1
|
Falcucci L, Dooley CM, Adamoski D, Juan T, Martinez J, Georgieva AM, Mamchaoui K, Cirzi C, Stainier DYR. Transcriptional adaptation upregulates utrophin in Duchenne muscular dystrophy. Nature 2025; 639:493-502. [PMID: 39939773 PMCID: PMC11903304 DOI: 10.1038/s41586-024-08539-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 12/17/2024] [Indexed: 02/14/2025]
Abstract
Duchenne muscular dystrophy (DMD) is a muscle-degenerating disease caused by mutations in the DMD gene, which encodes the dystrophin protein1,2. Utrophin (UTRN), the genetic and functional paralogue of DMD, is upregulated in some DMD patients3-5. To further investigate this UTRN upregulation, we first developed an inducible messenger RNA (mRNA) degradation system for DMD by introducing a premature termination codon (PTC) in one of its alternatively spliced exons. Inclusion of the PTC-containing exon triggers DMD mutant mRNA decay and UTRN upregulation. Notably, blocking nonsense-mediated mRNA decay results in the reversal of UTRN upregulation, whereas overexpressing DMD does not. Furthermore, overexpressing DMDPTC minigenes in wild-type cells causes UTRN upregulation, as does a wild-type DMD minigene containing a self-cleaving ribozyme. To place these findings in a therapeutic context, we used splice-switching antisense oligonucleotides (ASOs) to induce the skipping of out-of-frame exons of DMD, aiming to introduce PTCs. We found that these ASOs cause UTRN upregulation. In addition, when using an ASO to restore the DMD reading frame in myotubes derived from a DMDΔE52 patient, an actual DMD treatment, UTRN upregulation was reduced. Altogether, these results indicate that an mRNA decay-based mechanism called transcriptional adaptation6-8 plays a key role in UTRN upregulation in DMDPTC patients, and they highlight an unexplored therapeutic application of ASOs, as well as ribozymes, in inducing genetic compensation via transcriptional adaptation.
Collapse
Affiliation(s)
- Lara Falcucci
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Christopher M Dooley
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Douglas Adamoski
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Thomas Juan
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Excellence Cluster Cardio-Pulmonary Institute, Bad Nauheim, Frankfurt, Giessen, Germany
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Justin Martinez
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Angelina M Georgieva
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Kamel Mamchaoui
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Cansu Cirzi
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Excellence Cluster Cardio-Pulmonary Institute, Bad Nauheim, Frankfurt, Giessen, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany.
- Excellence Cluster Cardio-Pulmonary Institute, Bad Nauheim, Frankfurt, Giessen, Germany.
| |
Collapse
|
2
|
Engelbeen S, O'Reilly D, Van De Vijver D, Verhaart I, van Putten M, Hariharan V, Hassler M, Khvorova A, Damha MJ, Aartsma-Rus A. Challenges of Assessing Exon 53 Skipping of the Human DMD Transcript with Locked Nucleic Acid-Modified Antisense Oligonucleotides in a Mouse Model for Duchenne Muscular Dystrophy. Nucleic Acid Ther 2023; 33:348-360. [PMID: 38010230 PMCID: PMC10698779 DOI: 10.1089/nat.2023.0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/11/2023] [Indexed: 11/29/2023] Open
Abstract
Antisense oligonucleotide (AON)-mediated exon skipping is a promising therapeutic approach for Duchenne muscular dystrophy (DMD) patients to restore dystrophin expression by reframing the disrupted open reading frame of the DMD transcript. However, the treatment efficacy of the already conditionally approved AONs remains low. Aiming to optimize AON efficiency, we assessed exon 53 skipping of the DMD transcript with different chemically modified AONs, all with a phosphorothioate backbone: 2'-O-methyl (2'OMe), locked nucleic acid (LNA)-2'OMe, 2'-fluoro (FRNA), LNA-FRNA, αLNA-FRNA, and FANA-LNA-FRNA. Efficient exon 53 skipping was observed with the FRNA, LNA-FRNA, and LNA-2'OMe AONs in human control myoblast cultures. Weekly subcutaneous injections (50 mg/kg AON) for a duration of 6 weeks were well tolerated by hDMDdel52/mdx males. Treatment with the LNA-FRNA and LNA-2'OMe AONs resulted in pronounced exon 53 skip levels in skeletal muscles and heart up to 90%, but no dystrophin restoration was observed. This discrepancy was mainly ascribed to the strong binding nature of LNA modifications to RNA, thereby interfering with the amplification of the unskipped product resulting in artificial overamplification of the exon 53 skip product. Our study highlights that treatment effect on RNA and protein level should both be considered when assessing AON efficiency.
Collapse
Affiliation(s)
- Sarah Engelbeen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Daniel O'Reilly
- University of Massachusetts Chan Medical School, RNA Therapeutics Institute, Worcester, Massachusetts, USA
- Department of Chemistry, McGill University, Montreal, Canada
| | - Davy Van De Vijver
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Ingrid Verhaart
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Maaike van Putten
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Vignesh Hariharan
- University of Massachusetts Chan Medical School, RNA Therapeutics Institute, Worcester, Massachusetts, USA
| | - Matthew Hassler
- University of Massachusetts Chan Medical School, RNA Therapeutics Institute, Worcester, Massachusetts, USA
| | - Anastasia Khvorova
- University of Massachusetts Chan Medical School, RNA Therapeutics Institute, Worcester, Massachusetts, USA
| | - Masad J. Damha
- Department of Chemistry, McGill University, Montreal, Canada
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
3
|
Hildyard JCW, Piercy RJ. When Size Really Matters: The Eccentricities of Dystrophin Transcription and the Hazards of Quantifying mRNA from Very Long Genes. Biomedicines 2023; 11:2082. [PMID: 37509720 PMCID: PMC10377302 DOI: 10.3390/biomedicines11072082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
At 2.3 megabases in length, the dystrophin gene is enormous: transcription of a single mRNA requires approximately 16 h. Principally expressed in skeletal muscle, the dystrophin protein product protects the muscle sarcolemma against contraction-induced injury, and dystrophin deficiency results in the fatal muscle-wasting disease, Duchenne muscular dystrophy. This gene is thus of key clinical interest, and therapeutic strategies aimed at eliciting dystrophin restoration require quantitative analysis of its expression. Approaches for quantifying dystrophin at the protein level are well-established, however study at the mRNA level warrants closer scrutiny: measured expression values differ in a sequence-dependent fashion, with significant consequences for data interpretation. In this manuscript, we discuss these nuances of expression and present evidence to support a transcriptional model whereby the long transcription time is coupled to a short mature mRNA half-life, with dystrophin transcripts being predominantly nascent as a consequence. We explore the effects of such a model on cellular transcriptional dynamics and then discuss key implications for the study of dystrophin gene expression, focusing on both conventional (qPCR) and next-gen (RNAseq) approaches.
