1
|
Avendaño-Portugal C, Montaño-Samaniego M, Guttman-Bazbaz R, Bravo-Estupiñan DM, Ibáñez-Hernández M. Therapeutic Applications of Poly-miRNAs and miRNA Sponges. Int J Mol Sci 2025; 26:4535. [PMID: 40429680 PMCID: PMC12111552 DOI: 10.3390/ijms26104535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/05/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNA molecules that play crucial roles in regulating gene expression, and their dysregulation is implicated in various human diseases. Over the years, several research groups have identified miRNAs as promising therapeutic targets for intervention. Therapeutic strategies involve either overexpression or knockdown of specific miRNAs. This review aims to provide a comprehensive overview of synthetic poly-miRNAs and miRNA sponges, highlighting their therapeutic applications. It begins with an introduction to miRNAs and their role in human diseases, followed by a detailed discussion on synthetic poly-miRNAs and miRNA sponges by exploring their application in cardiovascular, inflammatory, autoimmune, and metabolic disorders, as well as in cancer therapy. Additionally, strategies for targeted delivery, challenges, and limitations of these therapies are addressed.
Collapse
Affiliation(s)
- Cynthia Avendaño-Portugal
- Laboratorio de Terapia Génica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio and Plan de Ayala, Col. Sto Tomás, Miguel Hidalgo, Mexico City 11340, Mexico; (C.A.-P.); (M.M.-S.); (D.M.B.-E.)
| | - Mariela Montaño-Samaniego
- Laboratorio de Terapia Génica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio and Plan de Ayala, Col. Sto Tomás, Miguel Hidalgo, Mexico City 11340, Mexico; (C.A.-P.); (M.M.-S.); (D.M.B.-E.)
- Laboratorio de Técnicas Fototérmicas, Departamento de Ciencias Básicas, Unidad Politécnica Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Mexico City 07340, Mexico
| | - Raquel Guttman-Bazbaz
- Facultad de Ciencias de la Salud, Universidad Anáhuac México, Av. Lomas Anáhuac 46, Col. Lomas Anáhuac, Huixquilucan 52786, State of Mexico, Mexico;
| | - Diana M. Bravo-Estupiñan
- Laboratorio de Terapia Génica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio and Plan de Ayala, Col. Sto Tomás, Miguel Hidalgo, Mexico City 11340, Mexico; (C.A.-P.); (M.M.-S.); (D.M.B.-E.)
- Laboratorio de Quimiosensibilidad Tumoral, Facultad de Microbiología, Universidad de Costa Rica, San Jose 11501-2060, Costa Rica
| | - Miguel Ibáñez-Hernández
- Laboratorio de Terapia Génica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio and Plan de Ayala, Col. Sto Tomás, Miguel Hidalgo, Mexico City 11340, Mexico; (C.A.-P.); (M.M.-S.); (D.M.B.-E.)
| |
Collapse
|
2
|
Warner EF, Vaux L, Boyd K, Widdowson PS, Binley KM, Osborne A. Ocular delivery of Pigment Epithelium-Derived Factor (PEDF) as a neuroprotectant for Geographic Atrophy. Aging Dis 2024; 15:2003-2007. [PMID: 38421833 PMCID: PMC11346394 DOI: 10.14336/ad.2024.0216-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
Geographic atrophy (GA) is an advanced form of age-related macular degeneration (AMD), that starts with atrophic lesions in the outer retina that expand to cover the macula and fovea, leading to severe vision loss over time. Pigment Epithelium-Derived Factor (PEDF) has a diverse-range of properties, including its ability to promote cell survival, reduce inflammation, inhibit angiogenesis, combat oxidative stress, regulate autophagy, and stimulate anti-apoptotic pathways, making it a promising therapeutic candidate for GA. However, the relatively short half-life of PEDF protein has precluded its potential as a clinical therapy for GA since it would require frequent injections. Therefore, we describe administration of a PEDF gene, comparing and contrasting delivery routes, viral and non-viral vectors, and consider the critical challenges for PEDF as a neuroprotectant for GA.
Collapse
Affiliation(s)
- Emily F. Warner
- Ikarovec Limited., The Norwich Research Park Innovation Centre, Norwich, NR4 7GJ, United Kingdom
| | | | | | | | | | - Andrew Osborne
- Ikarovec Limited., The Norwich Research Park Innovation Centre, Norwich, NR4 7GJ, United Kingdom
| |
Collapse
|
3
|
Haldrup SH, Fabian-Jessing BK, Jakobsen TS, Lindholm AB, Adsersen RL, Aagaard L, Bek T, Askou AL, Corydon TJ. Subretinal AAV delivery of RNAi-therapeutics targeting VEGFA reduces choroidal neovascularization in a large animal model. Mol Ther Methods Clin Dev 2024; 32:101242. [PMID: 38605811 PMCID: PMC11007540 DOI: 10.1016/j.omtm.2024.101242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/21/2024] [Indexed: 04/13/2024]
Abstract
Neovascular age-related macular degeneration (nAMD) is a frequent cause of vision loss among the elderly in the Western world. Current disease management with repeated injections of anti-VEGF agents accumulates the risk for adverse events and constitutes a burden for society and the individual patient. Sustained suppression of VEGF using gene therapy is an attractive alternative, which we explored using adeno-associated virus (AAV)-based delivery of novel RNA interference (RNAi) effectors in a porcine model of choroidal neovascularization (CNV). The potency of VEGFA-targeting, Ago2-dependent short hairpin RNAs placed in pri-microRNA scaffolds (miR-agshRNA) was established in vitro and in vivo in mice. Subsequently, AAV serotype 8 (AAV2.8) vectors encoding VEGFA-targeting or irrelevant miR-agshRNAs under the control of a tissue-specific promotor were delivered to the porcine retina via subretinal injection before CNV induction by laser. Notably, VEGFA-targeting miR-agshRNAs resulted in a significant and sizable reduction of CNV compared with the non-targeting control. We also demonstrated that single-stranded and self-complementary AAV2.8 vectors efficiently transduce porcine retinal pigment epithelium cells but differ in their transduction characteristics and retinal safety. Collectively, our data demonstrated a robust anti-angiogenic effect of VEGFA-targeting miR-aghsRNAs in a large translational animal model, thereby suggesting AAV-based delivery of anti-VEGFA RNAi therapeutics as a valuable tool for the management of nAMD.
Collapse
Affiliation(s)
- Silja Hansen Haldrup
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Bjørn K. Fabian-Jessing
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
- Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 167, 8200 Aarhus N, Denmark
| | - Thomas Stax Jakobsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
- Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 167, 8200 Aarhus N, Denmark
| | - Anna Bøgh Lindholm
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Rikke L. Adsersen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Lars Aagaard
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Toke Bek
- Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 167, 8200 Aarhus N, Denmark
| | - Anne Louise Askou
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
- Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 167, 8200 Aarhus N, Denmark
| | - Thomas J. Corydon
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
- Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 167, 8200 Aarhus N, Denmark
| |
Collapse
|
4
|
CRISPR/Cas9 mediated specific ablation of vegfa in retinal pigment epithelium efficiently regresses choroidal neovascularization. Sci Rep 2023; 13:3715. [PMID: 36878916 PMCID: PMC9988861 DOI: 10.1038/s41598-023-29014-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/30/2023] [Indexed: 03/08/2023] Open
Abstract
The CRISPR/Cas9 system easily edits target genes in various organisms and is used to treat human diseases. In most therapeutic CRISPR studies, ubiquitously expressed promoters, such as CMV, CAG, and EF1α, are used; however, gene editing is sometimes necessary only in specific cell types relevant to the disease. Therefore, we aimed to develop a retinal pigment epithelium (RPE)-specific CRISPR/Cas9 system. We developed a CRISPR/Cas9 system that operates only in retinal pigment epithelium (RPE) by expressing Cas9 under the RPE-specific vitelliform macular dystrophy 2 promoter (pVMD2). This RPE-specific CRISPR/pVMD2-Cas9 system was tested in human retinal organoid and mouse model. We confirmed that this system works specifically in the RPE of human retinal organoids and mouse retina. In addition, the RPE-specific Vegfa ablation using the novel CRISPR-pVMD2-Cas9 system caused regression of choroidal neovascularization (CNV) without unwanted knock-out in the neural retina in laser-induced CNV mice, which is a widely used animal model of neovascular age-related macular degeneration. RPE-specific Vegfa knock-out (KO) and ubiquitous Vegfa KO were comparable in the efficient regression of CNV. The promoter substituted, cell type-specific CRISPR/Cas9 systems can be used in specific 'target cell' therapy, which edits genes while reducing unwanted off- 'target cell' effects.
Collapse
|
5
|
Arsenijevic Y, Berger A, Udry F, Kostic C. Lentiviral Vectors for Ocular Gene Therapy. Pharmaceutics 2022; 14:pharmaceutics14081605. [PMID: 36015231 PMCID: PMC9414879 DOI: 10.3390/pharmaceutics14081605] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 12/10/2022] Open
Abstract
This review offers the basics of lentiviral vector technologies, their advantages and pitfalls, and an overview of their use in the field of ophthalmology. First, the description of the global challenges encountered to develop safe and efficient lentiviral recombinant vectors for clinical application is provided. The risks and the measures taken to minimize secondary effects as well as new strategies using these vectors are also discussed. This review then focuses on lentiviral vectors specifically designed for ocular therapy and goes over preclinical and clinical studies describing their safety and efficacy. A therapeutic approach using lentiviral vector-mediated gene therapy is currently being developed for many ocular diseases, e.g., aged-related macular degeneration, retinopathy of prematurity, inherited retinal dystrophies (Leber congenital amaurosis type 2, Stargardt disease, Usher syndrome), glaucoma, and corneal fibrosis or engraftment rejection. In summary, this review shows how lentiviral vectors offer an interesting alternative for gene therapy in all ocular compartments.
