1
|
Kakavand-Ghalehnoei R, Patrad E, Ravanshad M. In silico Approach: Design an Optimized shRNA against RUNX1 Gene to Target HIV. Curr Drug Discov Technol 2025; 22:e250424229316. [PMID: 38676495 DOI: 10.2174/0115701638291312240415151051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/23/2024] [Accepted: 04/01/2024] [Indexed: 04/29/2024]
Abstract
INTRODUCTION Human Immunodeficiency Virus (HIV) is a retrovirus with single-stranded RNA that leads to the challenging disease of acquired immunodeficiency syndrome (AIDS). Combination antiretroviral therapy (cART) can prevent the progression of the disease, but it is not capable of long-term HIV elimination. One of the significant obstacles to treating HIV-1-infected individuals is the creation of latent cell reservoirs early in the infection. Gene-based therapies that utilize RNA interference (RNAi) to silence host or viral gene expression are considered promising therapeutic approaches. It has been demonstrated that RUNX1, a T-cell-specific transcription factor, may significantly affect HIV replication and infection. According to accumulating evidence on the role of interfering RNA techniques in inhibiting gene expression and considering the role of RUNX1 in the replication of HIV-1. In this study, we aim to design shRNAs against RUNX1 that can target the replication of HIV-1. METHODS Several computational methods, including target alignment, similarity search, and secondary structure prediction, have been employed in the design of shRNA against RUNX1. RESULTS Seven shRNA molecules with the highest efficiency were designed and validated using computational methods to silence the RUNX1 gene. CONCLUSION In the present study, we designed shRNA against RUNX1, which can target latent cells infected with HIV. Suppression of RUNX1 by shRNA reactivates HIV in the latent cells and subsequently potentiates the immune response toward identifying accurate virus-infected cells. This process may lead to an effective and efficient reduction of the volume of cell reservoirs infected with HIV.
Collapse
Affiliation(s)
| | - Elham Patrad
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Ravanshad
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
2
|
Pottash AE, Levy D, Powsner EH, Pirolli NH, Kuo L, Solomon TJ, Nowak R, Wang J, Kronstadt SM, Jay SM. Enhanced Extracellular Vesicle Cargo Loading via microRNA Biogenesis Pathway Modulation. ACS Biomater Sci Eng 2024; 10:6286-6298. [PMID: 39305230 DOI: 10.1021/acsbiomaterials.4c00821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Extracellular vesicles (EVs) are physiological vectors for the intercellular transport of a variety of molecules. Among these, small RNAs, and especially microRNAs (miRNAs), have been identified as prevalent components, and there has thus been a robust investigation of EVs for therapeutic miRNAs delivery. However, intrinsic levels of EV-associated miRNAs are generally too low to enable efficient and effective therapeutic outcomes. We hypothesized that miRNA localization to EVs could be improved by limiting competing interactions that occur throughout the miRNA biogenesis process. Using miR-146a-5p as a model, modulation of transcription, nuclear export, and enzymatic cleavage steps of miRNA biogenesis were tested for impact on EV miRNA loading. Working in HEK293T cells, various alterations in the EV biogenesis pathway were shown to impact miRNA localization to EVs. The system was then applied in induced pluripotent stem cells (iPSCs), a more promising substrate for therapeutic EV production, and EVs were separated and assessed for anti-inflammatory efficacy in vitro and in a murine colitis model, where the preservation of function was validated. Overall, the results highlight necessary considerations when designing a cell culture system for the devoted production of miRNA-loaded EVs.
Collapse
Affiliation(s)
- Alex Eli Pottash
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Daniel Levy
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Emily H Powsner
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Nicholas H Pirolli
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Leo Kuo
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Talia J Solomon
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Raith Nowak
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Jacob Wang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Stephanie M Kronstadt
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Steven M Jay
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
- Program in Molecular and Cell Biology, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
3
|
Shibata A, Shirohzu H, Iwakami Y, Abe T, Emura C, Aoki E, Ohgi T. Terminal bridging of siRNA duplex at the ribose 2' position controls strand bias and target sequence preference. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:468-477. [PMID: 37168798 PMCID: PMC10165404 DOI: 10.1016/j.omtn.2023.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/14/2023] [Indexed: 05/13/2023]
Abstract
Small interfering RNA (siRNA) and short hairpin RNA (shRNA) are widely used as RNA interference (RNAi) reagents. Recently, truncated shRNAs that trigger RNAi in a Dicer-independent manner have been developed. We generated a novel class of RNAi reagent, designated enforced strand bias (ESB) RNA, in which an siRNA duplex was chemically bridged between the 3' terminal overhang region of the guide strand and the 5' terminal nucleotide of the passenger strand. ESB RNA, which is chemically bridged at the 2' positions of ribose (2'-2' ESB RNA), functions in a Dicer-independent manner and was highly effective at triggering RNAi without the passenger strand-derived off-target effect. In addition, the 2'-2' ESB RNA exhibited a unique target sequence preference that differs from siRNA and silenced target sequences that could not be effectively suppressed by siRNA. Our results indicate that ESB RNA has the potential to be an effective RNAi reagent even when the target sequence is not suitable for siRNA.