Collapse
Affiliation(s)
- John C. W. Hildyard
- Comparative Neuromuscular Disease Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London NW1 0TU, UK;
| | | |
Collapse
|
4
|
Hanson B, Stenler S, Ahlskog N, Chwalenia K, Svrzikapa N, Coenen-Stass AM, Weinberg MS, Wood MJ, Roberts TC. Non-uniform dystrophin re-expression after CRISPR-mediated exon excision in the dystrophin/utrophin double-knockout mouse model of DMD. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 30:379-397. [PMID: 36420212 PMCID: PMC9664411 DOI: 10.1016/j.omtn.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Duchenne muscular dystrophy (DMD) is the most prevalent inherited myopathy affecting children, caused by genetic loss of the gene encoding the dystrophin protein. Here we have investigated the use of the Staphylococcus aureus CRISPR-Cas9 system and a double-cut strategy, delivered using a pair of adeno-associated virus serotype 9 (AAV9) vectors, for dystrophin restoration in the severely affected dystrophin/utrophin double-knockout (dKO) mouse. Single guide RNAs were designed to excise Dmd exon 23, with flanking intronic regions repaired by non-homologous end joining. Exon 23 deletion was confirmed at the DNA level by PCR and Sanger sequencing, and at the RNA level by RT-qPCR. Restoration of dystrophin protein expression was demonstrated by western blot and immunofluorescence staining in mice treated via either intraperitoneal or intravenous routes of delivery. Dystrophin restoration was most effective in the diaphragm, where a maximum of 5.7% of wild-type dystrophin expression was observed. CRISPR treatment was insufficient to extend lifespan in the dKO mouse, and dystrophin was expressed in a within-fiber patchy manner in skeletal muscle tissues. Further analysis revealed a plethora of non-productive DNA repair events, including AAV genome integration at the CRISPR cut sites. This study highlights potential challenges for the successful development of CRISPR therapies in the context of DMD.
Collapse
Affiliation(s)
- Britt Hanson
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Sofia Stenler
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Nina Ahlskog
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
- Institute of Developmental and Regenerative Medicine, University of Oxford, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Dr, Headington, Oxford OX3 7TY, UK
| | - Katarzyna Chwalenia
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
- Institute of Developmental and Regenerative Medicine, University of Oxford, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Dr, Headington, Oxford OX3 7TY, UK
| | - Nenad Svrzikapa
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
- Institute of Developmental and Regenerative Medicine, University of Oxford, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Dr, Headington, Oxford OX3 7TY, UK
- Wave Life Sciences Ltd., Cambridge, MA 02138, USA
| | - Anna M.L. Coenen-Stass
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Marc S. Weinberg
- Antiviral Gene Therapy Research Unit, Department of Molecular Medicine and Haematology, University of the Witwatersrand Medical School, WITS 2050, South Africa
- Asklepios BioPharmaceutical, Inc., Research Triangle Park, NC 27709, USA
| | - Matthew J.A. Wood
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
- Institute of Developmental and Regenerative Medicine, University of Oxford, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Dr, Headington, Oxford OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, South Parks Road, Oxford OX1 3QX, UK
| | - Thomas C. Roberts
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
- Institute of Developmental and Regenerative Medicine, University of Oxford, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Dr, Headington, Oxford OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, South Parks Road, Oxford OX1 3QX, UK
| |
Collapse
|
5
|
Gushchina LV, Vetter TA, Frair EC, Bradley AJ, Grounds KM, Lay JW, Huang N, Suhaiba A, Schnell FJ, Hanson G, Simmons TR, Wein N, Flanigan KM. Systemic PPMO-mediated dystrophin expression in the Dup2 mouse model of Duchenne muscular dystrophy. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 30:479-492. [PMID: 36420217 PMCID: PMC9678653 DOI: 10.1016/j.omtn.2022.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/31/2022] [Indexed: 11/11/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a devastating muscle-wasting disease that arises due to the loss of dystrophin expression, leading to progressive loss of motor and cardiorespiratory function. Four exon-skipping approaches using antisense phosphorodiamidate morpholino oligomers (PMOs) have been approved by the FDA to restore a DMD open reading frame, resulting in expression of a functional but internally deleted dystrophin protein, but in patients with single-exon duplications, exon skipping has the potential to restore full-length dystrophin expression. Cell-penetrating peptide-conjugated PMOs (PPMOs) have demonstrated enhanced cellular uptake and more efficient dystrophin restoration than unconjugated PMOs. In the present study, we demonstrate widespread PPMO-mediated dystrophin restoration in the Dup2 mouse model of exon 2 duplication, representing the most common single-exon duplication among patients with DMD. In this proof-of-concept study, a single intravenous injection of PPMO targeting the exon 2 splice acceptor site induced 45% to 68% exon 2-skipped Dmd transcripts in Dup2 skeletal muscles 15 days post-injection. Muscle dystrophin restoration peaked at 77% to 87% average dystrophin-positive fibers and 41% to 51% of normal signal intensity by immunofluorescence, and 15.7% to 56.8% of normal by western blotting 15 to 30 days after treatment. These findings indicate that PPMO-mediated exon skipping is a promising therapeutic strategy for muscle dystrophin restoration in the context of exon 2 duplications.
