Abstract
Simultaneous pancreas-kidney transplantation (SPKT) replaces kidney function and restores endogenous insulin secretion in patients with diabetic nephropathy (DN). Here, we aimed to identify circulating long noncoding RNAs (lncRNAs) that are associated with DN and vascular injury in the context of SPKT. Based on a pilot study and a literature-based selection of vascular injury-related lncRNAs, we assessed 9 candidate lncRNAs in plasma samples of patients with diabetes mellitus with a kidney function >35 mL/min/1.73 m2 (DM; n = 12), DN (n = 14), SPKT (n = 35), healthy controls (n = 15), and renal transplant recipients (KTx; n = 13). DN patients were also studied longitudinally before and 1, 6, and 12 months after SPKT. Of 9 selected lncRNAs, we found MALAT1, LIPCAR, and LNC-EPHA6 to be higher in DN compared with healthy controls. SPKT caused MALAT1, LIPCAR, and LNC-EPHA6 to normalize to levels of healthy controls, which was confirmed in the longitudinal study. In addition, we observed a strong association between MALAT1, LNC-EPHA6, and LIPCAR and vascular injury marker soluble thrombomodulin and a subset of angiogenic microRNAs (miR-27a, miR-130b, miR-152, and miR-340). We conclude that specific circulating lncRNAs associate with DN-related vascular injury and normalize after SPKT, suggesting that lncRNAs may provide a promising novel monitoring strategy for vascular integrity in the context of SPKT.
Collapse
Affiliation(s)
- Koen E. Groeneweg
- Department of Internal Medicine (Nephrology)Einthoven Laboratory for Vascular and Regenerative MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Yu Wah Au
- Department of Internal Medicine (Nephrology)Einthoven Laboratory for Vascular and Regenerative MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Jacques M. G. J. Duijs
- Department of Internal Medicine (Nephrology)Einthoven Laboratory for Vascular and Regenerative MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Barend W. Florijn
- Department of Internal Medicine (Nephrology)Einthoven Laboratory for Vascular and Regenerative MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Cees van Kooten
- Department of Internal Medicine (Nephrology)Einthoven Laboratory for Vascular and Regenerative MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Johan W. de Fijter
- Department of Internal Medicine (Nephrology)Einthoven Laboratory for Vascular and Regenerative MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Marlies E. J. Reinders
- Department of Internal Medicine (Nephrology)Einthoven Laboratory for Vascular and Regenerative MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Anton Jan van Zonneveld
- Department of Internal Medicine (Nephrology)Einthoven Laboratory for Vascular and Regenerative MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Roel Bijkerk
- Department of Internal Medicine (Nephrology)Einthoven Laboratory for Vascular and Regenerative MedicineLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
45
|
Lu S, Liang Q, Huang Y, Meng F, Liu J. Definition and review on a category of long non-coding RNA: Atherosclerosis-associated circulating lncRNA (ASCLncRNA). PeerJ 2020; 8:e10001. [PMID: 33240586 PMCID: PMC7666546 DOI: 10.7717/peerj.10001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/29/2020] [Indexed: 12/18/2022] Open
Abstract
Atherosclerosis (AS) is one of the most common cardiovascular system diseases which seriously affects public health in modern society. Finding potential biomarkers in the complicated pathological progression of AS is of great significance for the prevention and treatment of AS. Studies have shown that long noncoding RNAs (lncRNAs) can be widely involved in the regulation of many physiological processes, and have important roles in different stages of AS formation. LncRNAs can be secreted into the circulatory system through exosomes, microvesicles, and apoptotic bodies. Recently, increasing studies have been focused on the relationships between circulating lncRNAs and AS development. The lncRNAs in circulating blood are expected to be new non-invasive diagnostic markers for monitoring the progression of AS. We briefly reviewed the previously reported lncRNA transcripts which related to AS development and detectable in circulating blood, including ANRIL, SENCR, CoroMarker, LIPCAR, HIF1α-AS1, LncRNA H19, APPAT, KCNQ1OT1, LncPPARδ, LincRNA-p21, MALAT1, MIAT, and UCA1. Further researches and a definition of atherosclerosis-associated circulating lncRNA (ASCLncRNA) were also discussed.