Collapse
Affiliation(s)
- Atsushi Shibata
- Division of R&D, Bonac Corporation, 1488-4 Aikawa, Kurume, Fukuoka 839-0861, Japan
- Corresponding author Atsushi Shibata, Division of R&D, Bonac Corporation, 1488-4 Aikawa, Kurume, Fukuoka 839-0861, Japan.
| | - Hisao Shirohzu
- Division of R&D, Bonac Corporation, 1488-4 Aikawa, Kurume, Fukuoka 839-0861, Japan
- Fukuoka Center for Disease Control and Prevention, Kurume, Fukuoka, Japan
| | - Yusuke Iwakami
- Division of R&D, Bonac Corporation, 1488-4 Aikawa, Kurume, Fukuoka 839-0861, Japan
| | - Tomoaki Abe
- Division of R&D, Bonac Corporation, 1488-4 Aikawa, Kurume, Fukuoka 839-0861, Japan
| | - Chisato Emura
- Division of R&D, Bonac Corporation, 1488-4 Aikawa, Kurume, Fukuoka 839-0861, Japan
| | - Eriko Aoki
- Division of R&D, Bonac Corporation, 1488-4 Aikawa, Kurume, Fukuoka 839-0861, Japan
| | - Tadaaki Ohgi
- Division of R&D, Bonac Corporation, 1488-4 Aikawa, Kurume, Fukuoka 839-0861, Japan
| |
Collapse
|
4
|
Seeler S, Andersen MS, Sztanka-Toth T, Rybiczka-Tešulov M, van den Munkhof MH, Chang CC, Maimaitili M, Venø MT, Hansen TB, Pasterkamp RJ, Rybak-Wolf A, Denham M, Rajewsky N, Kristensen LS, Kjems J. A Circular RNA Expressed from the FAT3 Locus Regulates Neural Development. Mol Neurobiol 2023; 60:3239-3260. [PMID: 36840844 PMCID: PMC10122638 DOI: 10.1007/s12035-023-03253-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/28/2023] [Indexed: 02/26/2023]
Abstract
Circular RNAs (circRNAs) are key regulators of cellular processes, are abundant in the nervous system, and have putative regulatory roles during neural differentiation. However, the knowledge about circRNA functions in brain development is limited. Here, using RNA-sequencing, we show that circRNA levels increased substantially over the course of differentiation of human embryonic stem cells into rostral and caudal neural progenitor cells (NPCs), including three of the most abundant circRNAs, ciRS-7, circRMST, and circFAT3. Knockdown of circFAT3 during early neural differentiation resulted in minor transcriptional alterations in bulk RNA analysis. However, single-cell transcriptomics of 30 and 90 days differentiated cerebral organoids deficient in circFAT3 showed a loss of telencephalic radial glial cells and mature cortical neurons, respectively. Furthermore, non-telencephalic NPCs in cerebral organoids showed changes in the expression of genes involved in neural differentiation and migration, including FAT4, ERBB4, UNC5C, and DCC. In vivo depletion of circFat3 in mouse prefrontal cortex using in utero electroporation led to alterations in the positioning of the electroporated cells within the neocortex. Overall, these findings suggest a conserved role for circFAT3 in neural development involving the formation of anterior cell types, neuronal differentiation, or migration.