Collapse
Affiliation(s)
- Liubov V. Gushchina
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Tatyana A. Vetter
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Emma C. Frair
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Adrienne J. Bradley
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Kelly M. Grounds
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Jacob W. Lay
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Nianyuan Huang
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Aisha Suhaiba
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
| | | | | | - Tabatha R. Simmons
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Nicolas Wein
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Kevin M. Flanigan
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Department of Neurology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
6
|
A cell-penetrating peptide enhances delivery and efficacy of phosphorodiamidate morpholino oligomers in mdx mice. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 30:17-27. [PMID: 36189424 PMCID: PMC9483789 DOI: 10.1016/j.omtn.2022.08.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/14/2022] [Indexed: 11/24/2022]
|
7
|
Brain Dp140 alters glutamatergic transmission and social behaviour in the mdx52 mouse model of Duchenne muscular dystrophy. Prog Neurobiol 2022; 216:102288. [PMID: 35654209 DOI: 10.1016/j.pneurobio.2022.102288] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 04/06/2022] [Accepted: 05/25/2022] [Indexed: 12/23/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a muscle disorder caused by DMD mutations and is characterized by neurobehavioural comorbidities due to dystrophin deficiency in the brain. The lack of Dp140, a dystrophin short isoform, is clinically associated with intellectual disability and autism spectrum disorders (ASDs), but its postnatal functional role is not well understood. To investigate synaptic function in the presence or absence of brain Dp140, we utilized two DMD mouse models, mdx23 and mdx52 mice, in which Dp140 is preserved or lacking, respectively. ASD-like behaviours were observed in pups and 8-week-old mdx52 mice lacking Dp140. Paired-pulse ratio of excitatory postsynaptic currents, glutamatergic vesicle number in basolateral amygdala neurons, and glutamatergic transmission in medial prefrontal cortex-basolateral amygdala projections were significantly reduced in mdx52 mice compared to those in wild-type and mdx23 mice. ASD-like behaviour and electrophysiological findings in mdx52 mice were ameliorated by restoration of Dp140 following intra-cerebroventricular injection of antisense oligonucleotide drug-induced exon 53 skipping or intra-basolateral amygdala administration of Dp140 mRNA-based drug. Our results implicate Dp140 in ASD-like behaviour via altered glutamatergic transmission in the basolateral amygdala of mdx52 mice.
Collapse
|
8
|
Mukashyaka MC, Wu CL, Ha K, Zhang J, Wood J, Foley S, Mastis B, Jungels N, Sun H, Shadid M, Harriman S, Hadcock JR. Pharmacokinetic/Pharmacodynamic Modeling of a Cell-Penetrating Peptide Phosphorodiamidate Morpholino Oligomer in mdx Mice. Pharm Res 2021; 38:1731-1745. [PMID: 34671920 PMCID: PMC8602220 DOI: 10.1007/s11095-021-03118-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/21/2021] [Indexed: 01/09/2023]
Abstract
PURPOSE Peptide-conjugated phosphorodiamidate morpholino oligomers (PPMOs) have shown promise in treating Duchenne muscular dystrophy (DMD). We evaluated a semi-mechanistic pharmacokinetic (PK) and pharmacodynamic (PD) model to capture the relationship between plasma and muscle tissue exposure/response in mdx mice treated by mouse surrogate PPMO. METHODS A single or repeated (every 4 weeks for 20 weeks) intravenous PPMO dose was administered to mdx mice (n = 6/timepoint). A PK/PD model was built to characterize data via sequential modeling. A 2-compartment model was used to describe plasma PK. A simultaneous tissue PK/PD model was subsequently developed: 2-compartment model to describe muscle PK; linked to an indirect response model describing stimulation of synthesis of skipped transcript, which was in turn linked to stimulation of synthesis of dystrophin protein expression. RESULTS Model performance assessment via goodness-of-fit plots, visual predictive checks, and accurate parameter estimation indicated robust fits of plasma PK and muscle PK/PD data. The model estimated a PPMO tissue half-life of 5 days-a useful parameter in determining the longevity of PPMOs in tissue and their limited accumulation after multiple doses. Additionally, the model successfully described dystrophin expression after single dosing and associated protein accumulation after multiple dosing (increasing ~ twofold accumulation from the first to last dose). CONCLUSIONS This first PK/PD model of a PPMO in a DMD disease model will help characterize and predict the time course of PK/PD biomarkers in mdx mice. Furthermore, the model framework can be used to develop clinical PK/PD models and can be extended to other exon-skipping therapies and species.
Collapse
Affiliation(s)
- Marie Claire Mukashyaka
- Translational Sciences Group, Sarepta Therapeutics, Inc., 215 First St., Cambridge, MA, 02142, USA.
| | - Chia-Ling Wu
- Biology Group, Sarepta Therapeutics, Inc., Cambridge, MA, USA
| | - Kristin Ha
- Biology Group, Sarepta Therapeutics, Inc., Cambridge, MA, USA
| | - Jianbo Zhang
- Translational Sciences Group, Sarepta Therapeutics, Inc., 215 First St., Cambridge, MA, 02142, USA
| | - Jenna Wood
- Translational Sciences Group, Sarepta Therapeutics, Inc., 215 First St., Cambridge, MA, 02142, USA
| | - Samantha Foley
- Biology Group, Sarepta Therapeutics, Inc., Cambridge, MA, USA
| | - Bryan Mastis
- Biology Group, Sarepta Therapeutics, Inc., Cambridge, MA, USA
| | - Nino Jungels
- Biology Group, Sarepta Therapeutics, Inc., Cambridge, MA, USA
| | - Huadong Sun
- Clinical Pharmacology Group, Sarepta Therapeutics, Inc., Cambridge, MA, USA
| | - Mohammad Shadid
- Translational Sciences Group, Sarepta Therapeutics, Inc., 215 First St., Cambridge, MA, 02142, USA
| | - Shawn Harriman
- Translational Sciences Group, Sarepta Therapeutics, Inc., 215 First St., Cambridge, MA, 02142, USA
| | - John R Hadcock
- Translational Sciences Group, Sarepta Therapeutics, Inc., 215 First St., Cambridge, MA, 02142, USA
| |
Collapse
|
9
|
Hildyard JCW, Rawson F, Wells DJ, Piercy RJ. Multiplex in situ hybridization within a single transcript: RNAscope reveals dystrophin mRNA dynamics. PLoS One 2020; 15:e0239467. [PMID: 32970731 PMCID: PMC7514052 DOI: 10.1371/journal.pone.0239467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/08/2020] [Indexed: 01/22/2023] Open
Abstract
Dystrophin plays a vital role in maintaining muscle health, yet low mRNA expression, lengthy transcription time and the limitations of traditional in-situ hybridization (ISH) methodologies mean that the dynamics of dystrophin transcription remain poorly understood. RNAscope is highly sensitive ISH method that can be multiplexed, allowing detection of individual transcript molecules at sub-cellular resolution, with different target mRNAs assigned to distinct fluorophores. We instead multiplex within a single transcript, using probes targeted to the 5' and 3' regions of muscle dystrophin mRNA. Our approach shows this method can reveal transcriptional dynamics in health and disease, resolving both nascent myonuclear transcripts and exported mature mRNAs in quantitative fashion (with the latter absent in dystrophic muscle, yet restored following therapeutic intervention). We show that even in healthy muscle, immature dystrophin mRNA predominates (60-80% of total), with the surprising implication that the half-life of a mature transcript is markedly shorter than the time invested in transcription: at the transcript level, supply may exceed demand. Our findings provide unique spatiotemporal insight into the behaviour of this long transcript (with implications for therapeutic approaches), and further suggest this modified multiplex ISH approach is well-suited to long genes, offering a highly tractable means to reveal complex transcriptional dynamics.