Collapse
Affiliation(s)
- Shanshan Lu
- Department of Histology and Embryology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Qin Liang
- Department of Histology and Embryology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Yanqing Huang
- Department of Histology and Embryology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Fanming Meng
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Junwen Liu
- Department of Histology and Embryology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China.,China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
46
|
Joshi M, Rajender S. Long non-coding RNAs (lncRNAs) in spermatogenesis and male infertility. Reprod Biol Endocrinol 2020; 18:103. [PMID: 33126901 PMCID: PMC7599102 DOI: 10.1186/s12958-020-00660-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) have a size of more than 200 bp and are known to regulate a host of crucial cellular processes like proliferation, differentiation and apoptosis by regulating gene expression. While small noncoding RNAs (ncRNAs) such as miRNAs, siRNAs, Piwi-interacting RNAs have been extensively studied in male germ cell development, the role of lncRNAs in spermatogenesis remains largely unknown. OBJECTIVE In this article, we have reviewed the biology and role of lncRNAs in spermatogenesis along with the tools available for data analysis. RESULTS AND CONCLUSIONS Till date, three microarray and four RNA-seq studies have been undertaken to identify lncRNAs in mouse testes or germ cells. These studies were done on pre-natal, post-natal, adult testis, and different germ cells to identify lncRNAs regulating spermatogenesis. In case of humans, five RNA-seq studies on different germ cell populations, including two on sperm, were undertaken. We compared three studies on human germ cells to identify common lncRNAs and found 15 lncRNAs (LINC00635, LINC00521, LINC00174, LINC00654, LINC00710, LINC00226, LINC00326, LINC00494, LINC00535, LINC00616, LINC00662, LINC00668, LINC00467, LINC00608, and LINC00658) to show consistent differential expression across these studies. Some of the targets of these lncRNAs included CENPB, FAM98B, GOLGA6 family, RPGR, TPM2, GNB5, KCNQ10T1, TAZ, LIN28A, CDKN2B, CDKN2A, CDKN1A, CDKN1B, CDKN1C, EZH2, SUZ12, VEGFA genes. A lone study on human male infertility identified 9879 differentially expressed lncRNAs with three (lnc32058, lnc09522, and lnc98497) of them showing specific and high expression in immotile sperm in comparison to normal motile sperm. A few lncRNAs (Mrhl, Drm, Spga-lncRNAs, NLC1-C, HongrES2, Tsx, LncRNA-tcam1, Tug1, Tesra, AK015322, Gm2044, and LncRNA033862) have been functionally validated for their roles in spermatogenesis. Apart from rodents and humans, studies on sheep and bull have also identified lncRNAs potentially important for spermatogenesis. A number of these non-coding RNAs are strong candidates for further research on their roles in spermatogenesis.
Collapse
Affiliation(s)
- Meghali Joshi
- Division of Endocrinology, Central Drug Research Institute, Lucknow, UP, India
| | - Singh Rajender
- Division of Endocrinology, Central Drug Research Institute, Lucknow, UP, India.
| |
Collapse
|
47
|
Meng Q, Pu L, Luo X, Wang B, Li F, Liu B. Regulatory Roles of Related Long Non-coding RNAs in the Process of Atherosclerosis. Front Physiol 2020; 11:564604. [PMID: 33192561 PMCID: PMC7604474 DOI: 10.3389/fphys.2020.564604] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/17/2020] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis (AS) is the main cause of coronary heart disease, cerebral infarction, and peripheral vascular disease, which comprise serious hazards to human health. Atherosclerosis is characterized by the deposition of lipids on the interior walls of blood vessels, causing an inflammatory response of immune cells, endothelial cells, and smooth muscle cells, and a proliferation cascade reaction. Despite years of research, the underlying pathogenesis of AS is not fully defined. Recent advances in our understanding of the molecular mechanisms by which non-coding RNA influences the initiation and progression of AS have shown that long non-coding RNAs (lncRNAs) regulate important stages in the atherosclerotic process. In this review, we summarize current knowledge of lncRNAs, which influence the development of AS. We review the regulatory processes of lncRNAs on core stages of atherosclerotic progression, including lipid metabolism, inflammation, vascular cell proliferation, apoptosis, adhesion and migration, and angiogenesis. A growing body of evidence suggests that lncRNAs have great potential as new therapeutic targets for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Qingyu Meng
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Luya Pu
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Xizi Luo
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Baisen Wang
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Fan Li
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China.,The Key Laboratory for Bionics Engineering, Ministry of Education, Jilin University, Changchun, China.,Engineering Research Center for Medical Biomaterials of Jilin Province, Jilin University, Changchun, China.,Key Laboratory for Health Biomedical Materials of Jilin Province, Jilin University, Changchun, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang, China
| | - Bin Liu