Collapse
Affiliation(s)
- Sabine Seeler
- Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Aarhus, Denmark
- Department of Biomedicine, The Skou Building, Aarhus University, 8000 Aarhus C, Aarhus, Denmark
| | - Maria Schertz Andersen
- Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Aarhus, Denmark
| | - Tamas Sztanka-Toth
- Berlin Institute for Medical Systems Biology (BIMSB), MDC Berlin-Mitte, 10115, Berlin, Germany
| | - Mateja Rybiczka-Tešulov
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, 3584 CG, Utrecht, Netherlands
| | - Marleen H van den Munkhof
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, 3584 CG, Utrecht, Netherlands
| | - Chi-Chih Chang
- Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Aarhus, Denmark
| | - Muyesier Maimaitili
- Department of Biomedicine, The Skou Building, Aarhus University, 8000 Aarhus C, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000 Aarhus C, Aarhus, Denmark
| | - Morten Trillingsgaard Venø
- Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Aarhus, Denmark
- Omiics ApS, 8200 Aarhus N, Aarhus, Denmark
| | - Thomas Birkballe Hansen
- Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Aarhus, Denmark
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, 3584 CG, Utrecht, Netherlands
| | - Agnieszka Rybak-Wolf
- Berlin Institute for Medical Systems Biology (BIMSB), MDC Berlin-Mitte, 10115, Berlin, Germany
| | - Mark Denham
- Department of Biomedicine, The Skou Building, Aarhus University, 8000 Aarhus C, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000 Aarhus C, Aarhus, Denmark
| | - Nikolaus Rajewsky
- Berlin Institute for Medical Systems Biology (BIMSB), MDC Berlin-Mitte, 10115, Berlin, Germany
| | - Lasse Sommer Kristensen
- Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Aarhus, Denmark.
- Department of Biomedicine, The Skou Building, Aarhus University, 8000 Aarhus C, Aarhus, Denmark.
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Aarhus, Denmark.
| |
Collapse
|
5
|
Alsing S, Doktor TK, Askou AL, Jensen EG, Ahmadov U, Kristensen LS, Andresen BS, Aagaard L, Corydon TJ. VEGFA-targeting miR-agshRNAs combine efficacy with specificity and safety for retinal gene therapy. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 28:58-76. [PMID: 35356684 PMCID: PMC8933642 DOI: 10.1016/j.omtn.2022.02.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/25/2022] [Indexed: 11/09/2022]
Abstract
Retinal gene therapy using RNA interference (RNAi) to silence targeted genes requires both efficacy and safety. Short hairpin RNAs (shRNAs) are useful for RNAi, but high expression levels and activity from the co-delivered passenger strand may cause undesirable cellular responses. Ago2-dependent shRNAs (agshRNAs) produce no passenger strand activity. To enhance efficacy and to investigate improvements in safety, we have generated VEGFA-targeting agshRNAs and microRNA (miRNA)-embedded agshRNAs (miR-agshRNAs) and inserted these RNAi effectors in Pol II/III-driven expression cassettes and lentiviral vectors (LVs). Compared with corresponding shRNAs, agshRNAs and miR-agshRNAs increased specificity and safety, while retaining a high knockdown efficacy and abolishing passenger strand activity. The agshRNAs also caused significantly smaller reductions in cell viability and reduced competition with the processing of endogenous miR21 compared with their shRNA counterparts. RNA sequencing (RNA-seq) analysis of LV-transduced ARPE19 cells revealed that expression of shRNAs in general leads to more changes in gene expression levels compared with their agshRNA counterparts and activation of immune-related pathways. In mice, subretinal delivery of LVs encoding tissue-specific miR-agshRNAs resulted in retinal pigment epithelium (RPE)-restricted expression and significant knockdown of Vegfa in transduced RPE cells. Collectively, our data suggest that agshRNAs and miR-agshRNA possess important advantages over shRNAs, thereby posing a clinically relevant approach with respect to efficacy, specificity, and safety.
Collapse
|
6
|
Right on target: The next class of efficient, safe, and specific RNAi triggers. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 28:363-365. [PMID: 35505965 PMCID: PMC9035382 DOI: 10.1016/j.omtn.2022.03.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Ghanbarian H, Aghamiri S, Eftekhary M, Wagner N, Wagner KD. Small Activating RNAs: Towards the Development of New Therapeutic Agents and Clinical Treatments. Cells 2021; 10:cells10030591. [PMID: 33800164 PMCID: PMC8001863 DOI: 10.3390/cells10030591] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
Small double-strand RNA (dsRNA) molecules can activate endogenous genes via an RNA-based promoter targeting mechanism. RNA activation (RNAa) is an evolutionarily conserved mechanism present in diverse eukaryotic organisms ranging from nematodes to humans. Small activating RNAs (saRNAs) involved in RNAa have been successfully used to activate gene expression in cultured cells, and thereby this emergent technique might allow us to develop various biotechnological applications, without the need to synthesize hazardous construct systems harboring exogenous DNA sequences. Accordingly, this thematic issue aims to provide insights into how RNAa cellular machinery can be harnessed to activate gene expression leading to a more effective clinical treatment of various diseases.