Collapse
Affiliation(s)
- Yvan Arsenijevic
- Unit Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland;
- Correspondence: (Y.A.); (C.K.)
| | - Adeline Berger
- Group Epigenetics of ocular diseases, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland;
| | - Florian Udry
- Unit Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland;
| | - Corinne Kostic
- Group for Retinal Disorder Research, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland
- Correspondence: (Y.A.); (C.K.)
| |
Collapse
|
6
|
Alsing S, Doktor TK, Askou AL, Jensen EG, Ahmadov U, Kristensen LS, Andresen BS, Aagaard L, Corydon TJ. VEGFA-targeting miR-agshRNAs combine efficacy with specificity and safety for retinal gene therapy. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 28:58-76. [PMID: 35356684 PMCID: PMC8933642 DOI: 10.1016/j.omtn.2022.02.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/25/2022] [Indexed: 11/09/2022]
Abstract
Retinal gene therapy using RNA interference (RNAi) to silence targeted genes requires both efficacy and safety. Short hairpin RNAs (shRNAs) are useful for RNAi, but high expression levels and activity from the co-delivered passenger strand may cause undesirable cellular responses. Ago2-dependent shRNAs (agshRNAs) produce no passenger strand activity. To enhance efficacy and to investigate improvements in safety, we have generated VEGFA-targeting agshRNAs and microRNA (miRNA)-embedded agshRNAs (miR-agshRNAs) and inserted these RNAi effectors in Pol II/III-driven expression cassettes and lentiviral vectors (LVs). Compared with corresponding shRNAs, agshRNAs and miR-agshRNAs increased specificity and safety, while retaining a high knockdown efficacy and abolishing passenger strand activity. The agshRNAs also caused significantly smaller reductions in cell viability and reduced competition with the processing of endogenous miR21 compared with their shRNA counterparts. RNA sequencing (RNA-seq) analysis of LV-transduced ARPE19 cells revealed that expression of shRNAs in general leads to more changes in gene expression levels compared with their agshRNA counterparts and activation of immune-related pathways. In mice, subretinal delivery of LVs encoding tissue-specific miR-agshRNAs resulted in retinal pigment epithelium (RPE)-restricted expression and significant knockdown of Vegfa in transduced RPE cells. Collectively, our data suggest that agshRNAs and miR-agshRNA possess important advantages over shRNAs, thereby posing a clinically relevant approach with respect to efficacy, specificity, and safety.
Collapse
|
7
|
She K, Su J, Wang Q, Liu Y, Zhong X, Jin X, Zhao Q, Xiao J, Li R, Deng H, Lu F, Yang Y, Wei Y. Delivery of nVEGFi using AAV8 for the treatment of neovascular age-related macular degeneration. Mol Ther Methods Clin Dev 2022; 24:210-221. [PMID: 35141350 PMCID: PMC8800040 DOI: 10.1016/j.omtm.2022.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/05/2022] [Indexed: 11/01/2022]
Abstract
Inhibition of vascular endothelial growth factor (VEGF) is the standard therapy for neovascular age-related macular degeneration (nAMD). However, anti-VEGF agents used in the clinic require repeated injections, causing adverse effects. Gene therapy could provide sustained anti-VEGF levels after a single injection, thereby drastically decreasing the treatment burden and improving visual outcomes. In this study, we developed a novel VEGF Trap, nVEGFi, containing domains 1 and 2 of VEGFR1 and domain 3 of VEGFR2 fused to the Fc portion of human IgG. The nVEGFi had a higher expression level than aflibercept under the same expression cassettes of adeno-associated virus (AAV)8 in vitro and in vivo. nVEGFi was found to be noninferior to aflibercept in binding and blocking VEGF in vitro. AAV8-mediated expression of nVEGFi was maintained for at least 12 weeks by subretinal delivery in C57BL/6J mice. In a mouse laser-induced choroidal neovascularization (CNV) model, 4 × 108 genome copies of AAV8-nVEGFi exhibited a significantly increased reduction in the CNV area compared with AAV8-aflibercept (78.1% vs. 63.9%, p < 0.05), while causing no structural or functional changes to the retina. In conclusion, this preclinical study showed that subretinal injection of AAV8-nVEGFi was long lasting, well tolerated, and effective for nAMD treatment, supporting future translation to the clinic.
Collapse
Affiliation(s)
- Kaiqin She
- Department of Ophthalmology, West China Hospital, Sichuan University, No.37, Guoxue Xiang, Chengdu, Sichuan 610041, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 1, Ke-yuan Road 4, Gao-peng Street, Chengdu, Sichuan 610041, China
| | - Jing Su
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 1, Ke-yuan Road 4, Gao-peng Street, Chengdu, Sichuan 610041, China
| | - Qingnan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 1, Ke-yuan Road 4, Gao-peng Street, Chengdu, Sichuan 610041, China
| | - Yi Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 1, Ke-yuan Road 4, Gao-peng Street, Chengdu, Sichuan 610041, China
| | - Xiaomei Zhong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 1, Ke-yuan Road 4, Gao-peng Street, Chengdu, Sichuan 610041, China
| | - Xiu Jin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 1, Ke-yuan Road 4, Gao-peng Street, Chengdu, Sichuan 610041, China
| | - Qinyu Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 1, Ke-yuan Road 4, Gao-peng Street, Chengdu, Sichuan 610041, China
| | - Jianlu Xiao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 1, Ke-yuan Road 4, Gao-peng Street, Chengdu, Sichuan 610041, China
| | - Ruiting Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 1, Ke-yuan Road 4, Gao-peng Street, Chengdu, Sichuan 610041, China
| | - Hongxin Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 1, Ke-yuan Road 4, Gao-peng Street, Chengdu, Sichuan 610041, China
| | - Fang Lu
- Department of Ophthalmology, West China Hospital, Sichuan University, No.37, Guoxue Xiang, Chengdu, Sichuan 610041, China
| | - Yang Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 1, Ke-yuan Road 4, Gao-peng Street, Chengdu, Sichuan 610041, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 1, Ke-yuan Road 4, Gao-peng Street, Chengdu, Sichuan 610041, China
| |
Collapse
|
8
|
Zhao F, Fei W, Li Z, Yu H, Xi L. Pigment Epithelium-Derived Factor-Loaded PEGylated Nanoparticles as a New Antiangiogenic Therapy for Neovascularization. J Diabetes Res 2022; 2022:1193760. [PMID: 35493608 PMCID: PMC9054434 DOI: 10.1155/2022/1193760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Pathological neovascularization, which involves a disruption in the balance between angiogenic and antiangiogenic factors under pathological conditions, is the basis of many intraocular diseases. Pigment epithelium-derived factor (PEDF) is a potent natural, endogenous inhibitor of neovascularization because of its antiangiogenic and neuroprotective benefits. However, its application is restricted by its instability and short half-life. The present study is aimed at investigating the cytotoxicity and antiangiogenic effects of PEDF-loaded PEGylated nanoparticles (NP-PEG-PEDF) on high glucose-stimulated human umbilical vein endothelial cells (HUVECs). METHODS In this study, NP-PEG-PEDF were fabricated using the multiple emulsion method for the first time. HUVECs were cultured in a high concentration of glucose (30 mmol/L D-glucose), simulating diabetic conditions. The antiangiogenic effects of vascular endothelial growth factor (VEGF), pure PEDF, and NP-PEG-PEDF on proliferation, migration, and tube formation were evaluated. VEGF secretion in high glucose-stimulated HUVECs was further tested in vitro. RESULTS NP-PEG-PEDF exhibited low cytotoxicity in HUVECs. Our results indicated that in vitro, NP-PEG-PEDF attenuated diabetes-induced HUVEC proliferation, migration, and tube formation and suppressed VEGF secretion. The apoptosis of diabetes-induced HUVECs occurred in a dose-dependent manner, which showed a statistically significant difference compared with the PEDF treatment group. CONCLUSION Our study is the first to demonstrate that NP-PEG-PEDF exert antiangiogenic effects on high glucose-stimulated HUVECs and have the potential to alleviate microvascular dysfunction. These data suggest that the NP-PEG-PEDF delivery system may offer an innovative therapeutic strategy for preventing neovascularization of the fundus.
Collapse
Affiliation(s)
- Feng Zhao
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenlei Fei
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Zhouyue Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hanyang Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lei Xi
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Tan TE, Fenner BJ, Barathi VA, Tun SBB, Wey YS, Tsai ASH, Su X, Lee SY, Cheung CMG, Wong TY, Mehta JS, Teo KYC. Gene-Based Therapeutics for Acquired Retinal Disease: Opportunities and Progress. Front Genet 2021; 12:795010. [PMID: 34950193 PMCID: PMC8688942 DOI: 10.3389/fgene.2021.795010] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/16/2021] [Indexed: 12/22/2022] Open
Abstract
Acquired retinal diseases such as age-related macular degeneration and diabetic retinopathy rank among the leading causes of blindness and visual loss worldwide. Effective treatments for these conditions are available, but often have a high treatment burden, and poor compliance can lead to disappointing real-world outcomes. Development of new treatment strategies that provide more durable treatment effects could help to address some of these unmet needs. Gene-based therapeutics, pioneered for the treatment of monogenic inherited retinal disease, are being actively investigated as new treatments for acquired retinal disease. There are significant advantages to the application of gene-based therapeutics in acquired retinal disease, including the presence of established therapeutic targets and common pathophysiologic pathways between diseases, the lack of genotype-specificity required, and the larger potential treatment population per therapy. Different gene-based therapeutic strategies have been attempted, including gene augmentation therapy to induce in vivo expression of therapeutic molecules, and gene editing to knock down genes encoding specific mediators in disease pathways. We highlight the opportunities and unmet clinical needs in acquired retinal disease, review the progress made thus far with current therapeutic strategies and surgical delivery techniques, and discuss limitations and future directions in the field.