Collapse
Affiliation(s)
- John C. W. Hildyard
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London, United Kingdom
| | - Faye Rawson
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London, United Kingdom
| | - Dominic J. Wells
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Richard J. Piercy
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London, United Kingdom
| |
Collapse
|
10
|
Moretti A, Fonteyne L, Giesert F, Hoppmann P, Meier AB, Bozoglu T, Baehr A, Schneider CM, Sinnecker D, Klett K, Fröhlich T, Rahman FA, Haufe T, Sun S, Jurisch V, Kessler B, Hinkel R, Dirschinger R, Martens E, Jilek C, Graf A, Krebs S, Santamaria G, Kurome M, Zakhartchenko V, Campbell B, Voelse K, Wolf A, Ziegler T, Reichert S, Lee S, Flenkenthaler F, Dorn T, Jeremias I, Blum H, Dendorfer A, Schnieke A, Krause S, Walter MC, Klymiuk N, Laugwitz KL, Wolf E, Wurst W, Kupatt C. Somatic gene editing ameliorates skeletal and cardiac muscle failure in pig and human models of Duchenne muscular dystrophy. Nat Med 2020; 26:207-214. [PMID: 31988462 PMCID: PMC7212064 DOI: 10.1038/s41591-019-0738-2] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 12/11/2019] [Indexed: 11/09/2022]
Abstract
Frameshift mutations in the DMD gene, encoding dystrophin, cause Duchenne muscular dystrophy (DMD), leading to terminal muscle and heart failure in patients. Somatic gene editing by sequence-specific nucleases offers new options for restoring the DMD reading frame, resulting in expression of a shortened but largely functional dystrophin protein. Here, we validated this approach in a pig model of DMD lacking exon 52 of DMD (DMDΔ52), as well as in a corresponding patient-derived induced pluripotent stem cell model. In DMDΔ52 pigs1, intramuscular injection of adeno-associated viral vectors of serotype 9 carrying an intein-split Cas9 (ref. 2) and a pair of guide RNAs targeting sequences flanking exon 51 (AAV9-Cas9-gE51) induced expression of a shortened dystrophin (DMDΔ51-52) and improved skeletal muscle function. Moreover, systemic application of AAV9-Cas9-gE51 led to widespread dystrophin expression in muscle, including diaphragm and heart, prolonging survival and reducing arrhythmogenic vulnerability. Similarly, in induced pluripotent stem cell-derived myoblasts and cardiomyocytes of a patient lacking DMDΔ52, AAV6-Cas9-g51-mediated excision of exon 51 restored dystrophin expression and amelioreate skeletal myotube formation as well as abnormal cardiomyocyte Ca2+ handling and arrhythmogenic susceptibility. The ability of Cas9-mediated exon excision to improve DMD pathology in these translational models paves the way for new treatment approaches in patients with this devastating disease.
Collapse
Affiliation(s)
- A Moretti
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany.
| | - L Fonteyne
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - F Giesert
- Institute of Developmental Genetics, Helmholtz Centre and Munich School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - P Hoppmann
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - A B Meier
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - T Bozoglu
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - A Baehr
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - C M Schneider
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - D Sinnecker
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - K Klett
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - T Fröhlich
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - F Abdel Rahman
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - T Haufe
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - S Sun
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - V Jurisch
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - B Kessler
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - R Hinkel
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - R Dirschinger
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - E Martens
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - C Jilek
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - A Graf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - S Krebs
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - G Santamaria
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - M Kurome
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - V Zakhartchenko
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - B Campbell
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - K Voelse
- Reseach Unit Apoptosis in Hemopoietic Stem Cells, Helmholtz Zentrum München, German Center for Environmental Health (HMGU), Munich, Germany
| | - A Wolf
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - T Ziegler
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - S Reichert
- Department of Neurology, Friedrich Baur Institute, LMU Munich, Munich, Germany
| | - S Lee
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - F Flenkenthaler
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - T Dorn
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - I Jeremias
- Reseach Unit Apoptosis in Hemopoietic Stem Cells, Helmholtz Zentrum München, German Center for Environmental Health (HMGU), Munich, Germany
| | - H Blum
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - A Dendorfer
- Walter Brendel Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - A Schnieke
- Chair of Livestock Biotechnology, School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - S Krause
- Department of Neurology, Friedrich Baur Institute, LMU Munich, Munich, Germany
| | - M C Walter
- Department of Neurology, Friedrich Baur Institute, LMU Munich, Munich, Germany
| | - N Klymiuk
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - K L Laugwitz
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - E Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - W Wurst
- Institute of Developmental Genetics, Helmholtz Centre and Munich School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - C Kupatt
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
11
|
Amoasii L, Li H, Zhang Y, Min YL, Sanchez-Ortiz E, Shelton JM, Long C, Mireault AA, Bhattacharyya S, McAnally JR, Bassel-Duby R, Olson EN. In vivo non-invasive monitoring of dystrophin correction in a new Duchenne muscular dystrophy reporter mouse. Nat Commun 2019; 10:4537. [PMID: 31586095 PMCID: PMC6778191 DOI: 10.1038/s41467-019-12335-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/20/2019] [Indexed: 12/24/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal genetic disorder caused by mutations in the dystrophin gene. To enable the non-invasive analysis of DMD gene correction strategies in vivo, we introduced a luciferase reporter in-frame with the C-terminus of the dystrophin gene in mice. Expression of this reporter mimics endogenous dystrophin expression and DMD mutations that disrupt the dystrophin open reading frame extinguish luciferase expression. We evaluated the correction of the dystrophin reading frame coupled to luciferase in mice lacking exon 50, a common mutational hotspot, after delivery of CRISPR/Cas9 gene editing machinery with adeno-associated virus. Bioluminescence monitoring revealed efficient and rapid restoration of dystrophin protein expression in affected skeletal muscles and the heart. Our results provide a sensitive non-invasive means of monitoring dystrophin correction in mouse models of DMD and offer a platform for testing different strategies for amelioration of DMD pathogenesis.