Collapse
MESH Headings
- Animals
- Brain/cytology
- Brain/growth & development
- Brain/metabolism
- Genetic Therapy/methods
- Humans
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Muscle Development/genetics
- Muscular Atrophy, Spinal/genetics
- Muscular Atrophy, Spinal/metabolism
- Muscular Atrophy, Spinal/pathology
- Muscular Atrophy, Spinal/therapy
- Myocardium/cytology
- Myocardium/metabolism
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/metabolism
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplasms/genetics
- Neoplasms/metabolism
- Neoplasms/pathology
- Neoplasms/therapy
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neurogenesis/genetics
- Neurons/cytology
- Neurons/metabolism
- Promoter Regions, Genetic
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/metabolism
- RNA, Double-Stranded/therapeutic use
- RNA, Small Untranslated/genetics
- RNA, Small Untranslated/metabolism
- RNA, Small Untranslated/therapeutic use
- Survival of Motor Neuron 1 Protein/genetics
- Survival of Motor Neuron 1 Protein/metabolism
Collapse
Affiliation(s)
- Hossein Ghanbarian
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran;
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran;
| | - Shahin Aghamiri
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran;
| | - Mohamad Eftekhary
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran;
| | - Nicole Wagner
- Université Côte d’Azur, CNRS, INSERM, iBV, 06107 Nice, France
- Correspondence: (N.W.); (K.-D.W.); Tel.: +33-493-3776-65 (K.-D.W.)
| | - Kay-Dietrich Wagner
- Université Côte d’Azur, CNRS, INSERM, iBV, 06107 Nice, France
- Correspondence: (N.W.); (K.-D.W.); Tel.: +33-493-3776-65 (K.-D.W.)
| |
Collapse
|
8
|
Berkhout B, Herrera-Carrillo E. Design and Evaluation of AgoshRNAs with 3'-Terminal HDV Ribozymes to Enhance the Silencing Activity. Methods Mol Biol 2021; 2167:225-252. [PMID: 32712923 DOI: 10.1007/978-1-0716-0716-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Since the first application of RNA interference (RNAi) in mammalian cells, the expression of short hairpin RNA (shRNA) molecules for targeted gene silencing has become a benchmark technology. Plasmid and viral vector systems can be used to express shRNA precursor transcripts that are processed by the cellular RNAi pathway to trigger sequence-specific gene knockdown. Intensive RNAi investigations documented that only a small percentage of computationally predicted target sequences can be used for efficient gene silencing, in part because not all shRNA designs are active. Many factors influence the shRNA activity and guidelines for optimal shRNA design have been proposed. We recently described an alternatively processed shRNA molecule termed AgoshRNA with a ~18 base pairs (bp) stem and a 3-5 nucleotides (nt) loop. This molecule is alternatively processed by the Argonaute (Ago) protein into a single guide RNA strand that efficiently induces the RNAi mechanism. The design rules proposed for regular shRNAs do not apply to AgoshRNA molecules and therefore new rules had to be defined. We optimized the AgoshRNA design and managed to create a set of active AgoshRNAs targeted against the human immunodeficiency virus (HIV). In an attempt to enhance the silencing activity of the AgoshRNA molecules, we included the hepatitis delta virus (HDV) ribozyme at the 3' terminus, which generates a uniform 3' end instead of a 3' U-tail of variable length. We evaluated the impact of this 3'-end modification on AgoshRNA processing and its gene silencing activity and we demonstrate that this novel AgoshRNA-HDV design exhibits enhanced antiviral activity.
Collapse
Affiliation(s)
- Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Sun G, Wang J, Huang Y, Yuan CWY, Zhang K, Hu S, Chen L, Lin RJ, Yen Y, Riggs AD. Differences in silencing of mismatched targets by sliced versus diced siRNAs. Nucleic Acids Res 2019; 46:6806-6822. [PMID: 29718312 PMCID: PMC6061797 DOI: 10.1093/nar/gky287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 04/20/2018] [Indexed: 01/11/2023] Open
Abstract
It has been reported that the two major types of RNA interference triggers, the classical Dicer-generated small RNAs (siRNAs), which function with all members of the Argonaute (Ago) protein family in mammals, and the Ago2-sliced small RNAs (sli-siRNAs), which function solely through Ago2, have similar potency in target cleavage and repression. Here, we show that sli-siRNAs are generally more potent than siRNAs in silencing mismatched targets. This phenomenon is usually more apparent in targets that have mismatched nucleotides in the 3′ supplementary region than in targets with mismatches in the seed region. We demonstrate that Ago2 slicer activity is a major factor contributing to the greater silencing efficiency of sli-siRNA against mismatched targets and that participation of non-slicing Agos in silencing mismatched siRNA targets may dilute the slicing ability of Ago2. The difference in length of the mature guide RNA used in sli-RISCs and si-RISCs may also contribute to the observed difference in knockdown efficiency. Our data suggest that a sli-siRNA guide strand is likely to have substantially stronger off-target effects than a guide strand with the same sequence in a classical siRNA and that Dicer and non-slicing Agos may play pivotal roles in controlling siRNA target specificity.