Collapse
Affiliation(s)
- Tien-En Tan
- Singapore National Eye Centre, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Beau James Fenner
- Singapore National Eye Centre, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Veluchamy Amutha Barathi
- Singapore Eye Research Institute, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sai Bo Bo Tun
- Singapore Eye Research Institute, Singapore, Singapore
| | - Yeo Sia Wey
- Singapore Eye Research Institute, Singapore, Singapore
| | - Andrew Shih Hsiang Tsai
- Singapore National Eye Centre, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Xinyi Su
- Singapore Eye Research Institute, Singapore, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Ophthalmology, National University Hospital, Singapore, Singapore
| | - Shu Yen Lee
- Singapore National Eye Centre, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Chui Ming Gemmy Cheung
- Singapore National Eye Centre, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Tien Yin Wong
- Singapore National Eye Centre, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Jodhbir Singh Mehta
- Singapore National Eye Centre, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Kelvin Yi Chong Teo
- Singapore National Eye Centre, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore
| |
Collapse
|
10
|
Kuznetsova AV, Rzhanova LA, Aleksandrova MA. Small Noncoding RNA in Regulation of Differentiation of Retinal Pigment Epithelium. Russ J Dev Biol 2021. [DOI: 10.1134/s106236042103005x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Sahana J, Corydon TJ, Wehland M, Krüger M, Kopp S, Melnik D, Kahlert S, Relja B, Infanger M, Grimm D. Alterations of Growth and Focal Adhesion Molecules in Human Breast Cancer Cells Exposed to the Random Positioning Machine. Front Cell Dev Biol 2021; 9:672098. [PMID: 34277614 PMCID: PMC8278480 DOI: 10.3389/fcell.2021.672098] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/27/2021] [Indexed: 01/03/2023] Open
Abstract
In this study, we evaluated changes in focal adhesions (FAs) in two types of breast cancer cell (BCC) lines (differentiated MCF-7 and the triple-negative MDA-MB-231 cell line) exposed to simulated microgravity (s-μg) created by a random positioning machine (RPM) for 24 h. After exposure, the BCC changed their growth behavior and exhibited two phenotypes in RPM samples: one portion of the cells grew as a normal two-dimensional monolayer [adherent (AD) BCC], while the other portion formed three-dimensional (3D) multicellular spheroids (MCS). After 1 h and 30 min (MDA-MB-231) and 1 h 40 min (MCF-7), the MCS adhered completely to the slide flask bottom. After 2 h, MDA-MB-231 MCS cells started to migrate, and after 6 h, a large number of the cells had left the MCS and continued to grow in a scattered pattern, whereas MCF-7 cells were growing as a confluent monolayer after 6 h and 24 h. We investigated the genes associated with the cytoskeleton, the extracellular matrix and FAs. ACTB, TUBB, FN1, FAK1, and PXN gene expression patterns were not significantly changed in MDA-MB-231 cells, but we observed a down-regulation of LAMA3, ITGB1 mRNAs in AD cells and of ITGB1, TLN1 and VCL mRNAs in MDA-MB-231 MCS. RPM-exposed MCF-7 cells revealed a down-regulation in the gene expression of FAK1, PXN, TLN1, VCL and CDH1 in AD cells and PXN, TLN and CDH1 in MCS. An interaction analysis of the examined genes involved in 3D growth and adhesion indicated a central role of fibronectin, vinculin, and E-cadherin. Live cell imaging of eGFP-vinculin in MCF-7 cells confirmed these findings. β-catenin-transfected MCF-7 cells revealed a nuclear expression in 1g and RPM-AD cells. The target genes BCL9, MYC and JUN of the Wnt/β-catenin signaling pathway were differentially expressed in RPM-exposed MCF-7 cells. These findings suggest that vinculin and β-catenin are key mediators of BCC to form MCS during 24 h of RPM-exposure.
Collapse
Affiliation(s)
| | - Thomas J Corydon
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Ophthalmology, Aarhus University Hospital, Aarhus, Denmark
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Magdeburg, Germany.,Research Group "Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen" (MARS), Otto von Guericke University, Magdeburg, Germany
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Magdeburg, Germany.,Research Group "Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen" (MARS), Otto von Guericke University, Magdeburg, Germany
| | - Sascha Kopp
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Magdeburg, Germany.,Research Group "Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen" (MARS), Otto von Guericke University, Magdeburg, Germany
| | - Daniela Melnik
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Magdeburg, Germany
| | - Stefan Kahlert
- Institute of Anatomy, Otto von Guericke University, Magdeburg, Germany
| | - Borna Relja
- Department of Radiology and Nuclear Medicine, Experimental Radiology, Otto von Guericke University, Magdeburg, Germany
| | - Manfred Infanger
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Magdeburg, Germany.,Research Group "Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen" (MARS), Otto von Guericke University, Magdeburg, Germany
| | - Daniela Grimm
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Magdeburg, Germany.,Research Group "Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen" (MARS), Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
12
|
Holmgaard AB, Askou AL, Jensen EG, Alsing S, Bak RO, Mikkelsen JG, Corydon TJ. Targeted Knockout of the Vegfa Gene in the Retina by Subretinal Injection of RNP Complexes Containing Cas9 Protein and Modified sgRNAs. Mol Ther 2021; 29:191-207. [PMID: 33022212 PMCID: PMC7791085 DOI: 10.1016/j.ymthe.2020.09.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/20/2020] [Accepted: 09/20/2020] [Indexed: 12/21/2022] Open
Abstract
The therapeutic effect of retinal gene therapy using CRISPR/Cas9-mediated genome editing and knockout applications is dependent on efficient and safe delivery of gene-modifying tool kits. Recently, transient administration of single guide RNAs (sgRNAs) and SpCas9 proteins delivered as ribonucleoproteins (RNPs) has provided potent gene knockout in vitro. To improve efficacy of CRISPR-based gene therapy, we delivered RNPs containing SpCas9 protein complexed to chemically modified sgRNAs (msgRNAs). In K562 cells, msgRNAs significantly increased the insertion/deletion (indel) frequency (25%) compared with unmodified counterparts leading to robust knockout of the VEGFA gene encoding vascular endothelial growth factor A (96% indels). Likewise, in HEK293 cells, lipoplexes containing varying amounts of RNP and EGFP mRNA showed efficient VEGFA knockout (43% indels) and strong EGFP expression, indicative of efficacious functional knockout using small amounts of RNP. In mice, subretinal injections of equivalent lipoplexes yielded 6% indels in Vegfa of isolated EGFP-positive RPE cells. However, signs of toxicity following delivery of lipoplexes containing high amounts of RNP were observed. Although the mechanism resulting in the varying efficacy remains to be elucidated, our data suggest that a single subretinal injection of RNPs carrying msgRNAs and SpCas9 induces targeted retinal indel formation, thus providing a clinically relevant strategy relying on nonviral delivery of short-lived nuclease activity.
Collapse
Affiliation(s)
| | - Anne Louise Askou
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Sidsel Alsing
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Rasmus O Bak
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; Aarhus Institute of Advanced Studies (AIAS), Aarhus University, 8000 Aarhus C, Denmark
| | | | - Thomas J Corydon
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; Department of Ophthalmology, Aarhus University Hospital, 8200 Aarhus N, Denmark.
| |
Collapse
|
13
|
Martinez B, Peplow PV. MicroRNAs in laser-induced choroidal neovascularization in mice and rats: their expression and potential therapeutic targets. Neural Regen Res 2021; 16:621-627. [PMID: 33063711 PMCID: PMC8067925 DOI: 10.4103/1673-5374.295271] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Choroidal neovascularization characterizes wet age-related macular degeneration. Choroidal neovascularization formation involves a primarily angiogenic process that is combined with both inflammation and proteolysis. A primary cause of choroidal neovascularization pathogenesis is alterations in pro- and anti-angiogenic factors derived from the retinal pigment epithelium, with vascular endothelium growth factor being mainly responsible for both clinical and experimental choroidal neovascularization. MicroRNAs (miRNAs) which are short, non-coding, endogenous RNA molecules have a major role in regulating various pathological processes, including inflammation and angiogenesis. A review of recent studies with the mouse laser-induced choroidal neovascularization model has shown alterations in miRNA expression in choroidal neovascularization tissues and could be potential therapeutic targets for wet age-related macular degeneration. Upregulation of miR-505 (days 1 and 3 post-laser), miR-155 (day 14) occurred in retina; miR-342-5p (days 3 and 7), miR-126-3p (day 14) in choroid; miR-23a, miR-24, miR-27a (day 7) in retina/choroid; miR-505 (days 1 and 3) in retinal pigment epithelium/choroid; downregulation of miR-155 (days 1 and 3), miR-29a, miR-29b, miR-29c (day 5), miR-93 (day 14), miR-126 (day 14) occurred in retinal pigment epithelium/choroid. Therapies using miRNA mimics or inhibitors were found to decrease choroidal neovascularization lesions. Choroidal neovascularization development was reduced by overexpression of miR-155, miR-188-5p, miR-(5,B,7), miR-126-3p, miR-342-5p, miR-93, miR-126, miR-195a-3p, miR-24, miR-21, miR-31, miR-150, and miR-184, or suppression of miR-505, miR-126-3p, miR-155, and miR-23/27. Further studies are warranted to determine miRNA expression in mouse laser-induced choroidal neovascularization models in order to validate and extend the reported findings. Important experimental variables need to be standardized; these include the strain and age of animals, gender, number and position of laser burns to the eye, laser parameters to induce choroidal neovascularization lesions including wavelength, power, spot size, and duration.
Collapse
Affiliation(s)
- Bridget Martinez
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA; Department of Medicine, St. Georges University School of Medicine, Grenada
| | - Philip V Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
14
|
Associations between the Complement System and Choroidal Neovascularization in Wet Age-Related Macular Degeneration. Int J Mol Sci 2020; 21:ijms21249752. [PMID: 33371261 PMCID: PMC7765894 DOI: 10.3390/ijms21249752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness affecting the elderly in the Western world. The most severe form of AMD, wet AMD (wAMD), is characterized by choroidal neovascularization (CNV) and acute vision loss. The current treatment for these patients comprises monthly intravitreal injections of anti-vascular endothelial growth factor (VEGF) antibodies, but this treatment is expensive, uncomfortable for the patient, and only effective in some individuals. AMD is a complex disease that has strong associations with the complement system. All three initiating complement pathways may be relevant in CNV formation, but most evidence indicates a major role for the alternative pathway (AP) and for the terminal complement complex, as well as certain complement peptides generated upon complement activation. Since the complement system is associated with AMD and CNV, a complement inhibitor may be a therapeutic option for patients with wAMD. The aim of this review is to (i) reflect on the possible complement targets in the context of wAMD pathology, (ii) investigate the results of prior clinical trials with complement inhibitors for wAMD patients, and (iii) outline important considerations when developing a future strategy for the treatment of wAMD.