- Cardiovascular Disease Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
48
|
Liu Y, Cui X, Wang C, Zhao S. LncRNA HCG11 regulates proliferation and apoptosis of vascular smooth muscle cell through targeting miR-144-3p/FOXF1 axis in atherosclerosis. Biol Res 2020; 53:44. [PMID: 33008472 PMCID: PMC7532112 DOI: 10.1186/s40659-020-00306-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/03/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Atherosclerosis (AS) is the main pathological basis of coronary heart disease, cerebral infarction and peripheral vascular disease, which seriously endanger people's life and health. In recent years, long non-coding RNA (lncRNA) has been found to be involved in gene expression regulation, but the research on AS is still in the initial stage. In this study, we mainly studied the role of HCG11 in patients with AS. Quantitative Real-time Polymerase Chain Reaction (QRT-PCR) was used to detect the expression of HCG11 and miR-144 in the serum of AS patients and healthy volunteers. Oxidation Low Lipoprotein (Ox-LDL), interleukin-6 (IL-6) and tumor necrosis factor α (TNF α) radiation were used to establish human vascular smooth muscle cells (VSMCs) in vitro model. Cell proliferation was determined by Cell Counting Kit-8 (CCK-8) assay. The apoptosis rate was determined by flow cytometry (FACS) and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay (TUNEL) staining. The expression levels of Forkhead box protein F1 (FOXF1), B cell lymphoma-2 (Bcl-2) and BCL2-Associated X (Bax) were detected by qRT-PCR. Luciferase gene reporter and RNA pull down experiments confirmed the relationship between HCG11 and miR-144, miR-144 and FOXF1. RESULTS This study showed that HCG11 was significantly upregulated in patients with AS, while miR-144 was down-regulated in patients with AS. Ox-LDL and IL-6 in VSMCs induced up-regulation of HCG11 and down-regulation of miR-144. Overexpression of HCG11 promoted the proliferation and inhibited apoptosis of VSMCs. Luciferase gene reporter gene assay showed that HCG11 could bind to miR-144, and miR-144 could bind to FOXF1. Overexpression of miR-144 reversed the effect of HCG11 on VSMCs. CONCLUSIONS LncRNA HCG11 regulates proliferation and apoptosis of vascular smooth muscle cell through targeting miR-144-3p/FOXF1 axis.
Collapse
Affiliation(s)
- Yi Liu
- Department of Clinical laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xiyun Cui
- Department of Clinical Laboratory, Weapon Industry 206 Hospital, Xi'an, Shaanxi, 710061, China
| | - Cong Wang
- Department of Clinical laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Sihai Zhao
- Laboratory Animal Center, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
49
|
Spencer HL, Sanders R, Boulberdaa M, Meloni M, Cochrane A, Spiroski AM, Mountford J, Emanueli C, Caporali A, Brittan M, Rodor J, Baker AH. The LINC00961 transcript and its encoded micropeptide, small regulatory polypeptide of amino acid response, regulate endothelial cell function. Cardiovasc Res 2020; 116:1981-1994. [PMID: 31990292 PMCID: PMC8216332 DOI: 10.1093/cvr/cvaa008] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 09/10/2019] [Accepted: 02/11/2020] [Indexed: 12/18/2022] Open
Abstract
AIMS Long non-coding RNAs (lncRNAs) play functional roles in physiology and disease, yet understanding of their contribution to endothelial cell (EC) function is incomplete. We identified lncRNAs regulated during EC differentiation and investigated the role of LINC00961 and its encoded micropeptide, small regulatory polypeptide of amino acid response (SPAAR), in EC function. METHODS AND RESULTS Deep sequencing of human embryonic stem cell differentiation to ECs was combined with Encyclopedia of DNA Elements (ENCODE) RNA-seq data from vascular cells, identifying 278 endothelial enriched genes, including 6 lncRNAs. Expression of LINC00961, first annotated as an lncRNA but reassigned as a protein-coding gene for the SPAAR micropeptide, was increased during the differentiation and was EC enriched. LINC00961 transcript depletion significantly reduced EC adhesion, tube formation, migration, proliferation, and barrier integrity in primary ECs. Overexpression of the SPAAR open reading frame increased tubule formation; however, overexpression of the full-length transcript did not, despite production of SPAAR. Furthermore, overexpression of an ATG mutant of the full-length transcript reduced network formation, suggesting a bona fide non-coding RNA function of the transcript with opposing effects to SPAAR. As the LINC00961 locus is conserved in mouse, we generated an LINC00961 locus knockout (KO) mouse that underwent hind limb ischaemia (HLI) to investigate the angiogenic role of this locus in vivo. In agreement with in vitro data, KO animals had a reduced capillary density in the ischaemic adductor muscle after 7 days. Finally, to characterize LINC00961 and SPAAR independent functions in ECs, we performed pull-downs of both molecules and identified protein-binding partners. LINC00961 RNA binds the G-actin sequestering protein thymosin beta-4x (Tβ4) and Tβ4 depletion phenocopied the overexpression of the ATG mutant. SPAAR binding partners included the actin-binding protein, SYNE1. CONCLUSION The LINC00961 locus regulates EC function in vitro and in vivo. The gene produces two molecules with opposing effects on angiogenesis: SPAAR and LINC00961.