Collapse
Affiliation(s)
- Leonela Amoasii
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, Watertown, MA, 02472, USA
- Exonics Therapeutics, 490 Arsenal Way, Watertown, MA, 02472, USA
| | - Hui Li
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, Watertown, MA, 02472, USA
| | - Yu Zhang
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, Watertown, MA, 02472, USA
| | - Yi-Li Min
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, Watertown, MA, 02472, USA
- Exonics Therapeutics, 490 Arsenal Way, Watertown, MA, 02472, USA
| | - Efrain Sanchez-Ortiz
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, Watertown, MA, 02472, USA
| | - John M Shelton
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Chengzu Long
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, Watertown, MA, 02472, USA
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY, 10016, USA
| | - Alex A Mireault
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, Watertown, MA, 02472, USA
| | - Samadrita Bhattacharyya
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, Watertown, MA, 02472, USA
| | - John R McAnally
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, Watertown, MA, 02472, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, Watertown, MA, 02472, USA
| | - Eric N Olson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, Watertown, MA, 02472, USA.
| |
Collapse
|
12
|
Janssen MJ, Nieskens TTG, Steevels TAM, Caetano-Pinto P, den Braanker D, Mulder M, Ponstein Y, Jones S, Masereeuw R, den Besten C, Wilmer MJ. Therapy with 2'-O-Me Phosphorothioate Antisense Oligonucleotides Causes Reversible Proteinuria by Inhibiting Renal Protein Reabsorption. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 18:298-307. [PMID: 31610379 PMCID: PMC6796739 DOI: 10.1016/j.omtn.2019.08.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 08/28/2019] [Indexed: 11/18/2022]
Abstract
Antisense oligonucleotide therapy has been reported to be associated with renal injury. Here, the mechanism of reversible proteinuria was investigated by combining clinical, pre-clinical, and in vitro data. Urine samples were obtained from Duchenne muscular dystrophy (DMD) patients treated with drisapersen, a modified 2′O-methyl phosphorothioate antisense oligonucleotide (6 mg/kg). Urine and kidney tissue samples were collected from cynomolgus monkeys (Macaca fascicularis) dosed with drisapersen (39 weeks). Cell viability and protein uptake were evaluated in vitro using human conditionally immortalized proximal tubule epithelial cells (ciPTECs). Oligonucleotide treatment in DMD patients was associated with an increase in urinary alpha-1-microglobulin (A1M), which returned to baseline following treatment interruptions. In monkeys, increased urinary A1M correlated with dose-dependent accumulation of oligonucleotide in kidney tissue without evidence of tubular damage. Furthermore, oligonucleotides accumulated in the lysosomes of ciPTECs and reduced the absorption of A1M, albumin, and receptor-associated protein, but did not affect cell viability when incubated for up to 7 days. In conclusion, phosphorothioate oligonucleotides appear to directly compete for receptor-mediated endocytosis in proximal tubules. We postulate that oligonucleotide-induced low molecular weight proteinuria in patients is therefore a transient functional change and not indicative of tubular damage.
Collapse
Affiliation(s)
- Manoe J Janssen
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, the Netherlands.
| | - Tom T G Nieskens
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | | | - Pedro Caetano-Pinto
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, the Netherlands
| | - Dirk den Braanker
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | | | | | | | - Rosalinde Masereeuw
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, the Netherlands
| | | | - Martijn J Wilmer
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| |
Collapse
|
13
|
Bosgra S, Sipkens J, de Kimpe S, den Besten C, Datson N, van Deutekom J. The Pharmacokinetics of 2'- O-Methyl Phosphorothioate Antisense Oligonucleotides: Experiences from Developing Exon Skipping Therapies for Duchenne Muscular Dystrophy. Nucleic Acid Ther 2019; 29:305-322. [PMID: 31429628 DOI: 10.1089/nat.2019.0805] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Delivery to the target site and adversities related to off-target exposure have made the road to clinical success and approval of antisense oligonucleotide (AON) therapies challenging. Various classes of AONs have distinct chemical features and pharmacological properties. Understanding the similarities and differences in pharmacokinetics (PKs) among AON classes is important to make future development more efficient and may facilitate regulatory guidance of AON development programs. For the class of 2'-O-methyl phosphorothioate (2OMe PS) RNA AONs, most nonclinical and clinical PK data available today are derived from development of exon skipping therapies for Duchenne muscular dystrophy (DMD). While some publications have featured PK aspects of these AONs, no comprehensive overview is available to date. This article presents a detailed review of absorption, distribution, metabolism, and excretion of 2OMe PS AONs, compiled from publicly available data and previously unpublished internal data on drisapersen and related exon skipping candidates in preclinical species and DMD patients. Considerations regarding drug-drug interactions, toxicokinetics, and pharmacodynamics are also discussed. From the data presented, the picture emerges of consistent PK properties within the 2OMe PS class, predictable behavior across species, and a considerable overlap with other single-stranded PS AONs. A level of detail on muscle as a target tissue is provided, which was not previously available. Furthermore, muscle biopsy samples taken in DMD clinical trials allowed confirmation of the applicability of interspecies scaling approaches commonly applied in the absence of clinical target tissue data.
Collapse
|
14
|
Ultrasensitive Hybridization-Based ELISA Method for the Determination of Phosphorodiamidate Morpholino Oligonucleotides in Biological samples. Methods Mol Biol 2018; 1565:265-277. [PMID: 28364250 DOI: 10.1007/978-1-4939-6817-6_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Determining the concentration of oligonucleotide in biological samples such as tissue lysate and serum is essential for determining the biodistribution and pharmacokinetic profile, respectively. ELISA-based assays have shown far greater sensitivities compared to other methods such as HPLC and LC/MS. Here, we describe a novel ultrasensitive hybridization-based ELISA method for quantitating morpholino oligonucleotides in mouse tissue lysate and serum samples. The assay has a linear detection range of 5-250 pM (R2 > 0.99).
Collapse
|
15
|
Godfrey C, Desviat LR, Smedsrød B, Piétri-Rouxel F, Denti MA, Disterer P, Lorain S, Nogales-Gadea G, Sardone V, Anwar R, El Andaloussi S, Lehto T, Khoo B, Brolin C, van Roon-Mom WM, Goyenvalle A, Aartsma-Rus A, Arechavala-Gomeza V. Delivery is key: lessons learnt from developing splice-switching antisense therapies. EMBO Mol Med 2017; 9:545-557. [PMID: 28289078 PMCID: PMC5412803 DOI: 10.15252/emmm.201607199] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The use of splice‐switching antisense therapy is highly promising, with a wealth of pre‐clinical data and numerous clinical trials ongoing. Nevertheless, its potential to treat a variety of disorders has yet to be realized. The main obstacle impeding the clinical translation of this approach is the relatively poor delivery of antisense oligonucleotides to target tissues after systemic delivery. We are a group of researchers closely involved in the development of these therapies and would like to communicate our discussions concerning the validity of standard methodologies currently used in their pre‐clinical development, the gaps in current knowledge and the pertinent challenges facing the field. We therefore make recommendations in order to focus future research efforts and facilitate a wider application of therapeutic antisense oligonucleotides.