Collapse
Affiliation(s)
- Guihua Sun
- Department of Diabetes Complications & Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010-3000, USA
| | - Jinghan Wang
- Department of Diabetes Complications & Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010-3000, USA
| | - Yasheng Huang
- Department of Diabetes Complications & Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010-3000, USA
| | - Christine Wan-Yin Yuan
- Department of Diabetes Complications & Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010-3000, USA
| | - Keqiang Zhang
- Department of Diabetes Complications & Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010-3000, USA
| | - Shuya Hu
- Department of Diabetes Complications & Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010-3000, USA
| | - Linling Chen
- Department of Diabetes Complications & Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010-3000, USA
| | - Ren-Jang Lin
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010-3000, USA
| | - Yun Yen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Arthur D Riggs
- Department of Diabetes Complications & Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010-3000, USA
| |
Collapse
|
10
|
Weng Y, Xiao H, Zhang J, Liang XJ, Huang Y. RNAi therapeutic and its innovative biotechnological evolution. Biotechnol Adv 2019; 37:801-825. [PMID: 31034960 DOI: 10.1016/j.biotechadv.2019.04.012] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 04/09/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023]
Abstract
Recently, United States Food and Drug Administration (FDA) and European Commission (EC) approved Alnylam Pharmaceuticals' RNA interference (RNAi) therapeutic, ONPATTRO™ (Patisiran), for the treatment of the polyneuropathy of hereditary transthyretin-mediated (hATTR) amyloidosis in adults. This is the first RNAi therapeutic all over the world, as well as the first FDA-approved treatment for this indication. As a milestone event in RNAi pharmaceutical industry, it means, for the first time, people have broken through all development processes for RNAi drugs from research to clinic. With this achievement, RNAi approval may soar in the coming years. In this paper, we introduce the basic information of ONPATTRO and the properties of RNAi and nucleic acid therapeutics, update the clinical and preclinical development activities, review its complicated development history, summarize the key technologies of RNAi at early stage, and discuss the latest advances in delivery and modification technologies. It provides a comprehensive view and biotechnological insights of RNAi therapy for the broader audiences.
Collapse
Affiliation(s)
- Yuhua Weng
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, PR China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jinchao Zhang
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, PR China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
11
|
Herrera-Carrillo E, Gao Z, Berkhout B. Influence of a 3' Terminal Ribozyme on AgoshRNA Biogenesis and Activity. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 16:452-462. [PMID: 31048184 PMCID: PMC6488825 DOI: 10.1016/j.omtn.2019.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 12/11/2022]
Abstract
Short hairpin RNAs (shRNAs) can induce gene silencing via the RNA interference (RNAi) mechanism. We designed an alternative shRNA molecule with a relatively short base-paired stem that bypasses Dicer and instead is processed by the Argonaute 2 (Ago2) protein into a single guide RNA strand that effectively induces RNAi. We called these molecules AgoshRNAs. Active anti-HIV AgoshRNAs were developed, but their RNAi activity was generally reduced compared with the matching shRNAs. In an attempt to further optimize the AgoshRNA design, we inserted several self-cleaving ribozymes at the 3′ terminus of the transcribed AgoshRNA and evaluated the impact on AgoshRNA processing and activity. The hepatitis delta virus (HDV) ribozyme is efficiently removed from the transcribed AgoshRNAs and generates a uniform 3′ overhang, which translates into the enhanced antiviral activity of these molecules.
Collapse
Affiliation(s)
- Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands
| | - Zongliang Gao
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands.
| |
Collapse
|
12
|
Kaadt E, Alsing S, Cecchi CR, Damgaard CK, Corydon TJ, Aagaard L. Efficient Knockdown and Lack of Passenger Strand Activity by Dicer-Independent shRNAs Expressed from Pol II-Driven MicroRNA Scaffolds. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 14:318-328. [PMID: 30654192 PMCID: PMC6348697 DOI: 10.1016/j.omtn.2018.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 12/21/2022]
Abstract
The expression of short hairpin RNAs (shRNAs) may result in unwanted activity from the co-processed passenger strand. Recent studies have shown that shortening the stem of conventional shRNAs abolishes passenger strand release. These Dicer-independent shRNAs, expressed from RNA polymerase III (Pol III) promoters, rely on Ago2 processing in resemblance to miR-451. Using strand-specific reporters, we tested two designs, and our results support the loss of passenger strand activity. We demonstrate that artificial primary microRNA (pri-miRNA) transcripts, expressed from Pol II promoters, can potently silence a gene of choice. Among six different scaffolds tested, miR-324 and miR-451 were readily re-targeted to direct efficient knockdown from either a CMV or a U1 snRNA promoter. Importantly, the miR-shRNAs have no passenger strand activity and remain active in Dicer-knockout cells. Our vectors are straightforward to design, as we replace the pre-miR-324 or -451 sequences with a Dicer-independent shRNA mimicking miR-451 with unpaired A-C nucleotides at the base. The use of Pol II promoters allows for controlled expression, while the inclusion of pri-miRNA sequences likely requires Drosha processing and, as such, mimics microRNA biogenesis. Since this improved and tunable system bypasses the requirement for Dicer activity and abolishes passenger strand activity completely, it will likely prove favorable in both research and therapeutic applications in terms of versatility and enhanced safety.