Collapse
|
15
|
Lin FL, Wang PY, Chuang YF, Wang JH, Wong VHY, Bui BV, Liu GS. Gene Therapy Intervention in Neovascular Eye Disease: A Recent Update. Mol Ther 2020; 28:2120-2138. [PMID: 32649860 PMCID: PMC7544979 DOI: 10.1016/j.ymthe.2020.06.029] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/15/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
Aberrant growth of blood vessels (neovascularization) is a key feature of severe eye diseases that can cause legal blindness, including neovascular age-related macular degeneration (nAMD) and diabetic retinopathy (DR). The development of anti-vascular endothelial growth factor (VEGF) agents has revolutionized the treatment of ocular neovascularization. Novel proangiogenic targets, such as angiopoietin and platelet-derived growth factor (PDGF), are under development for patients who respond poorly to anti-VEGF therapy and to reduce adverse effects from long-term VEGF inhibition. A rapidly advancing area is gene therapy, which may provide significant therapeutic benefits. Viral vector-mediated transgene delivery provides the potential for continuous production of antiangiogenic proteins, which would avoid the need for repeated anti-VEGF injections. Gene silencing with RNA interference to target ocular angiogenesis has been investigated in clinical trials. Proof-of-concept gene therapy studies using gene-editing tools such as CRISPR-Cas have already been shown to be effective in suppressing neovascularization in animal models, highlighting the therapeutic potential of the system for treatment of aberrant ocular angiogenesis. This review provides updates on the development of anti-VEGF agents and novel antiangiogenic targets. We also summarize current gene therapy strategies already in clinical trials and those with the latest approaches utilizing CRISPR-Cas gene editing against aberrant ocular neovascularization.
Collapse
Affiliation(s)
- Fan-Li Lin
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Peng-Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
| | - Yu-Fan Chuang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Jiang-Hui Wang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| | - Vickie H Y Wong
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Bang V Bui
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Guei-Sheung Liu
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia; Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC 3002, Australia.
| |
Collapse
|
16
|
Tipanee J, Di Matteo M, Tulalamba W, Samara-Kuko E, Keirsse J, Van Ginderachter JA, Chuah MK, VandenDriessche T. Validation of miR-20a as a Tumor Suppressor Gene in Liver Carcinoma Using Hepatocyte-Specific Hyperactive piggyBac Transposons. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:1309-1329. [PMID: 32160703 PMCID: PMC7036702 DOI: 10.1016/j.omtn.2020.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023]
Abstract
We established a semi-high-throughput in vivo screening platform using hyperactive piggyBac (hyPB) transposons (designated as PB-miR) to identify microRNAs (miRs) that inhibit hepatocellular carcinoma (HCC) development in vivo, following miR overexpression in hepatocytes. PB-miRs encoding six different miRs from the miR-17-92 cluster and nine miRs from outside this cluster were transfected into mouse livers that were chemically induced to develop HCC. In this slow-onset HCC model, miR-20a significantly inhibited HCC. Next, we developed a more aggressive HCC model by overexpression of oncogenic Harvey rat sarcoma viral oncogene homolog (HRASG12V) and c-MYC oncogenes that accelerated HCC development after only 6 weeks. The tumor suppressor effect of miR-20a could be demonstrated even in this rapid-onset HRASG12V/c-MYC HCC model, consistent with significantly prolonged survival and decreased HCC tumor burden. Comprehensive RNA expression profiling of 95 selected genes typically associated with HCC development revealed differentially expressed genes and functional pathways that were associated with miR-20a-mediated HCC suppression. To our knowledge, this is the first study establishing a direct causal relationship between miR-20a overexpression and liver cancer inhibition in vivo. Moreover, these results demonstrate that hepatocyte-specific hyPB transposons are an efficient platform to screen and identify miRs that affect overall survival and HCC tumor regression.
Collapse
Affiliation(s)
- Jaitip Tipanee
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Mario Di Matteo
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium; Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium
| | - Warut Tulalamba
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Ermira Samara-Kuko
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Jiri Keirsse
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jo A Van Ginderachter
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marinee Khim Chuah
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium; Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium.
| | - Thierry VandenDriessche
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium; Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
17
|
Pigment Epithelium-Derived Factor as a Possible Treatment Agent for Choroidal Neovascularization. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8941057. [PMID: 32215180 PMCID: PMC7079215 DOI: 10.1155/2020/8941057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/28/2020] [Indexed: 02/06/2023]
Abstract
Choroidal neovascularization (CNV) is a sight-threatening disease and is characterized by the formation of pathological neovascularization in the choroid which extends into the subretinal space. Exudative age-related macular degeneration (AMD) is the formation of CNV in the macular area which leads to irreversible blindness. Continuous leakage and hemorrhage of the CNV lesion may eventually result in scarring or later fibrosis, which could result in photoreceptor cell atrophy. The current strategy for treating CNV is the use of antivascular endothelial growth factor (VEGF) agents. Many studies have demonstrated the efficacy of intravitreal anti-VEGF therapy. Other studies have also reported the side effects of single anti-VEGF treatment. And long-term inhibition of a single system may result in collateral damage to other visual elements. Pigment epithelium-derived factor (PEDF) is a 50 kDa protein that was first isolated from the conditioned medium of human RPE cells. PEDF has both antiangiogenesis and neuroprotective functions for photoreceptor cells. It may be a potential ocular antiangiogenic agent. This review outlines the distribution of PEDF in the eye, the mechanism of antiangiogenesis, the protective effect on the retina, and the relationship between PEDF and VEGF.
Collapse
|
18
|
Bhaskaran V, Yao Y, Bei F, Peruzzi P. Engineering, delivery, and biological validation of artificial microRNA clusters for gene therapy applications. Nat Protoc 2019; 14:3538-3553. [PMID: 31748752 PMCID: PMC7089775 DOI: 10.1038/s41596-019-0241-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/03/2019] [Indexed: 12/16/2022]
Abstract
The cellular machinery regulating microRNA biogenesis and maturation relies on a small number of simple steps and minimal biological requirements and is broadly conserved in all eukaryotic cells. The same holds true in disease. This allows for a substantial degree of freedom in the engineering of transgenes capable of simultaneously expressing multiple microRNAs of choice, allowing a more comprehensive modulation of microRNA landscapes, the study of their functional interaction, and the possibility of using such synergism for gene therapy applications. We have previously engineered a transgenic cluster of functionally associated microRNAs to express a module of suppressed microRNAs in brain cancer for therapeutic purposes. Here, we provide a detailed protocol for the design, cloning, delivery, and utilization of such artificial microRNA clusters for gene therapy purposes. In comparison with other protocols, our strategy effectively decreases the requirements for molecular cloning, because the nucleic acid sequence encoding the combination of the desired microRNAs is designed and validated in silico and then directly synthesized as DNA that is ready for subcloning into appropriate delivery vectors, for both in vitro and in vivo use. Sequence design and engineering require 4-5 h. Synthesis of the resulting DNA sequence requires 4-6 h. This protocol is quick and flexible and does not require special laboratory equipment or techniques, or multiple cloning steps. It can be easily executed by any graduate student or technician with basic molecular biology knowledge.
Collapse
Affiliation(s)
- Vivek Bhaskaran
- Department of Neurosurgery, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Yizheng Yao
- Department of Neurosurgery, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Fengfeng Bei
- Department of Neurosurgery, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Pierpaolo Peruzzi
- Department of Neurosurgery, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
19
|
Real Microgravity Influences the Cytoskeleton and Focal Adhesions in Human Breast Cancer Cells. Int J Mol Sci 2019; 20:ijms20133156. [PMID: 31261642 PMCID: PMC6651518 DOI: 10.3390/ijms20133156] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 12/24/2022] Open
Abstract
With the increasing number of spaceflights, it is crucial to understand the changes occurring in human cells exposed to real microgravity (r-µg) conditions. We tested the effect of r-µg on MCF-7 breast cancer cells with the objective to investigate cytoskeletal alterations and early changes in the gene expression of factors belonging to the cytoskeleton, extracellular matrix, focal adhesion, and cytokines. In the Technische Experimente unter Schwerelosigkeit (TEXUS) 54 rocket mission, we had the opportunity to conduct our experiment during 6 min of r-µg and focused on cytoskeletal alterations of MCF-7 breast cancer cells expressing the Lifeact-GFP marker protein for the visualization of F-actin as well as the mCherry-tubulin fusion protein using the Fluorescence Microscopy Analysis System (FLUMIAS) for fast live-cell imaging under r-µg. Moreover, in a second mission we investigated changes in RNA transcription and morphology in breast cancer cells exposed to parabolic flight (PF) maneuvers (31st Deutsches Zentrum für Luft- und Raumfahrt (DLR) PF campaign). The MCF-7 cells showed a rearrangement of the F-actin and tubulin with holes, accumulations in the tubulin network, and the appearance of filopodia- and lamellipodia-like structures in the F-actin cytoskeleton shortly after the beginning of the r-µg period. PF maneuvers induced an early up-regulation of KRT8, RDX, TIMP1, CXCL8 mRNAs, and a down-regulation of VCL after the first parabola. E-cadherin protein was significantly reduced and is involved in cell adhesion processes, and plays a significant role in tumorigenesis. Changes in the E-cadherin protein synthesis can lead to tumor progression. Pathway analyses indicate that VCL protein has an activating effect on CDH1. In conclusion, live-cell imaging visualized similar changes as those occurring in thyroid cancer cells in r-µg. This result indicates the presence of a common mechanism of gravity perception and sensation.
Collapse
|
20
|
de Souza Junior DA, Santana C, Vieira GV, Oliver C, Jamur MC. Mast Cell Protease 7 Promotes Angiogenesis by Degradation of Integrin Subunits. Cells 2019; 8:cells8040349. [PMID: 31013764 PMCID: PMC6523500 DOI: 10.3390/cells8040349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/02/2019] [Accepted: 04/10/2019] [Indexed: 12/17/2022] Open
Abstract
Previous studies from our laboratory have shown that during angiogenesis in vitro, rmMCP-7 (recombinant mouse mast cell protease-7) stimulates endothelial cell spreading and induces their penetration into the matrix. The ability of rmMCP-7 to induce angiogenesis in vivo was assessed in the present study using a directed in vivo angiogenesis assay (DIVAA™). Vessel invasion of the angioreactor was observed in the presence of rmMCP-7 but was not seen in the control. Since integrins are involved in endothelial cell migration, the relationship between rmMCP-7 and integrins during angiogenesis was investigated. Incubation with rmMCP-7 resulted in a reduction in the levels of integrin subunits αv and β1 on SVEC4-10 endothelial cells during angiogenesis in vitro. Furthermore, the degradation of integrin subunits occurs both through the direct action of rmMCP-7 and indirectly via the ubiquitin/proteasome system. Even in the presence of a proteasome inhibitor, incubation of endothelial cells with rmMCP-7 induced cell migration and tube formation as well as the beginning of loop formation. These data indicate that the direct degradation of the integrin subunits by rmMCP-7 is sufficient to initiate angiogenesis. The results demonstrate, for the first time, that mMCP-7 acts in angiogenesis through integrin degradation.