Collapse
Affiliation(s)
- Caroline Godfrey
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Lourdes R Desviat
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, CIBERER, IdiPaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Bård Smedsrød
- Department of Medical Biology, University of Tromsø, Tromsø, Norway
| | | | - Michela A Denti
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Petra Disterer
- Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London, UK
| | - Stéphanie Lorain
- UPMC, INSERM, UMRS 974, CNRS FRE 3617, Institut de Myologie, Paris, France
| | - Gisela Nogales-Gadea
- Grup d'Investigació en Malalties Neuromusculars i Neuropediatriques, Institut d' Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona Barcelona, Spain
| | - Valentina Sardone
- Dubowitz Neuromuscular Centre and Developmental Neuroscience Programme, Institute of Child Health, University College London, London, UK
| | - Rayan Anwar
- Drug Discovery Informatics Lab, Qasemi-Research Center, Al-Qasemi Academic College, Baka El-Garbiah, Israel.,Drug Discovery and Development Laboratory, Institute of Applied Research, Galilee Society, Shefa-Amr, Israel
| | - Samir El Andaloussi
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.,Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Taavi Lehto
- Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.,Institute of Technology, University of Tartu, Tartu, Estonia
| | - Bernard Khoo
- Centre for Neuroendocrinology, Division of Medicine, University College London, London, UK
| | - Camilla Brolin
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Aurélie Goyenvalle
- INSERM U1179, UFR des sciences de la santé, Université Versailles Saint Quentin, Montigny-le-Bretonneux, France
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
16
|
Jirka SMG, 't Hoen PAC, Diaz Parillas V, Tanganyika-de Winter CL, Verheul RC, Aguilera B, de Visser PC, Aartsma-Rus AM. Cyclic Peptides to Improve Delivery and Exon Skipping of Antisense Oligonucleotides in a Mouse Model for Duchenne Muscular Dystrophy. Mol Ther 2017; 26:132-147. [PMID: 29103911 PMCID: PMC5763161 DOI: 10.1016/j.ymthe.2017.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 10/03/2017] [Accepted: 10/05/2017] [Indexed: 01/16/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe, progressive muscle wasting disorder caused by reading frame disrupting mutations in the DMD gene. Exon skipping is a therapeutic approach for DMD. It employs antisense oligonucleotides (AONs) to restore the disrupted open reading frame, allowing the production of shorter, but partly functional dystrophin protein as seen in less severely affected Becker muscular dystrophy patients. To be effective, AONs need to be delivered and effectively taken up by the target cells, which can be accomplished by the conjugation of tissue-homing peptides. We performed phage display screens using a cyclic peptide library combined with next generation sequencing analyses to identify candidate muscle-homing peptides. Conjugation of the lead peptide to 2'-O-methyl phosphorothioate AONs enabled a significant, 2-fold increase in delivery and exon skipping in all analyzed skeletal and cardiac muscle of mdx mice and appeared well tolerated. While selected as a muscle-homing peptide, uptake was increased in liver and kidney as well. The homing capacity of the peptide may have been overruled by the natural biodistribution of the AON. Nonetheless, our results suggest that the identified peptide has the potential to facilitate delivery of AONs and perhaps other compounds to skeletal and cardiac muscle.
Collapse
Affiliation(s)
- Silvana M G Jirka
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Peter A C 't Hoen
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | | | | | | | | | | | - Annemieke M Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands.
| |
Collapse
|
17
|
Zaghloul EM, Gissberg O, Moreno PMD, Siggens L, Hällbrink M, Jørgensen AS, Ekwall K, Zain R, Wengel J, Lundin KE, Smith CIE. CTG repeat-targeting oligonucleotides for down-regulating Huntingtin expression. Nucleic Acids Res 2017; 45:5153-5169. [PMID: 28334749 PMCID: PMC5435994 DOI: 10.1093/nar/gkx111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/06/2017] [Indexed: 12/12/2022] Open
Abstract
Huntington's disease (HD) is a fatal, neurodegenerative disorder in which patients suffer from mobility, psychological and cognitive impairments. Existing therapeutics are only symptomatic and do not significantly alter the disease progression or increase life expectancy. HD is caused by expansion of the CAG trinucleotide repeat region in exon 1 of the Huntingtin gene (HTT), leading to the formation of mutant HTT transcripts (muHTT). The toxic gain-of-function of muHTT protein is a major cause of the disease. In addition, it has been suggested that the muHTT transcript contributes to the toxicity. Thus, reduction of both muHTT mRNA and protein levels would ideally be the most useful therapeutic option. We herein present a novel strategy for HD treatment using oligonucleotides (ONs) directly targeting the HTT trinucleotide repeat DNA. A partial, but significant and potentially long-term, HTT knock-down of both mRNA and protein was successfully achieved. Diminished phosphorylation of HTT gene-associated RNA-polymerase II is demonstrated, suggestive of reduced transcription downstream the ON-targeted repeat. Different backbone chemistries were found to have a strong impact on the ON efficiency. We also successfully use different delivery vehicles as well as naked uptake of the ONs, demonstrating versatility and possibly providing insights for in vivo applications.