Collapse
Affiliation(s)
- Erik Kaadt
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Sidsel Alsing
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Claudia R Cecchi
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Thomas J Corydon
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; Department of Ophthalmology, Aarhus University Hospital, 8000 Aarhus C, Denmark
| | - Lars Aagaard
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
13
|
Şengelen A, Önay-Uçar E. Rosmarinic acid and siRNA combined therapy represses Hsp27 (HSPB1) expression and induces apoptosis in human glioma cells. Cell Stress Chaperones 2018; 23:885-896. [PMID: 29627902 PMCID: PMC6111096 DOI: 10.1007/s12192-018-0896-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/10/2018] [Accepted: 03/24/2018] [Indexed: 12/11/2022] Open
Abstract
High expression of Hsp27 in glioma cells has been closely associated with tumor cell proliferation and apoptosis inhibition. The aim of the present study was to asses the effects of rosmarinic acid (RA) on Hsp27 expression and apoptosis in non-transfected and transfected human U-87 MG cells. The effect of rosmarinic acid was compared to quercetin, which is known to be a good Hsp27 inhibitor. In order to block the expression of Hsp27 gene (HSPB1), transfection with specific siRNAs was performed. Western blotting technique was used to assess the Hsp27 expression, and caspase-3 colorimetric activity assay was performed to determine apoptosis induction. According to the results, it was found that RA and quercetin effectively silenced Hsp27 and both agents induced apoptosis by activating the caspase-3 pathway. Eighty and 215 μM RA decreased the level of Hsp27 by 28.8 and 46.7% and induced apoptosis by 30 and 54%, respectively. For the first time, we reported that rosmarinic acid has the ability to trigger caspase-3 induced apoptosis in human glioma cells. As a result of siRNA transfection, the Hsp27 gene was silenced by ~ 50% but did not cause a statistically significant change in caspase-3 activation. It was also observed that apoptosis was induced at a higher level as a result of Hsp27 siRNA and subsequent quercetin or RA treatment. siRNA transfection and 215 μM RA treatment suppressed Hsp27 expression level by 90.5% and increased caspase-3 activity by 58%. Herein, we demonstrated that RA administered with siRNA seems to be a potent combination for glioblastoma therapy.
Collapse
Affiliation(s)
- Aslıhan Şengelen
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Vezneciler, 34134, Istanbul, Turkey.
| | - Evren Önay-Uçar
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Vezneciler, 34134, Istanbul, Turkey
| |
Collapse
|
14
|
Herrera-Carrillo E, Harwig A, Berkhout B. Influence of the loop size and nucleotide composition on AgoshRNA biogenesis and activity. RNA Biol 2017; 14:1559-1569. [PMID: 28569591 PMCID: PMC5785215 DOI: 10.1080/15476286.2017.1328349] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Short hairpin RNAs (shRNAs) are widely used for gene silencing by the RNA interference (RNAi) mechanism. The shRNA precursor is processed by the Dicer enzyme into active small interfering RNAs (siRNAs) that subsequently target a complementary mRNA for cleavage by the Argonaute 2 (Ago2) complex. Recent evidence indicates that shRNAs with a relatively short basepaired stem bypass Dicer and are instead processed by Ago2. We termed these molecules AgoshRNAs as both processing and silencing steps are mediated by Ago2 and proposed rules for the design of effective AgoshRNA molecules. Active and non-cytotoxic AgoshRNAs against HIV-1 RNA were generated, but their silencing activity was generally reduced compared with the matching shRNAs. Thus, further optimization of the AgoshRNA design is needed. In this study, we evaluated the importance of the single-stranded loop, in particular its size and nucleotide sequence, in AgoshRNA-mediated silencing. We document that the pyrimidine/purine content is important for AgoshRNA-mediated silencing activity.