Collapse
Affiliation(s)
- Devandir A de Souza Junior
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14.049-900, Brazil.
| | - Carolina Santana
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14.049-900, Brazil.
| | - Gabriel V Vieira
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14.049-900, Brazil.
| | - Constance Oliver
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14.049-900, Brazil.
| | - Maria Celia Jamur
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14.049-900, Brazil.
| |
Collapse
|
21
|
Finotti A, Fabbri E, Lampronti I, Gasparello J, Borgatti M, Gambari R. MicroRNAs and Long Non-coding RNAs in Genetic Diseases. Mol Diagn Ther 2019; 23:155-171. [PMID: 30610665 PMCID: PMC6469593 DOI: 10.1007/s40291-018-0380-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since the discovery and classification of non-coding RNAs, their roles have gained great attention. In this respect, microRNAs and long non-coding RNAs have been firmly demonstrated to be linked to regulation of gene expression and onset of human diseases, including rare genetic diseases; therefore they are suitable targets for therapeutic intervention. This issue, in the context of rare genetic diseases, is being considered by an increasing number of research groups and is of key interest to the health community. In the case of rare genetic diseases, the possibility of developing personalized therapy in precision medicine has attracted the attention of researchers and clinicians involved in developing "orphan medicinal products" and proposing these to the European Medicines Agency (EMA) and to the Food and Drug Administration (FDA) Office of Orphan Products Development (OOPD) in the United States. The major focuses of these activities are the evaluation and development of products (drugs, biologics, devices, or medical foods) considered to be promising for diagnosis and/or treatment of rare diseases or conditions, including rare genetic diseases. In an increasing number of rare genetic diseases, analysis of microRNAs and long non-coding RNAs has been proven a promising strategy. These diseases include, but are not limited to, Duchenne muscular dystrophy, cystic fibrosis, Rett syndrome, and β-thalassemia. In conclusion, a large number of approaches based on targeting microRNAs and long non-coding RNAs are expected in the field of molecular diagnosis and therapy, with a facilitated technological transfer in the case of rare genetic diseases, in virtue of the existing regulation concerning these diseases.
Collapse
Affiliation(s)
- Alessia Finotti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara n.74, 44121, Ferrara, Italy
| | - Enrica Fabbri
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara n.74, 44121, Ferrara, Italy
| | - Ilaria Lampronti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara n.74, 44121, Ferrara, Italy
| | - Jessica Gasparello
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara n.74, 44121, Ferrara, Italy
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara n.74, 44121, Ferrara, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara n.74, 44121, Ferrara, Italy.
| |
Collapse
|
22
|
Askou AL, Alsing S, Benckendorff JNE, Holmgaard A, Mikkelsen JG, Aagaard L, Bek T, Corydon TJ. Suppression of Choroidal Neovascularization by AAV-Based Dual-Acting Antiangiogenic Gene Therapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:38-50. [PMID: 30825671 PMCID: PMC6393707 DOI: 10.1016/j.omtn.2019.01.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 01/28/2019] [Accepted: 01/28/2019] [Indexed: 01/15/2023]
Abstract
Vascular endothelial growth factor A (VEGFA) is involved in the pathogenesis of vasoproliferative retinal diseases, such as exudative age-related macular degeneration (AMD). The objective of this study was to investigate whether dual-acting therapy based on the simultaneous expression of anti-VEGFA microRNAs (miRNAs) and the secreted, antiangiogenic protein pigment endothelial-derived factor (PEDF) delivered by adeno-associated virus (AAV) vectors provides improved protection against choroidal neovascularization (CNV). To investigate this, a multigenic AAV vector allowing retina pigment epithelium (RPE)-specific expression of anti-VEGFA miRNAs and PEDF was engineered. Robust expression of PEDF, driven by the RPE-specific vitelliform macular dystrophy 2 promoter, was observed in human cells and in mouse retina. A significant reduction in CNV was observed in a laser-induced CNV mouse model 57 days post-injection of the AAV5 particles conveying either anti-VEGFA miRNA and PEDF dual therapy or anti-VEGFA miRNA monotherapy. Overall, CNV reduction was most prominent in animals receiving dual-acting therapy. In both cases, the reduction in CNV was accompanied by a significant attenuation of VEGFA. In conclusion, the presented data reveal that gene therapy targeting VEGFA via multigenic AAV vectors displays combined efficacy, suggesting that dual-acting therapy is an important tool in future eye gene therapy for the treatment of neovascular ocular diseases, including AMD.
Collapse
Affiliation(s)
- Anne Louise Askou
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Sidsel Alsing
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Andreas Holmgaard
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Lars Aagaard
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Toke Bek
- Department of Ophthalmology, Aarhus University Hospital, 8000 Aarhus C, Denmark
| | - Thomas J Corydon
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; Department of Ophthalmology, Aarhus University Hospital, 8000 Aarhus C, Denmark.
| |
Collapse
|
23
|
Holmgaard A, Alsing S, Askou AL, Corydon TJ. CRISPR Gene Therapy of the Eye: Targeted Knockout of Vegfa in Mouse Retina by Lentiviral Delivery. Methods Mol Biol 2019; 1961:307-328. [PMID: 30912054 DOI: 10.1007/978-1-4939-9170-9_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Genome editing and knockout by virus-based delivery of CRISPR/Cas9 may provide a new option to cure inherited and acquired ocular diseases. Here we describe development and application of lentivirus-based delivery vectors enabling knockout of the Vegfa gene. We show that Streptococcus pyogenes (Sp) Cas9 and single-guide RNAs (sgRNAs) delivered by such vectors selectively can ablate the vascular endothelial growth factor A (Vegfa) gene in mouse retina following a single administration. These findings may contribute to the development of a new therapeutic path in the treatment of ocular diseases including exudative age-related macular degeneration (AMD).
Collapse
Affiliation(s)
| | - Sidsel Alsing
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Thomas J Corydon
- Department of Biomedicine, Aarhus University, Aarhus, Denmark. .,Department of Ophthalmology, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
24
|
Cell-specific gene therapy driven by an optimized hypoxia-regulated vector reduces choroidal neovascularization. J Mol Med (Berl) 2018; 96:1107-1118. [PMID: 30105447 DOI: 10.1007/s00109-018-1683-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 12/27/2022]
Abstract
Aberrant growth of blood vessels in the choroid layer of the eye, termed choroidal neovascularization (CNV), is the pathological hallmark of exudative age-related macular degeneration (AMD), causing irreversible blindness among the elderly. Co-localization of proangiogenic factors and hypoxia inducible factors (HIF) in neovascular membranes from AMD eyes suggests the role of hypoxia in pathogenesis of CNV. In order to utilize hypoxic conditions in RPE for therapeutic purposes, we developed an optimized hypoxia regulated, RPE cell-specific gene therapy to inhibit choroidal neovascularization. An adeno-associated virus (AAV2) vector comprising a RPE-specific promoter and HIF-1 response elements (HRE) was designed to regulate production of human endostatin (a powerful angiostatic protein) in RPE. The vector was tested in a mouse model of laser-induced CNV using subretinal delivery. Spectral domain optical coherence tomography (SD-OCT) images from live mice and confocal images from lectin stained RPE flat mount sections demonstrated reduction in CNV areas by 80% compared to untreated eyes. Quantitative real-time polymerase chain reaction (qPCR) confirmed exogenous endostatin mRNA expression from the regulated vector that was significantly elevated 3, 7, and 14 days following laser treatment, but its expression was completely shut off after 45 days. Thus, RPE-specific, hypoxia-regulated delivery of anti-angiogenic proteins could be a valuable therapeutic approach to treat neovascular AMD at the time and in the ocular space where it arises. KEY POINTS An optimized gene therapy vector targeting hypoxia and tissue-specific expression has been designed. The inhibitory role of gene therapy vector was tested in a mouse model of laser-induced CNV. An 80% reduction in choroidal neovascularization was achieved by the optimized vector. The expression of endostatin was limited to retinal pigment epithelium and regulated by hypoxia.
Collapse
|
25
|
Askou AL, Alsing S, Holmgaard A, Bek T, Corydon TJ. Dissecting microRNA dysregulation in age-related macular degeneration: new targets for eye gene therapy. Acta Ophthalmol 2018; 96:9-23. [PMID: 28271607 DOI: 10.1111/aos.13407] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/02/2017] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are key regulators of gene expression in humans. Overexpression or depletion of individual miRNAs is associated with human disease. Current knowledge suggests that the retina is influenced by miRNAs and that dysregulation of miRNAs as well as alterations in components of the miRNA biogenesis machinery are involved in retinal diseases, including age-related macular degeneration (AMD). Furthermore, recent studies have indicated that the vitreous has a specific panel of circulating miRNAs and that this panel varies according to the specific pathological stress experienced by the retinal cells. MicroRNA (miRNA) profiling indicates subtype-specific miRNA profiles for late-stage AMD highlighting the importance of proper miRNA regulation in AMD. This review will describe the function of important miRNAs involved in inflammation, oxidative stress and pathological neovascularization, the key molecular mechanisms leading to AMD, and focus on dysregulated miRNAs as potential therapeutic targets in AMD.