Collapse
Affiliation(s)
- Helen L Spencer
- University/BHF Centre for Cardiovascular Science, Queens Medical Research
Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh
EH16 4TJ, UK
| | - Rachel Sanders
- University/BHF Centre for Cardiovascular Science, Queens Medical Research
Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh
EH16 4TJ, UK
| | - Mounia Boulberdaa
- University/BHF Centre for Cardiovascular Science, Queens Medical Research
Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh
EH16 4TJ, UK
| | - Marco Meloni
- University/BHF Centre for Cardiovascular Science, Queens Medical Research
Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh
EH16 4TJ, UK
| | - Amy Cochrane
- University/BHF Centre for Cardiovascular Science, Queens Medical Research
Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh
EH16 4TJ, UK
| | - Ana-Mishel Spiroski
- University/BHF Centre for Cardiovascular Science, Queens Medical Research
Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh
EH16 4TJ, UK
| | - Joanne Mountford
- Institute of Cardiovascular and Medical Sciences, University of
Glasgow, 126 University Pl, Glasgow G12 8TA, UK
| | - Costanza Emanueli
- National Heart and Lung Institute, Vascular Sciences and Cardiac Function,
Imperial Centre for Translational and Experimental Medicine, Imperial College
London, London W12 0NN, UK
| | - Andrea Caporali
- University/BHF Centre for Cardiovascular Science, Queens Medical Research
Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh
EH16 4TJ, UK
| | - Mairi Brittan
- University/BHF Centre for Cardiovascular Science, Queens Medical Research
Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh
EH16 4TJ, UK
| | - Julie Rodor
- University/BHF Centre for Cardiovascular Science, Queens Medical Research
Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh
EH16 4TJ, UK
| | - Andrew H Baker
- University/BHF Centre for Cardiovascular Science, Queens Medical Research
Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh
EH16 4TJ, UK
- Institute of Cardiovascular and Medical Sciences, University of
Glasgow, 126 University Pl, Glasgow G12 8TA, UK
| |
Collapse
|
50
|
Karthika CL, Ahalya S, Radhakrishnan N, Kartha CC, Sumi S. Hemodynamics mediated epigenetic regulators in the pathogenesis of vascular diseases. Mol Cell Biochem 2020; 476:125-143. [PMID: 32844345 DOI: 10.1007/s11010-020-03890-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/14/2020] [Indexed: 12/19/2022]
Abstract
Endothelium of blood vessels is continuously exposed to various hemodynamic forces. Flow-mediated epigenetic plasticity regulates vascular endothelial function. Recent studies have highlighted the significant role of mechanosensing-related epigenetics in localized endothelial dysfunction and the regional susceptibility for lesions in vascular diseases. In this article, we review the epigenetic mechanisms such as DNA de/methylation, histone modifications, as well as non-coding RNAs in promoting endothelial dysfunction in major arterial and venous diseases, consequent to hemodynamic alterations. We also discuss the current challenges and future prospects for the use of mechanoepigenetic mediators as biomarkers of early stages of vascular diseases and dysregulated mechanosensing-related epigenetic regulators as therapeutic targets in various vascular diseases.
Collapse
Affiliation(s)
- C L Karthika
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - S Ahalya
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - N Radhakrishnan
- St.Thomas Institute of Research on Venous Diseases, Changanassery, Kerala, India
| | - C C Kartha
- Society for Continuing Medical Education & Research (SOCOMER), Kerala Institute of Medical Sciences, Thiruvananthapuram, Kerala, India
| | - S Sumi
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India.
| |
Collapse
|