Collapse
Affiliation(s)
- Elena Herrera-Carrillo
- a Laboratory of Experimental Virology, Department of Medical Microbiology , Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam , AZ Amsterdam , the Netherlands
| | - Alex Harwig
- a Laboratory of Experimental Virology, Department of Medical Microbiology , Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam , AZ Amsterdam , the Netherlands
| | - Ben Berkhout
- a Laboratory of Experimental Virology, Department of Medical Microbiology , Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam , AZ Amsterdam , the Netherlands
| |
Collapse
|
15
|
Herrera-Carrillo E, Berkhout B. Dicer-independent processing of small RNA duplexes: mechanistic insights and applications. Nucleic Acids Res 2017; 45:10369-10379. [PMID: 28977573 PMCID: PMC5737282 DOI: 10.1093/nar/gkx779] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/24/2017] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) play a pivotal role in the regulation of cellular gene expression via the conserved RNA interference (RNAi) mechanism. Biogenesis of the unusual miR-451 does not require Dicer. This molecule is instead processed by the Argonaute 2 (Ago2) enzyme. Similarly, unconventional short hairpin RNA (shRNA) molecules have been designed as miR-451 mimics that rely exclusively on Ago2 for maturation. We will review recent progress made in the understanding of this alternative processing route. Next, we describe different Dicer-independent shRNA designs that have been developed and discuss their therapeutic advantages and disadvantages. As an example, we will present the route towards development of a durable gene therapy against HIV-1.
Collapse
Affiliation(s)
- Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, the Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, the Netherlands
| |
Collapse
|
16
|
Herrera-Carrillo E, Gao ZL, Harwig A, Heemskerk MT, Berkhout B. The influence of the 5΄-terminal nucleotide on AgoshRNA activity and biogenesis: importance of the polymerase III transcription initiation site. Nucleic Acids Res 2017; 45:4036-4050. [PMID: 27928054 PMCID: PMC5397164 DOI: 10.1093/nar/gkw1203] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/29/2016] [Indexed: 12/21/2022] Open
Abstract
Recent evidence indicates that shRNAs with a relatively short basepaired stem do not require Dicer processing, but instead are processed by the Argonaute 2 protein (Ago2). We named these molecules AgoshRNAs as both their processing and silencing function are mediated by Ago2. This alternative processing yields only a single RNA guide strand, which can avoid off-target effects induced by the passenger strand of regular shRNAs. It is important to understand this alternative processing route in mechanistic detail such that one can design improved RNA reagents. We verified that AgoshRNAs trigger site-specific cleavage of a complementary mRNA. Second, we document the importance of the identity of the 5΄-terminal nucleotide and its basepairing status for AgoshRNA activity. AgoshRNA activity is significantly reduced or even abrogated with C or U at the 5΄-terminal and is enhanced by introduction of a bottom mismatch and 5΄-terminal nucleotide A or G. The 5΄-terminal RNA nucleotide also represents the +1 position of the transcriptional promoter in the DNA, thus further complicating the analysis. Indeed, we report that +1 modification affects the transcriptional efficiency and accuracy of start site selection, with A or G as optimal nucleotide. These combined results allow us to propose general rules for the design and expression of potent AgoshRNA molecules.
Collapse
Affiliation(s)
- Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands
| | - Zong-Liang Gao
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands
| | - Alex Harwig
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands
| | - Matthias T Heemskerk
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands
| |
Collapse
|
17
|
Sun G, Riggs AD. A Simple and Cost-Effective Approach for In Vitro Production of Sliced siRNAs as Potent Triggers for RNAi. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 8:345-355. [PMID: 28918034 PMCID: PMC5537206 DOI: 10.1016/j.omtn.2017.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 07/08/2017] [Accepted: 07/09/2017] [Indexed: 12/25/2022]
Abstract
We have studied the molecular properties of in-vitro-transcribed sliced small interfering RNAs (tsli-siRNAs) as an alternative RNAi agent for chemically synthesized siRNA. We describe here a simple and cost-effective procedure for high-purity production of tsli-siRNA using bacteriophage T7 RNA polymerases. tsli-siRNAs exhibit potent gene knockdown effects, with efficacy comparable with that of chemically synthesized sli-siRNAs and classical siRNAs. Furthermore, we found that it is very easy to prepare potent tsli-siRNAs with modified bases, such as 2′-fluorine- or biotin-16-modified tsli-siRNAs. tsli-siRNAs can cause a mild innate immune response, which can be easily eliminated by alkaline phosphatase treatment. On the other hand, this feature, which can be useful as a trigger of the innate immune response, can be enhanced by polynucleotide kinase treatment. Because of the simplicity of preparation and purification, the procedure presented here could be useful for the production of RNAi or immunostimulatory reagents.