Collapse
Affiliation(s)
| | - Sidsel Alsing
- Department of Biomedicine; Aarhus University; Aarhus C Denmark
| | | | - Toke Bek
- Department of Ophthalmology; Aarhus University Hospital; Aarhus C Denmark
| | | |
Collapse
|
26
|
Askou AL, Benckendorff JNE, Holmgaard A, Storm T, Aagaard L, Bek T, Mikkelsen JG, Corydon TJ. Suppression of Choroidal Neovascularization in Mice by Subretinal Delivery of Multigenic Lentiviral Vectors Encoding Anti-Angiogenic MicroRNAs. Hum Gene Ther Methods 2018; 28:222-233. [PMID: 28817343 DOI: 10.1089/hgtb.2017.079] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lentivirus-based vectors have been used for the development of potent gene therapies. Here, application of a multigenic lentiviral vector (LV) producing multiple anti-angiogenic microRNAs following subretinal delivery in a laser-induced choroidal neovascularization (CNV) mouse model is presented. This versatile LV, carrying back-to-back RNApolII-driven expression cassettes, enables combined expression of microRNAs targeting vascular endothelial growth factor A (Vegfa) mRNA and fluorescent reporters. In addition, by including a vitelliform macular dystrophy 2 (VMD2) promoter, expression of microRNAs is restricted to the retinal pigment epithelial (RPE) cells. Six days post injection (PI), robust and widespread fluorescent signals of eGFP are already observed in the retina by funduscopy. The eGFP expression peaks at day 21 PI and persists with stable expression for at least 9 months. In parallel, prominent AsRED co-expression, encoded from the VMD2-driven microRNA expression cassette, is evident in retinal sections and flat-mounts, revealing RPE-specific expression of microRNAs. Furthermore, LV-delivered microRNAs targeting the Vegfa gene in RPE cells reduced the size of laser-induced CNV in mice 28 days PI, as a consequence of diminished VEGF levels, suggesting that LVs delivered locally are powerful tools in the development of gene therapy-based strategies for treatment of age-related macular degeneration.
Collapse
Affiliation(s)
| | | | | | - Tina Storm
- 1 Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Lars Aagaard
- 1 Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Toke Bek
- 2 Department of Ophthalmology, Aarhus University Hospital , Aarhus, Denmark
| | | | - Thomas Juhl Corydon
- 1 Department of Biomedicine, Aarhus University, Aarhus, Denmark .,2 Department of Ophthalmology, Aarhus University Hospital , Aarhus, Denmark
| |
Collapse
|
27
|
Development of Multigenic Lentiviral Vectors for Cell-Specific Expression of Antiangiogenic miRNAs and Protein Factors. Methods Mol Biol 2018; 1715:47-60. [PMID: 29188505 DOI: 10.1007/978-1-4939-7522-8_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Generation of lentivirus (LV)-based vectors holding multiple gene cassettes for coexpression of several therapeutic factors provides potent tools in both gene delivery studies as well as in gene therapy. Here we describe the development of such multigenic LV gene delivery vectors enabling cell-specific coexpression of antiangiogenic microRNA (miRNA) and protein factors and, if preferred, a fluorescent reporter, from RNApol(II)-driven expression cassettes orientated in a back-to-back fashion. This configuration may contribute to the development of new combination therapies for amelioration of diseases involving intraocular neovascularization including exudative age-related macular degeneration (AMD).
Collapse
|
28
|
Mast Cells Interact with Endothelial Cells to Accelerate In Vitro Angiogenesis. Int J Mol Sci 2017; 18:ijms18122674. [PMID: 29236033 PMCID: PMC5751276 DOI: 10.3390/ijms18122674] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/29/2017] [Accepted: 12/05/2017] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis is a complex process that involves interactions between endothelial cells and various other cell types as well as the tissue microenvironment. Several previous studies have demonstrated that mast cells accumulate at angiogenic sites. In spite of the evidence suggesting a relationship between mast cells and angiogenesis, the association of mast cells and endothelial cells remains poorly understood. The present study aims to investigate the relationship between mast cells and endothelial cells during in vitro angiogenesis. When endothelial cells were co-cultured with mast cells, angiogenesis was stimulated. Furthermore, there was direct intercellular communication via gap junctions between the two cell types. In addition, the presence of mast cells stimulated endothelial cells to release angiogenic factors. Moreover, conditioned medium from the co-cultures also stimulated in vitro angiogenesis. The results from this investigation demonstrate that mast cells have both direct and indirect proangiogenic effects and provide new insights into the role of mast cells in angiogenesis.
Collapse
|
29
|
Curtis HJ, Seow Y, Wood MJA, Varela MA. Knockdown and replacement therapy mediated by artificial mirtrons in spinocerebellar ataxia 7. Nucleic Acids Res 2017; 45:7870-7885. [PMID: 28575281 PMCID: PMC5569705 DOI: 10.1093/nar/gkx483] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 05/26/2017] [Indexed: 12/13/2022] Open
Abstract
We evaluate a knockdown-replacement strategy mediated by mirtrons as an alternative to allele-specific silencing using spinocerebellar ataxia 7 (SCA7) as a model. Mirtrons are introns that form pre-microRNA hairpins after splicing, producing RNAi effectors not processed by Drosha. Mirtron mimics may therefore avoid saturation of the canonical processing pathway. This method combines gene silencing mediated by an artificial mirtron with delivery of a functional copy of the gene such that both elements of the therapy are always expressed concurrently, minimizing the potential for undesirable effects and preserving wild-type function. This mutation- and single nucleotide polymorphism-independent method could be crucial in dominant diseases that feature both gain- and loss-of-function pathologies or have a heterogeneous genetic background. Here we develop mirtrons against ataxin 7 with silencing efficacy comparable to shRNAs, and introduce silent mutations into an ataxin 7 transgene such that it is resistant to their effect. We successfully express the transgene and one mirtron together from a single construct. Hence, we show that this method can be used to silence the endogenous allele of ataxin 7 and replace it with an exogenous copy of the gene, highlighting the efficacy and transferability across patient genotypes of this approach.
Collapse
Affiliation(s)
- Helen J Curtis
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK.,Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford OX2 6GG, UK
| | - Yiqi Seow
- Molecular Engineering Laboratory, Biomedical Sciences Institutes, A*STAR, Singapore
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Miguel A Varela
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| |
Collapse
|
30
|
Holmgaard A, Askou AL, Benckendorff JNE, Thomsen EA, Cai Y, Bek T, Mikkelsen JG, Corydon TJ. In Vivo Knockout of the Vegfa Gene by Lentiviral Delivery of CRISPR/Cas9 in Mouse Retinal Pigment Epithelium Cells. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 9:89-99. [PMID: 29246327 PMCID: PMC5626917 DOI: 10.1016/j.omtn.2017.08.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/29/2017] [Accepted: 08/29/2017] [Indexed: 12/26/2022]
Abstract
Virus-based gene therapy by CRISPR/Cas9-mediated genome editing and knockout may provide a new option for treatment of inherited and acquired ocular diseases of the retina. In support of this notion, we show that Streptococcus pyogenes (Sp) Cas9, delivered by lentiviral vectors (LVs), can be used in vivo to selectively ablate the vascular endothelial growth factor A (Vegfa) gene in mice. By generating LVs encoding SpCas9 targeted to Vegfa, and in parallel the fluorescent eGFP marker protein, we demonstrate robust knockout of Vegfa that leads to a significant reduction of VEGFA protein in transduced cells. Three of the designed single-guide RNAs (sgRNAs) induce in vitro indel formation at high frequencies (44%-93%). A single unilateral subretinal injection facilitates RPE-specific localization of the vector and disruption of Vegfa in isolated eGFP+ RPE cells obtained from mice five weeks after LV administration. Notably, sgRNA delivery results in the disruption of Vegfa with an in vivo indel formation efficacy of up to 84%. Sequencing of Vegfa-specific amplicons reveals formation of indels, including 4-bp deletions and 2-bp insertions. Taken together, our data demonstrate the capacity of lentivirus-delivered SpCas9 and sgRNAs as a developing therapeutic path in the treatment of ocular diseases, including age-related macular degeneration.
Collapse
Affiliation(s)
- Andreas Holmgaard
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Anne Louise Askou
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | | | | | - Yujia Cai
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Toke Bek
- Department of Ophthalmology, Aarhus University Hospital, 8000 Aarhus C, Denmark
| | | | - Thomas J Corydon
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; Department of Ophthalmology, Aarhus University Hospital, 8000 Aarhus C, Denmark.
| |
Collapse
|
31
|
Garcia-Garcia L, Recalde S, Hernandez M, Bezunartea J, Rodriguez-Madoz JR, Johnen S, Diarra S, Marie C, Izsvák Z, Ivics Z, Scherman D, Kropp M, Thumann G, Prosper F, Fernandez-Robredo P, Garcia-Layana A. Long-Term PEDF Release in Rat Iris and Retinal Epithelial Cells after Sleeping Beauty Transposon-Mediated Gene Delivery. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 9:1-11. [PMID: 29246287 PMCID: PMC5583395 DOI: 10.1016/j.omtn.2017.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 08/06/2017] [Accepted: 08/07/2017] [Indexed: 12/29/2022]
Abstract
Pigment epithelium derived factor (PEDF) is a potent antiangiogenic, neurotrophic, and neuroprotective molecule that is the endogenous inhibitor of vascular endothelial growth factor (VEGF) in the retina. An ex vivo gene therapy approach based on transgenic overexpression of PEDF in the eye is assumed to rebalance the angiogenic-antiangiogenic milieu of the retina, resulting in growth regression of choroidal blood vessels, the hallmark of neovascular age-related macular degeneration. Here, we show that rat pigment epithelial cells can be efficiently transfected with the PEDF-expressing non-viral hyperactive Sleeping Beauty transposon system delivered in a form free of antibiotic resistance marker miniplasmids. The engineered retinal and iris pigment epithelium cells secrete high (141 ± 13 and 222 ± 14 ng) PEDF levels in 72 hr in vitro. In vivo studies showed cell survival and insert expression during at least 4 months. Transplantation of the engineered cells to the subretinal space of a rat model of choroidal neovascularization reduces almost 50% of the development of new vessels.