Collapse
Affiliation(s)
- Eman M Zaghloul
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86 Huddinge, Stockholm, Sweden.,Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, El-Khartoum square, Azareeta, 21 521 Alexandria, Egypt
| | - Olof Gissberg
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86 Huddinge, Stockholm, Sweden
| | - Pedro M D Moreno
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86 Huddinge, Stockholm, Sweden.,Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Lee Siggens
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden, SE-141 86, Huddinge, Stockholm, Sweden
| | - Mattias Hällbrink
- Department of Neurochemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Anna S Jørgensen
- Department of Physics and Chemistry, Nucleic Acid Centre University of Southern Denmark, DK-5230 Odense, Denmark
| | - Karl Ekwall
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden, SE-141 86, Huddinge, Stockholm, Sweden
| | - Rula Zain
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86 Huddinge, Stockholm, Sweden.,Department of Clinical Genetics, Centre for Rare Diseases, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Jesper Wengel
- Department of Physics and Chemistry, Nucleic Acid Centre University of Southern Denmark, DK-5230 Odense, Denmark
| | - Karin E Lundin
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86 Huddinge, Stockholm, Sweden
| | - C I Edvard Smith
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86 Huddinge, Stockholm, Sweden
| |
Collapse
|
18
|
Verheul RC, van Deutekom JCT, Datson NA. Digital Droplet PCR for the Absolute Quantification of Exon Skipping Induced by Antisense Oligonucleotides in (Pre-)Clinical Development for Duchenne Muscular Dystrophy. PLoS One 2016; 11:e0162467. [PMID: 27612288 PMCID: PMC5017733 DOI: 10.1371/journal.pone.0162467] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/23/2016] [Indexed: 01/15/2023] Open
Abstract
Antisense oligonucleotides (AONs) in clinical development for Duchenne muscular dystrophy (DMD) aim to induce skipping of a specific exon of the dystrophin transcript during pre-mRNA splicing. This results in restoration of the open reading frame and consequently synthesis of a dystrophin protein with a shorter yet functional central rod domain. To monitor the molecular therapeutic effect of exon skip-inducing AONs in clinical studies, accurate quantification of pre- and post-treatment exon skip levels is required. With the recent introduction of 3rd generation digital droplet PCR (ddPCR), a state-of-the-art technology became available which allows absolute quantification of transcript copy numbers with and without specific exon skip with high precision, sensitivity and reproducibility. Using Taqman assays with probes targeting specific exon-exon junctions, we here demonstrate that ddPCR reproducibly quantified cDNA fragments with and without exon 51 of the DMD gene over a 4-log dynamic range. In a comparison of conventional nested PCR, qPCR and ddPCR using cDNA constructs with and without exon 51 mixed in different molar ratios using, ddPCR quantification came closest to the expected outcome over the full range of ratios (0–100%), while qPCR and in particular nested PCR overestimated the relative percentage of the construct lacking exon 51. Highest accuracy was similarly obtained with ddPCR in DMD patient-derived muscle cells treated with an AON inducing exon 51 skipping. We therefore recommend implementation of ddPCR for quantification of exon skip efficiencies of AONs in (pre)clinical development for DMD.
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Antisense-mediated modulation of transcripts is a dynamic therapeutic field, especially for neuromuscular disorders. RECENT FINDINGS For three diseases, this approach has advanced to the clinical trial phase, that is Duchenne muscular dystrophy, spinal muscular atrophy and myotonic dystrophy. In parallel, numerous proof-of-concept studies in cell and animal models have been reported for additional neuromuscular disorders. SUMMARY This review discusses the most notable advances in preclinical and clinical studies in the past year. For Duchenne muscular dystrophy, spinal muscular atrophy and myotonic dystrophy trials are ongoing to assess safety and efficacy, while in parallel preclinical studies are being conducted to identify ways to improve efficiency and delivery. For other neuromuscular diseases, progress is made as well warranting future clinical trials. However, towards clinical trial readiness, it is important not only to optimize the therapy preclinically but to also develop the infrastructure that is needed to conduct trials.
Collapse
|
20
|
Hulsker M, Verhaart I, van Vliet L, Aartsma-Rus A, van Putten M. Accurate Dystrophin Quantification in Mouse Tissue; Identification of New and Evaluation of Existing Methods. J Neuromuscul Dis 2016; 3:77-90. [DOI: 10.3233/jnd-150126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
21
|
Brolin C, Shiraishi T, Hojman P, Krag TO, Nielsen PE, Gehl J. Electroporation Enhanced Effect of Dystrophin Splice Switching PNA Oligomers in Normal and Dystrophic Muscle. MOLECULAR THERAPY-NUCLEIC ACIDS 2015; 4:e267. [PMID: 26623939 PMCID: PMC5014535 DOI: 10.1038/mtna.2015.41] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/09/2015] [Indexed: 01/16/2023]
Abstract
Peptide nucleic acid (PNA) is a synthetic DNA mimic that has shown potential for discovery of novel splice switching antisense drugs. However, in vivo cellular delivery has been a limiting factor for development, and only few successful studies have been reported. As a possible modality for improvement of in vivo cellular availability, we have investigated the effect of electrotransfer upon intramuscular (i.m.) PNA administration in vivo. Antisense PNA targeting exon 23 of the murine dystrophin gene was administered by i.m. injection to the tibialis anterior (TA) muscle of normal NMRI and dystrophic mdx mice with or without electroporation. At low, single PNA doses (1.5, 3, or 10 µg/TA), electroporation augmented the antisense exon skipping induced by an unmodified PNA by twofold to fourfold in healthy mouse muscle with optimized electric parameters, measured after 7 days. The PNA splice switching was detected at the RNA level up to 4 weeks after a single-dose treatment. In dystrophic muscles of the MDX mouse, electroporation increased the number of dystrophin-positive fibers about 2.5-fold at 2 weeks after a single PNA administration compared to injection only. In conclusion, we find that electroporation can enhance PNA antisense effects in muscle tissue.
Collapse
Affiliation(s)
- Camilla Brolin
- Center for Experimental Drug and Gene Electrotransfer (CEDGE), Department of Oncology, Copenhagen University Hospital Herlev, Denmark.,Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Denmark
| | - Takehiko Shiraishi
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Denmark
| | - Pernille Hojman
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Denmark
| | - Thomas O Krag
- Neuromuscular Research Unit, Department of Neurology Rigshospitalet, University of Copenhagen, Denmark
| | - Peter E Nielsen
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Denmark.,Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Denmark
| | - Julie Gehl
- Center for Experimental Drug and Gene Electrotransfer (CEDGE), Department of Oncology, Copenhagen University Hospital Herlev, Denmark
| |
Collapse
|
22
|
Bajanca F, Gonzalez-Perez V, Gillespie SJ, Beley C, Garcia L, Theveneau E, Sear RP, Hughes SM. In vivo dynamics of skeletal muscle Dystrophin in zebrafish embryos revealed by improved FRAP analysis. eLife 2015; 4. [PMID: 26459831 PMCID: PMC4601390 DOI: 10.7554/elife.06541] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 09/10/2015] [Indexed: 12/30/2022] Open
Abstract
Dystrophin forms an essential link between sarcolemma and cytoskeleton, perturbation of which causes muscular dystrophy. We analysed Dystrophin binding dynamics in vivo for the first time. Within maturing fibres of host zebrafish embryos, our analysis reveals a pool of diffusible Dystrophin and complexes bound at the fibre membrane. Combining modelling, an improved FRAP methodology and direct semi-quantitative analysis of bleaching suggests the existence of two membrane-bound Dystrophin populations with widely differing bound lifetimes: a stable, tightly bound pool, and a dynamic bound pool with high turnover rate that exchanges with the cytoplasmic pool. The three populations were found consistently in human and zebrafish Dystrophins overexpressed in wild-type or dmd(ta222a/ta222a) zebrafish embryos, which lack Dystrophin, and in Gt(dmd-Citrine)(ct90a) that express endogenously-driven tagged zebrafish Dystrophin. These results lead to a new model for Dystrophin membrane association in developing muscle, and highlight our methodology as a valuable strategy for in vivo analysis of complex protein dynamics.