Collapse
Affiliation(s)
- Guihua Sun
- Department of Diabetes Complications & Metabolism, Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA.
| | - Arthur D Riggs
- Department of Diabetes Complications & Metabolism, Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA.
| |
Collapse
|
18
|
Herrera-Carrillo E, Harwig A, Berkhout B. Silencing of HIV-1 by AgoshRNA molecules. Gene Ther 2017; 24:453-461. [DOI: 10.1038/gt.2017.44] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/13/2017] [Accepted: 05/12/2017] [Indexed: 12/17/2022]
|
19
|
The TLX-miR-219 cascade regulates neural stem cell proliferation in neurodevelopment and schizophrenia iPSC model. Nat Commun 2016; 7:10965. [PMID: 26965827 PMCID: PMC4793043 DOI: 10.1038/ncomms10965] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/05/2016] [Indexed: 01/03/2023] Open
Abstract
Dysregulated expression of miR-219, a brain-specific microRNA, has been observed in neurodevelopmental disorders, such as schizophrenia (SCZ). However, its role in normal mammalian neural stem cells (NSCs) and in SCZ pathogenesis remains unknown. We show here that the nuclear receptor TLX, an essential regulator of NSC proliferation and self-renewal, inhibits miR-219 processing. miR-219 suppresses mouse NSC proliferation downstream of TLX. Moreover, we demonstrate upregulation of miR-219 and downregulation of TLX expression in NSCs derived from SCZ patient iPSCs and DISC1-mutant isogenic iPSCs. SCZ NSCs exhibit reduced cell proliferation. Overexpression of TLX or inhibition of miR-219 action rescues the proliferative defect in SCZ NSCs. Therefore, this study uncovers an important role for TLX and miR-219 in both normal neurodevelopment and in SCZ patient iPSC-derived NSCs. Moreover, this study reveals an unexpected role for TLX in regulating microRNA processing, independent of its well-characterized role in transcriptional regulation. Dysregulation of microRNAs has been implicated in neurodevelopmental disorders, including schizophrenia. Here the authors show that the TLX-miR-219 cascade regulates the proliferation of neural stem cells during normal development, and this pathway is dysregulated in a schizophrenia iPSC model.
Collapse
|
20
|
Asensio-Sánchez VM. Present and future of ribonucleic acid interference. ARCHIVOS DE LA SOCIEDAD ESPANOLA DE OFTALMOLOGIA 2015; 90:554-555. [PMID: 26243435 DOI: 10.1016/j.oftal.2015.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 05/19/2015] [Indexed: 06/04/2023]
Affiliation(s)
- V M Asensio-Sánchez
- Servicio de Oftalmología, Hospital Clínico Universitario, Valladolid, España.
| |
Collapse
|
21
|
Shang R, Zhang F, Xu B, Xi H, Zhang X, Wang W, Wu L. Ribozyme-enhanced single-stranded Ago2-processed interfering RNA triggers efficient gene silencing with fewer off-target effects. Nat Commun 2015; 6:8430. [PMID: 26455506 PMCID: PMC4633630 DOI: 10.1038/ncomms9430] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 08/21/2015] [Indexed: 02/06/2023] Open
Abstract
Short-hairpin RNAs (shRNAs) are widely used to produce small-interfering RNAs (siRNAs) for gene silencing. Here we design an alternative siRNA precursor, named single-stranded, Argonaute 2 (Ago2)-processed interfering RNA (saiRNA), containing a 16-18 bp stem and a loop complementary to the target transcript. The introduction of a self-cleaving ribozyme derived from hepatitis delta virus to the 3' end of the transcribed saiRNA dramatically improves its silencing activity by generating a short 3' overhang that facilitates the efficient binding of saiRNA to Ago2. The same ribozyme also enhances the activity of Dicer-dependent shRNAs. Unlike a classical shRNA, the strand-specific cleavage of saiRNA by Ago2 during processing eliminates the passenger strand and prevents the association of siRNA with non-nucleolytic Ago proteins. As a result, off-target effects are reduced. In addition, saiRNA exhibits less competition with the biogenesis of endogenous miRNAs. Therefore, ribozyme-enhanced saiRNA provides a reliable tool for RNA interference applications.
Collapse
Affiliation(s)
- Renfu Shang
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai 201204, China.,Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fengjuan Zhang
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai 201204, China.,Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Beiying Xu
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai 201204, China.,Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hairui Xi
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xue Zhang
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai 201204, China.,Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Weihua Wang
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai 201204, China.,Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ligang Wu
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai 201204, China.,Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|