Collapse
Affiliation(s)
- Laura Garcia-Garcia
- Experimental Ophthalmology Laboratory, University of Navarra, Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
| | - Sergio Recalde
- Experimental Ophthalmology Laboratory, University of Navarra, Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
| | - Maria Hernandez
- Experimental Ophthalmology Laboratory, University of Navarra, Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
| | - Jaione Bezunartea
- Experimental Ophthalmology Laboratory, University of Navarra, Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
| | - Juan Roberto Rodriguez-Madoz
- Cell Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
| | - Sandra Johnen
- Department of Ophthalmology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Sabine Diarra
- Department of Ophthalmology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Corinne Marie
- CNRS, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS) UMR 8258, 75006 Paris, France; Université Paris Descartes, Sorbonne-Paris-Cité, UTCBS, 75006 Paris, France; Chimie ParisTech, PSL Research University, UTCBS, 75005 Paris, France; INSERM, UTCBS U 1022, 75006 Paris, France
| | - Zsuzsanna Izsvák
- Max Delbrück Center for Molecular Medicine in the Helmholtz Society, 13125 Berlin, Germany
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, 63225 Langen, Germany
| | - Daniel Scherman
- CNRS, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS) UMR 8258, 75006 Paris, France; Université Paris Descartes, Sorbonne-Paris-Cité, UTCBS, 75006 Paris, France; Chimie ParisTech, PSL Research University, UTCBS, 75005 Paris, France; INSERM, UTCBS U 1022, 75006 Paris, France
| | - Martina Kropp
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland; Department of Ophthalmology, University Hospitals and School of Medicine, 22 Rue Alcide-Jentzer, Geneva 1205, Switzerland
| | - Gabriele Thumann
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland; Department of Ophthalmology, University Hospitals and School of Medicine, 22 Rue Alcide-Jentzer, Geneva 1205, Switzerland
| | - Felipe Prosper
- Cell Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain; Area of Cell Therapy, Clínica Universidad de Navarra, University of Navarra, Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
| | - Patricia Fernandez-Robredo
- Experimental Ophthalmology Laboratory, University of Navarra, Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain.
| | - Alfredo Garcia-Layana
- Experimental Ophthalmology Laboratory, University of Navarra, Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain; Ophthalmology Department, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| |
Collapse
|
32
|
Askou AL, Benckendorff JNE, Holmgaard A, Storm T, Aagaard L, Bek T, Mikkelsen JG, Corydon TJ. Suppression of choroidal neovascularization in mice by subretinal delivery of multigenic lentiviral vectors encoding anti-angiogenic microRNAs. Hum Gene Ther Methods 2017. [DOI: 10.1089/hum.2017.079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
| | | | | | - Tina Storm
- Aarhus University, Department of Biomedicine, Aarhus C, Denmark
| | - Lars Aagaard
- Aarhus University, Department of Biomedicine, Aarhus C, Denmark
| | - Toke Bek
- Aarhus University Hospital, Department of Ophthalmology, Aarhus C, Denmark
| | | | - Thomas Juhl Corydon
- Aarhus University, Department of Biomedicine, Wilhelm Meyers Alle, Aarhus C, Denmark, 8000
| |
Collapse
|
33
|
van Beijnum JR, Giovannetti E, Poel D, Nowak-Sliwinska P, Griffioen AW. miRNAs: micro-managers of anticancer combination therapies. Angiogenesis 2017; 20:269-285. [PMID: 28474282 PMCID: PMC5519663 DOI: 10.1007/s10456-017-9545-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/11/2017] [Indexed: 12/15/2022]
Abstract
Angiogenesis is one of the hallmarks of cancer progression and as such has been considered a target of therapeutic interest. However, single targeted agents have not fully lived up to the initial promise of anti-angiogenic therapy. Therefore, it has been suggested that combining therapies and agents will be the way forward in the oncology field. In recent years, microRNAs (miRNAs) have received considerable attention as drivers of tumor development and progression, either acting as tumor suppressors or as oncogenes (so-called oncomiRs), as well as in the process of tumor angiogenesis (angiomiRs). Not only from a functional, but also from a therapeutic view, miRNAs are attractive tools. Thus far, several mimics and antagonists of miRNAs have entered clinical development. Here, we review the provenance and promise of miRNAs as targets as well as therapeutics to contribute to anti-angiogenesis-based (combination) treatment of cancer.
Collapse
Affiliation(s)
- Judy R van Beijnum
- Angiogenesis Laboratory, Department of Medical Oncology, VUMC - Cancer Center Amsterdam, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Laboratory Medical Oncology, Department of Medical Oncology, VUMC - Cancer Center Amsterdam, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | - Dennis Poel
- Angiogenesis Laboratory, Department of Medical Oncology, VUMC - Cancer Center Amsterdam, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | | | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, VUMC - Cancer Center Amsterdam, VU University Medical Center (VUmc), Amsterdam, The Netherlands.
| |
Collapse
|
34
|
Li Y, Zhu P, Verma A, Prasad T, Deng H, Yu D, Li Q. A novel bispecific molecule delivered by recombinant AAV2 suppresses ocular inflammation and choroidal neovascularization. J Cell Mol Med 2017; 21:1555-1571. [PMID: 28332318 PMCID: PMC5543459 DOI: 10.1111/jcmm.13086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/13/2016] [Indexed: 02/05/2023] Open
Abstract
Elevated vascular endothelial growth factor (VEGF) and complement activation are implicated in the pathogenesis of different ocular diseases. The objective of this study was to investigate the hypothesis that dual inhibition of both VEGF and complement activation would confer better protection against ocular inflammation and neovascularization. In this study, we engineered a secreted chimeric VEGF inhibitor domain (VID), a complement inhibitor domain (CID) and a dual inhibitor (ACVP1). Vectors expressing these three inhibitors were constructed and packaged into AAV2 (sextY-F) particles. The expression and secretion of the proteins were validated by Western blot. The effects of these inhibitors expressed from AAV2 vectors were examined in endotoxin-induced uveitis (EIU), experimental autoimmune uveoretinitis (EAU) and choroidal neovascularization (CNV) mouse models. The AAV2 vectors expressing the CID- and ACVP1-attenuated inflammation in EIU and EAU model, whereas the vector expressing VID showed improved retinal structure damaged by EAU, but not affect the infiltration of inflammatory cells in EAU or EIU eyes. Both VID and CID vectors improved laser-induced retinal and choroid/RPE injuries and CNV, whereas ACVP1 vector provided significantly better protection. Our results suggest that gene therapy targeting VEGF and complement components could provide an innovative and long-term strategy for ocular inflammatory and neovascular diseases.
Collapse
Affiliation(s)
- Yiming Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China.,Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ping Zhu
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Amrisha Verma
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Tuhina Prasad
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Hongxin Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Dechao Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Qiuhong Li
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
35
|
Affiliation(s)
- Alan S.L. Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Gigi C.G. Choi
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Timothy K. Lu
- Synthetic Biology Group, Research Laboratory of Electronics, Department of Biological Engineering and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;
| |
Collapse
|
36
|
Abstract
The idea of treating disease in humans with genetic material was conceived over two decades ago and with that a promising journey involving development and efficacy studies in cells and animals of a large number of novel therapeutic reagents unfolded. In the footsteps of this process, successful gene therapy treatment of genetic conditions in humans has shown clear signs of efficacy. Notably, significant advancements using gene supplementation and silencing strategies have been made in the field of ocular gene therapy, thereby pinpointing ocular gene therapy as one of the compelling "actors" bringing gene therapy to the clinic. Most of all, this success has been facilitated because of (1) the fact that the eye is an effortlessly accessible, exceedingly compartmentalized, and immune-privileged organ offering a unique advantage as a gene therapy target, and (2) significant progress toward efficient, sustained transduction of cells within the retina having been achieved using nonintegrating vectors based on recombinant adeno-associated virus and nonintegrating lentivirus vectors. The results from in vivo experiments and trials suggest that treatment of inherited retinal dystrophies, ocular angiogenesis, and inflammation with gene therapy can be both safe and effective. Here, the progress of ocular gene therapy is examined with special emphasis on the potential use of RNAi- and protein-based antiangiogenic gene therapy to treat exudative age-related macular degeneration.
Collapse
Affiliation(s)
- Thomas J Corydon
- Department of Biomedicine, Aarhus University , Aarhus C, Denmark
| |
Collapse
|
37
|
Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: Νew trends in the development of miRNA therapeutic strategies in oncology (Review). Int J Oncol 2016; 49:5-32. [PMID: 27175518 PMCID: PMC4902075 DOI: 10.3892/ijo.2016.3503] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/29/2016] [Indexed: 12/16/2022] Open
Abstract
MicroRNA (miRNA or miR) therapeutics in cancer are based on targeting or mimicking miRNAs involved in cancer onset, progression, angiogenesis, epithelial-mesenchymal transition and metastasis. Several studies conclusively have demonstrated that miRNAs are deeply involved in tumor onset and progression, either behaving as tumor-promoting miRNAs (oncomiRNAs and metastamiRNAs) or as tumor suppressor miRNAs. This review focuses on the most promising examples potentially leading to the development of anticancer, miRNA-based therapeutic protocols. The inhibition of miRNA activity can be readily achieved by the use of miRNA inhibitors and oligomers, including RNA, DNA and DNA analogues (miRNA antisense therapy), small molecule inhibitors, miRNA sponges or through miRNA masking. On the contrary, the enhancement of miRNA function (miRNA replacement therapy) can be achieved by the use of modified miRNA mimetics, such as plasmid or lentiviral vectors carrying miRNA sequences. Combination strategies have been recently developed based on the observation that i) the combined administration of different antagomiR molecules induces greater antitumor effects and ii) some anti-miR molecules can sensitize drug-resistant tumor cell lines to therapeutic drugs. In this review, we discuss two additional issues: i) the combination of miRNA replacement therapy with drug administration and ii) the combination of antagomiR and miRNA replacement therapy. One of the solid results emerging from different independent studies is that miRNA replacement therapy can enhance the antitumor effects of the antitumor drugs. The second important conclusion of the reviewed studies is that the combination of anti-miRNA and miRNA replacement strategies may lead to excellent results, in terms of antitumor effects.
Collapse
|
38
|
Alterations of the cytoskeleton in human cells in space proved by life-cell imaging. Sci Rep 2016; 6:20043. [PMID: 26818711 PMCID: PMC4730242 DOI: 10.1038/srep20043] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 12/23/2015] [Indexed: 12/16/2022] Open
Abstract
Microgravity induces changes in the cytoskeleton. This might have an impact on cells and organs of humans in space. Unfortunately, studies of cytoskeletal changes in microgravity reported so far are obligatorily based on the analysis of fixed cells exposed to microgravity during a parabolic flight campaign (PFC). This study focuses on the development of a compact fluorescence microscope (FLUMIAS) for fast live-cell imaging under real microgravity. It demonstrates the application of the instrument for on-board analysis of cytoskeletal changes in FTC-133 cancer cells expressing the Lifeact-GFP marker protein for the visualization of F-actin during the 24th DLR PFC and TEXUS 52 rocket mission. Although vibration is an inevitable part of parabolic flight maneuvers, we successfully for the first time report life-cell cytoskeleton imaging during microgravity, and gene expression analysis after the 31st parabola showing a clear up-regulation of cytoskeletal genes. Notably, during the rocket flight the FLUMIAS microscope reveals significant alterations of the cytoskeleton related to microgravity. Our findings clearly demonstrate the applicability of the FLUMIAS microscope for life-cell imaging during microgravity, rendering it an important technological advance in live-cell imaging when dissecting protein localization.