Collapse
Affiliation(s)
- Fernanda Bajanca
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom.,CNRS and Université Paul Sabatier, Toulouse, France
| | | | - Sean J Gillespie
- Department of Physics, University of Surrey, Guildford, United Kingdom
| | - Cyriaque Beley
- Université Versailles Saint-Quentin, Montigny-le-Bretonneux, France.,Laboratoire International Associé-Biologie appliquée aux handicaps neuromusculaires, Centre Scientifique de Monaco, Monaco, Monaco
| | - Luis Garcia
- Université Versailles Saint-Quentin, Montigny-le-Bretonneux, France.,Laboratoire International Associé-Biologie appliquée aux handicaps neuromusculaires, Centre Scientifique de Monaco, Monaco, Monaco
| | | | - Richard P Sear
- Department of Physics, University of Surrey, Guildford, United Kingdom
| | - Simon M Hughes
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| |
Collapse
|
23
|
Burki U, Keane J, Blain A, O'Donovan L, Gait MJ, Laval SH, Straub V. Development and Application of an Ultrasensitive Hybridization-Based ELISA Method for the Determination of Peptide-Conjugated Phosphorodiamidate Morpholino Oligonucleotides. Nucleic Acid Ther 2015; 25:275-84. [PMID: 26176274 DOI: 10.1089/nat.2014.0528] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Antisense oligonucleotide (AON)-induced exon skipping is one of the most promising strategies for treating Duchenne muscular dystrophy (DMD) and other rare monogenic conditions. Phosphorodiamidate morpholino oligonucleotides (PMOs) and 2'-O-methyl phosphorothioate (2'OMe) are two of the most advanced AONs in development. The next generation of peptide-conjugated PMO (P-PMO) is also showing great promise, but to advance these therapies it is essential to determine the pharmacokinetic and biodistribution (PK/BD) profile using a suitable method to detect AON levels in blood and tissue samples. An enzyme-linked immunosorbent assay (ELISA)-based method, which shows greater sensitivity than the liquid chromatography-mass spectrometry method, is the method of choice for 2'OMe detection in preclinical and clinical studies. However, no such assay has been developed for PMO/P-PMO detection, and we have, therefore, developed an ultrasensitive hybridization-based ELISA for this purpose. The assay has a linear detection range of 5-250 pM (R(2)>0.99) in mouse serum and tissue lysates. The sensitivity was sufficient for determining the 24-h PK/BD profile of PMO and P-PMO injected at standard doses (12.5 mg/kg) in mdx mice, the dystrophin-deficient mouse model for DMD. The assay demonstrated an accuracy approaching 100% with precision values under 12%. This provides a powerful cost-effective assay for the purpose of accelerating the development of these emerging therapeutic agents.
Collapse
Affiliation(s)
- Umar Burki
- 1 The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases at Newcastle, Institute of Genetic Medicine, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - Jonathan Keane
- 1 The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases at Newcastle, Institute of Genetic Medicine, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - Alison Blain
- 1 The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases at Newcastle, Institute of Genetic Medicine, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - Liz O'Donovan
- 2 Laboratory of Molecular Biology , Medical Research Council, Cambridge, United Kingdom
| | - Michael John Gait
- 2 Laboratory of Molecular Biology , Medical Research Council, Cambridge, United Kingdom
| | - Steven H Laval
- 1 The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases at Newcastle, Institute of Genetic Medicine, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - Volker Straub
- 1 The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases at Newcastle, Institute of Genetic Medicine, Newcastle University , Newcastle upon Tyne, United Kingdom
| |
Collapse
|
24
|
Evers MM, Toonen LJ, van Roon-Mom WM. Antisense oligonucleotides in therapy for neurodegenerative disorders. Adv Drug Deliv Rev 2015; 87:90-103. [PMID: 25797014 DOI: 10.1016/j.addr.2015.03.008] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 03/02/2015] [Accepted: 03/12/2015] [Indexed: 12/14/2022]
Abstract
Antisense oligonucleotides are synthetic single stranded strings of nucleic acids that bind to RNA and thereby alter or reduce expression of the target RNA. They can not only reduce expression of mutant proteins by breakdown of the targeted transcript, but also restore protein expression or modify proteins through interference with pre-mRNA splicing. There has been a recent revival of interest in the use of antisense oligonucleotides to treat several neurodegenerative disorders using different approaches to prevent disease onset or halt disease progression and the first clinical trials for spinal muscular atrophy and amyotrophic lateral sclerosis showing promising results. For these trials, intrathecal delivery is being used but direct infusion into the brain ventricles and several methods of passing the blood brain barrier after peripheral administration are also under investigation.
Collapse
|
25
|
Aartsma-Rus A, Ferlini A, Goemans N, Pasmooij AMG, Wells DJ, Bushby K, Vroom E, Balabanov P. Translational and regulatory challenges for exon skipping therapies. Hum Gene Ther 2015; 25:885-92. [PMID: 25184444 DOI: 10.1089/hum.2014.086] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Several translational challenges are currently impeding the therapeutic development of antisense-mediated exon skipping approaches for rare diseases. Some of these are inherent to developing therapies for rare diseases, such as small patient numbers and limited information on natural history and interpretation of appropriate clinical outcome measures. Others are inherent to the antisense oligonucleotide (AON)-mediated exon skipping approach, which employs small modified DNA or RNA molecules to manipulate the splicing process. This is a new approach and only limited information is available on long-term safety and toxicity for most AON chemistries. Furthermore, AONs often act in a mutation-specific manner, in which case multiple AONs have to be developed for a single disease. A workshop focusing on preclinical development, trial design, outcome measures, and different forms of marketing authorization was organized by the regulatory models and biochemical outcome measures working groups of Cooperation of Science and Technology Action: "Networking towards clinical application of antisense-mediated exon skipping for rare diseases." The workshop included participants from patient organizations, academia, and members of staff from the European Medicine Agency and Medicine Evaluation Board (the Netherlands). This statement article contains the key outcomes of this meeting.
Collapse
Affiliation(s)
- Annemieke Aartsma-Rus
- 1 Department of Human Genetics, Leiden University Medical Center , 2333 ZA Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|