Collapse
|
39
|
Dollerup P, Thomsen TM, Nejsum LN, Færch M, Österbrand M, Gregersen N, Rittig S, Christensen JH, Corydon TJ. Partial nephrogenic diabetes insipidus caused by a novel AQP2 variation impairing trafficking of the aquaporin-2 water channel. BMC Nephrol 2015; 16:217. [PMID: 26714855 PMCID: PMC4696136 DOI: 10.1186/s12882-015-0213-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 12/21/2015] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Autosomal dominant inheritance of congenital nephrogenic diabetes insipidus (CNDI) is rare and usually caused by variations in the AQP2 gene. We have investigated the genetic and molecular background underlying symptoms of diabetes insipidus (DI) in a Swedish family with autosomal dominant inheritance of the condition. METHODS The proband and her father were subjected to water deprivation testing and direct DNA sequencing of the coding regions of the AQP2 and AVP genes. Madin-Darby canine kidney (MDCK) cells stably expressing AQP2 variant proteins were generated by lentiviral gene delivery. Localization of AQP2 variant proteins in the cells under stimulated and unstimulated conditions was analyzed by means of immunostaining and confocal laser scanning microscopy. Intracellular trafficking of AQP2 variant proteins was studied using transient expression of mutant dynamin2-K44A-GFP protein and AQP2 variant protein phosphorylation levels were assessed by Western blotting analysis. RESULTS Clinical and genetic data suggest that the proband and her father suffer from partial nephrogenic DI due to a variation (g.4807C > T) in the AQP2 gene. The variation results in substitution of arginine-254 to tryptophan (p.R254W) in AQP2. Analysis of MDCK cells stably expressing AQP2 variant proteins revealed disabled phosphorylation, impaired trafficking and intracellular accumulation of AQP2-R254W protein. Notably, blocking of the endocytic pathway demonstrated impairment of AQP2-R254W to reach the cell surface. CONCLUSIONS Partial CNDI in the Swedish family is caused by an AQP2 variation that seems to disable the encoded AQP2-R254W protein to reach the subapical vesicle population as well as impairing its phosphorylation at S256. The AQP2-R254W protein is thus unable to reach the plasma membrane to facilitate AVP mediated urine concentration.
Collapse
Affiliation(s)
- Pia Dollerup
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, 8000, Aarhus, Denmark.
| | - Troels Møller Thomsen
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, 8000, Aarhus, Denmark.
| | - Lene N Nejsum
- Department of Molecular Biology and Genetics and iNANO, Aarhus University, Aarhus, Denmark.
| | - Mia Færch
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark.
| | - Martin Österbrand
- Department of Pediatrics, Queen Silvia Children's Hospital, Gothenburg, Sweden.
| | - Niels Gregersen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark.
| | - Søren Rittig
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark.
| | - Jane H Christensen
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, 8000, Aarhus, Denmark.
| | - Thomas J Corydon
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, 8000, Aarhus, Denmark.
| |
Collapse
|
40
|
de Souza DA, Borges AC, Santana AC, Oliver C, Jamur MC. Mast Cell Proteases 6 and 7 Stimulate Angiogenesis by Inducing Endothelial Cells to Release Angiogenic Factors. PLoS One 2015; 10:e0144081. [PMID: 26633538 PMCID: PMC4669151 DOI: 10.1371/journal.pone.0144081] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/12/2015] [Indexed: 12/11/2022] Open
Abstract
Mast cell proteases are thought to be involved with tumor progression and neo-vascularization. However, their exact role is still unclear. The present study was undertaken to further elucidate the function of specific subtypes of recombinant mouse mast cell proteases (rmMCP-6 and 7) in neo-vascularization. SVEC4-10 cells were cultured on Geltrex® with either rmMCP-6 or 7 and tube formation was analyzed by fluorescence microscopy and scanning electron microscopy. Additionally, the capacity of these proteases to induce the release of angiogenic factors and pro and anti-angiogenic proteins was analyzed. Both rmMCP-6 and 7 were able to stimulate tube formation. Scanning electron microscopy showed that incubation with the proteases induced SVEC4-10 cells to invade the gel matrix. However, the expression and activity of metalloproteases were not altered by incubation with the mast cell proteases. Furthermore, rmMCP-6 and rmMCP-7 were able to induce the differential release of angiogenic factors from the SVEC4-10 cells. rmMCP-7 was more efficient in stimulating tube formation and release of angiogenic factors than rmMCP-6. These results suggest that the subtypes of proteases released by mast cells may influence endothelial cells during in vivo neo-vascularization.
Collapse
Affiliation(s)
- Devandir Antonio de Souza
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Antonio Carlos Borges
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ana Carolina Santana
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Constance Oliver
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Maria Célia Jamur
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- * E-mail:
| |
Collapse
|
41
|
Deng X, Zhang G, Zhang L, Feng Y, Li Z, Wu G, Yue Y, Li G, Cao Y, Zhu P. Developing a Novel Gene-Delivery Vector System Using the Recombinant Fusion Protein of Pseudomonas Exotoxin A and Hyperthermophilic Archaeal Histone HPhA. PLoS One 2015; 10:e0142558. [PMID: 26556098 PMCID: PMC4640596 DOI: 10.1371/journal.pone.0142558] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/25/2015] [Indexed: 02/06/2023] Open
Abstract
Non-viral gene delivery system with many advantages has a great potential for the future of gene therapy. One inherent obstacle of such approach is the uptake by endocytosis into vesicular compartments. Receptor-mediated gene delivery method holds promise to overcome this obstacle. In this study, we developed a receptor-mediated gene delivery system based on a combination of the Pseudomonas exotoxin A (PE), which has a receptor binding and membrane translocation domain, and the hyperthermophilic archaeal histone (HPhA), which has the DNA binding ability. First, we constructed and expressed the rPE-HPhA fusion protein. We then examined the cytotoxicity and the DNA binding ability of rPE-HPhA. We further assessed the efficiency of transfection of the pEGF-C1 plasmid DNA to CHO cells by the rPE-HPhA system, in comparison to the cationic liposome method. The results showed that the transfection efficiency of rPE-HPhA was higher than that of cationic liposomes. In addition, the rPE-HPhA gene delivery system is non-specific to DNA sequence, topology or targeted cell type. Thus, the rPE-HPhA system can be used for delivering genes of interest into mammalian cells and has great potential to be applied for gene therapy.
Collapse
Affiliation(s)
- Xin Deng
- Experimental Center of the Functional Subjects, Basic Medical Scientific Research College, China Medical University, Shenyang, Liaoning, P.R.China
| | - Guoli Zhang
- Institute of Veterinary Medicine, The Academy of Military Medical Sciences of PLA, Changchun, Jilin, P.R. China
| | - Ling Zhang
- Institute of Veterinary Medicine, The Academy of Military Medical Sciences of PLA, Changchun, Jilin, P.R. China
| | - Yan Feng
- Key Laboratory for Molecular Enzymology, Jilin University, Changchun, Jilin, P.R.China
| | - Zehong Li
- Department Biology and Technology of the Agriculture University of Jilin, Changchun, Jilin, P.R.China
| | - GuangMou Wu
- Institute of Veterinary Medicine, The Academy of Military Medical Sciences of PLA, Changchun, Jilin, P.R. China
| | - Yuhuan Yue
- Institute of Veterinary Medicine, The Academy of Military Medical Sciences of PLA, Changchun, Jilin, P.R. China
| | - Gensong Li
- Experimental Center of the Functional Subjects, Basic Medical Scientific Research College, China Medical University, Shenyang, Liaoning, P.R.China
- Department of Physiology, China Medical University, Shenyang, Liaoning, P.R.China
| | - Yu Cao
- Department of Physiology, China Medical University, Shenyang, Liaoning, P.R.China
| | - Ping Zhu
- Institute of Veterinary Medicine, The Academy of Military Medical Sciences of PLA, Changchun, Jilin, P.R. China
| |
Collapse
|
42
|
Kivelä AM, Huusko J, Ylä-Herttuala S. Prospect and progress of gene therapy in treating atherosclerosis. Expert Opin Biol Ther 2015; 15:1699-712. [PMID: 26328616 DOI: 10.1517/14712598.2015.1084282] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Despite considerable improvements in therapies, atherosclerotic cardiovascular diseases remain the leading cause of death worldwide. Therefore, in addition to current treatment options, new therapeutic approaches are still needed. AREAS COVERED In this review, novel gene and RNA interference-based therapy approaches and promising target genes for treating atherosclerosis are addressed. In addition, relevant animal models for the demonstration of the efficacy of different gene therapy applications, and current progress toward more efficient, targeted and safer gene transfer vectors are reviewed. EXPERT OPINION Atherosclerosis represents a complex multifactorial disease that is dependent on the interplay between lipoprotein metabolism, cellular reactions and inflammation. Recent advances and novel targets, especially in the field of RNA interference-based therapies, are very promising. However, it should be noted that the modulation of a particular gene is not as clearly associated with a complex polygenic disease as it is in the case of monogenic diseases. A deeper understanding of molecular mechanisms of atherosclerosis, further progress in vector development and the demonstration of treatment efficacy in relevant animal models will be required before gene therapy of atherosclerosis meets its clinical reality.
Collapse
Affiliation(s)
- Annukka M Kivelä
- a 1 University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine , Kuopio, Finland +358 403 552 075 ;
| | - Jenni Huusko
- a 1 University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine , Kuopio, Finland +358 403 552 075 ;
| | - Seppo Ylä-Herttuala
- a 1 University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine , Kuopio, Finland +358 403 552 075 ; .,b 2 Science Service Center , Kuopio, Finland.,c 3 Kuopio University Hospital, Gene Therapy Unit , Kuopio, Finland
| |
Collapse
|